-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path28b690d6-ddb7-4f8d-a7a4-805f74585f29.html
379 lines (374 loc) · 14.5 KB
/
28b690d6-ddb7-4f8d-a7a4-805f74585f29.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
<h4>Activity (20 minutes)</h4>
<p>This activity teaches students to recognize perfect square trinomials by identifying the patterns in their form. With
practice, these trinomials can easily be factored into binomials.</p>
<h4>Launch</h4>
<p>Review the patterns shown for perfect square trinomials. Emphasize that the middle term, \(2ab\), determines the sign
of the factored binomials.</p>
<p>Factor the first question together as a class. Ask students how they might recognize that the polynomial, \(64y^2
− 80y + 25\), is a perfect square trinomial.</p>
<ul>
<li> \(64y^2\) is a perfect square. </li>
<li> 25 is a perfect square. </li>
<li> If \(a = 8y\) and \(b = 5\), then \(2ab = 80y\). </li>
<li> Since the middle term is negative, the binomials will also have a negative sign. </li>
</ul>
<p>Allow students to solve the remaining questions individually. Before closing the activity, ask students if there is
any confusion around recognizing and factoring perfect square trinomials.</p>
<div class="os-raise-extrasupport">
<div class="os-raise-extrasupport-header">
<p class="os-raise-extrasupport-title">Support for Students with Disabilities</p>
<p class="os-raise-extrasupport-name"><!--Extra Support Name-->Engagement: Provide structures </p>
</div>
<div class="os-raise-extrasupport-body">
<!--Support Content--><p>Provide students with math formula support for finding the perfect square while solving practice problems and quizzes by utilizing the STAAR Algebra I Reference Materials that is linked from the Getting Started - Students Start Here - Additional Resources. It includes these formulas:
</p>
<p class="os-raise-text-bold">Factoring</p>
<div class="os-raise-d-flex os-raise-justify-content-between">
<p>Perfect square trinomials</p>
<p>\(a^2+2ab+b^2=(a+b)^2\)<br>\(a^2-2ab+b^2=(a-b)^2\)
</p>
</div>
<div class="os-raise-d-flex os-raise-justify-content-between">
<p>Difference of squares</p>
<p>\(a^2-b^2=(a-b)(a+b)\)</p>
</div>
<p class="os-raise-text-italicize"><!--Support Italics-->Supports accessibility for Conceptual Processing, Memory</p>
</div>
</div>
<br>
<h4>Student Activity </h4>
<p>Remember the patterns for perfect square trinomials:</p>
<p>\(a^2 + 2ab + b^2 = (a + b)^2\)</p>
<p>\(a^2 − 2ab + b^2 = (a − b)^2\)</p>
<p>Factor each perfect square trinomial. If necessary, factor out the GCF first. Use the "^" symbol to enter an exponent.</p>
<ol class="os-raise-noindent">
<li> \(64y^2 − 80y + 25\) </li>
</ol>
<p><strong>Answer:</strong> \((8y − 5)^2\)</p>
<ol class="os-raise-noindent" start="2">
<li> \(16y^2 + 24y + 9\) </li>
</ol>
<p><strong>Answer:</strong> \((4y + 3)^2\)</p>
<ol class="os-raise-noindent" start="3">
<li> \(25n^2 − 120n + 144\) </li>
</ol>
<p><strong>Answer:</strong> \((5n − 12)^2\)</p>
<ol class="os-raise-noindent" start="4">
<li> \(100y^2 − 20y + 1\) </li>
</ol>
<p><strong>Answer:</strong> \((10y − 1)^2\)</p>
<ol class="os-raise-noindent" start="5">
<li> \(10jk^2 + 80jk + 160j\) </li>
</ol>
<p><strong>Answer:</strong> \(10j(k + 4)^2\)</p>
<ol class="os-raise-noindent" start="6">
<li> \(75u^4 − 30u^3v + 3u^2v^2\) </li>
</ol>
<p><strong>Answer:</strong> \(3u^2(5u − v)^2\)</p>
<h4>Student Facing Extension</h4>
<h5> Extending Your Thinking</h5>
<p>Factor this perfect square trinomial.</p>
<p>\(90p^4r^2 + 300p^3qr^2 + 250p^2q^2r^2\)</p>
<p><strong>Answer:</strong> \(10p^2r^2(3p + 5q)^2\)</p>
<h4>Anticipated Misconceptions</h4>
<p>If students do not recognize a polynomial from the activity as a perfect square trinomial, remind them that they must
first factor out the GCF from the polynomial.</p>
<h4>Activity Synthesis</h4>
<p>Invite a student to explain in their own words how to identify a perfect square trinomial.</p>
<ul>
<li> The first and last terms are perfect squares. </li>
<li> The middle term fits the pattern \(\pm 2ab\). </li>
</ul>
<p>Invite a student to explain in their own words how to factor a perfect square trinomial.</p>
<ul>
<li> The trinomial is factored according to one of the following patterns: </li>
<ul>
<li> \(a^2 + 2ab + b^2 = (a + b)^2\) </li>
<li> \(a^2 − 2ab + b^2 = (a − b)^2\) </li>
</ul>
</ul>
<h3>6.6.2: Self Check</h3>
<p class="os-raise-text-bold os-raise-text-italicize">After the activity, students will answer the following question to check their understanding of the
concepts explored in the activity.</p>
<p class="os-raise-text-bold">QUESTION:</p>
<p>Factor: \(64m^2 + 112mn + 49n^2\).</p>
<table class="os-raise-textheavytable">
<thead>
<tr>
<th scope="col">Answers</th>
<th scope="col">Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>
\(m(8 + 7n)^2\)
</td>
<td>
Incorrect. Let’s try again a different way: There is no GCF to factor first. The answer is \((8m +
7n)^2\).
</td>
</tr>
<tr>
<td>
\((8n + 7m)^2\)
</td>
<td>
Incorrect. Let’s try again a different way: The coefficients are incorrectly reversed. The answer is
\((8m + 7n)^2\).
</td>
</tr>
<tr>
<td>
\((8m − 7n)^2\)
</td>
<td>
Incorrect. Let’s try again a different way: The sign is incorrect. It should be addition. The answer is
\((8m + 7n)^2\).
</td>
</tr>
<tr>
<td>
\((8m + 7n)^2\)
</td>
<td>
That’s correct! Check yourself: Find the square to check that it matches the original polynomial.
</td>
</tr>
</tbody>
</table>
<br>
<h3>6.6.2: Additional Resources</h3>
<p class="os-raise-text-bold" os-raise-text-italicize>The following content is available to students who would like more support based on their experience with
the self check. Students will not automatically have access to this content, so you may wish to share it with
those who could benefit from it.</p>
<h4>Factoring Perfect Square Trinomials</h4>
<p>Some trinomials are perfect squares. They result from multiplying a binomial by itself. We squared a binomial using
the Binomial Squares pattern in a previous lesson.</p>
<p>\({\style{color:red}(}{\style{color:red}a}{\style{color:red}+}{\style{color:red}b}{\style{color:red})}^{\style{color:red}2}\)<br>
\((3x+4)^2\)
</p>
<p>\(\;\;\;\;
{\style{color:red}a}
^
{\style{color:red}2}
\;
{\style{color:red}+}
\;
{\style{color:red}2}
\;
{\style{color:red}\cdot}
\;
{\style{color:red}a}
\;
{\style{color:red}\cdot}
\;
{\style{color:red}b}
\;
{\style{color:red}+}
\;
{\style{color:red}b}
^
{\style{color:red}2}
\\{(3x)}^2+2(3x\cdot4)+4^2\)</p>
<p>\(\;\;\;\;9x^2+24x+16\)</p>
<p>The trinomial \(9x^2 + 24x + 16\) is called a perfect square trinomial. It is the square of the binomial \(3x + 4\).
</p>
<p>In this chapter, you will start with a perfect square trinomial and factor it into its prime factors.</p>
<p>You could factor this trinomial using the methods described in the last section since it is of the form \(ax^2 + bx +
c\). But if you recognize that the first and last terms are squares and the trinomial fits the perfect square
trinomials pattern, you will save yourself a lot of work.</p>
<p>Here is the pattern—the reverse of the binomial squares pattern.</p>
<br>
<div class="os-raise-graybox"> <p class="os-raise-text-bold"> PERFECT SQUARE TRINOMIALS PATTERN </p>
<hr>
<p>If \(a\) and \(b\) are real numbers</p>
<p>\(a^2 + 2ab + b^2 = (a + b)^2\)</p>
<p>\(a^2 − 2ab + b^2 = (a − b)^2\)</p>
</div>
<br>
<br>
<p>To use this pattern, you have to recognize that a given trinomial fits it. Check first to see if the leading
coefficient is a perfect square, \(a^2\). Next, check that the last term is a perfect square, \(b^2\). Then check the
middle term: Is it the product, \(2ab\)? If everything checks, you can easily write the factors.</p>
<p class="os-raise-text-bold">Example 1</p>
<p>Factor: \(9x^2 + 12x + 4\).</p>
<p><strong>Step 1 -</strong> Does the trinomial fit the perfect square trinomials pattern, \(a^2 + 2ab + b^2\)?</p>
<ul>
<li> Is the first term a perfect square? Write it as a square, \(a^2\).
<ul>
<li>Is \(9x^2\) a perfect square?</li>
</ul>
</li>
<ul>
<li> Yes. Write it as \((3x)^2\).</li>
</ul>
<li> Is the last term a perfect square? Write it as a square, \(b^2\).
<ul>
<li>Is 4 a perfect square?</li>
</ul>
</li>
<ul>
<li> Yes. Write it as \((2)^2\).</li>
</ul>
<li> Check the middle term. Is it \(2ab\)?
<ul>
<li>Is \(12x\) twice the product of \(3x\) and \(2^2\)? Does it match?</li>
</ul>
</li>
<ul>
<li> Yes, so we have a perfect square trinomial!</li>
</ul>
</ul>
<p><img alt class="img-fluid atto_image_button_text-bottom" height="176" role="presentation"
src="https://k12.openstax.org/contents/raise/resources/10d90e7be43bd48e3e66edec4e68ccc5fe2d5ec7" width="200"></p>
<p><strong>Step 2 -</strong> Write the square of the binomial.</p>
<p> \(9x^2+12x+4\)</p>
<p>\(a^2\;+\;2\; \cdot\; a\;\cdot\; b\; +\; b^2\)<br>
\((
{\style{color:red}3}
{\style{color:red}x}
)^2+2 \cdot {\style{color:red}3}
{\style{color:red}x} \cdot
{\style{color:blue}2}+{\style{color:blue}2}^2\)</p>
<p>\((a+b)^2\)<br>
\(({\style{color:red}3}
{\style{color:red}x}+{\style{color:blue}2})^2\)</p>
<p><strong>Step 3 -</strong> Check by multiplying.</p>
<p> \((3x+2)^2\)</p>
<p>\((3x)^2+2 \cdot 3x \cdot2+2^2\)</p>
<p>\(9x^2+12x+4\; \checkmark\)</p>
<p>The sign of the middle term determines which pattern we will use. When the middle term is negative, we use the
pattern \(a^2 − 2ab + b^2\), which factors to \((a − b)^2\).</p>
<p>The steps are summarized here. </p>
<p class="os-raise-text-bold">How to factor perfect square trinomials:</p>
<p><strong>Step 1 -</strong> Does the trinomial fit the perfect square trinomials pattern?</p>
<ul>
<li> Is the first term a perfect square? Write it as a square. </li>
<li>Is the last term a perfect square? Write it as a square. </li>
<li>Check the middle term. Is it \(2ab\)? </li>
</ul>
<p><strong>Step 2 -
</strong>Write the square of the binomial.</p>
<p><strong>Step 3 -</strong> Check by multiplying.</p>
<p><img alt height="172" role="presentation"
src="https://k12.openstax.org/contents/raise/resources/04a63da1463ac8cf77a6770e1df07c319abfd5ba" width="200"></p>
<p>We’ll work one now where the middle term is negative.</p>
<p class="os-raise-text-bold">Example 2</p>
<p>Factor: \(81y^2 − 72y + 16\).</p>
<p>The first and last terms are squares. See if the middle term fits the pattern of a perfect square trinomial. The
middle term is negative, so the binomial square would be \((a − b)^2\).</p>
<p><strong>Step 1 -
</strong>Are the first and last terms perfect squares?</p>
<p> \(81y^2 − 72y + 16\)<br>
\((9y)^2\;\;\;\;\;\;\;\;\;\;\;\;(4)^2\)</p>
<p>Step 2 -
Check the middle term.</p>
<p><img alt class="img-fluid atto_image_button_text-bottom" height="84" role="presentation"
src="https://k12.openstax.org/contents/raise/resources/c562032b374a8bd555e6a8dc87376dfbf23b2011" width="134"></p>
<p>Does it match \((a − b)^2\)?<br>
\(\;\;\;
{\style{color:red}a}
^
{\style{color:red}2}\;
{\style{color:red}-}\;
{\style{color:red}2} \;\;\;\; {\style{color:red}a}
\;\;\; {\style{color:red}b}\;
{\style{color:red}+}\;
{\style{color:red}b}
^
{\style{color:red}2}
\)<br>
\((9y)^2-2 \cdot 9y \cdot 4+4^2\) <br>
Yes. </p>
<p><strong>Step 3 -
</strong>Write as the square of a binomial.</p>
<p> \((9y − 1)^2\)</p>
<p><strong>Step 4 -
</strong>Check by multiplying.</p>
<p> \((9y − 1)^2\)<br>
\((9y)^2-2 \cdot 9y \cdot 4+4^2\)<br>
\(81y^2 − 72y + 16\; \checkmark\)</p>
<p>The next example will be a perfect square trinomial with two variables.</p>
<p class="os-raise-text-bold">Example 3</p>
<p>Factor: \(36x^2 + 84xy + 49y^2\).</p>
<p><strong>Step 1 -</strong> Test each term to verify the pattern.</p>
<p> \(\;\;\;
{\style{color:red}a}
^
{\style{color:red}2}\;
{\style{color:red}+}\;
{\style{color:red}2}
\;\;\;\;\;
{\style{color:red}(}{\style{color:red}a}{\style{color:red})} \;\;\;\;\;
{\style{color:red}(}{\style{color:red}b}{\style{color:red})}\;
{\style{color:red}+}\;
{\style{color:red}b}
^
{\style{color:red}2}
\)<br>
\(6x^2+2 (6x) (7y)+(7y)^2\) </p>
<p><strong>Step 2 -
</strong>Factor.</p>
<p> \((6x + 7y)^2\)</p>
<p><strong>Step 3 -</strong> Check by multiplying.</p>
<p> \((6x + 7y)^2\)<br>
\((6x)^2+2 \cdot 6x \cdot 7y+(7y)^2\)<br>
\(36x^2 + 84xy + 49y^2\; \checkmark\)</p>
<p>Remember, the first step in factoring is to look for a greatest common factor. Perfect square trinomials may have a
GCF in all three terms, and it should be factored out first. And, sometimes, once the GCF has been factored, you will
recognize a perfect square trinomial.</p>
<p class="os-raise-text-bold">Example 4</p>
<p>Factor: \(100x^2y − 80xy + 16y\).</p>
<p><strong>Step 1 -
</strong>Is there a GCF? Yes, \(4y\), so factor it out.</p>
<p> \(4y(25x^2 − 20x + 4)\)</p>
<p><strong>Step 2 -</strong> Is this a perfect square trinomial? Verify the pattern.</p>
<p> \(\;\;\;\;\;\;\;\;\;
{\style{color:red}a}
^
{\style{color:red}2}\;
{\style{color:red}-}\;
{\style{color:red}2}
\;\;\;\;\;
{\style{color:red}a}
\;\;\;\;\;
{\style{color:red}b}\;
{\style{color:red}+}\;
{\style{color:red}b}
^
{\style{color:red}2}
\)<br>
\(4y\begin{bmatrix}{(5x)}^2-2 \cdot 5x \cdot 2+ 2^2\end{bmatrix}\\\)</p>
<p><strong>Step 3 -</strong> Write as the square of a binomial.</p>
<p> \(4y(5x − 2)^2\)<br>
Remember: Keep the factor \(4y\) in the final product.</p>
<p><strong>Step 4 -
</strong>Check by multiplying.</p>
<p> \(4y(5x − 2)^2\)<br>
\(4y[(5x)^2-2 \cdot 5x \cdot 2+2^2]\)<br>
\(4y(25x^2-20x+4)\)<br>
\(100x^2y − 80xy + 16y\; \checkmark\)</p>
<h4>Try It: Factoring Perfect Square Trinomials</h4>
<p>Factor each perfect square trinomial. If necessary, factor out the GCF first.</p>
<ol class="os-raise-noindent">
<li> \(4x^2 + 12x + 9\) </li>
</ol>
<ol class="os-raise-noindent" start="2">
<li> \(49x^2 + 84xy + 36y^2\). </li>
</ol>
<ol class="os-raise-noindent" start="3">
<li> \(8x^2y − 24xy + 18y\) </li>
</ol>
<p>Write down your answers. Then select the <strong>solution</strong> button to compare your work.</p>
<h5>Solution</h5>
<p>Here is how to factor perfect square trinomials.</p>
<ol class="os-raise-noindent">
<li> \((2x + 3)^2\) </li>
</ol>
<ol class="os-raise-noindent" start="2">
<li> \((7x + 6y)^2\) </li>
</ol>
<ol class="os-raise-noindent" start="3">
<li> \(2y(2x − 3)^2\) </li>
</ol>