-
Notifications
You must be signed in to change notification settings - Fork 1
/
5242716e-f450-49ba-b9c9-b6a6d8f6351d.html
85 lines (85 loc) · 3.05 KB
/
5242716e-f450-49ba-b9c9-b6a6d8f6351d.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
<h4>Writing Linear Equations from Tables</h4>
<p>When writing linear equations from tables, it is important to identify the slope and the \(y\)-intercepts from the table.</p>
<p><strong>Example</strong></p>
<p>Given the table, write an equation in slope-intercept form.</p>
<table class="os-raise-horizontaltable">
<thead>
</thead>
<tbody>
<tr>
<th scope="row">\(x\)</th>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<th scope="row">\(y\)</th>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
</tr>
</tbody>
</table>
<br>
<p><strong>Step 1</strong> - Identify the \(y\)-intercept.</p>
<p>The \(y\)-intercept is the starting value, when \(x=0\).<br>
Looking at the table, when \(x = 0\), the \(y\)-value is 12, so this is the \(y\)-intercept.</p>
<p><strong>Step 2</strong> - Identify the slope.</p>
<p>Slope is the change in \(y\) over the change in \(x\).<br>
The \(y\)-values change by 4 each time. The \(x\)-values change by 1 each time.</p>
<p>The slope is \(\frac41\) or 4.</p>
<p><strong>Step 3</strong> - Write the equation in slope-intercept form.</p>
<p>Slope intercept form is \(y = mx +b\), where \(m\) is the slope and \(b\) is the \(y\)-intercept.<br>
Substitute the values, \(y = 4x +12\).</p>
<br>
<h4>Try It: Writing Linear Equations from Tables</h4>
<br>
<!--Q#-->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="108dcee2-9ccb-4333-94d7-a2282a04cf84" data-fire-event="eventShow" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<p>Given the table, write an equation in slope-intercept form.</p>
<table class="os-raise-horizontaltable">
<thead>
</thead>
<tbody>
<tr>
<th scope="row">\(x\)</th>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<th scope="row">\(y\)</th>
<td>6</td>
<td>11</td>
<td>16</td>
<td>21</td>
</tr>
</tbody>
</table>
<br>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer:</p>
<p>Here is how to write the equation in slope-intercept form:</p>
<p><strong>Step 1</strong> - Identify the \(y\)-intercept.</p>
<p>The \(y\)-intercept is the starting value, when \(x=0\).<br>
Looking at the table, when \(x = 0\), the \(y\)-value is 6, so this is the \(y\)-intercept.</p>
<p><strong>Step 2</strong> - Identify the slope.</p>
<p>Slope is the change in \(y\) over the change in \(x\).<br>
The \(y\)-values change by 5 each time. The \(x\)-values change by 1 each time.<br>
The slope is \(\frac51\) or 5.</p>
<p><strong>Step 3</strong> - Write the equation in slope-intercept form.</p>
<p>Slope intercept form is \(y = mx +b\), where \(m\) is the slope and \(b\) is the \(y\)-intercept.<br>
Substitute the values, \(y = 5x +6\).</p>
</div>
</div>
<!--Interaction End -->