-
Notifications
You must be signed in to change notification settings - Fork 1
/
dbb12311-876c-4f57-9480-744abc381c94.html
48 lines (37 loc) · 1.75 KB
/
dbb12311-876c-4f57-9480-744abc381c94.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
<p>When you write a quadratic in factored form, that helps you find the \(x\)-intercepts.<br>
\(y=x^2+2x-3\)<br>
\(y=(x+3)(x-1)\)<br>
</p>
<p>When we set \(y=0\), we find the places where the parabola crosses the \(x\)-axis.</p>
<p>\(0=(x+3)(x-1)\)</p>
<p>So, \(0=x+3\) and \(0=x-1\)<br>
\(x=-3\) and 1. </p>
<p>-3 and 1 are called the real solutions to the quadratic equation.</p>
<p>We can also start with the real solutions and use them to write quadratic equations.</p>
<p>When we know that \(x=-3\) and 1, then that means \(0=x+3\) and \(0=x-1\).</p>
<p>So, \(0=(x+3)(x-1)\).</p>
<p>And, using the FOIL method to multiply this out, we come to <br>
\(0=x^2+2x-3.\)</p>
<p>When \(y\) is not equal to zero, we have the following quadratic equation</p>
<p>\(y=x^2+2x-3\), which is exactly where we started!</p>
<br>
<!-- BEGIN TRY IT-->
<h4>Try It: Writing Quadratic Equations from Real Solutions</h4>
<!--Q#1-->
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal1" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<ol class="os-raise-noindent">
<li>Write a quadratic from the real solutions \(x=1\) and \(x=7\) without graphing.</li>
</ol>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answer, then select the <strong>solution</strong> button to compare your work.</p>
</div>
</div>
<div class="os-raise-ib-content" data-wait-for-event="Reveal1" data-schema-version="1.0">
<p>Compare your answer: <br>
\(x^2-8x+7\)</p>
<p>\(x=1\) and \(x=7\) become \(x-1=0\) and \(x-7=0\). \(y=(x-1)(x-7)= x^2-x-7x+7= x^2-8x+7\).</p>
</div>
<!--Interaction End -->
<!-- END TRY IT -->