-
Notifications
You must be signed in to change notification settings - Fork 1
/
88c4836e-6a0c-4830-bd5f-bb57bf4b0af7.html
62 lines (61 loc) · 3.36 KB
/
88c4836e-6a0c-4830-bd5f-bb57bf4b0af7.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
<h4>Solve Application Problems Using Direct Variation</h4>
<p>In applications using direct variation, generally we will know values of one pair of the variables and will be asked to find the equation that relates \( x \) and \( y \). Then we can use that equation to find values of \( y \) for other values of \( x \).</p>
<p>Here’s how to solve applications of direct variation problems.</p>
<br>
<div class="os-raise-graybox">
<p><strong>Step 1</strong> - Write the equation for direct variation. Identify the variables.</p>
<p><strong>Step 2</strong> - Substitute the given values for the variables.</p>
<p><strong>Step 3</strong> - Solve for the constant of variation.</p>
<p><strong>Step 4</strong> - Write the equation that relates \(x\) and \(y\) using the constant of variation.</p>
<p><strong>Step 5</strong> - Substitute the value for the variable.</p>
<p><strong>Step 6</strong> - Solve.</p>
</div>
<br>
<p>Let’s look at an application problem:</p>
<p>If the cost of a pizza varies directly with its diameter, and an 8-inch pizza costs $12, how much would a 6-inch pizza cost?</p>
<p><strong>Step 1</strong> - Write the equation for direct variation. Identify the variables.<br>
\( y = kx \)</p>
<p> \(y\): cost of pizza, \(x\): diameter</p>
<p><strong>Step 2</strong> - Substitute the given values for the variables.<br>
\(12 = k(8)\)</p>
<p><strong>Step 3</strong> - Solve for the constant of variation.<br>
\(k= \frac32 \)</p>
<p><strong>Step 4</strong> - Write the equation that relates x and y using the constant of variation.<br>
\( y= \frac{3}{2}x \)</p>
<p><strong>Step 5</strong> - Substitute the value for the variable.<br>
\( y= \frac{3}{2}(6) \)</p>
<p><strong>Step 6</strong> - Solve.<br>
\( y = 9 \)</p>
<p>What does this mean in the context of the problem?</p>
<p>A pizza that has a diameter of 6 inches costs $9.<br>
</p>
<br>
<h4>
Try It: Solve Application Problems Using Direct Variation</h4>
<p>The number of buckets of water, \(b\), filled by a spring varies directly with the number of minutes, \(m\), passed. The spring fills 3 buckets of water in 14 minutes.</p>
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="eventShow1" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<p>How many buckets would be filled in 42 minutes?</p>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answer, then select the <strong>solution</strong> button to compare your work.</p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="eventShow1">
<p>Compare your answer: Here is how to model this application problem of direct variation.</p>
<p><strong>Step 1</strong> - Write the equation for direct variation. Identify the variables.<br>
\( y = kx \)<br>
\( b=km \)</p>
<p> \(b\): number of buckets, \(m\): number of minutes</p>
<p><strong>Step 2</strong> - Substitute the given values for the variables.<br>
\( 3=k(14) \)</p>
<p><strong>Step 3</strong> - Solve for the constant of variation.<br>
\( k= 3/14 \)</p>
<p><strong>Step 4</strong> - Write the equation that relates \(m\) and \(b\) using the constant of variation.<br>
\( b= \frac{3}{14}m \)</p>
<p><strong>Step 5</strong> - Substitute the value for the variable.<br>
\( b= \frac{3}{14}(42) \)</p>
<p><strong>Step 6</strong> - Solve.<br>
\(b= 9\) buckets</p>
<br>
</div>