-
Notifications
You must be signed in to change notification settings - Fork 1
/
19e2cc9c-dd28-4788-abef-02a0bff5d004.html
145 lines (143 loc) · 4.59 KB
/
19e2cc9c-dd28-4788-abef-02a0bff5d004.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
<h4>Exponential versus Quadratic Functions</h4>
<p>For each of the two functions, do the following:</p>
<ol class="os-raise-noindent" type="a">
<li> Complete the table of values. </li>
<li> Sketch a graph. </li>
<li> Decide whether each function is linear, quadratic, or exponential, and be prepared to explain how you know. </li>
</ol>
<ol class="os-raise-noindent">
<li> \(f(x)=3\cdot 2^x\)</li>
</ol>
<table class="os-raise-horizontaltable">
<thead> </thead>
<tbody>
<tr>
<th scope="row">\(x\)</th>
<td>\(-1\)</td>
<td>\(0\)</td>
<td>\(1\)</td>
<td>\(2\)</td>
<td>\(3\)</td>
<td>\(5\)</td>
</tr>
<tr>
<th scope="row">\(f(x)\)</th>
<td>\(\frac{3}{2}\) or equivalent </td>
<td>\(3\)</td>
<td>\(6\)</td>
<td>\(12\)</td>
<td>\(24\)</td>
<td>\(96\)</td>
</tr>
</tbody>
</table>
<br>
<p><img height="298" src="https://k12.openstax.org/contents/raise/resources/88922da47465d7b4e2be357a2e6d1c8b87bb093b"
width="300"></p>
<p>This function is exponential. It has a growth factor of \(2\).</p>
<ol class="os-raise-noindent" start="2">
<li>\(g(x)=3\cdot x^2\)</li>
</ol>
<table class="os-raise-horizontaltable">
<thead></thead>
<tbody>
<tr>
<th scope="row">\(x\)</th>
<td>\(-1\)</td>
<td>\(0\)</td>
<td>\(1\)</td>
<td>\(2\)</td>
<td>\(3\)</td>
<td>\(5\)</td>
</tr>
<tr>
<th scope="row">\(g(x)\)</th>
<td>\(3\) </td>
<td>\(0\)</td>
<td>\(3\)</td>
<td>\(12\)</td>
<td>\(27\)</td>
<td>\(75\)</td>
</tr>
</tbody>
</table>
<br>
<p><img height="304" src="https://k12.openstax.org/contents/raise/resources/c9c483e847a71d346d069f57164ded7e77f81809"
width="300"></p>
<p>This function is not linear because it does not have a constant rate of change, and it is not exponential because it
does not have a constant growth factor. The function is quadratic because it can be represented by \(g(x)=3x^2\),
which has \(x\) to the second power, and that is the greatest power.</p>
<p>Note: Between \(f(x)\) and \(g(x)\), \(f(x)\) will have the greater value as \(x\) increases.</p>
<h4>Try It: Exponential versus Quadratic Functions</h4>
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal1" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<p>Which of the following has the greater value as \(x\) increases, \(f(x)\) or \(g(x)\)?</p>
<p>\(f(x)=3x^2\)</p>
<p>\(g(x)=3^x\)</p>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answer, then select the <strong>solution</strong> button to compare your work. </p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal1">
<p>Here is how to determine which function has the greater value as \(x\) increases:</p>
<p>Make a table of values for each function, and then graph the function:</p>
<table class="os-raise-horizontaltable">
<thead></thead>
<tbody>
<tr>
<th scope="row">\(x\)</th>
<td>\(-2\)</td>
<td>\(-1\)</td>
<td>\(0\)</td>
<td>\(1\)</td>
<td>\(2\)</td>
<td>\(3\)</td>
<td>\(4\)</td>
</tr>
<tr>
<th scope="row">\(f(x)=3x^2\)</th>
<td>\(12\)</td>
<td>\(3\)</td>
<td>\(0\)</td>
<td>\(3\)</td>
<td>\(12\)</td>
<td>\(27\)</td>
<td>\(48\)</td>
</tr>
</tbody>
</table>
<br>
<p><img alt height="304" role="presentation"
src="https://k12.openstax.org/contents/raise/resources/f4631cb9d02c271990fc27002a5536212ecd6a16" width="300"></p>
<table class="os-raise-horizontaltable">
<thead></thead>
<tbody>
<tr>
<th scope="row">\(x\)</th>
<td>\(-2\)</td>
<td>\(-1\)</td>
<td>\(0\)</td>
<td>\(1\)</td>
<td>\(2\)</td>
<td>\(3\)</td>
<td>\(4\)</td>
</tr>
<tr>
<th scope="row">\(g(x)=3^x\)</th>
<td>\(\frac {1}{9}\)</td>
<td>\(\frac {1}{3}\)</td>
<td>\(1\)</td>
<td>\(3\)</td>
<td>\(9\)</td>
<td>\(27\)</td>
<td>\(81\)</td>
</tr>
</tbody>
</table>
<br>
<p><img alt class="img-fluid atto_image_button_text-bottom" role="presentation"
src="https://k12.openstax.org/contents/raise/resources/6ead768f506e99b9144290b0b041f973f9159381" width="260"></p>
<p>Looking at both the table of values and the graphs, \(g(x)\) will have a greater value than \(f(x)\) as \(x\)
increases. This is because \(g(x)\) is exponential and has a constant growth factor.</p>
</div>