This repository has been archived by the owner on Apr 7, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 319
/
worker.py
152 lines (130 loc) · 6.12 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/env python
import cv2
import go_vncdriver
import tensorflow as tf
import argparse
import logging
import sys, signal
import time
import os
from a3c import A3C
from envs import create_env
import distutils.version
use_tf12_api = distutils.version.LooseVersion(tf.VERSION) >= distutils.version.LooseVersion('0.12.0')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Disables write_meta_graph argument, which freezes entire process and is mostly useless.
class FastSaver(tf.train.Saver):
def save(self, sess, save_path, global_step=None, latest_filename=None,
meta_graph_suffix="meta", write_meta_graph=True):
super(FastSaver, self).save(sess, save_path, global_step, latest_filename,
meta_graph_suffix, False)
def run(args, server):
env = create_env(args.env_id, client_id=str(args.task), remotes=args.remotes)
trainer = A3C(env, args.task, args.visualise)
# Variable names that start with "local" are not saved in checkpoints.
if use_tf12_api:
variables_to_save = [v for v in tf.global_variables() if not v.name.startswith("local")]
init_op = tf.variables_initializer(variables_to_save)
init_all_op = tf.global_variables_initializer()
else:
variables_to_save = [v for v in tf.all_variables() if not v.name.startswith("local")]
init_op = tf.initialize_variables(variables_to_save)
init_all_op = tf.initialize_all_variables()
saver = FastSaver(variables_to_save)
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name)
logger.info('Trainable vars:')
for v in var_list:
logger.info(' %s %s', v.name, v.get_shape())
def init_fn(ses):
logger.info("Initializing all parameters.")
ses.run(init_all_op)
config = tf.ConfigProto(device_filters=["/job:ps", "/job:worker/task:{}/cpu:0".format(args.task)])
logdir = os.path.join(args.log_dir, 'train')
if use_tf12_api:
summary_writer = tf.summary.FileWriter(logdir + "_%d" % args.task)
else:
summary_writer = tf.train.SummaryWriter(logdir + "_%d" % args.task)
logger.info("Events directory: %s_%s", logdir, args.task)
sv = tf.train.Supervisor(is_chief=(args.task == 0),
logdir=logdir,
saver=saver,
summary_op=None,
init_op=init_op,
init_fn=init_fn,
summary_writer=summary_writer,
ready_op=tf.report_uninitialized_variables(variables_to_save),
global_step=trainer.global_step,
save_model_secs=30,
save_summaries_secs=30)
num_global_steps = 100000000
logger.info(
"Starting session. If this hangs, we're mostly likely waiting to connect to the parameter server. " +
"One common cause is that the parameter server DNS name isn't resolving yet, or is misspecified.")
with sv.managed_session(server.target, config=config) as sess, sess.as_default():
sess.run(trainer.sync)
trainer.start(sess, summary_writer)
global_step = sess.run(trainer.global_step)
logger.info("Starting training at step=%d", global_step)
while not sv.should_stop() and (not num_global_steps or global_step < num_global_steps):
trainer.process(sess)
global_step = sess.run(trainer.global_step)
# Ask for all the services to stop.
sv.stop()
logger.info('reached %s steps. worker stopped.', global_step)
def cluster_spec(num_workers, num_ps):
"""
More tensorflow setup for data parallelism
"""
cluster = {}
port = 12222
all_ps = []
host = '127.0.0.1'
for _ in range(num_ps):
all_ps.append('{}:{}'.format(host, port))
port += 1
cluster['ps'] = all_ps
all_workers = []
for _ in range(num_workers):
all_workers.append('{}:{}'.format(host, port))
port += 1
cluster['worker'] = all_workers
return cluster
def main(_):
"""
Setting up Tensorflow for data parallel work
"""
parser = argparse.ArgumentParser(description=None)
parser.add_argument('-v', '--verbose', action='count', dest='verbosity', default=0, help='Set verbosity.')
parser.add_argument('--task', default=0, type=int, help='Task index')
parser.add_argument('--job-name', default="worker", help='worker or ps')
parser.add_argument('--num-workers', default=1, type=int, help='Number of workers')
parser.add_argument('--log-dir', default="/tmp/pong", help='Log directory path')
parser.add_argument('--env-id', default="PongDeterministic-v3", help='Environment id')
parser.add_argument('-r', '--remotes', default=None,
help='References to environments to create (e.g. -r 20), '
'or the address of pre-existing VNC servers and '
'rewarders to use (e.g. -r vnc://localhost:5900+15900,vnc://localhost:5901+15901)')
# Add visualisation argument
parser.add_argument('--visualise', action='store_true',
help="Visualise the gym environment by running env.render() between each timestep")
args = parser.parse_args()
spec = cluster_spec(args.num_workers, 1)
cluster = tf.train.ClusterSpec(spec).as_cluster_def()
def shutdown(signal, frame):
logger.warn('Received signal %s: exiting', signal)
sys.exit(128+signal)
signal.signal(signal.SIGHUP, shutdown)
signal.signal(signal.SIGINT, shutdown)
signal.signal(signal.SIGTERM, shutdown)
if args.job_name == "worker":
server = tf.train.Server(cluster, job_name="worker", task_index=args.task,
config=tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=2))
run(args, server)
else:
server = tf.train.Server(cluster, job_name="ps", task_index=args.task,
config=tf.ConfigProto(device_filters=["/job:ps"]))
while True:
time.sleep(1000)
if __name__ == "__main__":
tf.app.run()