Skip to content

Commit bd3f1fe

Browse files
fix links and minor rewording
Signed-off-by: rithin-pullela-aws <[email protected]>
1 parent d24772e commit bd3f1fe

File tree

8 files changed

+18
-18
lines changed

8 files changed

+18
-18
lines changed

_query-dsl/specialized/agentic.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ nav_order: 2
99
**Introduced 3.2**
1010
{: .label .label-purple }
1111

12-
Use the `agentic` query to ask questions in natural language and have OpenSearch automatically plan and execute the retrieval. The `agentic` query works in conjunction with a preconfigured agent that reads the question, plans the search, and returns relevant results. For more information about agentic search, see [Agentic search]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/).
12+
Use the `agentic` query to ask questions in natural language and have OpenSearch automatically plan and execute the retrieval. The `agentic` query works in conjunction with a preconfigured agent that reads the question, plans the search, and returns relevant results. For more information about agentic search, see [Agentic search]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/index/).
1313

1414
**Prerequisite**<br>
1515
Before using an `agentic` query, you must configure an agent with the [`QueryPlanningTool`]({{site.url}}{{site.baseurl}}/ml-commons-plugin/agents-tools/tools/query-planning-tool/) and create a search pipeline with an `agentic_query_translator` search request processor.

_search-plugins/search-pipelines/agentic-query-translator-processor.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ grand_parent: Search pipelines
1111
**Introduced 3.2**
1212
{: .label .label-purple }
1313

14-
The `agentic_query_translator` search request processor enables natural language search by translating user queries into OpenSearch query domain-specific language (DSL) queries using machine learning (ML) agents. It works with [agentic search queries]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search) to provide conversational search capabilities:
14+
The `agentic_query_translator` search request processor enables natural language search by translating user queries into OpenSearch query domain-specific language (DSL) queries using machine learning (ML) agents. It works with [agentic search queries]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/index/) to provide conversational search capabilities:
1515

1616
1. The processor sends the user's natural language query to the specified ML agent.
1717
2. The agent translates the query into OpenSearch DSL.

_vector-search/ai-search/agentic-search/agent-converse.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ Enable monitoring and conversation continuation using the `agentic_context` resp
1313

1414
## Prerequisites
1515

16-
- An agent is registered and configured as in Agent customization
16+
- An agent is registered and configured as descrived in [Agent customization]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/agent-customization/#complete-agent-configuration)
1717
- The agent includes the QueryPlanningTool
1818

1919
## Setup: Create Search Pipeline
@@ -91,8 +91,8 @@ GET /_search?search_pipeline=agentic-pipeline
9191

9292
### Prerequisites: Register Models
9393

94-
1. **Register a model for the Agent** - This model will be used by the conversational agent for reasoning and tool orchestration
95-
2. **Register a model for Query Planning Tool** - This model will be used specifically by the QueryPlanningTool to generate OpenSearch DSL queries
94+
1. **[Register a model for the Agent]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/#step-4-create-a-model-for-conversational-agent)** - This model will be used by the conversational agent for reasoning and tool orchestration
95+
2. **[Register a model for Query Planning Tool]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/#step-3-create-a-model-for-query-planning-tool)** - This model will be used specifically by the QueryPlanningTool to generate OpenSearch DSL queries
9696

9797
### 1. Create product index
9898

_vector-search/ai-search/agentic-search/agent-customization.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -130,7 +130,7 @@ You can add any tools from the [ML Commons Tools documentation]({{site.url}}{{si
130130

131131
The conversational agent will automatically select and orchestrate the appropriate tools based on the query context.
132132

133-
**Complete agent configuration:**
133+
**Complete agent configuration:** {#complete-agent-configuration}
134134

135135
```json
136136
POST /_plugins/_ml/agents/_register
@@ -141,8 +141,7 @@ POST /_plugins/_ml/agents/_register
141141
"llm": {
142142
"model_id": "your-conversational-model-id",
143143
"parameters": {
144-
"max_iteration": 15,
145-
"embedding_model_id": "your-embedding-model-id"
144+
"max_iteration": 15
146145
}
147146
},
148147
"memory": {
@@ -198,6 +197,7 @@ GET /_search?search_pipeline=agentic-pipeline
198197
{% include copy-curl.html %}
199198

200199
The agent will automatically discover product indices, analyze their structure, and generate appropriate queries.
200+
201201
**Performance consideration**: When you don't specify an index in your search query, the search runs against all shards in the cluster, which can be expensive. For better performance, specify the target index when possible.
202202

203203
## Prompt engineering and customization

_vector-search/ai-search/agentic-search/flow-agent.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ Before using a flow agent, you need to:
3434

3535
3. **Register a model for Query Planner Tool (QPT)**
3636

37-
See [Step 3: Create a model for Query Planning tool]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/#step-3-create-a-model-for-query-planning-tool) for detailed instructions.
37+
See [Step 3: Create a model for Query Planning tool]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/index/#step-3-create-a-model-for-query-planning-tool) for detailed instructions.
3838

3939
4. **Register a flow agent**
4040
```json

_vector-search/ai-search/agentic-search/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ has_children: true
77
---
88

99
# Agentic search
10-
Introduced 3.2
10+
**Introduced 3.2**
1111
{: .label .label-purple }
1212

1313
Agentic search lets users ask questions in natural language and have OpenSearch plan and execute the retrieval automatically. A preconfigured **agent** reads the question, plans the search, and returns relevant results.

_vector-search/ai-search/agentic-search/neural-search.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ has_children: false
99

1010
# Neural Search
1111

12-
Neural is a type of DSL query that requires a `model_id` to perform semantic search on KNN indices. You can provide the embedding model ID during the registration of the agent, and the Query Planner Tool reads this embedding model ID and produces a neural query when the question requires it. This example demonstrates how agentic search can intelligently generate neural DSL queries by providing the embedding model ID in multiple ways - during agent registration, or even directly in your question.
12+
`neural` is a type of DSL claude that requires a `model_id` to perform semantic search on KNN indices (when not model id is not directly associated with the index). To make Agentic Search generate neural queries with `model_id` field, you can provide the embedding model ID during the registration of the agent, and the Query Planner Tool reads this embedding model ID and produces a neural query when the question requires it. This example demonstrates how agentic search can intelligently generate neural DSL queries by providing the embedding model ID in multiple ways - during agent registration, or even directly in your `query_text`.
1313

1414
## Complete Example: Neural DSL Generation with Agentic Search
1515

@@ -141,8 +141,8 @@ POST /_bulk
141141

142142
Register two models as described in the [Agentic Search setup]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/index/):
143143

144-
1. **[Register a model for the Agent]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/index/#step-4-create-a-model-for-conversational-agent)** - Step 4
145-
2. **[Register a model for Query Planning Tool]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/index/#step-3-create-a-model-for-query-planning-tool)** - Step 3
144+
1. **[Register a model for the Agent]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/#step-4-create-a-model-for-conversational-agent)**
145+
2. **[Register a model for Query Planning Tool]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/#step-3-create-a-model-for-query-planning-tool)**
146146

147147
### Step 6: Create Agent with Embedding Model ID
148148

_vector-search/ai-search/agentic-search/search-templates.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -174,10 +174,10 @@ POST /_scripts/store_sum_skus
174174

175175
Refer to these to register query planner model and the agent model:
176176

177-
- [Create a model for Query Planning tool]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/#step-3-create-a-model-for-query-planning-tool)
178-
- [Create a Model for Conversational Agent]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/#step-4-create-a-model-for-conversational-agent)
179-
- [Create an Agent]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/#step-5-create-an-agent)
180-
- [Create a search pipeline]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/#step-6-create-a-search-pipeline)
177+
- [Create a model for Query Planning tool]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/index/#step-3-create-a-model-for-query-planning-tool)
178+
- [Create a Model for Conversational Agent]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/index/#step-4-create-a-model-for-conversational-agent)
179+
- [Create an Agent]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/index/#step-5-create-an-agent)
180+
- [Create a search pipeline]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/index/#step-6-create-a-search-pipeline)
181181

182182
```json
183183
{
@@ -225,7 +225,7 @@ Refer to these to register query planner model and the agent model:
225225

226226
Register the search pipeline before performing the query:
227227

228-
- [Create a search pipeline]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/#step-6-create-a-search-pipeline)
228+
- [Create a search pipeline]({{site.url}}{{site.baseurl}}/vector-search/ai-search/agentic-search/index/#step-6-create-a-search-pipeline)
229229

230230
**Agentic Search Query:**
231231
```json

0 commit comments

Comments
 (0)