-
Notifications
You must be signed in to change notification settings - Fork 1
/
980f75e8-c3f5-4fe8-b12b-37f627fd1c26.html
299 lines (296 loc) · 7.92 KB
/
980f75e8-c3f5-4fe8-b12b-37f627fd1c26.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
<h4>Determining and Comparing Linear and Exponential Functions</h4>
<p>Mr. Smith has an apple orchard. He hires his daughter, Lucy, to pick apples and offers her two payment options:</p>
<p>Option A: $1.50 per bushel of apples picked</p>
<p>Option B: 1 cent for coming to work, 3 cents for picking one bushel, 9 cents for picking two bushels, 27 cents for
picking three bushels, and so on, with the amount of money tripling for each additional bushel picked</p>
<ol class="os-raise-noindent">
<li> Which option is linear, and which option is exponential? How do you know? </li>
<li> Create a table to model each scenario. </li>
<li> If she picks 6 bushels, which option is better? </li>
<li> If she picks 12 bushels, which option is better? </li>
<li> How many bushels does she need to pick for Option B to be better than Option A? </li>
</ol>
<p>Let’s first think about linear and exponential functions in general. Let’s also consider Options A and B
when \(x\) represents the bushels of apples picked and \(f(x)\) represents the total amount she earns based on \(x\)
bushels of apples. </p>
<ol class="os-raise-noindent">
<li> Since Option A is $1.50 per bushel picked, it is linear. For Option B, the amount of money is tripling for each
bushel picked, so it is exponential. </li>
</ol>
<table class="os-raise-doubleheadertable">
<thead>
<tr>
<th scope="col"></th>
<th scope="col">Linear Model</th>
<th scope="col">Exponential Model</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row">General Form</th>
<td>
\(f(x)=ax+b\)
</td>
<td>
\(f(x)=a(b)^x\)
</td>
</tr>
<tr>
<th scope="row">Meaning of Parameters \(a\) and \(b\)</th>
<td>
\(a\) is the slope of the line or the constant rate of change; \(b\) is the \(y\)-intercept or the
\(f(x)\) value at \(x=0\).
</td>
<td>
\(a\) is the \(y\)-intercept or the \(f(x)\) value when \(x=0\); \(b\) is the base or the constant quotient
of change.
</td>
</tr>
<tr>
<th scope="row">Example</th>
<td>
\(f(x)=1.50x\)
</td>
<td>
\(f(x)=.01(3)^x\)
</td>
</tr>
<tr>
<th scope="row"> Rule for Finding \(f(x+1)\) from \(f(x)\)</th>
<td>
Starting at \((0,0)\), to find \(f(x+1)\), add 1.5 to \(f(x)\).
</td>
<td>
Starting at \((0,0.1)\), to find \(f(x+1)\), multiply \(f(x)\) by 3.
</td>
</tr>
</tbody>
</table>
<br>
<div class="os-raise-d-flex os-raise-justify-content-between"><table class="os-raise-skinnytable">
<caption>Linear Model Table</caption>
<thead>
<tr>
<th scope="col">\(x\)</th>
<th scope="col">\(f(x)\)</th>
</tr>
</thead>
<tbody>
<tr>
<td> 0 </td>
<td> 0 </td>
</tr>
<tr>
<td> 1 </td>
<td> 1.50 </td>
</tr>
<tr>
<td> 2 </td>
<td> 3.00 </td>
</tr>
<tr>
<td> 3 </td>
<td> 4.50 </td>
</tr>
</tbody>
</table>
<table class="os-raise-skinnytable">
<caption>Exponential Model Table</caption>
<thead>
<tr>
<th scope="col">\(x\)</th>
<th scope="col">\(f(x)\)</th>
</tr>
</thead>
<tbody>
<tr>
<td> 0 </td>
<td> 0.01 </td>
</tr>
<tr>
<td> 1 </td>
<td> 0.03 </td>
</tr>
<tr>
<td> 2 </td>
<td> 0.09 </td>
</tr>
<tr>
<td> 3 </td>
<td> 0.27 </td>
</tr>
</tbody>
</table></div>
<br>
<ol class="os-raise-noindent" start="2">
<li> To create the table for Option A, add $1.50 to each consecutive term. To create the table for Option B, multiply
each term by 3 to get the next term. </li>
</ol>
<p>Option A table
<table class="os-raise-midsizetable">
<thead>
<tr>
<th scope="col">
Number of bushels
</th>
<th scope="col">
Amount of money earned
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
1
</td>
<td>
1.50
</td>
</tr>
<tr>
<td>
2
</td>
<td>
3.00
</td>
</tr>
<tr>
<td>
3
</td>
<td>
4.50
</td>
</tr>
<tr>
<td>
4
</td>
<td>
6.00
</td>
</tr>
<tr>
<td>
5
</td>
<td>
7.50
</td>
</tr>
<tr>
<td>
6
</td>
<td>
9.00
</td>
</tr>
</tbody>
</table>
<br>
<p>Option B table</p>
<table class="os-raise-midsizetable">
<thead>
<tr>
<th scope="col">
Number of bushels
</th>
<th scope="col">
Amount of money earned
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
1
</td>
<td>
0.03
</td>
</tr>
<tr>
<td>
2
</td>
<td>
0.09
</td>
</tr>
<tr>
<td>
3
</td>
<td>
0.27
</td>
</tr>
<tr>
<td>
4
</td>
<td>
0.81
</td>
</tr>
<tr>
<td>
5
</td>
<td>
2.43
</td>
</tr>
<tr>
<td>
6
</td>
<td>
7.29
</td>
</tr>
</tbody>
</table>
<br>
<ol class="os-raise-noindent" start="3">
<li> To determine which scenario is better when she picks 6 bushels, you can look at the values in your table, or you
can write the equation modeling each scenario and substitute in 6 for \(x\). For 6 bushels, Option A is better at
$9.00. </li>
</ol>
<ol class="os-raise-noindent" start="4">
<li> To determine which scenario is better when she picks 12 bushels, you can extend the table or use the graph or
equation. Option A is $18.00 for 12 bushels, and Option B is $5,314.41 for 12 bushels, so Option B is better. </li>
</ol>
<ol class="os-raise-noindent" start="5">
<li> To determine where Option B becomes the better option, you can extend the table, or you can graph the functions
and find the \(x\)-value where Option B surpasses Option A. You can also use problems 3 and 4 to help you. The
number of bushels is more than 6 but less than 12. Option B is better if you are going to pick 7 or more bushels of
apples. </li>
</ol>
<h4>Try It: Determining and Comparing Linear and Exponential Functions</h4>
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal1" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<p>Jayden has a dog-walking business. He has two plans. Plan 1 includes walking a dog once a day for a rate of $5
per day. Plan 2 also includes one walk a day but charges 1 cent for 1 day, 2 cents for 2 days, 4 cents for 3 days,
and 8 cents for 4 days, and it continues to double for each additional day. Mrs. Maroney needs Jayden to walk her
dog every day for two weeks. Which plan should she choose? Show the work to justify your answer.</p>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answer, then select the <strong>solution</strong> button to compare your work. </p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal1">
<p>Compare your answer:</p>
<p>Here is how to determine which of Jayden’s plans Mrs. Maroney should choose:</p>
<p>Plan 1 is a linear plan since it’s $5 per day. Plan 2 is doubling each day, so it is an exponential plan.
Every other example has shown us that the exponential plan is going to be greater eventually. Since Mrs. Maroney
needs Jayden for 2 weeks, or 14 days, we need to determine when Plan 2 becomes greater than Plan 1.</p>
<p>Plan 1 for 14 days would be:</p>
<p>\(5+5+5+5+5+5+5+5+5+5+5+5+5+5 = 5 \cdot 14 = $70\)</p>
<p>Plan 2 for 14 days would be:</p>
<p>\(.01 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 =
.01(2)^{14} =$163.84\)</p>
<p>Plan 1 would be better for Mrs. Maroney.</p>
</div>