-
Notifications
You must be signed in to change notification settings - Fork 1
/
c3cd3027-6cfc-4ea7-92ee-55dfdb95fb6d.html
77 lines (77 loc) · 3.75 KB
/
c3cd3027-6cfc-4ea7-92ee-55dfdb95fb6d.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
<h4>Activity</h4>
<p>In your group, work through your assigned problem. Then be ready to share.</p>
<br>
<!--Q#-->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="889ababd-5c57-446f-8a1c-6f30b54cb6b6" data-fire-event="eventShow" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<p><strong>Group 1.</strong> When Raoul runs on the treadmill at the gym, the number of calories, \( c \), he burns varies directly with the number of minutes, \( m \), he uses the treadmill. He burned 315 calories when he used the treadmill for 18 minutes. Write the equation that relates \( c \) and \( m \). </p>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer:</p>
<p>\(c=17.5m\)</p>
</div>
</div>
<!--Interaction End -->
<br>
<br>
<!--Q#-->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="3927e622-b690-41bc-8bfc-5a4d6dd2d312" data-fire-event="eventShow" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<p><strong>Group 2.</strong> The number of calories, \( c \), burned varies directly with the amount of time, \( t \), spent exercising. Arnold burned 312 calories in 65 minutes exercising. Write the equation that relates \( c \) and \( t \).</p>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer:</p>
<p>\(c = 4.8 m\)</p>
</div>
</div>
<!--Interaction End -->
<br>
<br>
<!--Q#-->
<div class="os-raise-ib-input" data-button-text="Solution" data-content-id="abf2833e-88f9-4857-80a0-d50f11a9ed0a" data-fire-event="eventShow" data-schema-version="1.0">
<div class="os-raise-ib-input-content">
<p><strong>Group 3.</strong> The distance a moving body travels, \( d \), varies directly with time, \( t \), it moves. A train travels 100 miles in 2 hours. Write the equation that relates \( d \) and \( t \).</p>
</div>
<div class="os-raise-ib-input-prompt">
<p>Enter your answer here:</p>
</div>
<div class="os-raise-ib-input-ack">
<p>Compare your answer:</p>
<p>\(d=50t\)</p>
</div>
</div>
<!--Interaction End -->
<br>
<h4>What is Direct Variation?</h4>
<p>All of these are examples of direct variation.</p>
<p>Two variables vary directly if one is the product of a constant and the other.</p>
<p>For any two variables \(x\) and \( y \), \( y \) varies directly with \( x \) if </p>
<p>\( y=kx \), where \( k≠0 \).</p>
<p> The constant \(k\) is called the constant of variation.</p>
<p>Look back at the problem you solved. Use the direct variation equation to solve it again using these steps:<br>
</p>
<br>
<div class="os-raise-graybox">
<p><strong>Step 1</strong> - Write the equation for direct variation.</p>
<p><strong>Step 2</strong> - Substitute the given values for the variables.</p>
<p><strong>Step 3</strong> - Solve for the constant of variation.</p>
<p><strong>Step 4 </strong>- Write the equation that relates x and y using the constant of variation.</p>
</div>
<br>
<p>Let’s look at example 3 again and solve it with the direct variation equation.</p>
<p>The distance a moving body travels, \( d \), varies directly with time, \( t \), it moves. A train travels 100 miles in 2 hours. Write the equation that relates \( d \) and \( t \).</p>
<p><strong>Step 1 </strong>- Write the equation for direct variation.<br>
\( y = kx \)</p>
<p><strong>Step 2</strong> - Substitute the given values for the variables.<br>
\( 100 = k(2) \)</p>
<p><strong>Step 3</strong> - Solve for the constant of variation.<br>
\( k=50 \)</p>
<p><strong>Step 4</strong> - Write the equation that relates x and y using the constant of variation.<br>
\( y =50x \)</p>
<br>