-
Notifications
You must be signed in to change notification settings - Fork 1
/
01e6cf7a-9fcd-4bc5-ba36-0dcaab7aab10.html
141 lines (141 loc) · 2.36 KB
/
01e6cf7a-9fcd-4bc5-ba36-0dcaab7aab10.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
<p>Previously, we saw that an exponential function eventually overtakes a linear function. We can understand better why
this is so by examining how these functions change when we change their input. Present these equations and tables for
functions \(f\) and \(g\):</p>
<p>\(f(x)=3x+2\)</p>
<table class="os-raise-horizontaltable">
<thead></thead>
<tbody>
<tr>
<th scope="row">
\(x\)
</th>
<td>
0
</td>
<td>
1
</td>
<td>
2
</td>
<td>
3
</td>
<td>
4
</td>
<td>
5
</td>
<td>
10
</td>
<td>
15
</td>
</tr>
<tr>
<th scope="row">
\(f(x)\)
</th>
<td>
2
</td>
<td>
5
</td>
<td>
8
</td>
<td>
11
</td>
<td>
14
</td>
<td>
17
</td>
<td>
32
</td>
<td>
47
</td>
</tr>
</tbody>
</table>
<br>
<p>\(g(x)=2 \cdot 3^x\)</p>
<table class="os-raise-horizontaltable">
<thead></thead>
<tbody>
<tr>
<th scope="row">
\(x\)
</th>
<td>
0
</td>
<td>
1
</td>
<td>
2
</td>
<td>
3
</td>
<td>
4
</td>
<td>
5
</td>
<td>
10
</td>
<td>
15
</td>
</tr>
<tr>
<th scope="row">
\(g(x)\)
</th>
<td>
2
</td>
<td>
6
</td>
<td>
18
</td>
<td>
54
</td>
<td>
162
</td>
<td>
486
</td>
<td>
118,098
</td>
<td>
28,697,814
</td>
</tr>
</tbody>
</table>
<br>
<p>Ask students:</p>
<ul>
<li>“How does the function \(f\) change when \(x\)<em> </em>grows by 1? By 5? By 10?”</li>
<li>“How does the function \(g\) change when \(x\) grows by 1? By 5? By 10?”</li>
</ul>
<p>Make sure students see that any time \(x\) increases by 2, \(f\) grows by \(3 \cdot 2\) or 6,
and \(g\) grows by a factor \(3^2\) or 9. Any time \(x\) increases by 5, the value of \(f\) grows by \(3
\cdot 5\) or 15, but the value of \(g\) grows by a factor of \(3^5\) or 243.</p>