-
Notifications
You must be signed in to change notification settings - Fork 1
/
9868762f-4882-4669-8112-2d7099214674.html
129 lines (128 loc) · 6.85 KB
/
9868762f-4882-4669-8112-2d7099214674.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
<p>Complete the following questions to practice the skills you have learned in this lesson.</p>
<div class="os-raise-ib-pset" data-button-text="Check" data-content-id="38fdd423-1e84-4ba8-a988-0ddd55b1a944" data-fire-learning-opportunity-event="eventnameY" data-fire-success-event="eventnameX" data-retry-limit="2" data-schema-version="1.0">
<!--Enter Questions Below this line-->
<!--Q1-->
<div class="os-raise-ib-pset-problem" data-content-id="87ea4671-e924-4106-8958-0fb20fd70e4b" data-problem-comparator="math" data-problem-type="input" data-solution="y=\frac{14}{3}x">
<div class="os-raise-ib-pset-problem-content">
<p>1. If y varies directly as \(x\) and \(y=14\), when \(x=3\). Find the equation that relates \(x\) and \(y\).</p>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! \(y=\frac{14}3x\)</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activity 1.15.1.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is \(y=\frac{14}3x\). </p>
</div>
</div>
<br>
<!--Q2-->
<div class="os-raise-ib-pset-problem" data-content-id="e801f482-f79e-445c-a137-4b9b16a764c9" data-problem-type="multiplechoice" data-retry-limit="4" data-solution="\(P = 2.5g\)" data-solution-options='["\\(P = 25g\\)", "\\(P=\\frac{2.5}g\\)", "\\(G=\\frac{2.5}p\\)", "\\(P=\\frac{2.5}g\\)", "\\(P=\\frac g{2.5}\\)"]'>
<div class="os-raise-ib-pset-problem-content">
<p>2. The price, \(P\), that Eric pays for gas varies directly with the number of gallons, \(g\), he buys. It costs him $50 to buy 20 gallons of gas. Choose the equation that relates \(P\) and \(g\). </p>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! \(P = 2.5g\)</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 1.15.2 and 1.15.3.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is \(P = 2.5g\). </p>
</div>
</div>
<br>
<!--Q3-->
<div class="os-raise-ib-pset-problem" data-content-id="db54efcd-a1a1-4135-83cc-fd19b4ae9897" data-problem-comparator="integer" data-problem-type="input" data-solution="130">
<div class="os-raise-ib-pset-problem-content">
<p>3. Joseph is traveling on a road trip. The distance, \(d\), he travels before stopping for lunch varies directly with the speed, \(v\), he travels. He can travel 120 miles at a speed of 60 mph.
How many miles would he travel before stopping for lunch at a rate of 65 mph?</p>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! 130 miles</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 1.15.2 and 1.15.3.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is 130 miles. </p>
</div>
</div>
<!--Q4-->
<div class="os-raise-ib-pset-problem" data-content-id="c88ca437-735d-4652-8b7a-c31bdc723a57" data-problem-comparator="integer" data-problem-type="input" data-solution="16">
<div class="os-raise-ib-pset-problem-content">
<p>4. The mass of a liquid, \(M\), varies directly with its volume, \(V\). A liquid with mass 16 kilograms has a volume of 2 liters.
What is the volume, in liters, of this liquid if its mass is 128 kilograms? <strong> </strong>
</p>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! 16 liters. \(M=8V\)</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 1.15.2 and 1.15.3.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is 16 liters. \(M=8V\). </p>
</div>
</div>
<!--Q5-->
<div class="os-raise-ib-pset-problem" data-content-id="968a0e07-07a0-4dfb-ab3f-a99e74be221f" data-problem-comparator="integer" data-problem-type="input" data-solution="12">
<div class="os-raise-ib-pset-problem-content">
<p>5. The length, \(L\), that a spring stretches varies directly with a weight, \(W\), placed at the end of the spring. When Sarah placed a 10-pound watermelon on a hanging scale, the spring stretched 5 inches.
What weight of watermelon, in pounds, would stretch the spring 6 inches? <strong> </strong>
</p>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! 12 pounds, \(L=1/2 W\).</p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 1.15.2 and 1.15.3.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is 12 pounds, \(L=\frac12W\). </p>
</div>
</div>
<!--Q6-->
<div class="os-raise-ib-pset-problem" data-content-id="f84ffff3-68b7-4dea-9903-7a1ca6ab2545" data-problem-comparator="integer" data-problem-type="input" data-solution="300">
<div class="os-raise-ib-pset-problem-content">
<p>6. The maximum load a beam,\( M\), will support varies directly with the square of the diagonal of the beam’s cross-section, \(d^2\). A beam with diagonal 6 inch will support a maximum load of 108 pounds.
What load, in pounds, will a beam with a 10-inch diagonal support?
<strong> </strong>
</p>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! 300 pounds. Use the direct variation equation, \(M=3d^2\). </p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 1.15.2 and 1.15.3.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is 300 pounds. Use the direct variation equation, \(M=3d^2\). </p>
</div>
</div>
<!--Q7-->
<div class="os-raise-ib-pset-problem" data-content-id="0ff5da75-2446-49a8-bd92-332f581059a2" data-problem-comparator="integer" data-problem-type="input" data-solution="432">
<div class="os-raise-ib-pset-problem-content">
<p>7. The number of calories, \(c\), burned varies directly with the amount of time, \(t\), spent exercising. Arnold burned 312 calories in 65 minutes exercising.
How many calories would he burn if he exercises for 90 minutes? <strong> </strong>
</p>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! He would burn 432 calories. </p>
</div>
<div class="os-raise-ib-pset-encourage-response">
<p>Try again. Revisit activities 1.15.2 and 1.15.3.</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>The correct answer is is a. \(M\)\(=8V\); b. 16 liters. </p>
</div>
</div>
<!--Do not edit below line.-->
<div class="os-raise-ib-pset-correct-response">
<!-- INSERT ANY VALID HTML HERE -->
</div>
<div class="os-raise-ib-pset-encourage-response">
<!-- INSERT ANY VALID HTML HERE -->
</div>
</div>