-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path61a029a3-453b-4a74-b1b1-b7ee4129a611.html
42 lines (42 loc) · 2.3 KB
/
61a029a3-453b-4a74-b1b1-b7ee4129a611.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
<h4>Cool Down Activity</h4>
<br>
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal1" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<ol class="os-raise-noindent">
<li>Draw a diagram to show that \((3x+1)(x+2)\) is equivalent to \(3x^2+7x+2\).</li>
</ol>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answer, then select the <strong>solution</strong> button to compare your work. </p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal1">
<p>Compare your Answer:</p>
<p>Diagram should show partial products of \(3x(x)\), \(6x\), \(x\), and 2, which add up to \(3x^2+7x+2\).</p>
<p><img height="174" src="https://k12.openstax.org/contents/raise/resources/7cd83e7946410aa753c891045d8c29dbbf01b4cd" width="262"></p>
</div>
<br>
<!--Text Entry Interaction Start -->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="1d3237f4-5ed8-4546-b207-1c0a6488edf7" data-fire-event="eventShow" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<ol class="os-raise-noindent" start="2">
<li>Is \((x+4)^2\) equivalent to \(2x^2+8x+8\)? Explain or show your reasoning.</li>
</ol>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer:</p>
<p>No. \((x+4)(x+4)=x^2+4x+4x+16=x^2+8x+16\).</p>
</div>
</div>
<br>
<!--Interaction End -->
<div class="os-raise-student-reflection">
<p class="os-raise-student-reflection-title">Why Should I Care?</p>
<img src="https://k12.openstax.org/contents/raise/resources/7536812b8dcff5334ed90bc5fda8a2a19521a7a2" width="200px"/>
<p>Anna's class entered a contest where they had to build a catapault and use it to launch a pumpkin at a distant target. But when Anna's class shot their pumpkin for the first time, it went wildly off course.</p>
<p>Anna thought about their problem and came up with a solution. If Anna's class used a quadratic equation, they could mathematically find the best place and angle for their pumpkin catapault. It worked! Their accuracy went from 2% to 99%. </p>
<p>You can use quadratic equations for any object that travels in a curved path, like footballs, frisbees, and golf balls. </p>
</div>