diff --git a/modules/cannops/CMakeLists.txt b/modules/cannops/CMakeLists.txt index 0c16c5eb143..557fbe7f492 100644 --- a/modules/cannops/CMakeLists.txt +++ b/modules/cannops/CMakeLists.txt @@ -15,3 +15,9 @@ ocv_include_directories(${CMAKE_SOURCE_DIR}/modules/ts/include) ocv_add_accuracy_tests(DEPENDS_ON opencv_cannops) ocv_add_perf_tests(DEPENDS_ON opencv_cannops) ocv_add_samples(opencv_cannops) + +# compile ascnedc kernels. +add_subdirectory(ascendc_kernels) +ocv_include_directories(${CMAKE_BINARY_DIR}/include/ascendc_kernels) +ocv_target_link_libraries(opencv_cannops PRIVATE ascendc_kernels) +ocv_target_link_libraries(opencv_test_cannops PRIVATE ascendc_kernels) diff --git a/modules/cannops/ascendc_kernels/CMakeLists.txt b/modules/cannops/ascendc_kernels/CMakeLists.txt new file mode 100644 index 00000000000..cde6c5482de --- /dev/null +++ b/modules/cannops/ascendc_kernels/CMakeLists.txt @@ -0,0 +1,17 @@ +set(SOC_VERSION "ascend310p3" CACHE STRING "system on chip type") +set(ASCEND_CANN_PACKAGE_PATH "/usr/local/Ascend/ascend-toolkit/latest" CACHE PATH "ASCEND CANN package installation directory") +set(RUN_MODE "npu" CACHE STRING "run mode: npu/sim/cpu") + +if(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake) + set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake) +elseif(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake) + set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake) +else() + message(FATAL_ERROR "ascendc_kernel_cmake does not exist, please check whether the compiler package is installed.") +endif() + +include(${ASCENDC_CMAKE_DIR}/ascendc.cmake) + +ascendc_library(ascendc_kernels STATIC + threshold_opencv_kernel.cpp +) \ No newline at end of file diff --git a/modules/cannops/ascendc_kernels/kernel_tiling_types.h b/modules/cannops/ascendc_kernels/kernel_tiling_types.h new file mode 100644 index 00000000000..d22dfae17e3 --- /dev/null +++ b/modules/cannops/ascendc_kernels/kernel_tiling_types.h @@ -0,0 +1,22 @@ +#ifndef KERNEL_TILING_H +#define KERNEL_TILING_H + +/* + * threshType: + * THRESH_BINARY = 0, + * THRESH_BINARY_INV = 1, + * THRESH_TRUNC = 2, + * THRESH_TOZERO = 3, + * THRESH_TOZERO_INV = 4, +*/ +#pragma pack(push, 8) +struct ThresholdOpencvTilingData +{ + float maxVal; + float thresh; + uint32_t totalLength; + uint8_t threshType; + uint8_t dtype; +}; +#pragma pack(pop) +#endif // KERNEL_TILING_H \ No newline at end of file diff --git a/modules/cannops/ascendc_kernels/threshold_opencv_kernel.cpp b/modules/cannops/ascendc_kernels/threshold_opencv_kernel.cpp new file mode 100644 index 00000000000..ffab30ebd54 --- /dev/null +++ b/modules/cannops/ascendc_kernels/threshold_opencv_kernel.cpp @@ -0,0 +1,387 @@ +#include "kernel_operator.h" +#include "vector_tiling.h" +#include "kernel_tiling_types.h" + +using namespace AscendC; + +// Make compiler happy. These two function will never be called. +__aicore__ static inline void Cast(const LocalTensor& dstLocal, + const LocalTensor& srcLocal, const RoundMode& round_mode, + const uint32_t calCount){}; +__aicore__ static inline void Cast(const LocalTensor& dstLocal, + const LocalTensor& srcLocal, const RoundMode& round_mode, + const uint32_t calCount){}; + +/** + * T: input data type. + * C: data type for calculate. + * if T != C, data should cast from T to C. + */ +template +class KernelThreshold +{ +public: + __aicore__ inline KernelThreshold() {} + __aicore__ inline void Init(ThresholdOpencvTilingData* tiling, GM_ADDR x, GM_ADDR y) + { + tilingData = tiling; + + /** + * Calculate memory use per element. + * 1. InputQueue: sizeof(T) * BUFFER_NUM + * 2. OutputQueue: sizeof(T) * BUFFER_NUM + * 3. maskBuffer: 1 byte at most. + */ + uint64_t bytesPerElem = sizeof(T) * BUFFER_NUM * 2 + sizeof(uint8_t) * 1; + + /** + * If need cast, should init two more cast buffers. + * Memory use per element: + * 1. InputCastBuffer: sizeof(C) + * 2. OutputCastBuffer: sizeof(C) + */ + if (!std::is_same::value) + { + bytesPerElem += sizeof(C) * 2; + } + + // Most of AscendC APIs need align to 32 Bytes, but Compare and Select need + // align to 256 Bytes, 256/sizeof(C) means how many element can be process + // in one loop. + vecTiling.calculate(tilingData->totalLength, GetBlockNum(), GetBlockIdx(), bytesPerElem, + 256 / sizeof(C)); + + xGM.SetGlobalBuffer((__gm__ T*)x + vecTiling.blockOffset, vecTiling.blockLength); + yGM.SetGlobalBuffer((__gm__ T*)y + vecTiling.blockOffset, vecTiling.blockLength); + + // Cast buffer. + if (!std::is_same::value) + { + pipe.InitBuffer(InputCastBuffer, vecTiling.loopLength * sizeof(C)); + pipe.InitBuffer(outputCastBuffer, vecTiling.loopLength * sizeof(C)); + } + + pipe.InitBuffer(inputQueue, BUFFER_NUM, vecTiling.loopLength * sizeof(T)); + pipe.InitBuffer(outputQueue, BUFFER_NUM, vecTiling.loopLength * sizeof(T)); + pipe.InitBuffer(maskBuffer, vecTiling.loopLength * sizeof(uint8_t)); + } + + __aicore__ inline void Run() + { + for (uint32_t loop = 0; loop < vecTiling.loopCount; loop++) + { + uint32_t offset = loop * vecTiling.loopLength; + Compute(offset, vecTiling.loopLength); + } + + if (vecTiling.loopTailLength != 0) + { + uint32_t offset = vecTiling.loopCount * vecTiling.loopLength; + Compute(offset, vecTiling.loopTailLength); + } + } + +private: + __aicore__ inline void Compute(uint32_t offset, uint32_t len) + { + CopyIn(offset, len); + + // Get local Tensor, if case is need, local tensors come from + // cast buffer. otherwise, local tensors come from input/output queue. + LocalTensor xLocal = CastInput(inputQueue, InputCastBuffer, len); + LocalTensor yLocal = GetOutput(outputQueue, outputCastBuffer); + + Threshold(xLocal, yLocal, len); + + // Free local input tensor if tensor is not from cast buffer. + FreeInput(inputQueue, xLocal); + // Cast output tensor to output queue if output tensor is from cast buffer. + CastOutput(outputQueue, yLocal, len); + + CopyOut(offset, len); + } + + /** + * If need cast: + * 1. Get data from input queue, this data can't be calculate directly. + * 2. Get buffer with type C, which satisfied AscendC APIs. + * 3. Cast data from T to C. + * + * If not need cast: + * 1. Only need get data from queue. + */ + __aicore__ inline LocalTensor CastInput(TQue& queue, + TBuf& buffer, uint32_t len) + { + LocalTensor xLocal; + if (std::is_same::value) + { + xLocal = queue.DeQue(); + } + else + { + xLocal = buffer.Get(); + LocalTensor xCast = queue.DeQue(); + Cast(xLocal, xCast, RoundMode::CAST_NONE, len); + queue.FreeTensor(xCast); + } + return xLocal; + } + + /** + * If need cast: + * 1. Get local tensor from cast buffer. + * + * If not need cast: + * 1. Alloc local tensor from output queue. + */ + __aicore__ inline LocalTensor GetOutput(TQue& queue, + TBuf& buffer) + { + if (std::is_same::value) + { + return queue.AllocTensor(); + } + else + { + return buffer.Get(); + } + } + + /** + * If need cast: + * 1. Input local tensor are get from cast buffer, which do not need free. + * + * If not need cast: + * 1. Input local tensor are alloced from input queue, which need free. + */ + __aicore__ inline void FreeInput(TQue& queue, + LocalTensor& xLocal) + { + if (std::is_same::value) + { + queue.FreeTensor(xLocal); + } + } + + /** + * If need cast: + * 1. Alloc local tensor from output queue. + * 2. Cast from C to T. + * 3. Put casted local tensor in queue. + * + * If not need cast: + * 1. Only put local tensor in queue. + * + */ + __aicore__ inline void CastOutput(TQue& queue, + LocalTensor& yLocal, uint32_t len) + { + if (std::is_same::value) + { + queue.EnQue(yLocal); + } + else + { + LocalTensor yCast = queue.AllocTensor(); + RoundMode roundMode = RoundMode::CAST_NONE; + // Ref to AscendC cast API. + if (std::is_same::value) + { + roundMode = RoundMode::CAST_RINT; + } + else if (std::is_same::value) + { + roundMode = RoundMode::CAST_ROUND; + } + Cast(yCast, yLocal, roundMode, len); + queue.EnQue(yCast); + } + } + + __aicore__ inline void CopyIn(uint32_t offset, uint32_t len) + { + LocalTensor xLocal = inputQueue.AllocTensor(); + DataCopy(xLocal, xGM[offset], len); + inputQueue.EnQue(xLocal); + } + + __aicore__ inline void CopyOut(uint32_t offset, uint32_t len) + { + LocalTensor yLocal = outputQueue.DeQue(); + DataCopy(yGM[offset], yLocal, len); + outputQueue.FreeTensor(yLocal); + } + + /** + * AscendC API Compare Warpper. + * AscendC Compare level2 API need input length align to 256, process + * tail data by level0 API. + */ + __aicore__ inline void CompareWrap(const LocalTensor& dstLocal, + const LocalTensor& src0Local, + const LocalTensor& src1Local, CMPMODE cmpMode, + uint32_t calCount) + { + // Elements total count for on loop inside Compare. + uint32_t batchCount = 256 / sizeof(C); + + // Tail elements count. + uint32_t tailCount = calCount % batchCount; + + // Level2 API, calCount should align to 256. + Compare(dstLocal, src0Local, src1Local, cmpMode, calCount - tailCount); + + // Data blocks are already cut align to 256, tail count will be 0 for + // all process loops except last one. + if (tailCount != 0) + { + BinaryRepeatParams repeatParams = {1, 1, 1, 8, 8, 8}; + uint32_t tailIdx = calCount - tailCount; + uint32_t maskIdx = tailIdx / sizeof(uint8_t); + Compare(dstLocal[maskIdx], src0Local[tailIdx], src1Local[tailIdx], cmpMode, tailCount, + 1, repeatParams); + } + } + + /** + * AscendC API Select Warpper. + * AscendC Select level2 API need input length align to 256, process + * tail data by level0 API. + */ + __aicore__ inline void SelectWrap(const LocalTensor& dstLocal, + const LocalTensor& selMask, + const LocalTensor& src0Local, C src1Local, SELMODE selMode, + uint32_t calCount) + { + uint32_t batchCount = 256 / sizeof(C); + uint32_t tailCount = calCount % batchCount; + + Select(dstLocal, selMask, src0Local, src1Local, selMode, calCount - tailCount); + if (tailCount != 0) + { + BinaryRepeatParams repeatParams = {1, 1, 1, 8, 8, 8}; + uint32_t tailIdx = calCount - tailCount; + uint32_t maskIdx = tailIdx / sizeof(uint8_t); + Select(dstLocal[tailIdx], selMask[maskIdx], src0Local[tailIdx], src1Local, selMode, + tailCount, 1, repeatParams); + } + } + + __aicore__ inline void Threshold(LocalTensor& xLocal, LocalTensor& yLocal, uint32_t len) + { + LocalTensor mask = maskBuffer.Get(); + Duplicate(yLocal, static_cast(tilingData->thresh), len); + switch (tilingData->threshType) + { + case 0: + CompareWrap(mask, xLocal, yLocal, CMPMODE::LE, len); + Duplicate(yLocal, static_cast(0), len); + SelectWrap(yLocal, mask, yLocal, static_cast(tilingData->maxVal), + SELMODE::VSEL_TENSOR_SCALAR_MODE, len); + break; + case 1: + CompareWrap(mask, xLocal, yLocal, CMPMODE::GT, len); + Duplicate(yLocal, static_cast(0), len); + SelectWrap(yLocal, mask, yLocal, static_cast(tilingData->maxVal), + SELMODE::VSEL_TENSOR_SCALAR_MODE, len); + break; + case 2: + CompareWrap(mask, xLocal, yLocal, CMPMODE::LE, len); + SelectWrap(yLocal, mask, xLocal, static_cast(tilingData->thresh), + SELMODE::VSEL_TENSOR_SCALAR_MODE, len); + break; + case 3: + CompareWrap(mask, xLocal, yLocal, CMPMODE::GT, len); + SelectWrap(yLocal, mask, xLocal, static_cast(0), + SELMODE::VSEL_TENSOR_SCALAR_MODE, len); + break; + case 4: + CompareWrap(mask, xLocal, yLocal, CMPMODE::LE, len); + SelectWrap(yLocal, mask, xLocal, static_cast(0), + SELMODE::VSEL_TENSOR_SCALAR_MODE, len); + break; + default: + break; + } + } + + TPipe pipe; + TQue inputQueue; + TQue outputQueue; + TBuf InputCastBuffer, outputCastBuffer, maskBuffer; + + GlobalTensor xGM, yGM; + VectorTiling vecTiling; + ThresholdOpencvTilingData* tilingData; +}; + +#define LAUNCH_THRESHOLD_KERNEL(NAME, T, C) \ + __aicore__ inline void launch_threshold_kernel_##NAME(ThresholdOpencvTilingData* tilingData, \ + GM_ADDR x, GM_ADDR y) \ + { \ + KernelThreshold op; \ + op.Init(tilingData, x, y); \ + op.Run(); \ + } + +LAUNCH_THRESHOLD_KERNEL(CV_8U, uint8_t, half) // CV_8U +LAUNCH_THRESHOLD_KERNEL(CV_8S, int8_t, half) // CV_8S + // CV_16U +LAUNCH_THRESHOLD_KERNEL(CV_16S, int16_t, half) // CV_16S +LAUNCH_THRESHOLD_KERNEL(CV_32S, int32_t, float) // CV_32S +LAUNCH_THRESHOLD_KERNEL(CV_32F, float, float) // CV_32F + // CV_64F +LAUNCH_THRESHOLD_KERNEL(CV_16F, half, half) // CV_16F + +#undef LAUNCH_THRESHOLD_KERNEL + +#define CALL_THRESHOLD_KERNEL(NAME) launch_threshold_kernel_##NAME + +extern "C" __global__ __aicore__ void threshold_opencv(GM_ADDR tilingGM, GM_ADDR x, GM_ADDR y) +{ + ThresholdOpencvTilingData tilingData; + auto tempTilingGM = (__gm__ uint8_t*)tilingGM; + auto tempTiling = (uint8_t*)&tilingData; + for (int32_t i = 0; i < sizeof(ThresholdOpencvTilingData) / sizeof(uint8_t); + ++i, ++tempTilingGM, ++tempTiling) + { + *tempTiling = *tempTilingGM; + } + + // AscendC can only call inline functions, function pointer can't be used here. + // Use Macro and switch case instead. + switch (tilingData.dtype) + { + case 0: + CALL_THRESHOLD_KERNEL(CV_8U)(&tilingData, x, y); + break; + case 1: + CALL_THRESHOLD_KERNEL(CV_8S)(&tilingData, x, y); + break; + case 3: + CALL_THRESHOLD_KERNEL(CV_16S)(&tilingData, x, y); + break; + case 4: + CALL_THRESHOLD_KERNEL(CV_32S)(&tilingData, x, y); + break; + case 5: + CALL_THRESHOLD_KERNEL(CV_32F)(&tilingData, x, y); + break; + case 7: + CALL_THRESHOLD_KERNEL(CV_16F)(&tilingData, x, y); + break; + case 2: case 6: default: // CV_16U, CV_64F + break; + } + // Clear tiling GM cache manually. (cce compiler bug) + dcci(tilingGM, 1); +} + +#ifndef __CCE_KT_TEST__ +void threshold_opencv_kernel(uint32_t blockDim, void* l2ctrl, void* stream, uint8_t* tiling, + uint8_t* x, uint8_t* y) +{ + threshold_opencv<<>>(tiling, x, y); +} +#endif diff --git a/modules/cannops/ascendc_kernels/vector_tiling.h b/modules/cannops/ascendc_kernels/vector_tiling.h new file mode 100644 index 00000000000..04a4b7d2c36 --- /dev/null +++ b/modules/cannops/ascendc_kernels/vector_tiling.h @@ -0,0 +1,77 @@ +#ifndef TILING_KERNEL_H +#define TILING_KERNEL_H + +#ifdef __CCE_KT_TEST__ +#define __aicore__ +#else +#define __aicore__ [aicore] +#endif + +inline __aicore__ int32_t AlignNCeil(int32_t n, int32_t align) { return ((n + align) & ~(align-1)); } + +inline __aicore__ int32_t AlignNFloor(int32_t n, int32_t align) { return (n & ~(align-1)); } + +constexpr int32_t BUFFER_NUM = 2; +constexpr int32_t UB_BUF_LEN = 248 * 1024; + +struct VectorTiling { + __aicore__ inline void calculate(uint64_t _totalLength, uint64_t _blockNum, + uint64_t _blockIdx, uint64_t _variableBytesPerElem, uint32_t _align) { + totalLength = _totalLength; + blockNum = _blockNum; + blockIdx = _blockIdx; + variableBytesPerElem = _variableBytesPerElem; + blockLength = 0; + blockOffset = 0; + align = _align; + GetBlockLengthAndOffset(); + GetLoopLengthAndCount(); +#ifdef __CCE_KT_TEST__ + std::cout << "Block(" << blockIdx << "): BlockLength = " << blockLength + << ", BlockOffset = " << blockOffset + << ", LoopLength = " << loopLength + << ", LoopCount = " << loopCount + << ", LoopTailLength = " << loopTailLength << std::endl; +#endif + } + + __aicore__ inline void GetBlockLengthAndOffset() { + // Data should Align by 32B. + uint32_t fullBlockLength = AlignNCeil(totalLength / blockNum, 32); + // Some core may get no data after Align32 Ceil. + uint32_t fullBlockNum = totalLength / fullBlockLength; + uint32_t blockTailLength = totalLength % fullBlockLength; + + if (blockIdx < fullBlockNum) { + blockLength = fullBlockLength; + blockOffset = blockIdx * blockLength; + // Last block must less than full block num. + } else if (blockTailLength != 0 && blockIdx == fullBlockNum) { + blockLength = blockTailLength; + blockOffset = blockIdx * fullBlockLength; + } + } + + /** + * @brief Get length for one loop and loop count. + * Use as much UB buf as possible. + */ + __aicore__ inline void GetLoopLengthAndCount() { + loopLength = AlignNFloor(UB_BUF_LEN / variableBytesPerElem, align); + loopCount = blockLength / loopLength; + loopTailLength = blockLength - (loopLength * loopCount); + } + + uint64_t totalLength; + uint64_t blockNum; + uint64_t blockIdx; + uint64_t variableBytesPerElem; + uint32_t blockLength; + uint32_t blockOffset; + uint32_t loopLength; + uint32_t loopCount; + uint32_t loopTailLength; + uint32_t align; +}; + +#endif // TILING_KERNEL_H \ No newline at end of file diff --git a/modules/cannops/include/opencv2/ascendc_kernels.hpp b/modules/cannops/include/opencv2/ascendc_kernels.hpp new file mode 100644 index 00000000000..7a58937efd6 --- /dev/null +++ b/modules/cannops/include/opencv2/ascendc_kernels.hpp @@ -0,0 +1,9 @@ +#ifndef ASCENDC_KERNELS_H +#define KERNEL_TILINASCENDC_KERNELS_HG_H + +#include "../../ascendc_kernels/kernel_tiling_types.h" +#include "aclrtlaunch_threshold_opencv.h" + + + +#endif //ASCENDC_KERNELS_H \ No newline at end of file diff --git a/modules/cannops/include/opencv2/cann_call.hpp b/modules/cannops/include/opencv2/cann_call.hpp index 651bff8bba0..e21f339db96 100644 --- a/modules/cannops/include/opencv2/cann_call.hpp +++ b/modules/cannops/include/opencv2/cann_call.hpp @@ -9,7 +9,9 @@ #include #include #include -#include "opencv2/cann.hpp" +#include "cann.hpp" +#include "stream_accessor.hpp" +#include "ascendc_kernels.hpp" class aclopAttr; @@ -17,6 +19,15 @@ namespace cv { namespace cann { +CV_EXPORTS void checkAclError(aclError err, const char* file, const int line, const char* func); +void checkAclPtr(void* ptr, const char* file, const int line, const char* func); +#define CV_ACL_SAFE_CALL(expr) checkAclError((expr), __FILE__, __LINE__, CV_Func) +#define CV_ACL_SAFE_CALL_PTR(expr) \ + ({ \ + auto ptr = (expr); \ + checkAclPtr(ptr, __FILE__, __LINE__, CV_Func); \ + ptr; \ + }) // Warpper for functions in CANN, callers should not call CANN's api directly, but should call the // function provided in cann_call. void aclrtMallocWarpper(void** data, size_t size); @@ -39,7 +50,7 @@ void aclrtMemsetWarpper(std::shared_ptr& ptr, int32_t value, size_t count //! Type mapping between opencv and cann. aclDataType getACLType(int opencvdepth); //! Malloc and upload raw data to devices. -std::shared_ptr mallocAndUpload(const void* data, size_t size, AscendStream& stream, +CV_EXPORTS std::shared_ptr mallocAndUpload(const void* data, size_t size, AscendStream& stream, AscendMat::Allocator* allocator); /** * @brief Warpper of CANN streams. @@ -151,6 +162,19 @@ class OperatorRunner OperatorRunner& run(AscendStream& stream); }; +template +void kernel_launch(KERNEL_TYPE kernel, AscendStream& stream, TILING_TYPE& tiling, ARGS... args) +{ + std::shared_ptr tilingDevice = + mallocAndUpload(&tiling, sizeof(TILING_TYPE), stream, AscendMat::defaultAllocator()); + aclrtStream rawStream = AscendStreamAccessor::getStream(stream); + CV_ACL_SAFE_CALL(kernel(1, rawStream, tilingDevice.get(), args...)); + if (rawStream == nullptr) + { + stream.waitForCompletion(); + } +} + } // namespace cann } // namespace cv diff --git a/modules/cannops/perf/perf_element_operations.cpp b/modules/cannops/perf/perf_element_operations.cpp index 0612abe6085..4527346e190 100644 --- a/modules/cannops/perf/perf_element_operations.cpp +++ b/modules/cannops/perf/perf_element_operations.cpp @@ -207,5 +207,25 @@ PERF_TEST_P(CPU, MAT_BITWISE_NOT_MAT, testing::Combine(TYPICAL_ASCEND_MAT_SIZES, SANITY_CHECK_NOTHING(); } +PERF_TEST_P(NPU, THRESHOLD_ASCENDC, testing::Combine(TYPICAL_ASCEND_MAT_SIZES, Values(CV_8U, CV_16S, CV_32F))) +{ + Mat mat(GET_PARAM(0), GET_PARAM(1)); + AscendMat dst; + AscendMat src; + src.upload(mat); + declare.in(mat, WARMUP_RNG); + TEST_CYCLE_N(10) { cv::cann::threshold(src, dst, 100.0, 255.0, cv::THRESH_BINARY); } + SANITY_CHECK_NOTHING(); +} + +PERF_TEST_P(CPU, THRESHOLD, testing::Combine(TYPICAL_ASCEND_MAT_SIZES, Values(CV_8U, CV_16S, CV_32F))) +{ + Mat mat(GET_PARAM(0), GET_PARAM(1)); + Mat dst; + declare.in(mat, WARMUP_RNG); + TEST_CYCLE_N(10) { cv::threshold(mat, dst, 100.0, 255.0, cv::THRESH_BINARY); } + SANITY_CHECK_NOTHING(); +} + } // namespace } // namespace opencv_test diff --git a/modules/cannops/src/ascend_mat.cpp b/modules/cannops/src/ascend_mat.cpp index ba17a545bb7..dde838c8d37 100644 --- a/modules/cannops/src/ascend_mat.cpp +++ b/modules/cannops/src/ascend_mat.cpp @@ -23,7 +23,11 @@ std::shared_ptr DefaultAllocator::allocate(size_t size) bool DefaultAllocator::allocate(cv::cann::AscendMat* mat, int rows, int cols, size_t elemSize) { - mat->data = allocate(elemSize * cols * rows); + size_t totalBytes = elemSize * cols * rows; + + // align by 32B. + totalBytes = ((totalBytes + 32) & ~31); + mat->data = allocate(totalBytes); mat->step = cols * elemSize; return true; diff --git a/modules/cannops/src/cann_call.cpp b/modules/cannops/src/cann_call.cpp index 3b83052ccbe..97d49d66fd1 100644 --- a/modules/cannops/src/cann_call.cpp +++ b/modules/cannops/src/cann_call.cpp @@ -11,7 +11,7 @@ namespace cv namespace cann { /*******************************Acl Error Checker*****************************/ -static inline void checkAclError(aclError err, const char* file, const int line, const char* func) +void checkAclError(aclError err, const char* file, const int line, const char* func) { if (ACL_SUCCESS != err) { @@ -20,7 +20,7 @@ static inline void checkAclError(aclError err, const char* file, const int line, } } -static inline void checkAclPtr(void* ptr, const char* file, const int line, const char* func) +void checkAclPtr(void* ptr, const char* file, const int line, const char* func) { if (nullptr == ptr) { @@ -29,14 +29,6 @@ static inline void checkAclPtr(void* ptr, const char* file, const int line, cons } } -#define CV_ACL_SAFE_CALL(expr) checkAclError((expr), __FILE__, __LINE__, CV_Func) -#define CV_ACL_SAFE_CALL_PTR(expr) \ - ({ \ - auto ptr = (expr); \ - checkAclPtr(ptr, __FILE__, __LINE__, CV_Func); \ - ptr; \ - }) - /******************************Acl Runtime Warpper****************************/ void aclrtMallocWarpper(void** data, size_t size) { diff --git a/modules/cannops/src/element_operations.cpp b/modules/cannops/src/element_operations.cpp index 402658369b5..48d9edb596b 100644 --- a/modules/cannops/src/element_operations.cpp +++ b/modules/cannops/src/element_operations.cpp @@ -3,6 +3,7 @@ // of this distribution and at http://opencv.org/license.html. #include "precomp.hpp" + namespace cv { namespace cann @@ -110,8 +111,8 @@ static void convert(const Scalar& src, Scalar& dst, AscendStream& stream) } template -static void arithm_op(const T1& src1, const T2& src2, AscendMat& dst, const AscendMat& mask, float scale, - int dtype, const char* op, AscendStream& stream) +static void arithm_op(const T1& src1, const T2& src2, AscendMat& dst, const AscendMat& mask, + float scale, int dtype, const char* op, AscendStream& stream) { T1 castedSrc1; T2 castedSrc2; @@ -170,8 +171,9 @@ static void arithm_op(const T1& src1, const T2& src2, AscendMat& dst, const Asce } } -static void arithm_op(const InputArray _src1, const InputArray _src2, OutputArray _dst, const InputArray _mask, - float scale, int dtype, const char* op, AscendStream& stream) +static void arithm_op(const InputArray _src1, const InputArray _src2, OutputArray _dst, + const InputArray _mask, float scale, int dtype, const char* op, + AscendStream& stream) { const bool isScalar1 = (_src1.kind() == _InputArray::MATX); const bool isScalar2 = (_src2.kind() == _InputArray::MATX); @@ -213,56 +215,54 @@ static void arithm_op(const InputArray _src1, const InputArray _src2, OutputArra } // In order to supply more interfaces, differnet function declaration shoule be done. -void add(const InputArray src1, const InputArray src2, OutputArray dst, const InputArray mask, int dtype, - AscendStream& stream) +void add(const InputArray src1, const InputArray src2, OutputArray dst, const InputArray mask, + int dtype, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, dtype, "Add", stream); } -void add(const AscendMat& src1, const AscendMat& src2, AscendMat& dst, const AscendMat& mask, int dtype, - AscendStream& stream) +void add(const AscendMat& src1, const AscendMat& src2, AscendMat& dst, const AscendMat& mask, + int dtype, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, dtype, "Add", stream); } -void add(const AscendMat& src1, const Scalar& src2, AscendMat& dst, const AscendMat& mask, int dtype, - AscendStream& stream) +void add(const AscendMat& src1, const Scalar& src2, AscendMat& dst, const AscendMat& mask, + int dtype, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, dtype, "Add", stream); } -void add(const Scalar& src1, const AscendMat& src2, AscendMat& dst, const AscendMat& mask, int dtype, - AscendStream& stream) +void add(const Scalar& src1, const AscendMat& src2, AscendMat& dst, const AscendMat& mask, + int dtype, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, dtype, "Add", stream); } - -void subtract(const InputArray src1, const InputArray src2, OutputArray dst, const InputArray mask, int dtype, - AscendStream& stream) +void subtract(const InputArray src1, const InputArray src2, OutputArray dst, const InputArray mask, + int dtype, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, dtype, "Sub", stream); } -void subtract(const AscendMat& src1, const AscendMat& src2, AscendMat& dst, const AscendMat& mask, int dtype, - AscendStream& stream) +void subtract(const AscendMat& src1, const AscendMat& src2, AscendMat& dst, const AscendMat& mask, + int dtype, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, dtype, "Sub", stream); } -void subtract(const AscendMat& src1, const Scalar& src2, AscendMat& dst, const AscendMat& mask, int dtype, - AscendStream& stream) +void subtract(const AscendMat& src1, const Scalar& src2, AscendMat& dst, const AscendMat& mask, + int dtype, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, dtype, "Sub", stream); } -void subtract(const Scalar& src1, const AscendMat& src2, AscendMat& dst, const AscendMat& mask, int dtype, - AscendStream& stream) +void subtract(const Scalar& src1, const AscendMat& src2, AscendMat& dst, const AscendMat& mask, + int dtype, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, dtype, "Sub", stream); } - void multiply(const InputArray src1, const InputArray src2, OutputArray dst, float scale, int dtype, AscendStream& stream) { @@ -287,7 +287,6 @@ void multiply(const Scalar& src1, const AscendMat& src2, AscendMat& dst, float s arithm_op(src1, src2, dst, AscendMat(), scale, dtype, "Mul", stream); } - void divide(const InputArray src1, const InputArray src2, OutputArray dst, float scale, int dtype, AscendStream& stream) { @@ -312,15 +311,14 @@ void divide(const Scalar& src1, const AscendMat& src2, AscendMat& dst, float sca arithm_op(src1, src2, dst, AscendMat(), scale, dtype, "RealDiv", stream); } - -void bitwise_and(const InputArray src1, const InputArray src2, OutputArray dst, const InputArray mask, - AscendStream& stream) +void bitwise_and(const InputArray src1, const InputArray src2, OutputArray dst, + const InputArray mask, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, -1, "BitwiseAnd", stream); } -void bitwise_and(const AscendMat& src1, const AscendMat& src2, AscendMat& dst, const AscendMat& mask, - AscendStream& stream) +void bitwise_and(const AscendMat& src1, const AscendMat& src2, AscendMat& dst, + const AscendMat& mask, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, -1, "BitwiseAnd", stream); } @@ -337,9 +335,8 @@ void bitwise_and(const Scalar& src1, const AscendMat& src2, AscendMat& dst, cons arithm_op(src1, src2, dst, mask, 1, -1, "BitwiseAnd", stream); } - -void bitwise_or(const InputArray src1, const InputArray src2, OutputArray dst, const InputArray mask, - AscendStream& stream) +void bitwise_or(const InputArray src1, const InputArray src2, OutputArray dst, + const InputArray mask, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, -1, "BitwiseOr", stream); } @@ -362,15 +359,14 @@ void bitwise_or(const Scalar& src1, const AscendMat& src2, AscendMat& dst, const arithm_op(src1, src2, dst, mask, 1, -1, "BitwiseOr", stream); } - -void bitwise_xor(const InputArray src1, const InputArray src2, OutputArray dst, const InputArray mask, - AscendStream& stream) +void bitwise_xor(const InputArray src1, const InputArray src2, OutputArray dst, + const InputArray mask, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, -1, "BitwiseXor", stream); } -void bitwise_xor(const AscendMat& src1, const AscendMat& src2, AscendMat& dst, const AscendMat& mask, - AscendStream& stream) +void bitwise_xor(const AscendMat& src1, const AscendMat& src2, AscendMat& dst, + const AscendMat& mask, AscendStream& stream) { arithm_op(src1, src2, dst, mask, 1, -1, "BitwiseXor", stream); } @@ -387,7 +383,6 @@ void bitwise_xor(const Scalar& src1, const AscendMat& src2, AscendMat& dst, cons arithm_op(src1, src2, dst, mask, 1, -1, "BitwiseXor", stream); } - void bitwise_not(const InputArray src, OutputArray dst, const InputArray mask, AscendStream& stream) { arithm_op(src, noArray(), dst, mask, 1, -1, "Invert", stream); @@ -398,9 +393,8 @@ void bitwise_not(const AscendMat& src, AscendMat& dst, const AscendMat& mask, As arithm_op(src, AscendMat(), dst, mask, 1, -1, "Invert", stream); } - -void addWeighted(const AscendMat& src1, double alpha, const AscendMat& src2, double beta, double gamma, - AscendMat& dst, int dtype, AscendStream& stream) +void addWeighted(const AscendMat& src1, double alpha, const AscendMat& src2, double beta, + double gamma, AscendMat& dst, int dtype, AscendStream& stream) { if (dtype < 0) dtype = src1.depth(); @@ -421,8 +415,8 @@ void addWeighted(const AscendMat& src1, double alpha, const AscendMat& src2, dou arithm_op(srcWeightedSumRet, (float)gamma, dst, "Adds", stream); } -void addWeighted(const InputArray _src1, double alpha, const InputArray _src2, double beta, double gamma, - OutputArray _dst, int dtype, AscendStream& stream) +void addWeighted(const InputArray _src1, double alpha, const InputArray _src2, double beta, + double gamma, OutputArray _dst, int dtype, AscendStream& stream) { AscendMat src1, src2, dst; src1.upload(_src1, stream); @@ -442,45 +436,23 @@ double threshold(const AscendMat& src, AscendMat& dst, double thresh, double max dst.create(src.rows, src.cols, src.type()); - OperatorRunner runner; - runner.setOp("Threshold") - .addInput(src, "x") - .addOutput(threshMat, "y") - .addAttr((float)thresh, "threshold") - .run(stream); - - // THRESH_*_INV, THRESH_TRUNC need a inverse threshMat. - // THRESH_BINARY_INV = 1, THRESH_TRUNC = 2, THRESH_TOZERO_INV = 4, - if (type == 1 || type == 2 || type == 4) + if (src.depth() == CV_8U || src.depth() == CV_8S || src.depth() == CV_16S || + src.depth() == CV_32S || src.depth() == CV_32F || src.depth() == CV_16F) { - AscendMat threshInvMat(src.size(), src.type()); - AscendMat ones(src.size(), src.type()); - Scalar s(1, 1, 1, 1); - ones.setTo(s, stream); - arithm_op(ones, threshMat, threshInvMat, "Sub", stream); - - if (type == 1) - arithm_op(threshInvMat, (float)maxval, dst, "Muls", stream); - else if (type == 2) - { - AscendMat ToZeroInvMat(src.size(), src.type()); - AscendMat TruncMat(src.size(), src.type()); - arithm_op(threshInvMat, src, ToZeroInvMat, "Mul", stream); - arithm_op(threshMat, (float)thresh, TruncMat, "Muls", stream); - arithm_op(ToZeroInvMat, TruncMat, dst, "Add", stream); - } - else - arithm_op(threshInvMat, src, dst, "Mul", stream); + ThresholdOpencvTilingData tiling; + tiling.maxVal = maxval; + tiling.thresh = thresh; + // AscendMat memory will be align to 32B, it's safe to set totalLengh a little bigger. + size_t totalBytes = src.rows * src.cols * src.channels(); + tiling.totalLength = ((totalBytes + 32) & ~31); + tiling.threshType = type; + tiling.dtype = src.depth(); + + kernel_launch(aclrtlaunch_threshold_opencv, stream, tiling, src.data.get(), dst.data.get()); } else - { - if (type == 0) /* THRESH_BINARY = 0 */ - arithm_op(threshMat, (float)maxval, dst, "Muls", stream); - else if (type == 3) /* THRESH_TOZERO = 3 */ - arithm_op(threshMat, src, dst, "Mul", stream); - else - CV_Error(Error::StsError, "Unknown/unsupported threshold type"); - } + CV_Error(Error::StsUnsupportedFormat, ""); + return thresh; } diff --git a/modules/cannops/src/precomp.hpp b/modules/cannops/src/precomp.hpp index 8411cc40407..53ed398fde3 100644 --- a/modules/cannops/src/precomp.hpp +++ b/modules/cannops/src/precomp.hpp @@ -10,5 +10,6 @@ #include "opencv2/cann_call.hpp" #include "opencv2/cann_interface.hpp" #include "opencv2/cann_private.hpp" +#include "opencv2/ascendc_kernels.hpp" #endif /* __OPENCV_PRECOMP_H__ */ diff --git a/modules/cannops/test/test_element_operations.cpp b/modules/cannops/test/test_element_operations.cpp index 76c103a65f4..730d2912d95 100644 --- a/modules/cannops/test/test_element_operations.cpp +++ b/modules/cannops/test/test_element_operations.cpp @@ -678,7 +678,6 @@ TEST(ELEMENTWISE_OP, MAT_THRESHOLD) for (int i = 0; i <= 4; i++) { cv::threshold(cpuMat, cpuOpRet, 128, 250, i); - // TODO find the reason empty AscendMat is not continuous. cv::cann::threshold(ascendMat16F, aclOpRet, 128, 250, i); aclOpRet.convertTo(aclOpRet16S, CV_16S); aclOpRet16S.download(checker); @@ -693,5 +692,37 @@ TEST(ELEMENTWISE_OP, MAT_THRESHOLD) cv::cann::resetDevice(); } +TEST(ELEMENTWISE_OP, MAT_THRESHOLD_ASCENDC) +{ + cv::cann::setDevice(DEVICE_ID); + Mat cpuRet, npuRet; + AscendMat npuImg, npuTmpMat; + + // opencv do not support CV_8S, CV_32S, CV_16F + // ascend do not support CV_16U, CV_64F + uint8_t dtypes[] = {CV_8U, CV_16S, CV_32F}; + + for (uint i = 0; i <= 4; i++) + { + for (uint j = 0; j < sizeof(dtypes) / sizeof(dtypes[0]); j++) + { + double thresh = 90.5; + double maxVal = 85.2; + + Mat img = randomMat(10, 10, CV_MAKETYPE(dtypes[j], 3), 0.0f, 128.0f); + npuImg.upload(img); + npuTmpMat.create(npuImg.rows, npuImg.cols, npuImg.type()); + + cv::threshold(img, cpuRet, thresh, maxVal, i); + cv::cann::threshold(npuImg, npuTmpMat, thresh, maxVal, i); + + npuTmpMat.download(npuRet); + EXPECT_MAT_NEAR(cpuRet, npuRet, 10.0f); + } + } + + cv::cann::resetDevice(); +} + } // namespace } // namespace opencv_test diff --git a/modules/cannops/test/test_kernel.cpp b/modules/cannops/test/test_kernel.cpp new file mode 100644 index 00000000000..ac0996a27b6 --- /dev/null +++ b/modules/cannops/test/test_kernel.cpp @@ -0,0 +1,51 @@ +#include "test_precomp.hpp" +#include "opencv2/cann_call.hpp" + +namespace opencv_test +{ +namespace +{ + +TEST(ASCENDC_KERNEL, THRESHOLD) +{ + cv::cann::setDevice(DEVICE_ID); + Mat cpuRet, npuRet; + AscendMat npuImg, npuTmpMat; + + // opencv do not support CV_8S, CV_32S, CV_16F + // ascend do not support CV_16U, CV_64F + uint8_t dtypes[] = {CV_8U, CV_16S, CV_32F}; + + for (uint i = 0; i <= 4; i++) + { + for (uint j = 0; j < sizeof(dtypes) / sizeof(dtypes[0]); j++) + { + double thresh = 90.5; + double maxVal = 85.2; + + Mat img = randomMat(10, 10, CV_MAKETYPE(dtypes[j], 3), 0.0f, 128.0f); + npuImg.upload(img); + npuTmpMat.create(npuImg.rows, npuImg.cols, npuImg.type()); + + cv::threshold(img, cpuRet, thresh, maxVal, i); + ThresholdOpencvTilingData tiling; + tiling.maxVal = maxVal; + tiling.thresh = thresh; + size_t totalBytes = img.rows * img.cols * img.channels(); + // AscendMat memory will be align to 32B, it's safe to set totalLengh a little bigger. + tiling.totalLength = ((totalBytes + 32) & ~31); + tiling.threshType = i; + tiling.dtype = dtypes[j]; + kernel_launch(aclrtlaunch_threshold_opencv, AscendStream::Null(), tiling, + npuImg.data.get(), npuTmpMat.data.get()); + + npuTmpMat.download(npuRet); + EXPECT_MAT_NEAR(cpuRet, npuRet, 10.0f); + } + } + + cv::cann::resetDevice(); +} + +} // namespace +} // namespace opencv_test diff --git a/modules/cannops/test/test_precomp.hpp b/modules/cannops/test/test_precomp.hpp index f7bdbea0b08..74cfcb11ee9 100644 --- a/modules/cannops/test/test_precomp.hpp +++ b/modules/cannops/test/test_precomp.hpp @@ -9,6 +9,7 @@ #include "opencv2/cann.hpp" #include "opencv2/ts/cuda_test.hpp" #include "opencv2/cann_interface.hpp" +#include "opencv2/ascendc_kernels.hpp" using namespace cv; using namespace cv::cann;