From f72a7f2bf5f5b5ed75aa17fdccfef95da7493a5c Mon Sep 17 00:00:00 2001 From: Robrecht Cannoodt Date: Mon, 3 Mar 2025 14:25:01 +0100 Subject: [PATCH] update results --- results/grn_inference/data/dataset_info.json | 42 +- results/grn_inference/data/method_info.json | 128 +- .../data/metric_execution_info.json | 1806 +++++++++++++- results/grn_inference/data/metric_info.json | 48 +- .../grn_inference/data/quality_control.json | 2134 +++++++++++++++-- results/grn_inference/data/results.json | 1982 ++++++++++++++- results/grn_inference/data/task_info.json | 2 +- 7 files changed, 5670 insertions(+), 472 deletions(-) diff --git a/results/grn_inference/data/dataset_info.json b/results/grn_inference/data/dataset_info.json index 482a46cb..eaeb036c 100644 --- a/results/grn_inference/data/dataset_info.json +++ b/results/grn_inference/data/dataset_info.json @@ -6,7 +6,47 @@ "dataset_description": null, "data_reference": null, "data_url": null, - "date_created": "23-02-2025", + "date_created": "19-02-2025", + "file_size": 10781372 + }, + { + "dataset_id": "norman", + "dataset_name": "Norman", + "dataset_summary": "RNA-seq data from the norman dataset", + "dataset_description": null, + "data_reference": null, + "data_url": null, + "date_created": "19-02-2025", + "file_size": 10781372 + }, + { + "dataset_id": "adamson", + "dataset_name": "Adamson", + "dataset_summary": "RNA-seq data from the Adamson dataset", + "dataset_description": null, + "data_reference": null, + "data_url": null, + "date_created": "19-02-2025", + "file_size": 10781372 + }, + { + "dataset_id": "replogle", + "dataset_name": "Reologle", + "dataset_summary": "RNA-seq data from the Reologle dataset", + "dataset_description": null, + "data_reference": null, + "data_url": null, + "date_created": "19-02-2025", + "file_size": 10781372 + }, + { + "dataset_id": "nakatake", + "dataset_name": "Nakatake", + "dataset_summary": "RNA-seq data from the Nakatake dataset", + "dataset_description": null, + "data_reference": null, + "data_url": null, + "date_created": "19-02-2025", "file_size": 10781372 } ] diff --git a/results/grn_inference/data/method_info.json b/results/grn_inference/data/method_info.json index cc743587..e8d2a4bf 100644 --- a/results/grn_inference/data/method_info.json +++ b/results/grn_inference/data/method_info.json @@ -1,6 +1,6 @@ [ { - "task_id": "grn_inference", + "task_id": "control_methods", "method_id": "pearson_corr", "method_name": "pearson_corr", "method_summary": "Baseline based on correlation", @@ -10,13 +10,13 @@ "references_bibtex": null, "code_url": "https://github.com/openproblems-bio/task_grn_inference", "documentation_url": null, - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/control_methods/pearson_corr:build_main", - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/control_methods/pearson_corr", - "code_version": "build_main", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/control_methods/pearson_corr:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/control_methods/pearson_corr", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" }, { - "task_id": "grn_inference", + "task_id": "control_methods", "method_id": "negative_control", "method_name": "Negative control", "method_summary": "Source-target links based on random assignment", @@ -26,13 +26,13 @@ "references_bibtex": null, "code_url": "https://github.com/openproblems-bio/task_grn_inference", "documentation_url": null, - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/control_methods/negative_control:build_main", - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/control_methods/negative_control", - "code_version": "build_main", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/control_methods/negative_control:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/control_methods/negative_control", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" }, { - "task_id": "grn_inference", + "task_id": "control_methods", "method_id": "positive_control", "method_name": "positive_control", "method_summary": "Baseline based on correlation", @@ -42,13 +42,13 @@ "references_bibtex": null, "code_url": "https://github.com/openproblems-bio/task_grn_inference", "documentation_url": null, - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/control_methods/positive_control:build_main", - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/control_methods/positive_control", - "code_version": "build_main", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/control_methods/positive_control:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/control_methods/positive_control", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" }, { - "task_id": "grn_inference", + "task_id": "grn_methods", "method_id": "portia", "method_name": "portia", "method_summary": "GRN inference using PORTIA", @@ -58,13 +58,13 @@ "references_bibtex": null, "code_url": "https://github.com/openproblems-bio/task_grn_inference", "documentation_url": null, - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/portia:build_main", - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/portia", - "code_version": "build_main", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/portia:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/portia", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" }, { - "task_id": "grn_inference", + "task_id": "grn_methods", "method_id": "ppcor", "method_name": "ppcor", "method_summary": "GRN inference using PPCOR", @@ -74,13 +74,13 @@ "references_bibtex": null, "code_url": "https://github.com/openproblems-bio/task_grn_inference", "documentation_url": null, - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/ppcor:build_main", - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/ppcor", - "code_version": "build_main", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/ppcor:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/ppcor", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" }, { - "task_id": "grn_inference", + "task_id": "grn_methods", "method_id": "scenic", "method_name": "scenic", "method_summary": "GRN inference using scenic", @@ -90,13 +90,13 @@ "references_bibtex": null, "code_url": "https://github.com/openproblems-bio/task_grn_inference", "documentation_url": null, - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/scenic:build_main", - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/scenic", - "code_version": "build_main", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/scenic:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/scenic", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" }, { - "task_id": "grn_inference", + "task_id": "grn_methods", "method_id": "scenicplus", "method_name": "scenicplus", "method_summary": "GRN inference using scenicplus", @@ -106,13 +106,13 @@ "references_bibtex": null, "code_url": "https://github.com/openproblems-bio/task_grn_inference", "documentation_url": null, - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/multi_omics/scenicplus:build_main", - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/multi_omics/scenicplus", - "code_version": "build_main", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/multi_omics/scenicplus:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/multi_omics/scenicplus", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" }, { - "task_id": "grn_inference", + "task_id": "grn_methods", "method_id": "scprint", "method_name": "scprint", "method_summary": "GRN inference using scPRINT", @@ -122,13 +122,13 @@ "references_bibtex": null, "code_url": "https://github.com/openproblems-bio/task_grn_inference", "documentation_url": null, - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/scprint:build_main", - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/scprint", - "code_version": "build_main", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/scprint:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/scprint", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" }, { - "task_id": "grn_inference", + "task_id": "grn_methods", "method_id": "grnboost2", "method_name": "grnboost2", "method_summary": "GRN inference using GRNBoost2", @@ -138,13 +138,13 @@ "references_bibtex": null, "code_url": "https://github.com/openproblems-bio/task_grn_inference", "documentation_url": null, - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/grnboost2:build_main", - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/grnboost2", - "code_version": "build_main", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/grnboost2:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/grnboost2", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" }, { - "task_id": "grn_inference", + "task_id": "grn_methods", "method_id": "scglue", "method_name": "scglue", "method_summary": "GRN inference using scglue", @@ -154,9 +154,57 @@ "references_bibtex": null, "code_url": "https://github.com/openproblems-bio/task_grn_inference", "documentation_url": null, - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/multi_omics/scglue:build_main", - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/multi_omics/scglue", - "code_version": "build_main", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/multi_omics/scglue:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/multi_omics/scglue", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "granie", + "method_name": "granie", + "method_summary": "GRN inference using GRaNIE", + "method_description": "GRN inference using GRaNIE\n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/multi_omics/granie:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/multi_omics/granie", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "figr", + "method_name": "figr", + "method_summary": "GRN inference using figr", + "method_description": "GRN inference using figr.\n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/multi_omics/figr:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/multi_omics/figr", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "celloracle", + "method_name": "celloracle", + "method_summary": "GRN inference using celloracle", + "method_description": "GRN inference using celloracle.\n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": "https://morris-lab.github.io/CellOracle.documentation/", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/multi_omics/celloracle:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/multi_omics/celloracle", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" } ] diff --git a/results/grn_inference/data/metric_execution_info.json b/results/grn_inference/data/metric_execution_info.json index 867963ff..3c6d5b28 100644 --- a/results/grn_inference/data/metric_execution_info.json +++ b/results/grn_inference/data/metric_execution_info.json @@ -1,142 +1,1808 @@ [ { - "dataset_id": null, + "dataset_id": "adamson", + "method_id": "grnboost2", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "grnboost2", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "grnboost2", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "negative_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "negative_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "negative_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "pearson_corr", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "pearson_corr", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "pearson_corr", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "portia", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "portia", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "portia", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "positive_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "positive_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "positive_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "ppcor", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "ppcor", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "ppcor", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scenic", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scenic", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scenic", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scprint", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scprint", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scprint", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "grnboost2", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "grnboost2", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "grnboost2", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "negative_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "negative_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "negative_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "pearson_corr", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "pearson_corr", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "pearson_corr", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "portia", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "portia", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "portia", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "positive_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "positive_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "positive_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "ppcor", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "ppcor", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "ppcor", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "scenic", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "scenic", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "scenic", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "grnboost2", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "grnboost2", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "grnboost2", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "negative_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "negative_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "negative_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "pearson_corr", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "pearson_corr", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "pearson_corr", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "portia", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "portia", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "portia", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "positive_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "positive_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "positive_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "ppcor", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "ppcor", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "ppcor", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scenic", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scenic", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scenic", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scprint", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scprint", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scprint", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "celloracle", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 42599, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "celloracle", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 42599, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "celloracle", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 42599, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "figr", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 230616, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "figr", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 230616, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "figr", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 230616, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "granie", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 41984, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "granie", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 41984, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "granie", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 41984, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "grnboost2", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 7558, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "grnboost2", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 7558, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "grnboost2", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 7558, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "negative_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 2274, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "negative_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 2274, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "negative_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 2274, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "pearson_corr", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 24372, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "pearson_corr", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 24372, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "pearson_corr", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 24372, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "portia", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 57027, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "portia", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 57027, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "portia", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 57027, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "positive_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 11879, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "positive_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 11879, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "positive_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 11879, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "ppcor", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 65680, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "ppcor", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 65680, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "ppcor", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 65680, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenic", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 36813, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenic", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 36813, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenic", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 36813, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenicplus", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 134493, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenicplus", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 134493, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenicplus", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 134493, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scglue", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 63161, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scglue", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 63161, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scglue", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 63161, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "grnboost2", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "grnboost2", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "grnboost2", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", "method_id": "negative_control", "metric_component_name": "regression_1", "resources": { - "submit": "2025-02-23 21:34:49", + "submit": "2025-02-26 19:54:14", "exit_code": 0, - "duration_sec": 288, - "cpu_pct": 125.8, - "peak_memory_mb": 6452, - "disk_read_mb": 554, - "disk_write_mb": 2 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } }, { - "dataset_id": null, + "dataset_id": "replogle", "method_id": "negative_control", "metric_component_name": "regression_2", "resources": { - "submit": "2025-02-23 21:34:49", + "submit": "2025-02-26 19:54:14", "exit_code": 0, - "duration_sec": 117, - "cpu_pct": 2720.1, - "peak_memory_mb": 3380, - "disk_read_mb": 837, - "disk_write_mb": 3 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } }, { - "dataset_id": null, + "dataset_id": "replogle", + "method_id": "negative_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", "method_id": "pearson_corr", "metric_component_name": "regression_1", "resources": { - "submit": "2025-02-23 21:35:18", + "submit": "2025-02-26 19:54:14", "exit_code": 0, - "duration_sec": 296, - "cpu_pct": 127.9, - "peak_memory_mb": 6349, - "disk_read_mb": 558, - "disk_write_mb": 2 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } }, { - "dataset_id": null, + "dataset_id": "replogle", "method_id": "pearson_corr", "metric_component_name": "regression_2", "resources": { - "submit": "2025-02-23 21:35:18", + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "pearson_corr", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", "exit_code": 0, - "duration_sec": 116.1, - "cpu_pct": 2722.8, - "peak_memory_mb": 3380, - "disk_read_mb": 843, - "disk_write_mb": 3 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } }, { - "dataset_id": null, + "dataset_id": "replogle", "method_id": "portia", "metric_component_name": "regression_1", "resources": { - "submit": "2025-02-23 21:36:18", + "submit": "2025-02-26 19:54:14", "exit_code": 0, - "duration_sec": 288, - "cpu_pct": 123.2, - "peak_memory_mb": 6349, - "disk_read_mb": 558, - "disk_write_mb": 2 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } }, { - "dataset_id": null, + "dataset_id": "replogle", "method_id": "portia", "metric_component_name": "regression_2", "resources": { - "submit": "2025-02-23 21:36:18", + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "portia", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", "exit_code": 0, - "duration_sec": 116.1, - "cpu_pct": 2764.4, - "peak_memory_mb": 3380, - "disk_read_mb": 843, - "disk_write_mb": 3 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } }, { - "dataset_id": null, + "dataset_id": "replogle", "method_id": "positive_control", "metric_component_name": "regression_1", "resources": { - "submit": "2025-02-23 21:34:59", + "submit": "2025-02-26 19:54:14", "exit_code": 0, - "duration_sec": 298, - "cpu_pct": 123.6, - "peak_memory_mb": 6349, - "disk_read_mb": 558, - "disk_write_mb": 2 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } }, { - "dataset_id": null, + "dataset_id": "replogle", "method_id": "positive_control", "metric_component_name": "regression_2", "resources": { - "submit": "2025-02-23 21:34:59", + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "positive_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", "exit_code": 0, - "duration_sec": 116.4, - "cpu_pct": 2718.4, - "peak_memory_mb": 3380, - "disk_read_mb": 843, - "disk_write_mb": 3 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } }, { - "dataset_id": null, + "dataset_id": "replogle", "method_id": "ppcor", "metric_component_name": "regression_1", "resources": { - "submit": "2025-02-23 21:36:38", + "submit": "2025-02-26 19:54:14", "exit_code": 0, - "duration_sec": 288, - "cpu_pct": 125.5, - "peak_memory_mb": 6349, - "disk_read_mb": 550, - "disk_write_mb": 2 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } }, { - "dataset_id": null, + "dataset_id": "replogle", "method_id": "ppcor", "metric_component_name": "regression_2", "resources": { - "submit": "2025-02-23 21:36:38", + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "ppcor", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scenic", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scenic", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scenic", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scprint", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scprint", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scprint", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", "exit_code": 0, - "duration_sec": 118.2, - "cpu_pct": 2714.4, - "peak_memory_mb": 3380, - "disk_read_mb": 828, - "disk_write_mb": 3 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } } ] diff --git a/results/grn_inference/data/metric_info.json b/results/grn_inference/data/metric_info.json index 9a0cb9f8..8c0af030 100644 --- a/results/grn_inference/data/metric_info.json +++ b/results/grn_inference/data/metric_info.json @@ -8,9 +8,9 @@ "metric_description": "Regression 1 score for all genes with mean gene expression set for missing genes\n", "references_doi": null, "references_bibtex": null, - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_1", - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_1:build_main", - "code_version": "build_main", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_1", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_1:dev", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", "maximize": true }, @@ -23,9 +23,9 @@ "metric_description": "Regression 1 score for only genes in the network\n", "references_doi": null, "references_bibtex": null, - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_1", - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_1:build_main", - "code_version": "build_main", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_1", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_1:dev", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", "maximize": true }, @@ -38,9 +38,9 @@ "metric_description": "Captures the perfomance for the top regulatory links\n", "references_doi": null, "references_bibtex": null, - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_2", - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_2:build_main", - "code_version": "build_main", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_2", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_2:dev", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", "maximize": true }, @@ -53,9 +53,9 @@ "metric_description": "Balanced performance scores considering both prevision and recall\n", "references_doi": null, "references_bibtex": null, - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_2", - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_2:build_main", - "code_version": "build_main", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_2", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_2:dev", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", "maximize": true }, @@ -68,9 +68,9 @@ "metric_description": "Captures the perfomance for the more broad regulatory links (recall)\n", "references_doi": null, "references_bibtex": null, - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_2", - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_2:build_main", - "code_version": "build_main", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_2", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_2:dev", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", "maximize": true }, @@ -83,9 +83,9 @@ "metric_description": "Captures the perfomance for the top regulatory links\n", "references_doi": null, "references_bibtex": null, - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/wasserstein", - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/wasserstein:build_main", - "code_version": "build_main", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/wasserstein", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/wasserstein:dev", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", "maximize": true }, @@ -98,9 +98,9 @@ "metric_description": "Balanced performance scores considering both prevision and recall\n", "references_doi": null, "references_bibtex": null, - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/wasserstein", - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/wasserstein:build_main", - "code_version": "build_main", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/wasserstein", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/wasserstein:dev", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", "maximize": true }, @@ -113,9 +113,9 @@ "metric_description": "Captures the perfomance for the more broad regulatory links (recall)\n", "references_doi": null, "references_bibtex": null, - "implementation_url": "https://github.com/openproblems-bio/task_grn_inference/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/wasserstein", - "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/wasserstein:build_main", - "code_version": "build_main", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/wasserstein", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/wasserstein:dev", + "code_version": "dev", "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", "maximize": true } diff --git a/results/grn_inference/data/quality_control.json b/results/grn_inference/data/quality_control.json index 6d6d84fc..5cc25962 100644 --- a/results/grn_inference/data/quality_control.json +++ b/results/grn_inference/data/quality_control.json @@ -93,7 +93,7 @@ "task_id": "task_grn_inference", "category": "Method info", "name": "Pct 'paper_reference' missing", - "value": 1.0, + "value": 0.7692307692307693, "severity": 2, "severity_value": 3.0, "code": "percent_missing(method_info, field)", @@ -243,700 +243,2350 @@ "task_id": "task_grn_inference", "category": "Raw data", "name": "Number of results", - "value": 10, + "value": 65, "severity": 0, "severity_value": 0.0, "code": "len(results) == len(method_info) * len(metric_info) * len(dataset_info)", - "message": "Number of results should be equal to #methods × #metrics × #datasets.\n Task id: task_grn_inference\n Number of results: 10\n Number of methods: 10\n Number of metrics: 8\n Number of datasets: 1\n" + "message": "Number of results should be equal to #methods × #metrics × #datasets.\n Task id: task_grn_inference\n Number of results: 65\n Number of methods: 13\n Number of metrics: 8\n Number of datasets: 5\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Metric 'r1_all' %missing", - "value": 0.5, + "value": 0.3384615384615385, "severity": 3, - "severity_value": 5.0, + "severity_value": 3.3846153846153846, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r1_all\n Percentage missing: 50%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r1_all\n Percentage missing: 34%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Metric 'r1_grn' %missing", - "value": 0.5, + "value": 0.3384615384615385, "severity": 3, - "severity_value": 5.0, + "severity_value": 3.3846153846153846, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r1_grn\n Percentage missing: 50%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r1_grn\n Percentage missing: 34%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Metric 'r2-theta-0.0' %missing", - "value": 0.5, + "value": 0.3384615384615385, "severity": 3, - "severity_value": 5.0, + "severity_value": 3.3846153846153846, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r2-theta-0.0\n Percentage missing: 50%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r2-theta-0.0\n Percentage missing: 34%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Metric 'r2-theta-0.5' %missing", - "value": 0.5, + "value": 0.3384615384615385, "severity": 3, - "severity_value": 5.0, + "severity_value": 3.3846153846153846, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r2-theta-0.5\n Percentage missing: 50%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r2-theta-0.5\n Percentage missing: 34%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Metric 'r2-theta-1.0' %missing", - "value": 0.5, + "value": 0.3384615384615385, "severity": 3, - "severity_value": 5.0, + "severity_value": 3.3846153846153846, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r2-theta-1.0\n Percentage missing: 50%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r2-theta-1.0\n Percentage missing: 34%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Metric 'ws-theta-0.0' %missing", - "value": 1.0, + "value": 0.6461538461538462, "severity": 3, - "severity_value": 10.0, + "severity_value": 6.461538461538462, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: ws-theta-0.0\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: ws-theta-0.0\n Percentage missing: 65%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Metric 'ws-theta-0.5' %missing", - "value": 1.0, + "value": 0.6461538461538462, "severity": 3, - "severity_value": 10.0, + "severity_value": 6.461538461538462, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: ws-theta-0.5\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: ws-theta-0.5\n Percentage missing: 65%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Metric 'ws-theta-1.0' %missing", - "value": 1.0, + "value": 0.6461538461538462, "severity": 3, - "severity_value": 10.0, + "severity_value": 6.461538461538462, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: ws-theta-1.0\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: ws-theta-1.0\n Percentage missing: 65%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Method 'pearson_corr' %missing", - "value": 0.375, - "severity": 3, - "severity_value": 3.75, + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: pearson_corr\n Percentage missing: 38%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: pearson_corr\n Percentage missing: 15%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Method 'negative_control' %missing", - "value": 0.375, - "severity": 3, - "severity_value": 3.75, + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: negative_control\n Percentage missing: 38%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: negative_control\n Percentage missing: 15%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Method 'positive_control' %missing", - "value": 0.375, - "severity": 3, - "severity_value": 3.75, + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: positive_control\n Percentage missing: 38%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: positive_control\n Percentage missing: 15%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Method 'portia' %missing", - "value": 0.375, - "severity": 3, - "severity_value": 3.75, + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: portia\n Percentage missing: 38%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: portia\n Percentage missing: 15%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Method 'ppcor' %missing", - "value": 0.375, - "severity": 3, - "severity_value": 3.75, + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: ppcor\n Percentage missing: 38%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: ppcor\n Percentage missing: 15%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Method 'scenic' %missing", - "value": 1.0, - "severity": 3, - "severity_value": 10.0, + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: scenic\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: scenic\n Percentage missing: 15%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Method 'scenicplus' %missing", - "value": 1.0, + "value": 0.875, "severity": 3, - "severity_value": 10.0, + "severity_value": 8.75, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: scenicplus\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: scenicplus\n Percentage missing: 88%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Method 'scprint' %missing", - "value": 1.0, + "value": 0.475, "severity": 3, - "severity_value": 10.0, + "severity_value": 4.749999999999999, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: scprint\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: scprint\n Percentage missing: 48%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Method 'grnboost2' %missing", - "value": 1.0, - "severity": 3, - "severity_value": 10.0, + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: grnboost2\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: grnboost2\n Percentage missing: 15%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Method 'scglue' %missing", - "value": 1.0, + "value": 0.875, + "severity": 3, + "severity_value": 8.75, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: scglue\n Percentage missing: 88%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'granie' %missing", + "value": 0.875, "severity": 3, - "severity_value": 10.0, + "severity_value": 8.75, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: scglue\n Percentage missing: 100%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: granie\n Percentage missing: 88%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'figr' %missing", + "value": 0.875, + "severity": 3, + "severity_value": 8.75, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: figr\n Percentage missing: 88%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'celloracle' %missing", + "value": 0.875, + "severity": 3, + "severity_value": 8.75, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: celloracle\n Percentage missing: 88%\n" }, { "task_id": "task_grn_inference", "category": "Raw results", "name": "Dataset 'op' %missing", - "value": 0.6875, + "value": 0.375, + "severity": 3, + "severity_value": 3.75, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n dataset id: op\n Percentage missing: 38%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Dataset 'norman' %missing", + "value": 0.3846153846153846, + "severity": 3, + "severity_value": 3.846153846153846, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n dataset id: norman\n Percentage missing: 38%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Dataset 'adamson' %missing", + "value": 0.46153846153846156, + "severity": 3, + "severity_value": 4.615384615384615, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n dataset id: adamson\n Percentage missing: 46%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Dataset 'replogle' %missing", + "value": 0.3846153846153846, "severity": 3, - "severity_value": 6.875, + "severity_value": 3.846153846153846, "code": "pct_missing <= .1", - "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n dataset id: op\n Percentage missing: 69%\n" + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n dataset id: replogle\n Percentage missing: 38%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Dataset 'nakatake' %missing", + "value": 0.6634615384615384, + "severity": 3, + "severity_value": 6.634615384615384, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n dataset id: nakatake\n Percentage missing: 66%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", "name": "Worst score pearson_corr r1_all", - "value": 0, + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r1_all\n Worst score: 0%\n" + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r1_all\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", "name": "Best score pearson_corr r1_all", - "value": 0, + "value": 1.0, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r1_all\n Best score: 0%\n" + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r1_all\n Best score: 1.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", "name": "Worst score negative_control r1_all", - "value": 0, + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r1_all\n Worst score: 0%\n" + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r1_all\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", "name": "Best score negative_control r1_all", - "value": 0, + "value": 1.0, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r1_all\n Best score: 0%\n" + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r1_all\n Best score: 1.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", "name": "Worst score positive_control r1_all", - "value": 0, + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r1_all\n Worst score: 0%\n" + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r1_all\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", "name": "Best score positive_control r1_all", - "value": 0, + "value": 1.0, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r1_all\n Best score: 0%\n" + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r1_all\n Best score: 1.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", "name": "Worst score portia r1_all", - "value": 0, + "value": -0.4275, "severity": 0, - "severity_value": -0.0, + "severity_value": 0.4275, "code": "worst_score >= -1", - "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r1_all\n Worst score: 0%\n" + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r1_all\n Worst score: -0.4275%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", "name": "Best score portia r1_all", - "value": 0, - "severity": 0, - "severity_value": 0.0, + "value": 3.319, + "severity": 1, + "severity_value": 1.6595, "code": "best_score <= 2", - "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r1_all\n Best score: 0%\n" + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r1_all\n Best score: 3.319%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", "name": "Worst score ppcor r1_all", - "value": 0, - "severity": 0, - "severity_value": -0.0, + "value": -2.3365, + "severity": 2, + "severity_value": 2.3365, "code": "worst_score >= -1", - "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r1_all\n Worst score: 0%\n" + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r1_all\n Worst score: -2.3365%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", "name": "Best score ppcor r1_all", - "value": 0, - "severity": 0, - "severity_value": 0.0, + "value": 2.8383, + "severity": 1, + "severity_value": 1.41915, "code": "best_score <= 2", - "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r1_all\n Best score: 0%\n" + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r1_all\n Best score: 2.8383%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score pearson_corr r1_grn", - "value": 0, + "name": "Worst score scenic r1_all", + "value": 0.2798, "severity": 0, - "severity_value": -0.0, + "severity_value": -0.2798, "code": "worst_score >= -1", - "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r1_grn\n Worst score: 0%\n" + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r1_all\n Worst score: 0.2798%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score pearson_corr r1_grn", - "value": 0, + "name": "Best score scenic r1_all", + "value": 0.7374, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.3687, "code": "best_score <= 2", - "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r1_grn\n Best score: 0%\n" + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r1_all\n Best score: 0.7374%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score negative_control r1_grn", - "value": 0, + "name": "Worst score scenicplus r1_all", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r1_grn\n Worst score: 0%\n" + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r1_all\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score negative_control r1_grn", - "value": 0, + "name": "Best score scenicplus r1_all", + "value": 0.9188, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.4594, "code": "best_score <= 2", - "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r1_grn\n Best score: 0%\n" + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r1_all\n Best score: 0.9188%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score positive_control r1_grn", - "value": 0, + "name": "Worst score scprint r1_all", + "value": -0.1274, "severity": 0, - "severity_value": -0.0, + "severity_value": 0.1274, "code": "worst_score >= -1", - "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r1_grn\n Worst score: 0%\n" + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r1_all\n Worst score: -0.1274%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score positive_control r1_grn", - "value": 0, + "name": "Best score scprint r1_all", + "value": 0.5375, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.26875, "code": "best_score <= 2", - "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r1_grn\n Best score: 0%\n" + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r1_all\n Best score: 0.5375%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score portia r1_grn", - "value": 0, + "name": "Worst score grnboost2 r1_all", + "value": 0.4227, "severity": 0, - "severity_value": -0.0, + "severity_value": -0.4227, "code": "worst_score >= -1", - "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r1_grn\n Worst score: 0%\n" + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r1_all\n Worst score: 0.4227%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score portia r1_grn", - "value": 0, - "severity": 0, - "severity_value": 0.0, + "name": "Best score grnboost2 r1_all", + "value": 4.199, + "severity": 2, + "severity_value": 2.0995, "code": "best_score <= 2", - "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r1_grn\n Best score: 0%\n" + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r1_all\n Best score: 4.199%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score ppcor r1_grn", - "value": 0, + "name": "Worst score scglue r1_all", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r1_grn\n Worst score: 0%\n" + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r1_all\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score ppcor r1_grn", - "value": 0, + "name": "Best score scglue r1_all", + "value": 0.244, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.122, "code": "best_score <= 2", - "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r1_grn\n Best score: 0%\n" + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r1_all\n Best score: 0.244%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score pearson_corr r2-theta-0.0", - "value": 0, + "name": "Worst score granie r1_all", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-0.0\n Worst score: 0%\n" + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r1_all\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score pearson_corr r2-theta-0.0", - "value": 0, + "name": "Best score granie r1_all", + "value": 0.2311, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.11555, "code": "best_score <= 2", - "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-0.0\n Best score: 0%\n" + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r1_all\n Best score: 0.2311%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score negative_control r2-theta-0.0", - "value": 0, + "name": "Worst score figr r1_all", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-0.0\n Worst score: 0%\n" + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r1_all\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score negative_control r2-theta-0.0", - "value": 0, + "name": "Best score figr r1_all", + "value": 0.3408, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.1704, "code": "best_score <= 2", - "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-0.0\n Best score: 0%\n" + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r1_all\n Best score: 0.3408%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score positive_control r2-theta-0.0", - "value": 0, + "name": "Worst score celloracle r1_all", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-0.0\n Worst score: 0%\n" + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r1_all\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score positive_control r2-theta-0.0", - "value": 0, + "name": "Best score celloracle r1_all", + "value": 0.7279, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.36395, "code": "best_score <= 2", - "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-0.0\n Best score: 0%\n" + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r1_all\n Best score: 0.7279%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score portia r2-theta-0.0", - "value": 0, + "name": "Worst score pearson_corr r1_grn", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-0.0\n Worst score: 0%\n" + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r1_grn\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score portia r2-theta-0.0", - "value": 0, + "name": "Best score pearson_corr r1_grn", + "value": 1.0, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-0.0\n Best score: 0%\n" + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r1_grn\n Best score: 1.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score ppcor r2-theta-0.0", - "value": 0, + "name": "Worst score negative_control r1_grn", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-0.0\n Worst score: 0%\n" + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r1_grn\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score ppcor r2-theta-0.0", - "value": 0, + "name": "Best score negative_control r1_grn", + "value": 1.0, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-0.0\n Best score: 0%\n" + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r1_grn\n Best score: 1.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score pearson_corr r2-theta-0.5", - "value": 0, + "name": "Worst score positive_control r1_grn", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-0.5\n Worst score: 0%\n" + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r1_grn\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score pearson_corr r2-theta-0.5", - "value": 0, + "name": "Best score positive_control r1_grn", + "value": 1.0, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.5, "code": "best_score <= 2", - "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-0.5\n Best score: 0%\n" + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r1_grn\n Best score: 1.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score negative_control r2-theta-0.5", - "value": 0, + "name": "Worst score portia r1_grn", + "value": -0.33, "severity": 0, - "severity_value": -0.0, + "severity_value": 0.33, "code": "worst_score >= -1", - "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-0.5\n Worst score: 0%\n" + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r1_grn\n Worst score: -0.33%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score negative_control r2-theta-0.5", - "value": 0, + "name": "Best score portia r1_grn", + "value": 1.6879, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.84395, "code": "best_score <= 2", - "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-0.5\n Best score: 0%\n" + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r1_grn\n Best score: 1.6879%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score positive_control r2-theta-0.5", - "value": 0, + "name": "Worst score ppcor r1_grn", + "value": -0.4573, "severity": 0, - "severity_value": -0.0, + "severity_value": 0.4573, "code": "worst_score >= -1", - "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-0.5\n Worst score: 0%\n" + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r1_grn\n Worst score: -0.4573%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score positive_control r2-theta-0.5", - "value": 0, + "name": "Best score ppcor r1_grn", + "value": 1.4042, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.7021, "code": "best_score <= 2", - "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-0.5\n Best score: 0%\n" + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r1_grn\n Best score: 1.4042%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score portia r2-theta-0.5", - "value": 0, + "name": "Worst score scenic r1_grn", + "value": 0.1562, "severity": 0, - "severity_value": -0.0, + "severity_value": -0.1562, "code": "worst_score >= -1", - "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-0.5\n Worst score: 0%\n" + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r1_grn\n Worst score: 0.1562%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score portia r2-theta-0.5", - "value": 0, + "name": "Best score scenic r1_grn", + "value": 0.6209, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.31045, "code": "best_score <= 2", - "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-0.5\n Best score: 0%\n" + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r1_grn\n Best score: 0.6209%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score ppcor r2-theta-0.5", - "value": 0, + "name": "Worst score scenicplus r1_grn", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-0.5\n Worst score: 0%\n" + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r1_grn\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score ppcor r2-theta-0.5", - "value": 0, + "name": "Best score scenicplus r1_grn", + "value": 0.605, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.3025, "code": "best_score <= 2", - "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-0.5\n Best score: 0%\n" + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r1_grn\n Best score: 0.605%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score pearson_corr r2-theta-1.0", - "value": 0, + "name": "Worst score scprint r1_grn", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-1.0\n Worst score: 0%\n" + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r1_grn\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score pearson_corr r2-theta-1.0", - "value": 0, + "name": "Best score scprint r1_grn", + "value": 0.6185, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.30925, "code": "best_score <= 2", - "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-1.0\n Best score: 0%\n" + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r1_grn\n Best score: 0.6185%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score negative_control r2-theta-1.0", - "value": 0, + "name": "Worst score grnboost2 r1_grn", + "value": 0.468, + "severity": 0, + "severity_value": -0.468, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r1_grn\n Worst score: 0.468%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 r1_grn", + "value": 3.311, + "severity": 1, + "severity_value": 1.6555, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r1_grn\n Best score: 3.311%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue r1_grn", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-1.0\n Worst score: 0%\n" + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r1_grn\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score negative_control r2-theta-1.0", - "value": 0, + "name": "Best score scglue r1_grn", + "value": 0.5451, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.27255, "code": "best_score <= 2", - "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-1.0\n Best score: 0%\n" + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r1_grn\n Best score: 0.5451%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score positive_control r2-theta-1.0", - "value": 0, + "name": "Worst score granie r1_grn", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-1.0\n Worst score: 0%\n" + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r1_grn\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score positive_control r2-theta-1.0", - "value": 0, + "name": "Best score granie r1_grn", + "value": 0.1561, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.07805, "code": "best_score <= 2", - "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-1.0\n Best score: 0%\n" + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r1_grn\n Best score: 0.1561%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score portia r2-theta-1.0", - "value": 0, + "name": "Worst score figr r1_grn", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-1.0\n Worst score: 0%\n" + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r1_grn\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score portia r2-theta-1.0", - "value": 0, + "name": "Best score figr r1_grn", + "value": 0.4362, "severity": 0, - "severity_value": 0.0, + "severity_value": 0.2181, "code": "best_score <= 2", - "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-1.0\n Best score: 0%\n" + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r1_grn\n Best score: 0.4362%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Worst score ppcor r2-theta-1.0", - "value": 0, + "name": "Worst score celloracle r1_grn", + "value": 0.0, "severity": 0, "severity_value": -0.0, "code": "worst_score >= -1", - "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-1.0\n Worst score: 0%\n" + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r1_grn\n Worst score: 0.0%\n" }, { "task_id": "task_grn_inference", "category": "Scaling", - "name": "Best score ppcor r2-theta-1.0", + "name": "Best score celloracle r1_grn", + "value": 0.6121, + "severity": 0, + "severity_value": 0.30605, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r1_grn\n Best score: 0.6121%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr r2-theta-0.0", + "value": 0.5328, + "severity": 0, + "severity_value": -0.5328, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-0.0\n Worst score: 0.5328%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr r2-theta-0.0", + "value": 0.9505, + "severity": 0, + "severity_value": 0.47525, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-0.0\n Best score: 0.9505%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control r2-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control r2-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control r2-theta-0.0", + "value": 1, + "severity": 0, + "severity_value": -1.0, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-0.0\n Worst score: 1%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control r2-theta-0.0", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-0.0\n Best score: 1%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia r2-theta-0.0", + "value": -0.3567, + "severity": 0, + "severity_value": 0.3567, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-0.0\n Worst score: -0.3567%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia r2-theta-0.0", + "value": 1.0081, + "severity": 0, + "severity_value": 0.50405, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-0.0\n Best score: 1.0081%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor r2-theta-0.0", + "value": 0.0368, + "severity": 0, + "severity_value": -0.0368, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-0.0\n Worst score: 0.0368%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor r2-theta-0.0", + "value": 0.4332, + "severity": 0, + "severity_value": 0.2166, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-0.0\n Best score: 0.4332%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic r2-theta-0.0", + "value": 0.0744, + "severity": 0, + "severity_value": -0.0744, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r2-theta-0.0\n Worst score: 0.0744%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic r2-theta-0.0", + "value": 0.7324, + "severity": 0, + "severity_value": 0.3662, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r2-theta-0.0\n Best score: 0.7324%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus r2-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r2-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus r2-theta-0.0", + "value": 0.9021, + "severity": 0, + "severity_value": 0.45105, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r2-theta-0.0\n Best score: 0.9021%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint r2-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r2-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint r2-theta-0.0", + "value": 0.7685, + "severity": 0, + "severity_value": 0.38425, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r2-theta-0.0\n Best score: 0.7685%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 r2-theta-0.0", + "value": 0.2191, + "severity": 0, + "severity_value": -0.2191, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r2-theta-0.0\n Worst score: 0.2191%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 r2-theta-0.0", + "value": 1.5287, + "severity": 0, + "severity_value": 0.76435, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r2-theta-0.0\n Best score: 1.5287%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue r2-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r2-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue r2-theta-0.0", + "value": 0.6898, + "severity": 0, + "severity_value": 0.3449, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r2-theta-0.0\n Best score: 0.6898%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie r2-theta-0.0", + "value": -0.0909, + "severity": 0, + "severity_value": 0.0909, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r2-theta-0.0\n Worst score: -0.0909%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie r2-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r2-theta-0.0\n Best score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr r2-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r2-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr r2-theta-0.0", + "value": 0.2415, + "severity": 0, + "severity_value": 0.12075, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r2-theta-0.0\n Best score: 0.2415%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle r2-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r2-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle r2-theta-0.0", + "value": 0.8446, + "severity": 0, + "severity_value": 0.4223, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r2-theta-0.0\n Best score: 0.8446%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr r2-theta-0.5", + "value": 0.7228, + "severity": 0, + "severity_value": -0.7228, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-0.5\n Worst score: 0.7228%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr r2-theta-0.5", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-0.5\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control r2-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control r2-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control r2-theta-0.5", + "value": 0.9139, + "severity": 0, + "severity_value": -0.9139, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-0.5\n Worst score: 0.9139%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control r2-theta-0.5", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-0.5\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia r2-theta-0.5", + "value": -1.0274, + "severity": 1, + "severity_value": 1.0274, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-0.5\n Worst score: -1.0274%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia r2-theta-0.5", + "value": 0.9024, + "severity": 0, + "severity_value": 0.4512, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-0.5\n Best score: 0.9024%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor r2-theta-0.5", + "value": 0.0114, + "severity": 0, + "severity_value": -0.0114, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-0.5\n Worst score: 0.0114%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor r2-theta-0.5", + "value": 0.3672, + "severity": 0, + "severity_value": 0.1836, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-0.5\n Best score: 0.3672%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic r2-theta-0.5", + "value": 0.2372, + "severity": 0, + "severity_value": -0.2372, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r2-theta-0.5\n Worst score: 0.2372%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic r2-theta-0.5", + "value": 0.877, + "severity": 0, + "severity_value": 0.4385, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r2-theta-0.5\n Best score: 0.877%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus r2-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r2-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus r2-theta-0.5", + "value": 1.2579, + "severity": 0, + "severity_value": 0.62895, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r2-theta-0.5\n Best score: 1.2579%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint r2-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r2-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint r2-theta-0.5", + "value": 0.7205, + "severity": 0, + "severity_value": 0.36025, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r2-theta-0.5\n Best score: 0.7205%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 r2-theta-0.5", + "value": 0.802, + "severity": 0, + "severity_value": -0.802, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r2-theta-0.5\n Worst score: 0.802%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 r2-theta-0.5", + "value": 1.5697, + "severity": 0, + "severity_value": 0.78485, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r2-theta-0.5\n Best score: 1.5697%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue r2-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r2-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue r2-theta-0.5", + "value": 0.2032, + "severity": 0, + "severity_value": 0.1016, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r2-theta-0.5\n Best score: 0.2032%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie r2-theta-0.5", + "value": -0.2822, + "severity": 0, + "severity_value": 0.2822, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r2-theta-0.5\n Worst score: -0.2822%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie r2-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r2-theta-0.5\n Best score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr r2-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r2-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr r2-theta-0.5", + "value": 0.2316, + "severity": 0, + "severity_value": 0.1158, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r2-theta-0.5\n Best score: 0.2316%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle r2-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r2-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle r2-theta-0.5", + "value": 0.9269, + "severity": 0, + "severity_value": 0.46345, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r2-theta-0.5\n Best score: 0.9269%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr r2-theta-1.0", + "value": 0.5875, + "severity": 0, + "severity_value": -0.5875, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-1.0\n Worst score: 0.5875%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr r2-theta-1.0", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-1.0\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control r2-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control r2-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-1.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control r2-theta-1.0", + "value": 0.7778, + "severity": 0, + "severity_value": -0.7778, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-1.0\n Worst score: 0.7778%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control r2-theta-1.0", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-1.0\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia r2-theta-1.0", + "value": -0.1835, + "severity": 0, + "severity_value": 0.1835, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-1.0\n Worst score: -0.1835%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia r2-theta-1.0", + "value": 0.8709, + "severity": 0, + "severity_value": 0.43545, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-1.0\n Best score: 0.8709%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor r2-theta-1.0", + "value": 0.0394, + "severity": 0, + "severity_value": -0.0394, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-1.0\n Worst score: 0.0394%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor r2-theta-1.0", + "value": 0.4841, + "severity": 0, + "severity_value": 0.24205, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-1.0\n Best score: 0.4841%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic r2-theta-1.0", + "value": 0.1097, + "severity": 0, + "severity_value": -0.1097, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r2-theta-1.0\n Worst score: 0.1097%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic r2-theta-1.0", + "value": 1.2296, + "severity": 0, + "severity_value": 0.6148, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r2-theta-1.0\n Best score: 1.2296%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus r2-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r2-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus r2-theta-1.0", + "value": 1.5351, + "severity": 0, + "severity_value": 0.76755, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r2-theta-1.0\n Best score: 1.5351%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint r2-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r2-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint r2-theta-1.0", + "value": 0.614, + "severity": 0, + "severity_value": 0.307, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r2-theta-1.0\n Best score: 0.614%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 r2-theta-1.0", + "value": 0.9909, + "severity": 0, + "severity_value": -0.9909, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r2-theta-1.0\n Worst score: 0.9909%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 r2-theta-1.0", + "value": 1.7265, + "severity": 0, + "severity_value": 0.86325, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r2-theta-1.0\n Best score: 1.7265%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue r2-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r2-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue r2-theta-1.0", + "value": 0.0918, + "severity": 0, + "severity_value": 0.0459, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r2-theta-1.0\n Best score: 0.0918%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie r2-theta-1.0", + "value": -0.2627, + "severity": 0, + "severity_value": 0.2627, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r2-theta-1.0\n Worst score: -0.2627%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie r2-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r2-theta-1.0\n Best score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr r2-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r2-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr r2-theta-1.0", + "value": 0.2721, + "severity": 0, + "severity_value": 0.13605, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r2-theta-1.0\n Best score: 0.2721%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle r2-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r2-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle r2-theta-1.0", + "value": 0.7878, + "severity": 0, + "severity_value": 0.3939, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r2-theta-1.0\n Best score: 0.7878%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr ws-theta-0.0", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: ws-theta-0.0\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: ws-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: ws-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control ws-theta-0.0", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: ws-theta-0.0\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia ws-theta-0.0", + "value": 0.8839, + "severity": 0, + "severity_value": 0.44195, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: ws-theta-0.0\n Best score: 0.8839%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor ws-theta-0.0", + "value": 0.515, + "severity": 0, + "severity_value": 0.2575, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: ws-theta-0.0\n Best score: 0.515%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic ws-theta-0.0", + "value": 1.021, + "severity": 0, + "severity_value": 0.5105, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: ws-theta-0.0\n Best score: 1.021%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: ws-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: ws-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint ws-theta-0.0", + "value": 0.3412, + "severity": 0, + "severity_value": 0.1706, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: ws-theta-0.0\n Best score: 0.3412%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 ws-theta-0.0", + "value": 1.1164, + "severity": 0, + "severity_value": 0.5582, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: ws-theta-0.0\n Best score: 1.1164%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: ws-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: ws-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: ws-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: ws-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: ws-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: ws-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: ws-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: ws-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr ws-theta-0.5", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: ws-theta-0.5\n Best score: 1%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: ws-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control ws-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: ws-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control ws-theta-0.5", + "value": 0.9933, + "severity": 0, + "severity_value": 0.49665, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: ws-theta-0.5\n Best score: 0.9933%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia ws-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: ws-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia ws-theta-0.5", + "value": 0.5613, + "severity": 0, + "severity_value": 0.28065, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: ws-theta-0.5\n Best score: 0.5613%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor ws-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: ws-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor ws-theta-0.5", + "value": 0.4571, + "severity": 0, + "severity_value": 0.22855, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: ws-theta-0.5\n Best score: 0.4571%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic ws-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: ws-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic ws-theta-0.5", + "value": 1.1311, + "severity": 0, + "severity_value": 0.56555, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: ws-theta-0.5\n Best score: 1.1311%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: ws-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint ws-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: ws-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint ws-theta-0.5", + "value": 0.3735, + "severity": 0, + "severity_value": 0.18675, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: ws-theta-0.5\n Best score: 0.3735%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 ws-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: ws-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 ws-theta-0.5", + "value": 1.2599, + "severity": 0, + "severity_value": 0.62995, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: ws-theta-0.5\n Best score: 1.2599%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: ws-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: ws-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: ws-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: ws-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr ws-theta-1.0", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: ws-theta-1.0\n Best score: 1%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: ws-theta-1.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control ws-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: ws-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control ws-theta-1.0", + "value": 0.9594, + "severity": 0, + "severity_value": 0.4797, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: ws-theta-1.0\n Best score: 0.9594%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia ws-theta-1.0", + "value": -0.0285, + "severity": 0, + "severity_value": 0.0285, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: ws-theta-1.0\n Worst score: -0.0285%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia ws-theta-1.0", + "value": 0.6635, + "severity": 0, + "severity_value": 0.33175, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: ws-theta-1.0\n Best score: 0.6635%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor ws-theta-1.0", + "value": -0.0874, + "severity": 0, + "severity_value": 0.0874, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: ws-theta-1.0\n Worst score: -0.0874%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor ws-theta-1.0", + "value": 0.3827, + "severity": 0, + "severity_value": 0.19135, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: ws-theta-1.0\n Best score: 0.3827%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic ws-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: ws-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic ws-theta-1.0", + "value": 0.973, + "severity": 0, + "severity_value": 0.4865, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: ws-theta-1.0\n Best score: 0.973%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: ws-theta-1.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint ws-theta-1.0", + "value": -0.4668, + "severity": 0, + "severity_value": 0.4668, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: ws-theta-1.0\n Worst score: -0.4668%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint ws-theta-1.0", + "value": 0.6604, + "severity": 0, + "severity_value": 0.3302, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: ws-theta-1.0\n Best score: 0.6604%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 ws-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: ws-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 ws-theta-1.0", + "value": 1.4751, + "severity": 0, + "severity_value": 0.73755, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: ws-theta-1.0\n Best score: 1.4751%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: ws-theta-1.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: ws-theta-1.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: ws-theta-1.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle ws-theta-1.0", "value": 0, "severity": 0, "severity_value": 0.0, "code": "best_score <= 2", - "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-1.0\n Best score: 0%\n" + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: ws-theta-1.0\n Best score: 0%\n" } ] \ No newline at end of file diff --git a/results/grn_inference/data/results.json b/results/grn_inference/data/results.json index 96dafd77..38415e83 100644 --- a/results/grn_inference/data/results.json +++ b/results/grn_inference/data/results.json @@ -1,242 +1,2036 @@ [ { - "dataset_id": "op", - "method_id": "negative_control", + "dataset_id": "adamson", + "method_id": "celloracle", "metric_values": { - "r1_all": -0.0013, - "r1_grn": -0.0165, - "r2-theta-0.0": 0.18, - "r2-theta-0.5": 0.2582, - "r2-theta-1.0": 0.2977 + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" }, "scaled_scores": { "r1_all": 0, "r1_grn": 0, "r2-theta-0.0": 0, "r2-theta-0.5": 0, - "r2-theta-1.0": 0 + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 }, "mean_score": 0, "resources": {} }, { - "dataset_id": "op", - "method_id": "pearson_corr", + "dataset_id": "adamson", + "method_id": "figr", "metric_values": { - "r1_all": -0.0027, - "r1_grn": -0.0365, - "r2-theta-0.0": 0.103, - "r2-theta-0.5": 0.2503, - "r2-theta-1.0": 0.2976 + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" }, "scaled_scores": { "r1_all": 0, "r1_grn": 0, "r2-theta-0.0": 0, "r2-theta-0.5": 0, - "r2-theta-1.0": 0 + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 }, "mean_score": 0, "resources": {} }, { - "dataset_id": "op", - "method_id": "portia", + "dataset_id": "adamson", + "method_id": "granie", "metric_values": { - "r1_all": 0.0139, - "r1_grn": 0.1832, - "r2-theta-0.0": 0.2143, - "r2-theta-0.5": 0.2445, - "r2-theta-1.0": 0.295 + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" }, "scaled_scores": { "r1_all": 0, "r1_grn": 0, "r2-theta-0.0": 0, "r2-theta-0.5": 0, - "r2-theta-1.0": 0 + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 }, "mean_score": 0, "resources": {} }, { - "dataset_id": "op", + "dataset_id": "adamson", + "method_id": "grnboost2", + "metric_values": { + "r1_all": 0.0262, + "r1_grn": 0.0431, + "r2-theta-0.0": 0.7498, + "r2-theta-0.5": 0.6801, + "r2-theta-1.0": 0.4896, + "ws-theta-0.0": 0.8936, + "ws-theta-0.5": 0.8395, + "ws-theta-1.0": 0.7318 + }, + "scaled_scores": { + "r1_all": 4.199, + "r1_grn": 3.311, + "r2-theta-0.0": 1.0876, + "r2-theta-0.5": 1.5697, + "r2-theta-1.0": 1.7265, + "ws-theta-0.0": 1.1034, + "ws-theta-0.5": 1.1452, + "ws-theta-1.0": 1.4751 + }, + "mean_score": 1, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "negative_control", + "metric_values": { + "r1_all": -0.0019, + "r1_grn": -0.0019, + "r2-theta-0.0": 0.5794, + "r2-theta-0.5": 0.5968, + "r2-theta-1.0": 0.4486, + "ws-theta-0.0": 0.5043, + "ws-theta-0.5": 0.5114, + "ws-theta-1.0": 0.5163 + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "pearson_corr", + "metric_values": { + "r1_all": 0.0028, + "r1_grn": 0.0047, + "r2-theta-0.0": 0.7283, + "r2-theta-0.5": 0.6478, + "r2-theta-1.0": 0.4724, + "ws-theta-0.0": 0.8571, + "ws-theta-0.5": 0.7979, + "ws-theta-1.0": 0.6624 + }, + "scaled_scores": { + "r1_all": 0.7039, + "r1_grn": 0.4846, + "r2-theta-0.0": 0.9505, + "r2-theta-0.5": 0.9619, + "r2-theta-1.0": 1, + "ws-theta-0.0": 1, + "ws-theta-0.5": 1, + "ws-theta-1.0": 1 + }, + "mean_score": 0.8876, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "portia", + "metric_values": { + "r1_all": 0.0203, + "r1_grn": 0.021, + "r2-theta-0.0": 0.5625, + "r2-theta-0.5": 0.5593, + "r2-theta-1.0": 0.448, + "ws-theta-0.0": 0.8162, + "ws-theta-0.5": 0.6722, + "ws-theta-1.0": 0.583 + }, + "scaled_scores": { + "r1_all": 3.319, + "r1_grn": 1.6879, + "r2-theta-0.0": -0.108, + "r2-theta-0.5": -0.7047, + "r2-theta-1.0": -0.0269, + "ws-theta-0.0": 0.8839, + "ws-theta-0.5": 0.5613, + "ws-theta-1.0": 0.4567 + }, + "mean_score": 0.4877, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", "method_id": "positive_control", "metric_values": { - "r1_all": -0.0027, - "r1_grn": -0.0365, - "r2-theta-0.0": 0.103, - "r2-theta-0.5": 0.2503, - "r2-theta-1.0": 0.2976 + "r1_all": 0.0048, + "r1_grn": 0.0117, + "r2-theta-0.0": 0.736, + "r2-theta-0.5": 0.6499, + "r2-theta-1.0": 0.4671, + "ws-theta-0.0": 0.6338, + "ws-theta-0.5": 0.634, + "ws-theta-1.0": 0.6109 + }, + "scaled_scores": { + "r1_all": 1, + "r1_grn": 1, + "r2-theta-0.0": 1, + "r2-theta-0.5": 1, + "r2-theta-1.0": 0.7778, + "ws-theta-0.0": 0.3671, + "ws-theta-0.5": 0.4278, + "ws-theta-1.0": 0.6474 + }, + "mean_score": 0.7775, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "ppcor", + "metric_values": { + "r1_all": 0.0171, + "r1_grn": 0.0172, + "r2-theta-0.0": 0.6473, + "r2-theta-0.5": 0.6163, + "r2-theta-1.0": 0.4601, + "ws-theta-0.0": 0.6554, + "ws-theta-0.5": 0.5548, + "ws-theta-1.0": 0.5278 + }, + "scaled_scores": { + "r1_all": 2.8383, + "r1_grn": 1.4042, + "r2-theta-0.0": 0.4332, + "r2-theta-0.5": 0.3672, + "r2-theta-1.0": 0.4841, + "ws-theta-0.0": 0.4283, + "ws-theta-0.5": 0.1514, + "ws-theta-1.0": 0.0792 + }, + "mean_score": 0.4929, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scenic", + "metric_values": { + "r1_all": 0.003, + "r1_grn": 0.0065, + "r2-theta-0.0": 0.6611, + "r2-theta-0.5": 0.6226, + "r2-theta-1.0": 0.4593, + "ws-theta-0.0": 0.8646, + "ws-theta-0.5": 0.8354, + "ws-theta-1.0": 0.6584 + }, + "scaled_scores": { + "r1_all": 0.7374, + "r1_grn": 0.6209, + "r2-theta-0.0": 0.5212, + "r2-theta-0.5": 0.4874, + "r2-theta-1.0": 0.4487, + "ws-theta-0.0": 1.021, + "ws-theta-0.5": 1.1311, + "ws-theta-1.0": 0.973 + }, + "mean_score": 0.7236, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scenicplus", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" }, "scaled_scores": { "r1_all": 0, "r1_grn": 0, "r2-theta-0.0": 0, "r2-theta-0.5": 0, - "r2-theta-1.0": 0 + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 }, "mean_score": 0, "resources": {} }, { - "dataset_id": "op", - "method_id": "ppcor", + "dataset_id": "adamson", + "method_id": "scglue", "metric_values": { - "r1_all": 0.0093, - "r1_grn": 0.1225, - "r2-theta-0.0": 0.1212, - "r2-theta-0.5": 0.2437, - "r2-theta-1.0": 0.298 + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" }, "scaled_scores": { "r1_all": 0, "r1_grn": 0, "r2-theta-0.0": 0, "r2-theta-0.5": 0, - "r2-theta-1.0": 0 + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 }, "mean_score": 0, "resources": {} }, { - "dataset_id": null, - "method_id": "negative_control", + "dataset_id": "adamson", + "method_id": "scprint", "metric_values": { "r1_all": "NA", "r1_grn": "NA", "r2-theta-0.0": "NA", "r2-theta-0.5": "NA", - "r2-theta-1.0": "NA" + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" }, "scaled_scores": { "r1_all": 0, "r1_grn": 0, "r2-theta-0.0": 0, "r2-theta-0.5": 0, - "r2-theta-1.0": 0 + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 }, "mean_score": 0, "resources": { - "submit": "2025-02-23 21:31:09", + "submit": "2025-02-26 19:49:51", "exit_code": 0, - "duration_sec": 3, - "cpu_pct": 335.3667, - "peak_memory_mb": 1434, - "disk_read_mb": 45, - "disk_write_mb": 16 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } }, { - "dataset_id": null, - "method_id": "pearson_corr", + "dataset_id": "nakatake", + "method_id": "celloracle", "metric_values": { "r1_all": "NA", "r1_grn": "NA", "r2-theta-0.0": "NA", "r2-theta-0.5": "NA", - "r2-theta-1.0": "NA" + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" }, "scaled_scores": { "r1_all": 0, "r1_grn": 0, "r2-theta-0.0": 0, "r2-theta-0.5": 0, - "r2-theta-1.0": 0 + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 }, "mean_score": 0, - "resources": { - "submit": "2025-02-23 21:31:09", - "exit_code": 0, - "duration_sec": 8, - "cpu_pct": 277.25, - "peak_memory_mb": 3482, - "disk_read_mb": 71, - "disk_write_mb": 17 - } + "resources": {} }, { - "dataset_id": null, - "method_id": "portia", + "dataset_id": "nakatake", + "method_id": "figr", "metric_values": { "r1_all": "NA", "r1_grn": "NA", "r2-theta-0.0": "NA", "r2-theta-0.5": "NA", - "r2-theta-1.0": "NA" + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" }, "scaled_scores": { "r1_all": 0, "r1_grn": 0, "r2-theta-0.0": 0, "r2-theta-0.5": 0, - "r2-theta-1.0": 0 + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 }, "mean_score": 0, - "resources": { - "submit": "2025-02-23 21:31:09", - "exit_code": 0, - "duration_sec": 7.8, - "cpu_pct": 481.559, - "peak_memory_mb": 3687, - "disk_read_mb": 70, - "disk_write_mb": 17 - } + "resources": {} }, { - "dataset_id": null, - "method_id": "positive_control", + "dataset_id": "nakatake", + "method_id": "granie", "metric_values": { "r1_all": "NA", "r1_grn": "NA", "r2-theta-0.0": "NA", "r2-theta-0.5": "NA", - "r2-theta-1.0": "NA" + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" }, "scaled_scores": { "r1_all": 0, "r1_grn": 0, "r2-theta-0.0": 0, "r2-theta-0.5": 0, - "r2-theta-1.0": 0 + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 }, "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "nakatake", + "method_id": "grnboost2", + "metric_values": { + "r1_all": 0.0032, + "r1_grn": 0.0055, + "r2-theta-0.0": 0.0113, + "r2-theta-0.5": 0.1669, + "r2-theta-1.0": 0.1157, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.7824, + "r1_grn": 0.4876, + "r2-theta-0.0": 0.2191, + "r2-theta-0.5": 0.802, + "r2-theta-1.0": 1.3011, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.4114, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "negative_control", + "metric_values": { + "r1_all": -0.0011, + "r1_grn": -0.0013, + "r2-theta-0.0": 0.0009, + "r2-theta-0.5": 0.0319, + "r2-theta-1.0": 0.0429, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.0819, + "r1_grn": 0.1691, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.0314, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "pearson_corr", + "metric_values": { + "r1_all": -0.0017, + "r1_grn": -0.005, + "r2-theta-0.0": 0.0262, + "r2-theta-0.5": 0.1588, + "r2-theta-1.0": 0.0837, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0.5328, + "r2-theta-0.5": 0.7538, + "r2-theta-1.0": 0.7288, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.2519, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "portia", + "metric_values": { + "r1_all": -0.0035, + "r1_grn": -0.0121, + "r2-theta-0.0": 0.0156, + "r2-theta-0.5": 0.0476, + "r2-theta-1.0": 0.0457, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": -0.2998, + "r1_grn": -0.33, + "r2-theta-0.0": 0.3093, + "r2-theta-0.5": 0.0931, + "r2-theta-1.0": 0.0511, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.0567, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "positive_control", + "metric_values": { + "r1_all": 0.0046, + "r1_grn": 0.0165, + "r2-theta-0.0": 0.0483, + "r2-theta-0.5": 0.2002, + "r2-theta-1.0": 0.0988, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 1, + "r1_grn": 1, + "r2-theta-0.0": 1, + "r2-theta-0.5": 1, + "r2-theta-1.0": 1, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.625, "resources": { - "submit": "2025-02-23 21:31:09", + "submit": "2025-02-26 19:49:51", "exit_code": 0, - "duration_sec": 7.3, - "cpu_pct": 252.7123, - "peak_memory_mb": 3482, - "disk_read_mb": 71, - "disk_write_mb": 17 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } }, { - "dataset_id": null, + "dataset_id": "nakatake", "method_id": "ppcor", + "metric_values": { + "r1_all": 0.003, + "r1_grn": 0.0102, + "r2-theta-0.0": 0.0026, + "r2-theta-0.5": 0.0338, + "r2-theta-1.0": 0.0451, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.7421, + "r1_grn": 0.7038, + "r2-theta-0.0": 0.0368, + "r2-theta-0.5": 0.0114, + "r2-theta-1.0": 0.0394, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.1917, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "scenic", + "metric_values": { + "r1_all": 0.0027, + "r1_grn": 0.0047, + "r2-theta-0.0": 0.0044, + "r2-theta-0.5": 0.0928, + "r2-theta-1.0": 0.0908, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.6988, + "r1_grn": 0.4503, + "r2-theta-0.0": 0.0744, + "r2-theta-0.5": 0.3616, + "r2-theta-1.0": 0.8568, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.3052, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "scenicplus", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "nakatake", + "method_id": "scglue", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "nakatake", + "method_id": "scprint", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "norman", + "method_id": "celloracle", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "norman", + "method_id": "figr", "metric_values": { "r1_all": "NA", "r1_grn": "NA", "r2-theta-0.0": "NA", "r2-theta-0.5": "NA", - "r2-theta-1.0": "NA" + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" }, "scaled_scores": { "r1_all": 0, "r1_grn": 0, "r2-theta-0.0": 0, "r2-theta-0.5": 0, - "r2-theta-1.0": 0 + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 }, "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "norman", + "method_id": "granie", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "norman", + "method_id": "grnboost2", + "metric_values": { + "r1_all": 0.003, + "r1_grn": 0.0034, + "r2-theta-0.0": 0.4836, + "r2-theta-0.5": 0.3509, + "r2-theta-1.0": 0.2941, + "ws-theta-0.0": 0.8602, + "ws-theta-0.5": 0.8281, + "ws-theta-1.0": 0.6772 + }, + "scaled_scores": { + "r1_all": 0.4227, + "r1_grn": 0.468, + "r2-theta-0.0": 0.7093, + "r2-theta-0.5": 1.0381, + "r2-theta-1.0": 0.9909, + "ws-theta-0.0": 1.1164, + "ws-theta-0.5": 1.2599, + "ws-theta-1.0": 1.4222 + }, + "mean_score": 0.8239, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "negative_control", + "metric_values": { + "r1_all": 0.0251, + "r1_grn": 0.0251, + "r2-theta-0.0": 0.269, + "r2-theta-0.5": 0.2806, + "r2-theta-1.0": 0.2478, + "ws-theta-0.0": 0.5269, + "ws-theta-0.5": 0.5018, + "ws-theta-1.0": 0.4793 + }, + "scaled_scores": { + "r1_all": 1, + "r1_grn": 1, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.25, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "pearson_corr", + "metric_values": { + "r1_all": -0.0131, + "r1_grn": -0.0157, + "r2-theta-0.0": 0.5133, + "r2-theta-0.5": 0.3484, + "r2-theta-1.0": 0.2888, + "ws-theta-0.0": 0.8255, + "ws-theta-0.5": 0.7608, + "ws-theta-1.0": 0.6185 + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0.8075, + "r2-theta-0.5": 1, + "r2-theta-1.0": 0.8768, + "ws-theta-0.0": 1, + "ws-theta-0.5": 1, + "ws-theta-1.0": 1 + }, + "mean_score": 0.7105, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "portia", + "metric_values": { + "r1_all": -0.0106, + "r1_grn": -0.0107, + "r2-theta-0.0": 0.1611, + "r2-theta-0.5": 0.211, + "r2-theta-1.0": 0.2393, + "ws-theta-0.0": 0.6197, + "ws-theta-0.5": 0.6084, + "ws-theta-1.0": 0.5716 + }, + "scaled_scores": { + "r1_all": 0.0654, + "r1_grn": 0.1213, + "r2-theta-0.0": -0.3567, + "r2-theta-0.5": -1.0274, + "r2-theta-1.0": -0.1835, + "ws-theta-0.0": 0.311, + "ws-theta-0.5": 0.4117, + "ws-theta-1.0": 0.6635 + }, + "mean_score": 0.1966, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "positive_control", + "metric_values": { + "r1_all": 0.0016, + "r1_grn": 0.0047, + "r2-theta-0.0": 0.5715, + "r2-theta-0.5": 0.3425, + "r2-theta-1.0": 0.2945, + "ws-theta-0.0": 0.8173, + "ws-theta-0.5": 0.7392, + "ws-theta-1.0": 0.6082 + }, + "scaled_scores": { + "r1_all": 0.3849, + "r1_grn": 0.4988, + "r2-theta-0.0": 1, + "r2-theta-0.5": 0.9139, + "r2-theta-1.0": 1, + "ws-theta-0.0": 0.9726, + "ws-theta-0.5": 0.9166, + "ws-theta-1.0": 0.9259 + }, + "mean_score": 0.8266, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "ppcor", + "metric_values": { + "r1_all": 0.0019, + "r1_grn": 0.0019, + "r2-theta-0.0": 0.3827, + "r2-theta-0.5": 0.2902, + "r2-theta-1.0": 0.2576, + "ws-theta-0.0": 0.6807, + "ws-theta-0.5": 0.6202, + "ws-theta-1.0": 0.5325 + }, + "scaled_scores": { + "r1_all": 0.3941, + "r1_grn": 0.4321, + "r2-theta-0.0": 0.3758, + "r2-theta-0.5": 0.1417, + "r2-theta-1.0": 0.2086, + "ws-theta-0.0": 0.515, + "ws-theta-0.5": 0.4571, + "ws-theta-1.0": 0.3827 + }, + "mean_score": 0.3634, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scenic", + "metric_values": { + "r1_all": -0.0024, + "r1_grn": -0.0093, + "r2-theta-0.0": 0.4235, + "r2-theta-0.5": 0.2967, + "r2-theta-1.0": 0.253, + "ws-theta-0.0": 0.8207, + "ws-theta-0.5": 0.5644, + "ws-theta-1.0": 0.5001 + }, + "scaled_scores": { + "r1_all": 0.2798, + "r1_grn": 0.1562, + "r2-theta-0.0": 0.5106, + "r2-theta-0.5": 0.2372, + "r2-theta-1.0": 0.1097, + "ws-theta-0.0": 0.984, + "ws-theta-0.5": 0.2415, + "ws-theta-1.0": 0.1494 + }, + "mean_score": 0.3336, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scenicplus", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "norman", + "method_id": "scglue", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "norman", + "method_id": "scprint", + "metric_values": { + "r1_all": 0.0074, + "r1_grn": 0.0096, + "r2-theta-0.0": 0.5015, + "r2-theta-0.5": 0.3294, + "r2-theta-1.0": 0.2765, + "ws-theta-0.0": 0.6288, + "ws-theta-0.5": 0.5985, + "ws-theta-1.0": 0.5712 + }, + "scaled_scores": { + "r1_all": 0.5375, + "r1_grn": 0.6185, + "r2-theta-0.0": 0.7685, + "r2-theta-0.5": 0.7205, + "r2-theta-1.0": 0.614, + "ws-theta-0.0": 0.3412, + "ws-theta-0.5": 0.3735, + "ws-theta-1.0": 0.6604 + }, + "mean_score": 0.5793, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "celloracle", + "metric_values": { + "r1_all": 0.4662, + "r1_grn": 0.7625, + "r2-theta-0.0": 0.574, + "r2-theta-0.5": 0.3981, + "r2-theta-1.0": 0.3322, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.7279, + "r1_grn": 0.6121, + "r2-theta-0.0": 0.8446, + "r2-theta-0.5": 0.9269, + "r2-theta-1.0": 0.7878, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.4874, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 42599, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "figr", + "metric_values": { + "r1_all": 0.2178, + "r1_grn": 0.5431, + "r2-theta-0.0": 0.3014, + "r2-theta-0.5": 0.2894, + "r2-theta-1.0": 0.319, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.3408, + "r1_grn": 0.4362, + "r2-theta-0.0": 0.2415, + "r2-theta-0.5": 0.2316, + "r2-theta-1.0": 0.2721, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.1903, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 230616, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "granie", + "metric_values": { + "r1_all": 0.1474, + "r1_grn": 0.1937, + "r2-theta-0.0": 0.1511, + "r2-theta-0.5": 0.209, + "r2-theta-1.0": 0.3054, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.2311, + "r1_grn": 0.1561, + "r2-theta-0.0": -0.0909, + "r2-theta-0.5": -0.2822, + "r2-theta-1.0": -0.2627, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.0484, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 41984, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "grnboost2", + "metric_values": { + "r1_all": 0.6493, + "r1_grn": 0.8683, + "r2-theta-0.0": 0.6118, + "r2-theta-0.5": 0.4451, + "r2-theta-1.0": 0.3519, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 1.0132, + "r1_grn": 0.697, + "r2-theta-0.0": 0.9284, + "r2-theta-0.5": 1.2278, + "r2-theta-1.0": 1.5604, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.5782, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 7558, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "negative_control", + "metric_values": { + "r1_all": -0.0009, + "r1_grn": -0.001, + "r2-theta-0.0": 0.1922, + "r2-theta-0.5": 0.2532, + "r2-theta-1.0": 0.3121, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 2274, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "pearson_corr", + "metric_values": { + "r1_all": 0.5703, + "r1_grn": 1.0482, + "r2-theta-0.0": 0.5806, + "r2-theta-0.5": 0.3661, + "r2-theta-1.0": 0.3271, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.89, + "r1_grn": 0.8412, + "r2-theta-0.0": 0.8592, + "r2-theta-0.5": 0.7228, + "r2-theta-1.0": 0.5875, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.4876, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 24372, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "portia", + "metric_values": { + "r1_all": 0.4657, + "r1_grn": 0.6743, + "r2-theta-0.0": 0.5108, + "r2-theta-0.5": 0.3111, + "r2-theta-1.0": 0.3215, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.7271, + "r1_grn": 0.5414, + "r2-theta-0.0": 0.7049, + "r2-theta-0.5": 0.3706, + "r2-theta-1.0": 0.3676, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.3389, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 57027, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "positive_control", + "metric_values": { + "r1_all": 0.6408, + "r1_grn": 1.2462, + "r2-theta-0.0": 0.6442, + "r2-theta-0.5": 0.4095, + "r2-theta-1.0": 0.3376, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 1, + "r1_grn": 1, + "r2-theta-0.0": 1, + "r2-theta-0.5": 1, + "r2-theta-1.0": 1, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.625, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 11879, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "ppcor", + "metric_values": { + "r1_all": 0.1967, + "r1_grn": 0.2385, + "r2-theta-0.0": 0.3787, + "r2-theta-0.5": 0.2839, + "r2-theta-1.0": 0.3142, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.3079, + "r1_grn": 0.192, + "r2-theta-0.0": 0.4126, + "r2-theta-0.5": 0.1966, + "r2-theta-1.0": 0.0814, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.1488, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 65680, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenic", + "metric_values": { + "r1_all": 0.2918, + "r1_grn": 0.4272, + "r2-theta-0.0": 0.5233, + "r2-theta-0.5": 0.3903, + "r2-theta-1.0": 0.3434, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.4561, + "r1_grn": 0.3433, + "r2-theta-0.0": 0.7324, + "r2-theta-0.5": 0.877, + "r2-theta-1.0": 1.2296, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.4261, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 36813, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenicplus", + "metric_values": { + "r1_all": 0.5887, + "r1_grn": 0.7536, + "r2-theta-0.0": 0.6, + "r2-theta-0.5": 0.4498, + "r2-theta-1.0": 0.3512, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.9188, + "r1_grn": 0.605, + "r2-theta-0.0": 0.9021, + "r2-theta-0.5": 1.2579, + "r2-theta-1.0": 1.5351, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.5532, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 134493, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scglue", + "metric_values": { + "r1_all": 0.1557, + "r1_grn": 0.6789, + "r2-theta-0.0": 0.504, + "r2-theta-0.5": 0.2849, + "r2-theta-1.0": 0.3144, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.244, + "r1_grn": 0.5451, + "r2-theta-0.0": 0.6898, + "r2-theta-0.5": 0.2032, + "r2-theta-1.0": 0.0918, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.2217, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 63161, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scprint", + "metric_values": { + "r1_all": 0.1096, + "r1_grn": 0.189, + "r2-theta-0.0": 0.2798, + "r2-theta-0.5": 0.299, + "r2-theta-1.0": 0.3201, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.1722, + "r1_grn": 0.1524, + "r2-theta-0.0": 0.1938, + "r2-theta-0.5": 0.2936, + "r2-theta-1.0": 0.3145, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.1408, + "resources": {} + }, + { + "dataset_id": "replogle", + "method_id": "celloracle", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "replogle", + "method_id": "figr", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "replogle", + "method_id": "granie", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "replogle", + "method_id": "grnboost2", + "metric_values": { + "r1_all": -0.0006, + "r1_grn": -0.0009, + "r2-theta-0.0": 0.0902, + "r2-theta-0.5": 0.0583, + "r2-theta-1.0": 0.0596, + "ws-theta-0.0": 0.5714, + "ws-theta-0.5": 0.5634, + "ws-theta-1.0": 0.5271 + }, + "scaled_scores": { + "r1_all": 0.8729, + "r1_grn": 0.9042, + "r2-theta-0.0": 1.5287, + "r2-theta-0.5": 1.5267, + "r2-theta-1.0": 1.598, + "ws-theta-0.0": 0.602, + "ws-theta-0.5": 0.8032, + "ws-theta-1.0": 0.8133 + }, + "mean_score": 0.8744, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "negative_control", + "metric_values": { + "r1_all": -0.0048, + "r1_grn": -0.0048, + "r2-theta-0.0": 0.0082, + "r2-theta-0.5": 0.008, + "r2-theta-1.0": 0.0158, + "ws-theta-0.0": 0.4852, + "ws-theta-0.5": 0.4923, + "ws-theta-1.0": 0.5026 + }, + "scaled_scores": { + "r1_all": 0.3272, + "r1_grn": 0.6865, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.1267, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "pearson_corr", + "metric_values": { + "r1_all": 0.0004, + "r1_grn": 0.0009, + "r2-theta-0.0": 0.0591, + "r2-theta-0.5": 0.039, + "r2-theta-1.0": 0.0417, + "ws-theta-0.0": 0.6207, + "ws-theta-0.5": 0.5808, + "ws-theta-1.0": 0.5328 + }, + "scaled_scores": { + "r1_all": 1, + "r1_grn": 1, + "r2-theta-0.0": 0.9475, + "r2-theta-0.5": 0.9409, + "r2-theta-1.0": 0.9426, + "ws-theta-0.0": 0.9457, + "ws-theta-0.5": 1, + "ws-theta-1.0": 1 + }, + "mean_score": 0.9721, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "portia", + "metric_values": { + "r1_all": -0.0105, + "r1_grn": -0.0106, + "r2-theta-0.0": 0.0623, + "r2-theta-0.5": 0.0377, + "r2-theta-1.0": 0.0397, + "ws-theta-0.0": 0.5032, + "ws-theta-0.5": 0.5057, + "ws-theta-1.0": 0.5018 + }, + "scaled_scores": { + "r1_all": -0.4275, + "r1_grn": 0.3641, + "r2-theta-0.0": 1.0081, + "r2-theta-0.5": 0.9024, + "r2-theta-1.0": 0.8709, + "ws-theta-0.0": 0.1262, + "ws-theta-0.5": 0.1511, + "ws-theta-1.0": -0.0285 + }, + "mean_score": 0.4268, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "positive_control", + "metric_values": { + "r1_all": -0.0073, + "r1_grn": -0.0171, + "r2-theta-0.0": 0.0619, + "r2-theta-0.5": 0.041, + "r2-theta-1.0": 0.0433, + "ws-theta-0.0": 0.6285, + "ws-theta-0.5": 0.5803, + "ws-theta-1.0": 0.5315 + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 1, + "r2-theta-0.5": 1, + "r2-theta-1.0": 1, + "ws-theta-0.0": 1, + "ws-theta-0.5": 0.9933, + "ws-theta-1.0": 0.9594 + }, + "mean_score": 0.7441, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "ppcor", + "metric_values": { + "r1_all": -0.0251, + "r1_grn": -0.0253, + "r2-theta-0.0": 0.0135, + "r2-theta-0.5": 0.0108, + "r2-theta-1.0": 0.0175, + "ws-theta-0.0": 0.5045, + "ws-theta-0.5": 0.5021, + "ws-theta-1.0": 0.5 + }, + "scaled_scores": { + "r1_all": -2.3365, + "r1_grn": -0.4573, + "r2-theta-0.0": 0.0976, + "r2-theta-0.5": 0.0835, + "r2-theta-1.0": 0.062, + "ws-theta-0.0": 0.1348, + "ws-theta-0.5": 0.1108, + "ws-theta-1.0": -0.0874 + }, + "mean_score": 0.0611, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scenic", + "metric_values": { + "r1_all": -0.0043, + "r1_grn": -0.0063, + "r2-theta-0.0": 0.0346, + "r2-theta-0.5": 0.0207, + "r2-theta-1.0": 0.025, + "ws-theta-0.0": 0.5754, + "ws-theta-0.5": 0.5496, + "ws-theta-1.0": 0.5124 + }, + "scaled_scores": { + "r1_all": 0.392, + "r1_grn": 0.5996, + "r2-theta-0.0": 0.4921, + "r2-theta-0.5": 0.3861, + "r2-theta-1.0": 0.336, + "ws-theta-0.0": 0.6297, + "ws-theta-0.5": 0.6476, + "ws-theta-1.0": 0.3255 + }, + "mean_score": 0.4761, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scenicplus", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "replogle", + "method_id": "scglue", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "replogle", + "method_id": "scprint", + "metric_values": { + "r1_all": -0.0082, + "r1_grn": -0.0133, + "r2-theta-0.0": 0.027, + "r2-theta-0.5": 0.0178, + "r2-theta-1.0": 0.0238, + "ws-theta-0.0": 0.517, + "ws-theta-0.5": 0.5012, + "ws-theta-1.0": 0.4886 + }, + "scaled_scores": { + "r1_all": -0.1274, + "r1_grn": 0.2094, + "r2-theta-0.0": 0.3506, + "r2-theta-0.5": 0.2974, + "r2-theta-1.0": 0.292, + "ws-theta-0.0": 0.2219, + "ws-theta-0.5": 0.0998, + "ws-theta-1.0": -0.4668 + }, + "mean_score": 0.1839, "resources": { - "submit": "2025-02-23 21:31:09", + "submit": "2025-02-26 19:49:51", "exit_code": 0, - "duration_sec": 78, - "cpu_pct": 107.7051, - "peak_memory_mb": 3789, - "disk_read_mb": 47, - "disk_write_mb": 10 + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" } } ] diff --git a/results/grn_inference/data/task_info.json b/results/grn_inference/data/task_info.json index 3cb39f3d..8fce7c8e 100644 --- a/results/grn_inference/data/task_info.json +++ b/results/grn_inference/data/task_info.json @@ -45,6 +45,6 @@ } } ], - "version": "build_main", + "version": "dev", "license": "MIT" }