-
Notifications
You must be signed in to change notification settings - Fork 1
/
e4998ab2-c2e7-4c32-9648-0cfc1e8694bc.html
115 lines (115 loc) · 4.46 KB
/
e4998ab2-c2e7-4c32-9648-0cfc1e8694bc.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
<h4>Activity</h4>
<p>Divide the polynomial functions. Find the quotient value.</p>
<br>
<!--Text Entry Interaction Start -->
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal1" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<ol class="os-raise-noindent">
<li>\(f(x)=x^2-5x-24\) <br>
\(g(x)=x+3\)<br>
<br>
\((\frac{f}{g})(x) =\) ___________<br>
<br>
\(f(-3) =\) ___________
</li>
</ol>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answers. Then select the <strong>solution</strong> button to compare your work. </p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal1">
<p>Compare your answers:</p>
<p>\((\frac{f}{g})(x)=x-8\)<br>
\(f(-3)=0\)</p>
</div>
<!--Interaction End -->
<br>
<br>
<!--Text Entry Interaction Start -->
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal2" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<ol class="os-raise-noindent" start="2">
<li>\(f(x)=x^2-15x+54\)<br>
\(g(x)=x-9\)<br>
<br>
\((\frac{f}{g})(x) =\) ___________<br>
<br>
\(f(9) =\) ___________
</li>
</ol>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answers. Then select the <strong>solution</strong> button to compare your work. </p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal2">
<p>Compare your answers:</p>
<p>\((\frac{f}{g})(x)=x-6\)<br>
\(f(9)=0\)</p>
</div>
<!--Interaction End -->
<br>
<br>
<!--Text Entry Interaction Start -->
<div class="os-raise-ib-cta" data-button-text="Solution" data-fire-event="Reveal3" data-schema-version="1.0">
<div class="os-raise-ib-cta-content">
<ol class="os-raise-noindent" start="3">
<li>\(f(x)=x^2+2x-3\)<br>
\(g(x)=x+3\)<br>
<br>
\((\frac{f}{g})(x) =\) ___________<br>
<br>
\(f(-3) =\) ___________
</li>
</ol>
</div>
<div class="os-raise-ib-cta-prompt">
<p>Write down your answers. Then select the <strong>solution</strong> button to compare your work. </p>
</div>
</div>
<div class="os-raise-ib-content" data-schema-version="1.0" data-wait-for-event="Reveal3">
<p>Compare your answers:</p>
<p>\((\frac{f}{g})(x)=x-1\)<br>
\(f(-3)=0\)</p>
</div>
<!--Interaction End -->
<br>
<p>The Remainder Theorem states that if a polynomial function \(f(x)\) is divided by \(x-c\), then the remainder is \(f(c)\). This means we can always compare the remainder by finding \(f(c)\) when the divisor is written in the form \(x-c\).</p>
<br>
<div class="os-raise-ib-pset" data-button-text="Check" data-content-id="6ebd9efc-82d3-4dc9-8291-3e4d1a8337a0" data-fire-learning-opportunity-event="eventnameY" data-fire-success-event="eventnameX" data-retry-limit="0" data-schema-version="1.0">
<div class="os-raise-ib-pset-problem" data-content-id="1354241e-b60c-45b8-951b-099be0a8eba8" data-problem-comparator="integer" data-problem-type="input" data-solution="6">
<div class="os-raise-ib-pset-problem-content">
<ol class="os-raise-noindent" start="4">
<li>Use the Remainder Theorem to find the remainder when \(f(x)=x^3-7x+12\) is divided by \(x + 3\).</li>
<p> Enter the remainder here.</p>
</ol>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! The remainder is 6</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>Nice try! The correct answer is: 6</p>
</div>
</div>
<!--Interaction End -->
<br>
<br>
<div class="os-raise-ib-pset-problem" data-content-id="53f4a375-e2b9-4945-a16f-9fc9e4fd3361" data-problem-comparator="integer" data-problem-type="input" data-solution="12">
<div class="os-raise-ib-pset-problem-content">
<ol class="os-raise-noindent" start="5">
<li>Use the Remainder Theorem to find the remainder when \(f(x)=2x^3-6x-24\) is divided by \(x - 3\).</li>
</ol>
<p> Enter the remainder here.</p>
</div>
<div class="os-raise-ib-pset-correct-response">
<p>Correct! The remainder is 12</p>
</div>
<div class="os-raise-ib-pset-attempts-exhausted-response">
<p>Nice try! The correct answer is: 12</p>
</div>
</div>
<!--Do not edit below this line-->
<div class="os-raise-ib-pset-correct-response"> </div>
<div class="os-raise-ib-pset-attempts-exhausted-response"> </div>
</div>