-
Notifications
You must be signed in to change notification settings - Fork 1
/
c9696a71-9bae-49c5-8c53-7fd9bf7f28fd.html
129 lines (120 loc) · 5.52 KB
/
c9696a71-9bae-49c5-8c53-7fd9bf7f28fd.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
<h4>Finding Intercepts from Graphs and Equations</h4>
<p>The points where a line crosses the \( x \)-axis and the \( y \)-axis are called the intercepts of the line.</p>
<p>Let’s look at the graphs of the lines.</p>
<img alt="The figure shows four graphs of different equations. In example a the graph of 2 x plus y plus 6 is graphed on the x y-coordinate plane. The x and y axes run from negative 8 to 8. The points (0, 6) and (3, 0) are plotted and labeled. A straight line goes through both points and has arrows on both ends. In example b the graph of 3 x minus 4 y plus 12 is graphed on the x y-coordinate plane. The x and y axes run from negative 8 to 8. The points (0, negative 3) and (4, 0) are plotted and labeled. A straight line goes through both points and has arrows on both ends. In example c the graph of x minus y plus 5 is graphed on the x y-coordinate plane. The x and y axes run from negative 8 to 8. The points (0, negative 5) and (5, 0) are plotted and labeled. A straight line goes through both points and has arrows on both ends. In example d the graph of y plus negative 2 x is graphed on the x y-coordinate plane. The x and y axes run from negative 8 to 8. The point (0, 0) is plotted and labeled. A straight line goes through this point and the points (negative 1, 2) and (1, negative 2) and has arrows on both ends." class="img-fluid atto_image_button_text-bottom" height="716" src="https://k12.openstax.org/contents/raise/resources/fe7c894af22fc816272cc2a3a72e056a1da78b83" width="643">
<br>
<br>
<p>First, notice where each of these lines crosses the <em>\( x \)</em>-axis.</p>
<p>Now, let’s look at the points where these lines cross the <em>\( y \)</em>-axis.</p>
<table class="os-raise-wideequaltable">
<thead>
<tr>
<th scope="col">Figure</th>
<th scope="col">The Line Crosses the \(x\)-axis at:</th>
<th scope="col">Ordered Pair for this Point</th>
<th scope="col">The Line Crosses the \(y\)-axis at:</th>
<th scope="col">Ordered Pair for this Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure (a)</td>
<td>3</td>
<td>\((3,0)\)</td>
<td>6</td>
<td>\((0,6)\)</td>
</tr>
<tr>
<td>Figure (b)</td>
<td>4</td>
<td>\((4,0)\)</td>
<td>-3</td>
<td>\((0,-3)\)</td>
</tr>
<tr>
<td>Figure (c)</td>
<td>5</td>
<td>\((5,0)\)</td>
<td>-5</td>
<td>\((0,5)\)</td>
</tr>
<tr>
<td>Figure (d)</td>
<td>0</td>
<td>\((0,0)\)</td>
<td>0</td>
<td>\((0,0)\)</td>
</tr>
<tr>
<td>General Figure</td>
<td>\(a\)</td>
<td>(\(a,0)\)</td>
<td>\(b\)</td>
<td>(0,\(b)\)</td>
</tr>
</tbody>
</table>
<br>
<p class="os-raise-text-bold">\(X\)-INTERCEPT and \(Y\)-INTERCEPT of a Line</p>
<p> The \(x\) -intercept is the point \( (a , 0) \) where the line crosses the \(x\)-axis. <br>
The \(y\)-intercept is the point \( (0 , b) \) where the line crosses the \(y\)-axis.</p>
<img
alt="The table has 3 rows and 2 columns. The first row is a header row with the headers x and y. The second row contains a and 0. The third row contains 0 and b."
class="img-fluid atto_image_button_text-bottom" height="92"
src="https://k12.openstax.org/contents/raise/resources/cfa22a98c89816890def2a20a309f5e74ebe366d"
width="429"><br>
<br>
<p class="os-raise-text-bold">Find the \( x \)- and \( y \)-intercepts from the Equation of a Line</p>
<p> Use the equation of the line. To find: </p>
<ul>
<li> the \(x\)-intercept of the line, let \( y = 0 \) and solve for \( x \). </li>
<li> the \(y\)-intercept of the line, let \( x = 0 \) and solve for \( y \). </li>
</ul>
<p class="os-raise-text-bold">Example</p>
<p>Find the intercepts of \( 2x + y = 8 \)</p>
<p class="os-raise-text-bold"><strong>Solution</strong></p>
<p>To find the \(x\)-intercept:<br>
<strong>Step 1</strong> - Let \(y = 0\).<br>
\(2x + 0 = 8\)</p>
<p><strong>Step 2 </strong>- Solve for \(x\).<br>
\(x = 4\)</p>
<p><strong>Step 3</strong> - Write the intercept as a point.<br>
\((4,0)\)</p>
<br />
<p>To find the \(y\)-intercepts:<br>
<strong>Step 1</strong> - Let \(x = 0\).<br>
\(2(0) + y = 8\)</p>
<p><strong>Step 2</strong> - Solve for \(y\).<br>
\(y=8\)</p>
<p><strong>Step 3 </strong>- Write the intercept as a point.<br>
\((0, 8)\)</p>
<br>
<h4>Try It: Finding Intercepts from Graphs and Equations</h4>
<p>Find the \(x\)- and \(y\)-intercept of \(x+4y=8\).</p>
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="eventShow1" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<!-- INSERT ANY VALID HTML HERE -->
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answer, then select the <strong>solution</strong> button to compare your work.</p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="eventShow1">
<p>Compare your answer: (8, 0) (0, 2)</p>
<p>Here is how to find the intercepts using a general strategy.</p>
<p>To find the \( x \)-intercept, <br>
<strong>Step 1</strong> Let \( y=0 \).<br>
\( x+4(0)=8\)</p>
<p><strong>Step 2</strong> - Solve for \( x \).<br>
\(x = 8\)</p>
<p><strong>Step 3</strong> - Write the intercept as a point.<br>
\((8, 0)\)</p>
<br>
<p>To find the \(y\)-intercept:<br>
<strong>Step 1 </strong>- let \( x=0 \)<br>
\((0)+ 4y = 8\)</p>
<p><strong>Step 2</strong> - Solve for \( y \).<br>
\(y = 2\) </p>
<p><strong>Step 3</strong> - Write the intercept as a point.<br>
\((0, 2)\)</p>
</div>