-
Notifications
You must be signed in to change notification settings - Fork 1
/
1e4585d9-d764-49ac-ba6e-9b9ad0f33ecf.html
171 lines (171 loc) · 6.73 KB
/
1e4585d9-d764-49ac-ba6e-9b9ad0f33ecf.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
<p>In this unit, remember to double click on mathematical expressions/equations to enlarge, if needed.</p>
<h4>Dividing Polynomial Functions</h4>
<p>Just as polynomials can be divided, polynomial functions can also be divided.</p>
<br>
<div>
<p><strong> DIVISION OF POLYNOMIAL FUNCTIONS </strong></p>
<hr>
<p>For functions \(f(x)\) and \(g(x)\), where \(g(x) \neq 0\),</p>
<p>\((\frac{f}{g})(x)=\frac{f(x)}{g(x)}\)</p>
</div>
<br>
<p class="os-raise-text-bold">Example 1</p>
<p>For functions \(f(x)=x^2-5x-14\) and \(g(x)=x+2\):</p>
<ol class="os-raise-noindent" type="a">
<li>Find \((\frac{f}{g})(x)\).</li>
</ol>
<p><strong>Step 1 -</strong> \((\frac{f}{g})(x)=\frac{f(x)}{g(x)}\) Substitute for \(f(x)\) and \(g(x)\).</p>
<p> \((\frac{f}{g})(x)=\frac{f(x)=x^2-5x-14}{x+2}\)</p>
<p><strong>Step 2 -</strong> Divide the polynomials using long division.</p>
<p> \[\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x - 7\\x + 2\left){\vphantom{1{{x^2} - 5x - 14}}}\right.<br>
\!\!\!\!\overline{\,\,\,\vphantom 1{{{x^2} - 5x - 14}}}\\\,\,\,\,\,\,\,\,\,\,\underline { - ({x^2} + 2x)} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 7x - 14\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline { - ( - 7x - 14)} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\end{array}\]<br>
\((\frac{f}{g})(x)=x-7\)</p>
<br>
<ol class="os-raise-noindent" start="2" type="a">
<li>Find \((\frac{f}{g})(-4)\).</li>
</ol>
<p><strong>Step 1 -</strong> In part (1), we found \((\frac{f}{g})(x)\).</p>
<p> \((\frac{f}{g})(x)=x−7\)</p>
<p><strong>Step 2 - </strong>To find \((\frac{f}{g})(-4)\), substitute \(x=-4\).</p>
<p> \((\frac{f}{g})(-4)=-4-7\)<br>
\((\frac{f}{g})(-4)=-11\)</p>
<br>
<h4>Try It: Dividing Polynomial Functions</h4>
<br>
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal1" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<p>For functions \(f(x)=x^2-5x-36\) and \(g(x)=x+4\):</p>
<ol class="os-raise-noindent">
<li>Find \((\frac{f}{g})(x)\). </li>
</ol>
<ol class="os-raise-noindent" start="2">
<li>Find \((\frac{f}{g})(-5)\). </li>
</ol>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answers. Then select the <strong>solution</strong> button to compare your work. </p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal1">
<p>Here is how to solve these polynomial function division problems:</p>
<ol class="os-raise-noindent">
<li>\((\frac{f}{g})(x) = \frac{x^2-5x-36}{x+4}=x-9\) </li>
</ol>
<ol class="os-raise-noindent" start="2">
<li>\((\frac{f}{g})(-5)=x-9=(-5)-9=-14\) </li>
</ol>
</div>
<br>
<h4>Using the Remainder Theorem</h4>
<p>Let’s look at some division problems and their remainders. They are summarized in the chart below. If we take the dividend from each division problem and use it to define a function, we get the functions shown in the chart. When the divisor is written as \(x - c\), the value of the function at \(c\), \(f(c)\), is the same as the remainder from the division problem.</p>
<table class="os-raise-wideadjustedtable">
<thead>
<tr>
<th scope="col">Dividend</th>
<th scope="col">Divisor</th>
<th scope="col">Remainder</th>
<th scope="col">Function</th>
<th scope="col">\(f(c)\)</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<p>\(x^4-7x^2+7x+6\)</p>
</td>
<td>
<p>\(x - (-3)\)</p>
</td>
<td>
<p>\(3\)</p>
</td>
<td>
<p>\(f(x)=x^4-7x^2+7x+6\)</p>
</td>
<td>
<p>\(f(-3)=3\)</p>
</td>
</tr>
<tr>
<td>
<p>\(f(x)=3x^3-2x^2-10x+8\)</p>
</td>
<td>
<p>\(x - (-3)\)</p>
</td>
<td>
<p>\(-61\)</p>
</td>
<td>
<p>\(f(x)=3x^3-2x^2-10x+8\)</p>
</td>
<td>
<p>\(f(-3)=-61\)</p>
</td>
</tr>
<tr>
<td>
<p>\(x^4-16x^2+3x+15\)</p>
</td>
<td>
<p>\(x - (-4)\)</p>
</td>
<td>
<p>\(3\)</p>
</td>
<td>
<p>\(f(x)=x^4-16x^2+3x+15\)</p>
</td>
<td>
<p>\(f(-4)=3\)</p>
</td>
</tr>
</tbody>
</table>
<br>
<p>To see this more generally, we realize we can check a division problem by multiplying the quotient times the divisor and adding the remainder. In function notation, we could say: To get the dividend \(f(x)\), we multiply the quotient, \(q(x)\), times the divisor, \(x-c\), and add the remainder, \(r\).</p>
<p>\(f(x)=q(x)(x-c)+r\)</p>
<p> If we evaluate this at \(c\), we get:<br>
\(f({\style{color:red}c})=q({\style{color:red}c})({\style{color:red}c}-c)+r\)<br>
\(f(c)=q(c)(0)+r\)<br>
\(f(c)=r\)</p>
<p>This leads us to the Remainder Theorem.</p>
<br>
<div class="os-raise-graybox">
<p><strong>REMAINDER THEOREM</strong></p>
<hr>
<p>If the polynomial function \(f(x)\) is divided by \(x-c\), then the remainder is \(f(c)\).</p>
</div>
<br>
<p class="os-raise-text-bold">Example 2</p>
<p>Use the Remainder Theorem to find the remainder when \(f(x)=x^3+3x+19\) is divided by \(x + 2\).</p>
<p>To use the Remainder Theorem, we must use the divisor in the \(x-c\) form. We can write the divisor \(x+2\) as \(x-(-2)\). So, our \(c\) is \(-2\).</p>
<p>To find the remainder, we evaluate \(f(c)\), which is \(f(-2)\).</p>
<p>\(f(x)=x^3+3x+19\)</p>
<p><strong>Step 1 -</strong> To evaluate \(f(-2)\), substitute \(x=-2\).</p>
<p> \(f({\style{color:red}-}{\style{color:red}2})=({\style{color:red}-}{\style{color:red}2})^3+3({\style{color:red}-}{\style{color:red}2})+19\)</p>
<p><strong>Step 2 -</strong> Simplify. </p>
<p> \(f(-2)=(-8)-6+19\) <br>
\(f(-2)=5\)<br>
The remainder is 5 when \(f(x)=x^3+3x+19\) is divided by \(x+2\).</p>
<p><strong>Step 3 -</strong> Check using synthetic division.</p>
<p><img alt="." src="https://k12.openstax.org/contents/raise/resources/05a284d4b51db6421214ef8ac2c1d86317bb15a1"><br>
The remainder is 5. </p>
<p> </p>
<h4>Try It: Using the Remainder Theorem</h4>
<br>
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal2" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<p>Use the Remainder Theorem to find the remainder when \(f(x)=x^3+4x+15\) is divided by \(x + 2\).</p>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answer. Then select the <strong>solution</strong> button to compare your work. </p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal2">
<p>Here is how to solve a problem using the Remainder Theorem:</p>
<p>\(f(x)=x^3+4x+15\)</p>
<p>\(f(2)=(-2)^3+4(-2)+15\)</p>
<p>\(f(2)=-8-8+15= -1\)</p>
<p>The remainder is \(-1\).</p>
</div>