-
Notifications
You must be signed in to change notification settings - Fork 1
/
4a5382b5-b3ed-44f1-a179-331187658026.html
150 lines (150 loc) · 3.99 KB
/
4a5382b5-b3ed-44f1-a179-331187658026.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
<h4>Writing Expressions for Patterns</h4>
<p class="os-raise-text-bold">Example 1</p>
<p><img alt="DIAGRAM WITH 3 FIGURES. STEP 1 IS SHAPED LIKE A PLUS SIGN, WITH 1 SQUARE IN THE MIDDLE AND 1 SQUARE ATTACHED TO EACH OF ITS SIDES. STEP 2 HAS A RECTANGLE WITH 2 ROWS AND 4 COLUMNS. ABOVE AND BELOW THE SECOND COLUMN OF THE RECTANGLE IS 1 SQUARE. STEP 3 HAS A RECTANGLE WITH 3 ROWS AND 5 COLUMNS. ABOVE AND BELOW THE SECOND COLUMN OF THE RECTANGLE IS 1 SQUARE.
" height="238" src="https://k12.openstax.org/contents/raise/resources/0a1a836e44bf7cd832a0d520642fc03dad9e66c3"
width="550"></p>
<p>Find the number of squares in Step 5:</p>
<p>First, look to see the pattern. Every step, another row and another column are added, plus the two extra squares.</p>
<ul>
<li> Step 1: 1 row of \(3 + 2\) </li>
<li> Step 2: 2 rows of \(4 +2\) </li>
<li> Step 3: 3 rows of \(5 + 2\) </li>
</ul>
<p>So the width is always 1 by \(n\), or \(n\). The length is \(n+2\), and then another 2 is added.</p>
<p>Then, draw pictures or create a table:</p>
<table class="os-raise-midsizetable">
<thead>
<tr>
<th scope="col">
Step</strong>
</th>
<th scope="col">
# of squares</strong>
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<p>1
</td>
<td>
<p>5
</td>
</tr>
<tr>
<td>
<p>2
</td>
<td>
<p>10
</td>
</tr>
<tr>
<td>
<p>3
</td>
<td>
<p>17
</td>
</tr>
<tr>
<td>
<p>4
</td>
<td>
<p>26
</td>
</tr>
<tr>
<td>
<p>5
</td>
<td>
<p>37
</td>
</tr>
</tbody>
</table>
<br>
<p>At Step 5, there are 37 squares.</p>
<p class="os-raise-text-bold">Example 2</p>
<p>Find the expression for Step \(n\).</p>
<p>Multiply the length and width, and then add the 2 extra squares:</p>
<p>\(n(n+2)+2 = n^2+2n+n\)</p>
<h4>Try It: Writing Expressions for Patterns</h4>
<br>
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal1" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<p>Use the figure below to find the number of squares in Step 5 and then Step \(n\).</p>
<p><img alt="DIAGRAM WITH 3 FIGURES. STEP 1 HAS A RECTANGLE WITH 2 ROWS AND 3 COLUMNS. 2 SQUARES OF A THIRD ROW ARE ADDED. STEP 2 HAS A RECTANGLE WITH 3 ROWS AND 4 COLUMNS. 3 SQUARES OF A FOURTH ROW ARE ADDED. STEP 3 HAS A RECTANGLE WITH 4 ROWS AND 5 COLUMNS. 4 SQUARES OF A FIFTH ROW ARE ADDED.
" height="175" src="https://k12.openstax.org/contents/raise/resources/1b6a05a9afdaeddde371b9f9242292998e4cc777"
width="410"></p>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answer, then select the <strong>solution</strong> button to compare your work. </p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal1">
<p>Here is how to determine the number of squares in each step:</p>
<p>Notice that each figure adds a row and column, and then subtracts one square. The number of rows is always 2 more
than the step number.</p>
<p>Begin by making a table:</p>
<table class="os-raise-midsizetable">
<thead>
<tr>
<th scope="col">
Step
</th>
<th scope="col">
# of squares
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
1
</td>
<td>
8
</td>
</tr>
<tr>
<td>
2
</td>
<td>
15
</td>
</tr>
<tr>
<td>
3
</td>
<td>
24
</td>
</tr>
<tr>
<td>
4
</td>
<td>
35
</td>
</tr>
<tr>
<td>
5
</td>
<td>
48
</td>
</tr>
</tbody>
</table>
<br>
<p>There are 48 squares in Step 5.</p>
<p>Step \(n\) would be found with \((n+2)(n+2)-1\) or \((n+2)^2-1\).</p>
</div>