-
Notifications
You must be signed in to change notification settings - Fork 1
/
4c01be0f-f57a-406c-be9d-a88c1d2382c5.html
43 lines (43 loc) · 2.11 KB
/
4c01be0f-f57a-406c-be9d-a88c1d2382c5.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
<h4>Warm Up Activity</h4>
<!--Text Entry Interaction Start -->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="557fa6d7-afeb-42c0-b75a-e335ab5958ed" data-fire-event="eventShow" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<p>Jada received a gift of $180. In the first week, she spent a third of the gift money. She continues spending a third of what is left each week thereafter. </p>
<ol class="os-raise-noindent">
<li>Which equation best represents the amount of gift money \(g\), in dollars, she has after \(t\)<em> </em>weeks? </li>
</ol>
<ol class="os-raise-noindent" type="a">
<li> \(g=180−\frac{1}{3}t\) </li>
<li> \(g=180 \cdot (\frac{1}{3})^t\) </li>
<li>\(g=\frac{1}{3} \cdot 180^t\) </li>
<li> \(g=180 \cdot (\frac{2}{3})^t\) </li>
</ol>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer:</p>
<p>
\(g=180 \cdot (\frac{2}{3})^t\)</p>
</div>
</div>
<!--Interaction End -->
<br>
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="3e0dd275-2dc4-44cd-a141-161cfcb7b0c5" data-fire-event="eventShow" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<ol class="os-raise-noindent" start="2">
<li>Explain your reasoning.</li>
</ol>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer:</p>
<ul>
<li>Jada's initial gift is $180. Then, she spends a third \(\frac{1}{3}\) of the whole amount each week. This means that she has \(\frac{2}{3}\) left after each week because \(1 - \frac{1}{3} = \frac{2}{3} \) (the whole amount minus a third). </li>
<li>When writing the equation, \(a = 180 \) because that is the starting amount she was given. Then, because she spends \(\frac{1}{3}\) each week, that means only \(\frac{2}{3}\) is leftover. so, \(b = \frac{2}{3}\). The equation that results is \(g = 180 \cdot (23)^t\).</li>
</ul>
</div>
</div>