diff --git a/notebooks/700_metrics/701a_aupimo.ipynb b/notebooks/700_metrics/701a_aupimo.ipynb index 5c5497b3b8..d780c5a964 100644 --- a/notebooks/700_metrics/701a_aupimo.ipynb +++ b/notebooks/700_metrics/701a_aupimo.ipynb @@ -492,29 +492,20 @@ "source": [ "# Cite Us\n", "\n", - "AUPIMO was developed during Google Summer of Code 2023 (GSoC 2023) with the `anomalib` team from OpenVINO Toolkit.\n", + "AUPIMO was developed during [Google Summer of Code 2023 (GSoC 2023)](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd) with the `anomalib` team from Intel's OpenVINO Toolkit.\n", "\n", - "Our work was accepted to the British Machine Vision Conference 2024 (BMVC 2024).\n", + "arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", + "\n", + "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", "\n", "```bibtex\n", "@misc{bertoldo2024aupimo,\n", - " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", " author={Joao P. C. Bertoldo and Dick Ameln and Ashwin Vaidya and Samet Akçay},\n", + " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", " year={2024},\n", - " eprint={2401.01984},\n", - " archivePrefix={arXiv},\n", - " primaryClass={cs.CV},\n", " url={https://arxiv.org/abs/2401.01984}, \n", "}\n", - "```\n", - "\n", - "Paper on arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", - "\n", - "Medium post: [medium.com/p/c653ac30e802](https://medium.com/p/c653ac30e802)\n", - "\n", - "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", - "\n", - "GSoC 2023 page: [summerofcode.withgoogle.com/archive/2023/projects/SPMopugd](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd)" + "```" ] } ], diff --git a/notebooks/700_metrics/701b_aupimo_advanced_i.ipynb b/notebooks/700_metrics/701b_aupimo_advanced_i.ipynb index a785075060..ea322102f8 100644 --- a/notebooks/700_metrics/701b_aupimo_advanced_i.ipynb +++ b/notebooks/700_metrics/701b_aupimo_advanced_i.ipynb @@ -775,29 +775,20 @@ "source": [ "# Cite Us\n", "\n", - "AUPIMO was developed during Google Summer of Code 2023 (GSoC 2023) with the `anomalib` team from OpenVINO Toolkit.\n", + "AUPIMO was developed during [Google Summer of Code 2023 (GSoC 2023)](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd) with the `anomalib` team from Intel's OpenVINO Toolkit.\n", "\n", - "Our work was accepted to the British Machine Vision Conference 2024 (BMVC 2024).\n", + "arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", + "\n", + "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", "\n", "```bibtex\n", "@misc{bertoldo2024aupimo,\n", - " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", " author={Joao P. C. Bertoldo and Dick Ameln and Ashwin Vaidya and Samet Akçay},\n", + " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", " year={2024},\n", - " eprint={2401.01984},\n", - " archivePrefix={arXiv},\n", - " primaryClass={cs.CV},\n", " url={https://arxiv.org/abs/2401.01984}, \n", "}\n", - "```\n", - "\n", - "Paper on arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", - "\n", - "Medium post: [medium.com/p/c653ac30e802](https://medium.com/p/c653ac30e802)\n", - "\n", - "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", - "\n", - "GSoC 2023 page: [summerofcode.withgoogle.com/archive/2023/projects/SPMopugd](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd)" + "```" ] }, { @@ -1382,29 +1373,20 @@ "source": [ "# Cite Us\n", "\n", - "AUPIMO was developed during Google Summer of Code 2023 (GSoC 2023) with the `anomalib` team from OpenVINO Toolkit.\n", + "AUPIMO was developed during [Google Summer of Code 2023 (GSoC 2023)](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd) with the `anomalib` team from Intel's OpenVINO Toolkit.\n", "\n", - "Our work was accepted to the British Machine Vision Conference 2024 (BMVC 2024).\n", + "arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", + "\n", + "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", "\n", "```bibtex\n", "@misc{bertoldo2024aupimo,\n", - " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", " author={Joao P. C. Bertoldo and Dick Ameln and Ashwin Vaidya and Samet Akçay},\n", + " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", " year={2024},\n", - " eprint={2401.01984},\n", - " archivePrefix={arXiv},\n", - " primaryClass={cs.CV},\n", " url={https://arxiv.org/abs/2401.01984}, \n", "}\n", - "```\n", - "\n", - "Paper on arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", - "\n", - "Medium post: [medium.com/p/c653ac30e802](https://medium.com/p/c653ac30e802)\n", - "\n", - "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", - "\n", - "GSoC 2023 page: [summerofcode.withgoogle.com/archive/2023/projects/SPMopugd](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd)" + "```" ] } ], diff --git a/notebooks/700_metrics/701c_aupimo_advanced_ii.ipynb b/notebooks/700_metrics/701c_aupimo_advanced_ii.ipynb index ed647ef666..6911b9c546 100644 --- a/notebooks/700_metrics/701c_aupimo_advanced_ii.ipynb +++ b/notebooks/700_metrics/701c_aupimo_advanced_ii.ipynb @@ -885,29 +885,20 @@ "source": [ "# Cite Us\n", "\n", - "AUPIMO was developed during Google Summer of Code 2023 (GSoC 2023) with the `anomalib` team from OpenVINO Toolkit.\n", + "AUPIMO was developed during [Google Summer of Code 2023 (GSoC 2023)](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd) with the `anomalib` team from Intel's OpenVINO Toolkit.\n", "\n", - "Our work was accepted to the British Machine Vision Conference 2024 (BMVC 2024).\n", + "arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", + "\n", + "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", "\n", "```bibtex\n", "@misc{bertoldo2024aupimo,\n", - " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", " author={Joao P. C. Bertoldo and Dick Ameln and Ashwin Vaidya and Samet Akçay},\n", + " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", " year={2024},\n", - " eprint={2401.01984},\n", - " archivePrefix={arXiv},\n", - " primaryClass={cs.CV},\n", " url={https://arxiv.org/abs/2401.01984}, \n", "}\n", - "```\n", - "\n", - "Paper on arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", - "\n", - "Medium post: [medium.com/p/c653ac30e802](https://medium.com/p/c653ac30e802)\n", - "\n", - "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", - "\n", - "GSoC 2023 page: [summerofcode.withgoogle.com/archive/2023/projects/SPMopugd](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd)" + "```" ] } ], diff --git a/notebooks/700_metrics/701d_aupimo_advanced_iii.ipynb b/notebooks/700_metrics/701d_aupimo_advanced_iii.ipynb index 6d446d171e..7cbd29823b 100644 --- a/notebooks/700_metrics/701d_aupimo_advanced_iii.ipynb +++ b/notebooks/700_metrics/701d_aupimo_advanced_iii.ipynb @@ -321,29 +321,20 @@ "source": [ "# Cite Us\n", "\n", - "AUPIMO was developed during Google Summer of Code 2023 (GSoC 2023) with the `anomalib` team from OpenVINO Toolkit.\n", + "AUPIMO was developed during [Google Summer of Code 2023 (GSoC 2023)](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd) with the `anomalib` team from Intel's OpenVINO Toolkit.\n", "\n", - "Our work was accepted to the British Machine Vision Conference 2024 (BMVC 2024).\n", + "arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", + "\n", + "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", "\n", "```bibtex\n", "@misc{bertoldo2024aupimo,\n", - " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", " author={Joao P. C. Bertoldo and Dick Ameln and Ashwin Vaidya and Samet Akçay},\n", + " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", " year={2024},\n", - " eprint={2401.01984},\n", - " archivePrefix={arXiv},\n", - " primaryClass={cs.CV},\n", " url={https://arxiv.org/abs/2401.01984}, \n", "}\n", - "```\n", - "\n", - "Paper on arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", - "\n", - "Medium post: [medium.com/p/c653ac30e802](https://medium.com/p/c653ac30e802)\n", - "\n", - "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", - "\n", - "GSoC 2023 page: [summerofcode.withgoogle.com/archive/2023/projects/SPMopugd](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd)" + "```" ] } ], diff --git a/notebooks/700_metrics/701e_aupimo_advanced_iv.ipynb b/notebooks/700_metrics/701e_aupimo_advanced_iv.ipynb new file mode 100644 index 0000000000..e117006951 --- /dev/null +++ b/notebooks/700_metrics/701e_aupimo_advanced_iv.ipynb @@ -0,0 +1,1507 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AUPIMO statistical comparison between two models\n", + "\n", + "Model A has a higher average AUPIMO than model B. Can you be _sure_ that A is better than B? \n", + "\n", + "We'll use statistical tests here to make informed decisions about this.\n", + "\n", + "This notebook covers:\n", + "- load/save functions to import/export AUPIMO scores;\n", + "- statistical tests between two models, in particular:\n", + " - parametrical test with Student's t-test;\n", + " - non-parametrical test with Wilcoxon signed-rank test;\n", + "\n", + "> AUPIMO is pronounced \"a-u-pee-mo\".\n", + "\n", + "> For basic usage, please check the notebook [701a_aupimo.ipynb](./701a_aupimo.ipynb)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# What is AUPIMO?\n", + "\n", + "The `Area Under the Per-Image Overlap [curve]` (AUPIMO) is a metric of recall (higher is better) designed for visual anomaly detection.\n", + "\n", + "Inspired by the [ROC](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) and [PRO](https://link.springer.com/article/10.1007/s11263-020-01400-4) curves, \n", + "\n", + "> AUPIMO is the area under a curve of True Positive Rate (TPR or _recall_) as a function of False Positive Rate (FPR) restricted to a fixed range. \n", + "\n", + "But:\n", + "- the TPR (Y-axis) is *per-image* (1 image = 1 curve/score);\n", + "- the FPR (X-axis) considers the (average of) **normal** images only; \n", + "- the FPR (X-axis) is in log scale and its range is [1e-5, 1e-4]\\* (harder detection task!).\n", + "\n", + "\\* The score (the area under the curve) is normalized to be in [0, 1].\n", + "\n", + "AUPIMO can be interpreted as\n", + "\n", + "> average segmentation recall in an image given that the model (nearly) does not yield false positives in normal images.\n", + "\n", + "References in the last cell.\n", + "\n", + "![AUROC vs. AUPRO vs. AUPIMO](./roc_pro_pimo.svg)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Install `anomalib` using `pip`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO(jpcbertoldo): replace by `pip install anomalib` when AUPIMO is released # noqa: TD003\n", + "%pip install ../.." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Imports" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "import urllib.request\n", + "from pathlib import Path\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import torch\n", + "from matplotlib import pyplot as plt\n", + "from matplotlib.ticker import FixedLocator, IndexLocator, MaxNLocator, PercentFormatter\n", + "from scipy import stats\n", + "\n", + "from anomalib.metrics.pimo import AUPIMOResult" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "pd.options.display.float_format = \"{:.3f}\".format" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load AUPIMO scores\n", + "\n", + "Unlike previous notebook, we will not train and evaluate the models here.\n", + "\n", + "We'll load the AUPIMO scores from the benchmark presented in our paper (check the reference in the last cell).\n", + "\n", + "These scores can be found in AUPIMO's official repository in [`jpcbertoldo:aupimo/data/experiments/benchmark`](https://github.com/jpcbertoldo/aupimo/tree/main/data/experiments/benchmark). " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading benchmark results for model 'patchcore_wr101' and dataset 'mvtec/capsule'\n", + "Dowloading JSON file from https://raw.githubusercontent.com/jpcbertoldo/aupimo/refs/heads/main/data/experiments/benchmark/patchcore_wr101/mvtec/capsule/aupimo/aupimos.json\n", + "Converting payload to dataclass\n", + "Done!\n", + "Loading benchmark results for model 'patchcore_wr50' and dataset 'mvtec/capsule'\n", + "Dowloading JSON file from https://raw.githubusercontent.com/jpcbertoldo/aupimo/refs/heads/main/data/experiments/benchmark/patchcore_wr50/mvtec/capsule/aupimo/aupimos.json\n", + "Converting payload to dataclass\n", + "Done!\n" + ] + } + ], + "source": [ + "def get_benchmark_scores_url(model: str, dataset: str) -> str:\n", + " \"\"\"Generate the URL for the JSON file of a specific model and dataset.\"\"\"\n", + " root_url = \"https://raw.githubusercontent.com/jpcbertoldo/aupimo/refs/heads/main/data/experiments/benchmark\"\n", + " models = {\n", + " \"efficientad_wr101_m_ext\",\n", + " \"efficientad_wr101_s_ext\",\n", + " \"fastflow_cait_m48_448\",\n", + " \"fastflow_wr50\",\n", + " \"padim_r18\",\n", + " \"padim_wr50\",\n", + " \"patchcore_wr101\",\n", + " \"patchcore_wr50\",\n", + " \"pyramidflow_fnf_ext\",\n", + " \"pyramidflow_r18_ext\",\n", + " \"rd++_wr50_ext\",\n", + " \"simplenet_wr50_ext\",\n", + " \"uflow_ext\",\n", + " }\n", + " if model not in models:\n", + " msg = f\"Model '{model}' not available. Choose one of {sorted(models)}.\"\n", + " raise ValueError(msg)\n", + " datasets = {\n", + " \"mvtec/bottle\",\n", + " \"mvtec/cable\",\n", + " \"mvtec/capsule\",\n", + " \"mvtec/carpet\",\n", + " \"mvtec/grid\",\n", + " \"mvtec/hazelnut\",\n", + " \"mvtec/leather\",\n", + " \"mvtec/metal_nut\",\n", + " \"mvtec/pill\",\n", + " \"mvtec/screw\",\n", + " \"mvtec/tile\",\n", + " \"mvtec/toothbrush\",\n", + " \"mvtec/transistor\",\n", + " \"mvtec/wood\",\n", + " \"mvtec/zipper\",\n", + " \"visa/candle\",\n", + " \"visa/capsules\",\n", + " \"visa/cashew\",\n", + " \"visa/chewinggum\",\n", + " \"visa/fryum\",\n", + " \"visa/macaroni1\",\n", + " \"visa/macaroni2\",\n", + " \"visa/pcb1\",\n", + " \"visa/pcb2\",\n", + " \"visa/pcb3\",\n", + " \"visa/pcb4\",\n", + " \"visa/pipe_fryum\",\n", + " }\n", + " if dataset not in datasets:\n", + " msg = f\"Dataset '{dataset}' not available. Choose one of {sorted(datasets)}.\"\n", + " raise ValueError(msg)\n", + " return f\"{root_url}/{model}/{dataset}/aupimo/aupimos.json\"\n", + "\n", + "\n", + "def download_json(url_str: str) -> dict[str, str | float | int | list[str]]:\n", + " \"\"\"Download the JSON content from an URL.\"\"\"\n", + " with urllib.request.urlopen(url_str) as url: # noqa: S310\n", + " return json.load(url)\n", + "\n", + "\n", + "def load_aupimo_result_from_json_dict(payload: dict[str, str | float | int | list[str]]) -> AUPIMOResult:\n", + " \"\"\"Convert the JSON payload to an AUPIMOResult dataclass.\"\"\"\n", + " if not isinstance(payload, dict):\n", + " msg = f\"Invalid payload. Must be a dictionary. Got {type(payload)}.\"\n", + " raise TypeError(msg)\n", + " try:\n", + " return AUPIMOResult(\n", + " fpr_lower_bound=payload[\"fpr_lower_bound\"],\n", + " fpr_upper_bound=payload[\"fpr_upper_bound\"],\n", + " # `num_threshs` vs `num_thresholds` is an inconsistency with an older version of the JSON file\n", + " num_thresholds=payload[\"num_threshs\"] if \"num_threshs\" in payload else payload[\"num_thresholds\"],\n", + " thresh_lower_bound=payload[\"thresh_lower_bound\"],\n", + " thresh_upper_bound=payload[\"thresh_upper_bound\"],\n", + " aupimos=torch.tensor(payload[\"aupimos\"], dtype=torch.float64),\n", + " )\n", + "\n", + " except KeyError as ex:\n", + " msg = f\"Invalid payload. Missing key {ex}.\"\n", + " raise ValueError(msg) from ex\n", + "\n", + " except (TypeError, ValueError) as ex:\n", + " msg = f\"Invalid payload. Cause: {ex}.\"\n", + " raise ValueError(msg) from ex\n", + "\n", + "\n", + "def get_benchmark_aupimo_scores(model: str, dataset: str, verbose: bool = True) -> AUPIMOResult:\n", + " \"\"\"Get the benchmark AUPIMO scores for a specific model and dataset.\n", + "\n", + " Args:\n", + " model: The model name. See `_get_json_url` for the available models.\n", + " dataset: The \"collection/dataset\", where 'collection' is either 'mvtec' or 'visa', and 'dataset' is\n", + " the name of the dataset within the collection. See `_get_json_url` for the available datasets.\n", + " verbose: Whether to print the progress.\n", + "\n", + " Returns:\n", + " A `AUPIMOResult` dataclass with the AUPIMO scores from the benchmark results.\n", + "\n", + " More details in our paper: https://arxiv.org/abs/2401.01984\n", + " \"\"\"\n", + " if verbose:\n", + " print(f\"Loading benchmark results for model '{model}' and dataset '{dataset}'\")\n", + " url = get_benchmark_scores_url(model, dataset)\n", + " if verbose:\n", + " print(f\"Dowloading JSON file from {url}\")\n", + " payload = download_json(url)\n", + " if verbose:\n", + " print(\"Converting payload to dataclass\")\n", + " aupimo_result = load_aupimo_result_from_json_dict(payload)\n", + " if verbose:\n", + " print(\"Done!\")\n", + " return payload, aupimo_result\n", + "\n", + "\n", + "json_model_a, aupimo_result_model_a = get_benchmark_aupimo_scores(\"patchcore_wr101\", \"mvtec/capsule\")\n", + "_, aupimo_result_model_b = get_benchmark_aupimo_scores(\"patchcore_wr50\", \"mvtec/capsule\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's remove the `nan` values from the normal images." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "modela.shape=(109,) modelb.shape=(109,) labels.shape=(109,)\n" + ] + } + ], + "source": [ + "# corresponding paths to the images\n", + "# where the AUPIMO scores were computed from\n", + "paths = json_model_a[\"paths\"]\n", + "\n", + "# extract the labels (i.e. anomaly type or 'good')\n", + "labels = np.array([p.split(\"/\")[-2] for p in paths])\n", + "\n", + "# let's extract only the AUPIMO scores from anomalies\n", + "modela = aupimo_result_model_a.aupimos[labels != \"good\"].numpy()\n", + "modelb = aupimo_result_model_b.aupimos[labels != \"good\"].numpy()\n", + "labels = labels[labels != \"good\"]\n", + "print(f\"{modela.shape=} {modelb.shape=} {labels.shape=}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAEpCAYAAACDaWbOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAqUlEQVR4nO3dd1hUZ/428HsYYGgDSAdRUERBbAtWFEs0GoNEN7oxKraQqBH0p0aTuElEY13LJlmNRoxtI6vGupFYk9hj7EajlIhgQVGwwAhIfd4/fOesA8OhO6D357rm0jnlOd/zcIa5ec6ZMwohhAARERER6WVk6AKIiIiIajOGJSIiIiIZDEtEREREMhiWiIiIiGQwLBERERHJYFgiIiIiksGwRERERCSDYYmIiIhIBsMSERERkQyGJSKqVWbOnAmFQqEzzdPTE6NGjarxbScnJ0OhUGDdunXStFGjRsHKyqrGt62lUCgwc+bM57a9ilq0aBEaN24MpVKJNm3aGLocqoDKHlv6XhcvG4YlMqjly5dDoVCgQ4cOeudrX6SLFy/WO3/x4sVQKBRITk6WpnXv3h0KhUJ62NnZoV27dlizZg2Kioqk5fS9CWrX9fb21ru9AwcOSO1u3bq1xPzLly8jNDQU9evXh0qlgpubG4YNG4bLly+X1RVUzXbv3l1rQ0dtrk3O/v378eGHH6Jz585Yu3Yt5s2bZ+iSZC1fvvylfoOn6mNs6ALo5RYdHQ1PT0+cOnUKV69eRZMmTaqlXXd3d8yfPx8AkJaWhn//+98ICwtDQkICFixYILuumZkZrl69ilOnTqF9+/Yl6jUzM8OTJ09KrLd9+3YMGTIEdnZ2CAsLQ6NGjZCcnIzVq1dj69at2LRpE/76179Wy/69bOLj42FkVLG/7Xbv3o2vv/66QqHEw8MDOTk5MDExqWCFFSNXW05ODoyNa+ev5l9++QVGRkZYvXo1TE1NDV1OmZYvXw4HB4fnMipJLzaOLJHBJCUl4ddff8U///lPODo6Ijo6utratrGxQWhoKEJDQzF58mQcP34c7u7uWLZsGfLz82XX9fLyQrNmzbBx40ad6U+ePMGOHTsQHBxcYp3ExEQMHz4cjRs3xsWLFzFnzhyEhYVh9uzZuHjxIho3bozhw4fj2rVr1baPNeXJkyc6I3C1gUqlqtEAU1BQgLy8PCgUCpiZmUGpVNbYtspiZmZWa8PSvXv3YG5uXmZQKioq0vsHBVFdxbBEBhMdHY169eohODgYgwYNqtawVJyFhQU6duyIrKwspKWllbn8kCFDsHnzZp3QsGvXLmRnZ+Ott94qsfyiRYuQnZ2NqKgoODo66sxzcHDAypUrkZWVhYULF5a57aVLl8LPzw8WFhaoV68e2rZti//85z86y6SkpCAsLAxubm5QqVRo1KgR3n//feTl5UnLXLt2DX/7299gZ2cn7f+PP/6o086hQ4egUCiwadMmfPrpp6hfvz4sLCyQmZkJADh58iRee+012NjYwMLCAt26dcPx48d12tBoNJg0aRI8PT2hUqng5OSEV199FefOnStzX48dO4Z27drBzMwMXl5eWLlypd7lil+zlJ+fj1mzZsHb2xtmZmawt7dHly5dcODAAQBPT7F+/fXXAKBzShbQPbX75ZdfwsvLCyqVCleuXJG9NuPatWvo06cPLC0t4ebmhs8//xxCiBJ9eejQIZ31ircpV5t2WvERp/Pnz6Nv376wtraGlZUVevbsid9++01nmXXr1kGhUOD48eOYMmUKHB0dYWlpib/+9a8ljvkzZ86gT58+cHBwgLm5ORo1aoR33nlHb98/W9fatWuRlZUl1azdJ4VCgYiICERHR8PPzw8qlQp79+6tcO3Hjh3DxIkT4ejoCFtbW4wdOxZ5eXl49OgRRowYgXr16qFevXr48MMPdfpeH09PT1y+fBmHDx+W6u3evTsePXoEpVKJf/3rX9Ky6enpMDIygr29vU6777//PlxcXHTa3bJlCwICAmBubg4HBweEhoYiJSVFtpbq2sesrCx88MEHaNCgAVQqFZo1a4bFixeXWC43NxeTJ0+Go6Mj1Go13njjDdy6dUtvXSkpKXjnnXfg7OwMlUoFPz8/rFmzpsz9SU1NxejRo+Hu7g6VSgVXV1f0799f55KIF0nt/POFXgrR0dF48803YWpqiiFDhmDFihU4ffo02rVrVyPbu3btGpRKJWxtbctcdujQoZg5cyYOHTqEV155BQDwn//8Bz179oSTk1OJ5Xft2gVPT08EBQXpba9r167w9PQsEVaKW7VqFSZOnIhBgwbh//7v//DkyRNcvHgRJ0+exNChQwEAt2/fRvv27fHo0SOMGTMGPj4+SElJwdatW5GdnQ1TU1PcvXsXgYGByM7OxsSJE2Fvb4/169fjjTfewNatW0ucDpw9ezZMTU0xdepU5ObmwtTUFL/88gv69u2LgIAAREZGwsjICGvXrsUrr7yCo0ePSqcox40bh61btyIiIgLNmzfH/fv3cezYMcTGxsLf37/Ufb106RJ69+4NR0dHzJw5EwUFBYiMjISzs7NsHwFPLwKfP38+3n33XbRv3x6ZmZk4c+YMzp07h1dffRVjx47F7du3ceDAAXz33Xd621i7di2ePHmCMWPGQKVSwc7OrtQRtcLCQrz22mvo2LEjFi5ciL179yIyMhIFBQX4/PPPy6z3WeWp7VmXL19GUFAQrK2t8eGHH8LExAQrV65E9+7dcfjw4RLX+02YMAH16tVDZGQkkpOT8eWXXyIiIgKbN28G8HR0SNvvH3/8MWxtbZGcnIzt27fL1vHdd98hKioKp06dwrfffgsACAwMlOb/8ssv+P777xEREQEHBwcprFS0dhcXF8yaNQu//fYboqKiYGtri19//RUNGzbEvHnzsHv3bixatAgtWrTAiBEjSq33yy+/xIQJE2BlZYVPPvkEAODs7AxbW1u0aNECR44cwcSJEwE8De0KhQIPHjzAlStX4OfnBwA4evSozmt63bp1GD16NNq1a4f58+fj7t27+Oqrr3D8+HGcP3++XL9bKruPQgi88cYbOHjwIMLCwtCmTRvs27cP06ZNQ0pKCr744gtpG++++y42bNiAoUOHIjAwEL/88oveEfG7d++iY8eOUth1dHTEnj17EBYWhszMTEyaNKnU/Rg4cCAuX76MCRMmwNPTE/fu3cOBAwdw48YNeHp6ltkPdY4gMoAzZ84IAOLAgQNCCCGKioqEu7u7+L//+z+d5ZKSkgQAsWjRIr3tLFq0SAAQSUlJ0rRu3boJHx8fkZaWJtLS0kRsbKyYOHGiACBCQkKk5UaOHCksLS112uvWrZvw8/MTQgjRtm1bERYWJoQQ4uHDh8LU1FSsX79eHDx4UAAQW7ZsEUII8ejRIwFA9O/fX3af33jjDQFAZGZmlrpM//79pe2XZsSIEcLIyEicPn26xLyioiIhhBCTJk0SAMTRo0eleRqNRjRq1Eh4enqKwsJCIYSQ9qVx48YiOztbpx1vb2/Rp08fqU0hhMjOzhaNGjUSr776qjTNxsZGhIeHy9asz4ABA4SZmZm4fv26NO3KlStCqVSK4r+aPDw8xMiRI6XnrVu3FsHBwbLth4eHl2hHiP8dU9bW1uLevXt6561du1aaNnLkSAFATJgwQZpWVFQkgoODhampqUhLSxNC/K8vDx48WGabpdUmhBAARGRkpPR8wIABwtTUVCQmJkrTbt++LdRqtejatas0be3atQKA6NWrl87PbPLkyUKpVIpHjx4JIYTYsWOHAKD3+CmLvteMtmYjIyNx+fJlnekVrb348dapUyehUCjEuHHjpGkFBQXC3d1ddOvWrcx6/fz89C4XHh4unJ2dpedTpkwRXbt2FU5OTmLFihVCCCHu378vFAqF+Oqrr4QQQuTl5QknJyfRokULkZOTI60bExMjAIgZM2bI1lLVfdy5c6cAIObMmaPT7qBBg4RCoRBXr14VQghx4cIFAUCMHz9eZ7mhQ4eWOLbCwsKEq6urSE9P11n27bffFjY2NtLvhOLH8MOHD2V/L7+IeBqODCI6OhrOzs7o0aMHgKfD+IMHD8amTZtQWFhY5fbj4uLg6OgIR0dH+Pr6YunSpQgODi7X8LLW0KFDsX37duTl5WHr1q1QKpV6L9DWaDQAALVaLduedr72FJc+tra2uHXrFk6fPq13flFREXbu3ImQkBC0bdu2xHzt6Zzdu3ejffv26NKlizTPysoKY8aMQXJyMq5cuaKz3siRI2Fubi49v3DhAv78808MHToU9+/fR3p6OtLT05GVlYWePXviyJEj0iiMra0tTp48idu3b8vu/7MKCwuxb98+DBgwAA0bNpSm+/r6ok+fPmWub2tri8uXL+PPP/8s9zaLGzhwYIlTpnIiIiKk/2v/Es/Ly8NPP/1U6RrKUlhYiP3792PAgAFo3LixNN3V1RVDhw7FsWPHShxPY8aM0TmtFxQUhMLCQly/fh0ApNGPmJiYMq/fq4hu3bqhefPmVao9LCxMp/YOHTpACIGwsDBpmlKpRNu2bat0/V9QUBDu3r2L+Ph4AE9HkLp27YqgoCAcPXoUwNPRJiGENLJ05swZ3Lt3D+PHj4eZmZnUVnBwMHx8fMocNa7qPu7evRtKpVIaDdP64IMPIITAnj17pOUAlFiu+CiREALbtm1DSEgIhBDSazw9PR19+vRBRkZGqafStdetHTp0CA8fPizXftd1DEv03BUWFmLTpk3o0aMHkpKScPXqVVy9ehUdOnTA3bt38fPPP1e4TX335Tlw4AB++uknHDt2DKmpqYiJiYGDg0O523z77beRkZGBPXv2IDo6Gv369dMbiLTTtKGpNOUJVR999BGsrKzQvn17eHt7Izw8XOcaobS0NGRmZqJFixay27p+/TqaNWtWYrqvr680/1mNGjXSea4NISNHjpRCp/bx7bffIjc3FxkZGQCAhQsX4o8//kCDBg3Qvn17zJw5s8w3srS0NOTk5Oi9RYO+uov7/PPP8ejRIzRt2hQtW7bEtGnTcPHixTLXe1bxfZZjZGSk84YPAE2bNgWAGr1GIy0tDdnZ2aX+LIuKinDz5k2d6c+GTwCoV68eAEhvat26dcPAgQMxa9YsODg4oH///li7di1yc3OrVGvx/qyO2m1sbAAADRo0KDG9Km/S2gB09OhRZGVl4fz58wgKCkLXrl2lsHT06FFYW1ujdevWAP73mtG3Pz4+PiVeU6Wp7D5ev34dbm5uJX5/FH9NX79+HUZGRvDy8tJZrnjdaWlpePTokXSd5bOP0aNHA3h6ylYflUqFf/zjH9izZw+cnZ3RtWtXLFy4EKmpqeXqg7qIYYmeu19++QV37tzBpk2b4O3tLT20F04/e6G39i+4nJwcvW1lZ2frLKdlaWmJXr16oWfPnujcubPe64zK4urqiu7du2PJkiU4cuSIdM1QcTY2NnB1dS3zzfrixYuoX78+rK2tS13G19cX8fHx2LRpE7p06YJt27ahS5cuiIyMrHD9FfHsqBIAadRo0aJFOHDggN6H9h5Vb731Fq5du4alS5fCzc0NixYtgp+fn/SXbk3o2rUrEhMTsWbNGrRo0QLffvst/P39pWtpyqP4PldV8cCuVR0jpRVR2if5xP+/CFh7j7ATJ04gIiJCusA3ICAAjx8/rvR2q6M/S6td33RRxgXectzc3NCoUSMcOXIEJ06cgBACnTp1QlBQEG7evInr16/j6NGjCAwMrPAtK8ryvPaxLNrXeGhoaKmv8c6dO5e6/qRJk5CQkID58+fDzMwMn332GXx9fXH+/Pkaq9mQGJbouYuOjoaTkxO2bNlS4jFkyBDs2LFDCkeOjo6wsLCQhsuLi4+Ph4WFRYVGjCpi6NCh0l+Yr7/+eqnL9evXD0lJSTh27Jje+UePHkVycjL69etX5jYtLS0xePBgrF27Fjdu3EBwcDDmzp2LJ0+ewNHREdbW1vjjjz9k2/Dw8NDbZ3FxcdJ8Odq/Sq2trdGrVy+9j2c/yu/q6orx48dj586dSEpKgr29PebOnVtq+46OjjA3N9d7Gq20n3VxdnZ2GD16NDZu3IibN2+iVatWOp8iKy28VEZRUVGJ0bKEhAQAkC5m1Y7gPHr0SGc5fSMO5a1N7viPi4uDkZFRiRGJ8urYsSPmzp2LM2fOIDo6GpcvX8amTZsq1ZY+NVl7ecn1s/aU29GjR9GmTRuo1Wq0bt0aNjY22Lt3L86dO4euXbtKy2tfM/r2Jz4+vszXVFV5eHjg9u3bJUawi7+mPTw8UFRUhMTExBI1Pkv7SbnCwsJSX+Nl/ZHp5eWFDz74APv378cff/yBvLw8LFmypKq7WisxLNFzlZOTg+3bt6Nfv34YNGhQiUdERAQ0Gg1++OEHAE//2urduzd27dqFGzdu6LR148YN7Nq1C717966x++IMGjQIkZGRWL58uey9ZaZNmwZzc3OMHTsW9+/f15n34MEDjBs3DhYWFpg2bZrs9oqva2pqiubNm0MIgfz8fBgZGWHAgAHYtWsXzpw5U2J97V+ir7/+Ok6dOoUTJ05I87KyshAVFQVPT0+da0v0CQgIgJeXFxYvXqx3tEH7UfTCwkLpdJyWk5MT3NzcZE/rKJVK9OnTBzt37tT5ucbGxmLfvn2ytQEl+8nKygpNmjTR2aalpSWAkuGlspYtWyb9XwiBZcuWwcTEBD179gTw9E1KqVTiyJEjOustX768RFvlrU17/P/3v//VOd139+5d/Oc//0GXLl1kRyr1efjwYYkRC+3XllT1VNyzaqL2irK0tCy1j4OCgpCcnIzNmzdLp+WMjIwQGBiIf/7zn8jPz9f5JFzbtm3h5OSEb775Rqef9uzZg9jYWL2fNqtOr7/+OgoLC3WOQwD44osvoFAo0LdvXwCQ/n321gjA008HPkupVGLgwIHYtm2b3j++5G6xkp2dXeI+Wl5eXlCr1dV6DNUmvHUAPVc//PADNBoN3njjDb3zO3bsKN2gcvDgwQCAefPmoWPHjvD398eYMWPg6emJ5ORkREVFQaFQ1OhXLtjY2JTrDtDe3t5Yv349hg0bhpYtW5a4g3d6ejo2btxY4jqC4nr37g0XFxd07twZzs7OiI2NxbJlyxAcHCxdqzBv3jzs378f3bp1w5gxY+Dr64s7d+5gy5YtOHbsGGxtbfHxxx9j48aN6Nu3LyZOnAg7OzusX78eSUlJ2LZtW5mnFoyMjPDtt9+ib9++8PPzw+jRo1G/fn2kpKTg4MGDsLa2xq5du6DRaODu7o5BgwahdevWsLKywk8//YTTp0+X+RfmrFmzsHfvXgQFBWH8+PEoKCiQ7jFV1inN5s2bo3v37ggICICdnR3OnDkj3b5AKyAgAMDTC1379OkDpVKJt99+W7bd0piZmWHv3r0YOXIkOnTogD179uDHH3/E3//+d+kicRsbG/ztb3/D0qVLoVAo4OXlhZiYGL3XfVSktjlz5uDAgQPo0qULxo8fD2NjY6xcuRK5ubnlum9XcevXr8fy5cvx17/+FV5eXtBoNFi1alWZo6eVUd21V1RAQABWrFiBOXPmoEmTJnBycpJuBaINQvHx8Tq/Q7p27Yo9e/ZApVLp3MbExMQE//jHPzB69Gh069YNQ4YMkW4d4OnpicmTJ9fovoSEhKBHjx745JNPkJycjNatW2P//v3473//i0mTJkm/W9q0aYMhQ4Zg+fLlyMjIQGBgIH7++WdcvXq1RJsLFizAwYMH0aFDB7z33nto3rw5Hjx4gHPnzuGnn37CgwcP9NaSkJCAnj174q233kLz5s1hbGyMHTt24O7du5V+jdV6hvgIHr28QkJChJmZmcjKyip1mVGjRgkTExOdj7PGxsaKwYMHCycnJ2FsbCycnJzE22+/LWJjY0us/+zH/+WUdeuA0hS/dcCzLl68KIYMGSJcXV2FiYmJcHFxEUOGDBGXLl0qsx4hhFi5cqXo2rWrsLe3FyqVSnh5eYlp06aJjIwMneWuX78uRowYIRwdHYVKpRKNGzcW4eHhIjc3V1omMTFRDBo0SNja2gozMzPRvn17ERMTU+59EUKI8+fPizfffFOqx8PDQ7z11lvi559/FkIIkZubK6ZNmyZat24t1Gq1sLS0FK1btxbLly8v1/4ePnxYBAQECFNTU9G4cWPxzTffiMjIyDJvHTBnzhzRvn17YWtrK8zNzYWPj4+YO3euyMvLk5YpKCgQEyZMEI6OjkKhUEhtyt2OorRbB1haWorExETRu3dvYWFhIZydnUVkZKR0CwattLQ0MXDgQGFhYSHq1asnxo4dK/74448SbZZWmxAlbx0ghBDnzp0Tffr0EVZWVsLCwkL06NFD/PrrrzrLaD+aXvyWAMVvaXDu3DkxZMgQ0bBhQ6FSqYSTk5Po16+fOHPmTIn+KE7u1gGl3T6iKrVrjwXt7RnKqqO41NRUERwcLNRqtQBQ4jYCTk5OAoC4e/euNO3YsWMCgAgKCtLb5ubNm8Vf/vIXoVKphJ2dnRg2bJi4detWmbVUxz5qNBoxefJk4ebmJkxMTIS3t7dYtGiRzq0IhBAiJydHTJw4Udjb2wtLS0sREhIibt68qffYunv3rggPDxcNGjSQfmf17NlTREVFScsUf12kp6eL8PBw4ePjIywtLYWNjY3o0KGD+P7778vsh7pKIUQNXkFGREREVMfxmiUiIiIiGQxLRERERDIYloiIiIhkMCwRERERyWBYIiIiIpLBsEREREQkgzelrOOKiopw+/ZtqNXqav16ByIiohedEAIajQZubm6yN+tlWKrjbt++XePfr0RERPQiu3nzJtzd3Uudz7BUx2m/AuPmzZs1/j1LREREL5LMzEw0aNBAei8tDcNSHac99WZtbc2wREREVAllXcbCC7yJiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZBgbugAiIqL09HTs3LkTPj4+sLCwMHQ5VMuo1Wp4e3sbbPsMS0REZHA7d+7Ee++9Z+gyKs3Yxhh2Pezw4OADFGQUGLqcWsnFSoGxAaZYeTYPqY9FhddPSEgwWGBiWCIiIoPz8fEBAKxatQr+/v4GrqbiknOSEXk1EiumroCnuaehy6mVzB8lwPfIWAyesQ45tk3LvV5sbCxCQ0Oh0WhqsDp5DEtERGRw2lNv/v7+dTIsmd03A64+DX3N7Zsbupza6bYRcATw9fEB3NoYupoK4QXeRERERDIYloiIiIhkMCwRERFVkbWpNYIbB8Pa1NrQpVAN4DVLREREVeSudseCoAWGLoNqCEeWiIiIqii3MBc3Mm8gtzDX0KVQDWBYIiIiqqLER4kI3hGMxEeJhi6FagDDEhEREZEMhiUiIiIiGQxLRERERDIYloiIiIhk8NYBREREVdTcvjkujbxk6DKohnBkiaiOyc7Oxrlz55CdnW3oUoiIalxOTo7Ov4bAsERUx8TFxSEgIABxcXGGLoWI/r+kjCQM2z0MSRlJhi7lhZOcnKzzryEwLBEREVVRTkEOLqZdRE6B4UY/qOYwLBERERHJYFgiIiIiksGwRERERCSDYYmIiKiK6lvVx7wu81Dfqr6hS6EawPssERERVZGNygYhXiGGLoNqCEeWiIiIqujBkwfYGLcRD548MHQpVAMYloiIiKooNSsV807OQ2pWqqFLoRrAsEQ6bty4AbVaDaVSCbVajRs3bhi6JCIiIoOqVFg6ceIElEolgoODq7ueWmnUqFFQKBQlHn5+ftIyGo0GkyZNgoeHB8zNzREYGIjTp0/rtLN48WI4OTnByckJS5Ys0Zl38uRJBAQEoKCg4Lnskz4mJibw8PDA48ePUVRUhMePH8PDwwMmJiYGq4mIiMjQKhWWVq9ejQkTJuDIkSO4fft2dddU63z11Ve4c+eO9Lh58ybs7Ozwt7/9TVrm3XffxYEDB/Ddd9/h0qVL6N27N3r16oWUlBQAwMWLFzFjxgxs2rQJGzduxKeffopLl55+6WJBQQHGjRuHb775BsbGhrnm3sTERApq9vb2iIqKgr29vVQfAxMREb2sKhyWHj9+jM2bN+P9999HcHAw1q1bV+Y6np6emDNnDkaMGAErKyt4eHjghx9+QFpaGvr37w8rKyu0atUKZ86c0Vnv2LFjCAoKgrm5ORo0aICJEyciKytLmv/dd9+hbdu2UKvVcHFxwdChQ3Hv3j1p/qFDh6BQKPDzzz+jbdu2sLCwQGBgIOLj4yu0zzY2NnBxcZEeZ86cwcOHDzF69GgAT7/cb9u2bVi4cCG6du2KJk2aYObMmWjSpAlWrFgB4On3ebVq1QqvvPIKevbsiVatWknf7bVo0SJ07doV7dq1q1Bd1eXGjRtSUEpLS0N6ejree+89pKenIy0tDcDTwMRTckRE+lmaWCLQLRCWJpaGLoVqQIWHMb7//nv4+PigWbNmCA0NxaRJkzB9+nQoFArZ9b744gvMmzcPn332Gb744gsMHz4cgYGBeOedd7Bo0SJ89NFHGDFiBC5fvgyFQoHExES89tprmDNnDtasWYO0tDREREQgIiICa9euBQDk5+dj9uzZaNasGe7du4cpU6Zg1KhR2L17t862P/nkEyxZsgSOjo4YN24c3nnnHRw/fhzA0y/ma9SoEQ4ePIju3buXqw9Wr16NXr16wcPDA8DTIFFYWAgzMzOd5czNzXHs2DEAQMuWLZGQkIAbN25ACIGEhAS0aNECiYmJWLt2Lc6ePVuubefm5iI3N1d6npmZWa715GhPJ9rb28PBwUFnnoODA+zs7PDgwQP4+flBo9FUeXtUNdpv3o6NjTVwJUTVR3s8G/Kb5avCw9oDK19daegyqKaICgoMDBRffvmlEEKI/Px84eDgIA4ePCi7joeHhwgNDZWe37lzRwAQn332mTTtxIkTAoC4c+eOEEKIsLAwMWbMGJ12jh49KoyMjEROTo7e7Zw+fVoAEBqNRgghxMGDBwUA8dNPP0nL/PjjjwKA1MatW7dEs2bNxMmTJ8u1/ykpKUKpVIrNmzfrTO/UqZPo1q2bSElJEQUFBeK7774TRkZGomnTptIyK1asEE2bNhVNmzYVK1asEEII0bNnT7Fjxw6xZcsW4efnJ9q0aSMOHz5c6vYjIyMFgBKPjIyMctWvj5GRkQAgoqKi9M5ftmyZACCMjIwqvQ2qPhs2bNB7DPDBx4vw2LBhg6FfYpVSUFggNLkaUVBYYOhSaq+U80JEWj/9twK0v/Nq4tjIyMgQQNnvoRUaWYqPj8epU6ewY8cOAICxsTEGDx6M1atXlzkq06pVK+n/zs7OAJ6OthSfdu/ePbi4uOD333/HxYsXER0dLS0jhEBRURGSkpLg6+uLs2fPYubMmfj999/x8OFDFBUVAXh6Wql58+Z6t+3q6iptp2HDhqhfv750Oqw81q9fD1tbWwwYMEBn+nfffYd33nkH9evXh1KphL+/P4YMGaIzYjRu3DiMGzdOpy21Wo1OnTqhWbNmOH36NG7duoW3334bSUlJUKlUJbY/ffp0TJkyRXqemZmJBg0alLt+fSwsLPD48WNMnz4d7733Xon5M2bMkJYjw/P09AQAbNiwAb6+voYthqiaxMbGIjQ0VDq+65r4h/EYHDMYm/ttRnP75mWvQHVKhcLS6tWrUVBQADc3N2maEAIqlQrLli2DjY1Nqes+e4Gw9pSdvmnawPP48WOMHTsWEydOLNFWw4YNkZWVhT59+qBPnz6Ijo6Go6Mjbty4gT59+iAvL6/MbWu3UxFCCKxZswbDhw+HqampzjwvLy8cPnwYWVlZyMzMhKurKwYPHozGjRvrbSs9PR2zZs3CkSNHcPLkSTRt2hTe3t7w9vZGfn4+EhISdMKklkql0huiquLy5cvw8PDA/fv3kZ6ernMqLj09HQ8ePJCWI8MzNzcHAPj6+sLf39/A1RBVL+3xTVSblPsC74KCAvz73//GkiVLcOHCBenx+++/w83NDRs3bqzWwvz9/XHlyhU0adKkxMPU1BRxcXG4f/8+FixYgKCgIPj4+Ohc3F0TDh8+jKtXryIsLKzUZSwtLeHq6oqHDx9i37596N+/v97lJk+ejMmTJ8Pd3R2FhYXIz8+X5mmvgXpeGjZsKH0Kz9HREfb29vj6669hb28PR0dHAE9HERs2bPjcaiIiIqotyh2WYmJi8PDhQ4SFhaFFixY6j4EDB2L16tXVWthHH32EX3/9FREREbhw4QL+/PNP/Pe//0VERASAp2/wpqamWLp0Ka5du4YffvgBs2fPrvB2UlJS4OPjg1OnTpW57OrVq9GhQwe0aNGixLx9+/Zh7969SEpKwoEDB9CjRw/4+PhIn5h71oEDB5CQkIDw8HAAQLt27RAXF4c9e/YgKioKSqUSzZo1q/C+VEV+fr4UmB48eICIiAhpRMnY2FgnzBEREb1Myh2WtJ8A03eqbeDAgThz5gwuXrxYbYW1atUKhw8fRkJCAoKCgvCXv/wFM2bMkE4BOjo6Yt26ddiyZQuaN2+OBQsWYPHixRXeTn5+PuLj45GdnS27XEZGBrZt21bqqFJGRgbCw8Ph4+ODESNGoEuXLti3b1+J+xPl5OQgIiICK1euhJHR0+53d3fH0qVLMXr0aMydOxfr1683yFB0fn4+rl+/DisrKxgZGcHKygrXr19nUCIiopeaQgghDF0EVV5mZiZsbGyQkZEBa2trQ5dDz8G5c+cQEBCAs2fP8polemHU9eM6vygfmjwN1KZqmBjxJr563b4ARHUDxhwG3NqUe7Xo6GiEhoZiw4YNGDZsWLWWVN73UMPcLpqIiOgFYmJkAjszO0OXQTWEX6RLRERURTczb2LCzxNwM/OmoUuhGsCwREREVEWafA0O3ToETT6/5eBFxLBEREREJINhiYiIiEgGwxIRERGRDIYlIiKiKnKycMLUtlPhZOFk6FKoBvDWAURERFXkYO6AkX4jDV0G1RCOLBHVMT4+Pjh79ix8fHwMXQoR/X8ZuRnYl7wPGbkZhi7lhePp6anzryEwLBHVMRYWFvD394eFhYWhSyGi/y/lcQqmHp6KlMcphi7lhaP9+i9DfA2YFsMSERERkQyGJSIiIiIZDEtEREREMhiWiIiIqshMaQZfO1+YKc0MXQrVAN46gIiIqIoa2zbG9yHfG7oMqiEcWSIiIiKSwbBERERURbH3Y+H/nT9i78cauhSqAQxLREREVSQgkF+UDwFh6FKoBjAsEREREclgWCIiIiKSwbBEREREJIO3DiAiolojNrZuXiCdV5SHud5zkZmUiXPXzxm6nFrJ/FECfAHExsUhJ7Wo3OvVhmOCYYmIiAxOrVYDAEJDQw1cCdUUFysFxgaYYuWSoUh9XPEL4bXHiCEwLBERkcF5e3sjISEBGo3G0KVQDXujEuuo1Wp4e3tXey3lxbBERES1giHfDInk8AJvIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJMPY0AUQEdGLIT09HTt37oSPjw8sLCwMXQ69YNRqNby9vQ2ybYYlIiKqFjt37sR7771n6DLKZGxjDLsednhw8AEKMgoMXY5BuVgpMDbAFCvP5iH1sTB0OWVKSEgwSGBiWCIiomrh4+MDAFi1ahX8/f0NXE3pknOSEXk1EiumroCnuaehyzEo80cJ8D0yFoNnrEOObVNDl1Oq2NhYhIaGQqPRGGT7DEtERFQttKfe/P39a3VYMrtvBlx9Gu6a2zc3dDmGddsIOAL4+vgAbm0MXU2txQu8iYiIiGQwLBERERHJYFgiIqKXirWpNYIbB8Pa1NrQpVAdwWuWiIjopeKudseCoAWGLoPqEI4sERHRSyW3MBc3Mm8gtzDX0KVQHcGwREREL5XER4kI3hGMxEeJhi6F6giGJSIiIiIZDEtEREREMhiWiIiIiGQwLBERERHJYFiiF0p2djbOnTuH7OxsQ5dCRLVUc/vmuDTyEr/qpA6KjY01yO93hiV6ocTFxSEgIABxcXGGLoWIiKpZaGioQX6/MywREdFLJSkjCcN2D0NSRpKhS6E6gmGJiIheKjkFObiYdhE5BTmGLoXqCIYlIiIiIhkMS0REREQyGJaIiIiIZDAsERHRS6W+VX3M6zIP9a3qG7oUqiOMDV0AERHR82SjskGIV4ihy6A6hCNLRET0Unnw5AE2xm3EgycPDF0K1REMS0RE9FJJzUrFvJPzkJqVauhSqI6oUFgaNWoUFAqF9LC3t8drr72Gixcv1lR9tcLMmTN19lv7sLS01Lv8pk2boFAoMGDAAJ3pixcvhpOTE5ycnLBkyRKdeSdPnkRAQAAKCgpqajfKJSUlBXZ2djA2NoalpSU2b96MwsLCcq1bWFiIQ4cOYePGjTh06FC51yurjeLT8vLyqrwdIiKi8qrwNUuvvfYa1q5dCwBITU3Fp59+in79+uHGjRvVXlxtMXXqVIwbN05nWs+ePdGuXbsSyyYnJ2Pq1KkICgrSmX7x4kXMmDEDMTExEEKgX79+6N27N1q2bImCggKMGzcOUVFRMDY23GVkKpUKeXl50vPs7Gy8/fbbAIBt27bhzTffLHXd7du344MPPkBycrI0zdPTE0uWLJFdr6w2HB0doVAocO/ePWmasbGxTqis6HaIiIgqosKn4VQqFVxcXODi4oI2bdrg448/xs2bN5GWllbqOt27d8eECRMwadIk1KtXD87Ozli1ahWysrIwevRoqNVqNGnSBHv27NFZ748//kDfvn1hZWUFZ2dnDB8+HOnp6dL8vXv3okuXLrC1tYW9vT369euHxMREaX5ycjIUCgW2b9+OHj16wMLCAq1bt8aJEycqtM9WVlbSPru4uODu3bu4cuUKwsLCdJYrLCzEsGHDMGvWLDRu3FhnXlxcHFq1aoVXXnkFPXv2RKtWraTvt1m0aBG6du2qN3w9L88GJZVKhRkzZsDFxUWaP3DgQGzfvl3vutu3b8egQYPQsmVLnDhxAhqNBidOnEDLli0xaNCgUtcrq4358+cjLS0N9+7dw/z587FhwwYAgL29PRQKBTZs2FDh7RAREVWYqICRI0eK/v37S881Go0YO3asaNKkiSgsLCx1vW7dugm1Wi1mz54tEhISxOzZs4VSqRR9+/YVUVFRIiEhQbz//vvC3t5eZGVlCSGEePjwoXB0dBTTp08XsbGx4ty5c+LVV18VPXr0kNrdunWr2LZtm/jzzz/F+fPnRUhIiGjZsqVUS1JSkgAgfHx8RExMjIiPjxeDBg0SHh4eIj8/X2oHgFi7dm25+yEiIkI0bdq0xPQZM2aIAQMG6O2rK1euiHr16onr16+L5ORkYWtrK65cuSKuXr0qvL29RWZmZrm3/6yMjAwBQGRkZFRqfSGEuHXrlgAgAIjevXvr/Czv378vzatfv74oKCjQWbegoEB4enqKkJCQEsdAYWGhCAkJEY0aNSqxXlltaKf169dP9OvXT3h6ekrL5Ofn67T77HZOnTolAIizZ89Wuj+IqHLOnj1bJ15/yRnJYsz+MSI5I9nQpRheynkhIq2f/luLaY+t6j6+yvseWuFzPjExMbCysgIAZGVlwdXVFTExMTAykh+kat26NT799FMAwPTp07FgwQI4ODjgvffeAwDMmDEDK1aswMWLF9GxY0csW7YMf/nLXzBv3jypjTVr1qBBgwZISEhA06ZNMXDgQJ1trFmzBo6Ojrhy5QpatGghTZ86dSqCg4MBALNmzYKfnx+uXr0KHx8fAECzZs1gY2NTrv1/8uQJoqOj8fHHH+tMP3bsGFavXo0LFy7oXc/X1xfz5s3Dq6++CgCYP38+fH190atXLyxcuBD79u3DzJkzYWJigq+++gpdu3bV205ubi5yc3Ol55mZmeWqW07Lli2l/8+aNUvnZ2lnZwcXFxekpqYiJSUFR48eRffu3aX5R48eRXJyMjZu3FjiGDAyMsL06dMRGBhYYr1n6Wvj2WlCCAQGBgIANm7cCGNj4xLtap//9ttvAIDY2Ngq9wsRVYz2dZeTU7u/c83D2gMrX11p6DKoAp49pgxxfFU4LPXo0QMrVqwAADx8+BDLly9H3759cerUKXh4eJS6XqtWraT/K5VK2Nvb67xJOzs7A4B0bcrvv/+OgwcPSsHsWYmJiWjatCn+/PNPzJgxAydPnkR6ejqKiooAADdu3NAJS89u29XVVdqONixpT4eVx44dO6DRaDBy5EhpmkajwfDhw7Fq1So4ODiUuu64ceN0rn1av3491Go1OnXqhGbNmuH06dO4desW3n77bSQlJUGlUpVoY/78+Zg1a1a56y0PjUYj/f/ZftOaM2cO3n33XQDAnTt3dOZpn+tb79npxdcrq41npwkhSrRXvF3tc+3PMjQ0tNTtEVHNSk5ORufOnQ1dRqkKiwqRU5ADc2NzKI2Uhi6HyuHZa1kNcXxVOCxZWlqiSZMm0vNvv/0WNjY2WLVqFebMmVPqeiYmJjrPFQqFzjSFQgEAUuB5/PgxQkJC8I9//KNEW9rAExISAg8PD6xatQpubm4oKipCixYtdC5SLr7t4tupqG+//Rb9+vWTwh3wNLwlJycjJOR/NznTtm9sbIz4+Hh4eXnptJOeno5Zs2bhyJEjOHnyJJo2bQpvb294e3sjPz8fCQkJOmFSa/r06ZgyZYr0PDMzEw0aNKjUvmip1Wo8fPgQwNPrxDp27KgzXzsiCPyv74s/17eedrq+9cpq49lpz4Yl7TLF29U+1wbgDRs2wNfXt/SdJqJqFxsbi9DQUHh6ehq6FFnxD+MxOGYwNvfbjOb2zQ1dDpXDs8eUIY6vKn/0SqFQwMjIqNqHxfz9/bFt2zZ4enrq/YTY/fv3ER8fj1WrVkmfPDt27Fi11lBcUlISDh48iB9++EFnuo+PDy5duqQz7dNPP4VGo8FXX32lN8xMnjwZkydPhru7O06fPo38/HxpXkFBQakfh1epVHpHnKri0qVLcHd3BwBERkZiz5490umwBw8eIDX16b1I6tevX+JTfkFBQfD09MS8efOwc+dOnVNxRUVFmD9/Pho1alRivbLa0E6bO3cugP+9OObNm4ft27frtPvsdrRhy9fXF/7+/tXTQURUIebm5oYugV4wzx5Thji+KvxpuNzcXKSmpiI1NRWxsbGYMGGCNApUncLDw/HgwQMMGTIEp0+fRmJiIvbt24fRo0ejsLAQ9erVg729PaKionD16lX88ssvOiMuFeHj44MdO3aUudyaNWvg6uqKvn376kw3MzNDixYtdB62trZQq9Vo0aIFTE1NdZY/cOAAEhISEB4eDgBo164d4uLisGfPHkRFRUGpVKJZs2aV2pfKqF+/vlTj/v37YW5ujunTp8PFxQX29vbScv/617+gVOoOWSuVSixZsgQxMTEYMGCAzqfhBgwYgJiYGCxevLjEemW1kZ2djTFjxiAmJgYxMTEYM2YM5syZg127dsHd3R0xMTGYPXs2Tp06Ve7tEBERVUaFR5b27t0rnfpQq9Xw8fHBli1bSr14t7Lc3Nxw/PhxfPTRR+jduzdyc3Ph4eGB1157DUZGRlAoFNi0aRMmTpyIFi1aoFmzZvjXv/5VqTri4+ORkZEhu0xRURHWrVuHUaNGVekNOScnBxEREdi8ebM0CuPu7o6lS5di9OjRUKlUWL9+/XNPzrm5udLtA/Ly8rBgwQKd+XL3WXrzzTexdetWfPDBB9KF2ADQqFEjbN26tVz3PyqtDScnJwDA3//+d2na/fv3IYSQrkt6djvnzp0r/04TERGVg0I8e0EI1TmZmZmwsbFBRkYGrK2tq9xeSkoKWrZsiczMTKhUKqxZswaDBg0qV0AsLCzE0aNHcefOHbi6uiIoKKjCwVJfGwB0pgUGBuLXX3/Vu51z584hICAAZ8+e5Wk4ouesrrz+rty/wmuWtG5fAKK6AWMOA25tDF1NqbTHFoBqPb7K+x5quNtFU61Uv359PHhQuS+XVCqVVR5hLK2N4tOqeySTiF4e3vW8cXjwYahN1YYuheoIhiUiInqpmBiZwM7MztBlUB1S4Qu8iYiI6rKbmTcx4ecJuJl509ClUB3BsERERC8VTb4Gh24dgiZfU/bCRGBYIiIiIpLFsEREREQkg2GJiIiISAbDEhERvVScLJwwte1UOFk4GboUqiN46wAiInqpOJg7YKTfSEOXQXUIR5boheLj44OzZ8/Cx8fH0KUQUS2VkZuBfcn7kJEr/zVXVPts2LDBIL/fGZbohWJhYQF/f39YWFgYuhQiqqVSHqdg6uGpSHmcYuhSqIJ8fX0N8vudYYmIiIhIBsMSERERkQyGJSIiIiIZDEtERPRSMVOawdfOF2ZKM0OXQnUEbx1AREQvlca2jfF9yPeGLoPqEI4sEREREclgWCIiopdK7P1Y+H/nj9j7sYYuheoIhiUiInqpCAjkF+VDQBi6FKojGJaIiIiIZDAsEREREcngp+GIiKhaxcbW7muBknOSAQBxcXF4Yv7EsMUYmPmjBPgCiI2LQ05qkaHLKZWhjymGJSIiqhZqtRoAEBoaauBK5ClMFDB1NMWgtEEQ+S/3dUsuVgqMDTDFyiVDkfq49veF9hh73hiWiIioWnh7eyMhIQEajcbQpVAFvWHoAspBrVbD29vbINtmWCIiompjqDczoprEC7yJiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZDAsEREREclgWCIiIiKSwbBEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMS0REREQyGJaIiIiIZBgbugCqGiEEACAzM9PAlRAREdUt2vdO7XtpaRiW6jiNRgMAaNCggYErISIiqps0Gg1sbGxKna8QZcUpqtWKiopw+/ZtqNVqKBSKamkzMzMTDRo0wM2bN2FtbV0tbb7M2J/Vj31avdif1Y99Wv1qok+FENBoNHBzc4ORUelXJnFkqY4zMjKCu7t7jbRtbW3NF3k1Yn9WP/Zp9WJ/Vj/2afWr7j6VG1HS4gXeRERERDIYloiIiIhkMCxRCSqVCpGRkVCpVIYu5YXA/qx+7NPqxf6sfuzT6mfIPuUF3kREREQyOLJEREREJINhiYiIiEgGwxIRERGRDIYlIiIiIhkMSy+pr7/+Gp6enjAzM0OHDh1w6tQp2eW3bNkCHx8fmJmZoWXLlti9e/dzqrRuqEh/rlq1CkFBQahXrx7q1auHXr16ldn/L6OKHqNamzZtgkKhwIABA2q2wDqmov356NEjhIeHw9XVFSqVCk2bNuXrvpiK9umXX36JZs2awdzcHA0aNMDkyZPx5MmT51Rt7XbkyBGEhITAzc0NCoUCO3fuLHOdQ4cOwd/fHyqVCk2aNMG6detqrkBBL51NmzYJU1NTsWbNGnH58mXx3nvvCVtbW3H37l29yx8/flwolUqxcOFCceXKFfHpp58KExMTcenSpedcee1U0f4cOnSo+Prrr8X58+dFbGysGDVqlLCxsRG3bt16zpXXXhXtU62kpCRRv359ERQUJPr37/98iq0DKtqfubm5om3btuL1118Xx44dE0lJSeLQoUPiwoULz7ny2quifRodHS1UKpWIjo4WSUlJYt++fcLV1VVMnjz5OVdeO+3evVt88sknYvv27QKA2LFjh+zy165dExYWFmLKlCniypUrYunSpUKpVIq9e/fWSH0MSy+h9u3bi/DwcOl5YWGhcHNzE/Pnz9e7/FtvvSWCg4N1pnXo0EGMHTu2RuusKyran8UVFBQItVot1q9fX1Ml1jmV6dOCggIRGBgovv32WzFy5EiGpWdUtD9XrFghGjduLPLy8p5XiXVORfs0PDxcvPLKKzrTpkyZIjp37lyjddZF5QlLH374ofDz89OZNnjwYNGnT58aqYmn4V4yeXl5OHv2LHr16iVNMzIyQq9evXDixAm965w4cUJneQDo06dPqcu/TCrTn8VlZ2cjPz8fdnZ2NVVmnVLZPv3888/h5OSEsLCw51FmnVGZ/vzhhx/QqVMnhIeHw9nZGS1atMC8efNQWFj4vMqu1SrTp4GBgTh79qx0qu7atWvYvXs3Xn/99edS84vmeb8v8Yt0XzLp6ekoLCyEs7OzznRnZ2fExcXpXSc1NVXv8qmpqTVWZ11Rmf4s7qOPPoKbm1uJF/7LqjJ9euzYMaxevRoXLlx4DhXWLZXpz2vXruGXX37BsGHDsHv3bly9ehXjx49Hfn4+IiMjn0fZtVpl+nTo0KFIT09Hly5dIIRAQUEBxo0bh7///e/Po+QXTmnvS5mZmcjJyYG5uXm1bo8jS0QGtGDBAmzatAk7duyAmZmZocupkzQaDYYPH45Vq1bBwcHB0OW8EIqKiuDk5ISoqCgEBARg8ODB+OSTT/DNN98YurQ669ChQ5g3bx6WL1+Oc+fOYfv27fjxxx8xe/ZsQ5dG5cCRpZeMg4MDlEol7t69qzP97t27cHFx0buOi4tLhZZ/mVSmP7UWL16MBQsW4KeffkKrVq1qssw6paJ9mpiYiOTkZISEhEjTioqKAADGxsaIj4+Hl5dXzRZdi1XmGHV1dYWJiQmUSqU0zdfXF6mpqcjLy4OpqWmN1lzbVaZPP/vsMwwfPhzvvvsuAKBly5bIysrCmDFj8Mknn8DIiGMXFVHa+5K1tXW1jyoBHFl66ZiamiIgIAA///yzNK2oqAg///wzOnXqpHedTp066SwPAAcOHCh1+ZdJZfoTABYuXIjZs2dj7969aNu27fMotc6oaJ/6+Pjg0qVLuHDhgvR444030KNHD1y4cAENGjR4nuXXOpU5Rjt37oyrV69KoRMAEhIS4Orq+tIHJaByfZqdnV0iEGnDqOBXtFbYc39fqpHLxqlW27Rpk1CpVGLdunXiypUrYsyYMcLW1lakpqYKIYQYPny4+Pjjj6Xljx8/LoyNjcXixYtFbGysiIyM5K0DnlHR/lywYIEwNTUVW7duFXfu3JEeGo3GULtQ61S0T4vjp+F0VbQ/b9y4IdRqtYiIiBDx8fEiJiZGODk5iTlz5hhqF2qdivZpZGSkUKvVYuPGjeLatWti//79wsvLS7z11luG2oVaRaPRiPPnz4vz588LAOKf//ynOH/+vLh+/boQQoiPP/5YDB8+XFpee+uAadOmidjYWPH111/z1gFU/ZYuXSoaNmwoTE1NRfv27cVvv/0mzevWrZsYOXKkzvLff/+9aNq0qTA1NRV+fn7ixx9/fM4V124V6U8PDw8BoMQjMjLy+Rdei1X0GH0Ww1JJFe3PX3/9VXTo0EGoVCrRuHFjMXfuXFFQUPCcq67dKtKn+fn5YubMmcLLy0uYmZmJBg0aiPHjx4uHDx8+/8JroYMHD+r9vajtw5EjR4pu3bqVWKdNmzbC1NRUNG7cWKxdu7bG6lMIwfE/IiIiotLwmiUiIiIiGQxLRERERDIYloiIiIhkMCwRERERyWBYIiIiIpLBsEREREQkg2GJiIiISAbDEhEREZEMhiUiIiIiGQxLRERERDIYloiIiIhkMCwRERERyfh/8AAV6Glj0PYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(6, 3))\n", + "ax.boxplot(\n", + " [modela, modelb],\n", + " tick_labels=[f\"A mean: {modela.mean():.0%}\", f\"B mean: {modelb.mean():.0%}\"],\n", + " vert=False,\n", + " showmeans=True,\n", + " meanline=True,\n", + " widths=0.5,\n", + ")\n", + "ax.invert_yaxis()\n", + "ax.set_title(\"AUPIMO scores distributions from two models\")\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Is this difference significant?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Image by image comparison\n", + "\n", + "Since we have the scores of each model for each image, we can compare them image by image." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAHWCAYAAAD3iMk8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoWUlEQVR4nO3deXhM1/8H8PckskcWlQhJSNASS62liNpCbLGT2pdYWvxQpehiqVqqammrVbsqoraqWiOEBkURtGJP7JIgEUlIJsn5/XG/MxKZTDLJzNxJ8n49j2dy79zlM8dNPnPOPfcchRBCgIiIiDQykzsAIiIiU8ZESUREpAUTJRERkRZMlERERFowURIREWnBRElERKQFEyUREZEWTJRERERaMFESERFpwURJVILMnDkTCoUi2zovLy8MGTJEnoAoX4YMGQIvLy+5wyixmCiLsR9//BEKhQKNGzfW+H50dDQUCgUWLlyo8f2FCxdCoVAgOjpava5ly5ZQKBTqf2XKlME777yDNWvWIDMzU73dkCFDYG9vn+14qn3ffPNNjecLCQlRH3fbtm053v/vv/8wYMAAuLu7w8rKChUqVED//v3x33//5VUUZIJOnDiBmTNnIiEhQe5QiLRioizGNm7cCC8vL5w+fRo3btzQ23E9PDywYcMGbNiwAV988QXS09MRFBSETz/9NM99ra2tcePGDZw+fVpjvNbW1hr327FjB+rXr4/Q0FAMHToUP/74I4KCgnDkyBHUr18fO3fuLPTnKqmuXr2KlStXGv28J06cwKxZs5go82HlypW4evWq3GGUWEyUxVRUVBROnDiBRYsWwcXFBRs3btTbsR0dHTFgwAAMGDAAH330EY4fPw4PDw/88MMPUCqVWvetUqUKqlWrhs2bN2db//LlS+zcuROdOnXKsc/NmzcxcOBAVK5cGRcvXsRXX32FoKAgzJ49GxcvXkTlypUxcOBA3Lp1S2+f0VBevnyZreZtCqysrGBhYaF1m+TkZCNFQ1mpyt3CwgJWVlYyR1NyMVEWUxs3boSzszM6deqEXr166TVRvs7W1hbvvvsukpOTERcXl+f2ffv2xZYtW7IljN27dyMlJQV9+vTJsf0333yDlJQUrFixAi4uLtneK1u2LH7++WckJydjwYIFeZ77+++/R82aNWFrawtnZ2c0bNgQmzZtyrbN/fv3ERQUhAoVKsDKygre3t748MMPkZaWpt7m1q1b6N27N8qUKaP+/Hv27Ml2nLCwMCgUCgQHB+Pzzz+Hu7s7bG1tkZiYCAA4deoU2rdvD0dHR9ja2qJFixY4fvx4tmM8f/4cEyZMgJeXF6ysrODq6oq2bdvi3LlzeX7W8PBwvPPOO7C2tkaVKlXw888/a9zu9XuU69atg0KhwNGjRzF69Gi4urrCw8ND/f6+ffvQvHlz2NnZoXTp0ujUqZPG5u8rV66gT58+cHFxgY2NDapVq4bPPvsMgHSvdPLkyQAAb29vdZN71mZ+TU6dOoWOHTvC2dkZdnZ2ePvtt7F06dJs2xw+fFgdn5OTE7p27YrIyMhs26ju1V67dg0DBgyAo6MjXFxc8MUXX0AIgbt376Jr165wcHCAm5sbvv3222z7q/5vt2zZgk8//RRubm6ws7NDly5dcPfu3Wzb/vXXX+jduzcqVqwIKysreHp64qOPPsKLFy+ybae6XXHz5k107NgRpUuXRv/+/dXvvX6PMjg4GA0aNEDp0qXh4OCA2rVr5ygLXa7T3377DXPmzIGHhwesra3Rpk0bvbZEFWWl5A6ADGPjxo3o0aMHLC0t0bdvX/z00084c+YM3nnnHYOc79atWzA3N4eTk1Oe2/br1w8zZ85EWFgYWrduDQDYtGkT2rRpA1dX1xzb7969G15eXmjevLnG47333nvw8vLK8QfgdStXrsS4cePQq1cvjB8/Hi9fvsTFixdx6tQp9OvXDwDw4MEDNGrUCAkJCRg5ciSqV6+O+/fvY9u2bUhJSYGlpSViYmLQtGlTpKSkYNy4cXjjjTewfv16dOnSBdu2bUP37t2znXf27NmwtLTEpEmTkJqaCktLSxw+fBgdOnRAgwYNMGPGDJiZmWHt2rVo3bo1/vrrLzRq1AgA8MEHH2Dbtm0YO3YsatSogSdPniA8PByRkZGoX79+rp/10qVLaNeuHVxcXDBz5kykp6djxowZKFeunNYyymr06NFwcXHB9OnT1TWbDRs2YPDgwfD398fXX3+NlJQU/PTTT/D19cX58+fVf8wvXryI5s2bw8LCAiNHjoSXlxdu3ryJ3bt3Y86cOejRoweuXbuGzZs3Y/HixShbtiwA5PgilFVISAg6d+6M8uXLY/z48XBzc0NkZCT+/PNPjB8/HgBw6NAhdOjQAZUrV8bMmTPx4sULfP/992jWrBnOnTuXI9kEBgbCx8cH8+fPx549e/DVV1+hTJky+Pnnn9G6dWt8/fXX2LhxIyZNmoR33nkH7733Xrb958yZA4VCgSlTpiA2NhZLliyBn58fIiIiYGNjAwDYunUrUlJS8OGHH+KNN97A6dOn8f333+PevXvYunVrtuOlp6fD398fvr6+WLhwIWxtbXMti759+6JNmzb4+uuvAQCRkZE4fvy4uix0vU7nz58PMzMzTJo0Cc+ePcOCBQvQv39/nDp1Ktf/kxJDULHzzz//CAAiJCRECCFEZmam8PDwEOPHj8+2XVRUlAAgvvnmG43H+eabbwQAERUVpV7XokULUb16dREXFyfi4uJEZGSkGDdunAAgAgIC1NsNHjxY2NnZZTteixYtRM2aNYUQQjRs2FAEBQUJIYSIj48XlpaWYv369eLIkSMCgNi6dasQQoiEhAQBQHTt2lXrZ+7SpYsAIBITE3PdpmvXrurz52bQoEHCzMxMnDlzJsd7mZmZQgghJkyYIACIv/76S/3e8+fPhbe3t/Dy8hIZGRlCCKH+LJUrVxYpKSnZjvPmm28Kf39/9TGFECIlJUV4e3uLtm3bqtc5OjqKMWPGaI1Zk27duglra2tx+/Zt9brLly8Lc3Nz8fqvfaVKlcTgwYPVy2vXrhUAhK+vr0hPT8/2GZ2cnMSIESOy7f/o0SPh6OiYbf17770nSpcune38qs+uoun6yk16errw9vYWlSpVEvHx8bkes27dusLV1VU8efJEve7ChQvCzMxMDBo0SL1uxowZAoAYOXJktnN4eHgIhUIh5s+fr14fHx8vbGxsspWR6v/W3d092zX322+/CQBi6dKl6nVZ/+9V5s2bJxQKRbbyGTx4sAAgpk6dmmP7wYMHi0qVKqmXx48fLxwcHLL9/7xO1+vUx8dHpKamqrddunSpACAuXbqU6zlKCja9FkMbN25EuXLl0KpVKwCAQqFAYGAggoODkZGRUejjX7lyBS4uLnBxcYGPjw++//57dOrUCWvWrMn3Mfr164cdO3YgLS0N27Ztg7m5eY5vuIDU9AgApUuX1no81fuqZk1NnJyccO/ePZw5c0bj+5mZmfj9998REBCAhg0b5nhf9VjF3r170ahRI/j6+qrfs7e3x8iRIxEdHY3Lly9n22/w4MHq2gUARERE4Pr16+jXrx+ePHmCx48f4/Hjx0hOTkabNm1w7NgxdbO0k5MTTp06hQcPHmj9/FllZGTgwIED6NatGypWrKhe7+PjA39//3wfZ8SIETA3N1cvh4SEICEhAX379lXH/PjxY5ibm6Nx48Y4cuQIACAuLg7Hjh3DsGHDsp0fQI5HU/Lr/PnziIqKwoQJE3K0WqiO+fDhQ0RERGDIkCEoU6aM+v23334bbdu2xd69e3Mcd/jw4eqfzc3N0bBhQwghEBQUpF7v5OSEatWqabwHPmjQoGzXZq9evVC+fPls58r6f5+cnIzHjx+jadOmEELg/PnzOY754YcfaisKdUzJyckICQnJdRtdr9OhQ4fC0tJSvaxqwSkK9/4NjYmymMnIyEBwcDBatWqFqKgo3LhxAzdu3EDjxo0RExOD0NBQnY+p6bm7kJAQHDp0COHh4Xj06BH+/PNPdfNZfrz//vt49uwZ9u3bh40bN6Jz584ak6FqnSph5iY/CXXKlCmwt7dHo0aN8Oabb2LMmDHZ7gnGxcUhMTERtWrV0nqu27dvo1q1ajnW+/j4qN/PytvbO9vy9evXAUgJVPWFQ/Vv1apVSE1NxbNnzwAACxYswL///gtPT080atQIM2fOzPMPV1xcHF68eKHxMRxNcecmt7hbt26dI+6DBw8iNjYWwKs/rHmVoy5u3ryZ5zFV5Z7b/43qy0hWrydyR0dHWFtb57iWHR0dER8fn+O4r5exQqFA1apVs91rvXPnjjp529vbw8XFBS1atAAA9f+zSqlSpbLdD87N6NGj8dZbb6FDhw7w8PDAsGHDsH///mzb6Hqdvl4Wzs7OAKDxc5c0vEdZzBw+fBgPHz5EcHAwgoODc7y/ceNGtGvXDgDUj2K83qlAJSUlJdt2KnZ2dvDz8ytUnOXLl0fLli3x7bff4vjx49i+fbvG7RwdHVG+fHlcvHhR6/EuXrwId3d3ODg45LqNj48Prl69ij///BP79+/H9u3b8eOPP2L69OmYNWtWoT6PNllrFADUtcVvvvkGdevW1biP6hnUPn36oHnz5ti5cycOHjyIb775Bl9//TV27NiBDh06GCxmbXFv2LABbm5uObYvVaro/TnJWmPWtg4AhBA6Hz8jIwNt27bF06dPMWXKFFSvXh12dna4f/8+hgwZkqMHtJWVFczM8q6/uLq6IiIiAgcOHMC+ffuwb98+rF27FoMGDcL69et1jhPQ7+cuborelU1abdy4Ea6urli2bFmO93bs2IGdO3di+fLlsLGxgYuLC2xtbXN9Puvq1auwtbXVqaaoi379+mH48OFwcnJCx44dc92uc+fOWLlyJcLDw7M1I6n89ddfiI6OxqhRo/I8p52dHQIDAxEYGIi0tDT06NEDc+bMwbRp0+Di4gIHBwf8+++/Wo9RqVIljWV25coV9fvaVKlSBQDg4OCQry8c5cuXx+jRozF69GjExsaifv36mDNnTq6JUtXLVFUDzKowz+Kp4nZ1ddUad+XKlQEgz3LUpRlWde5///0313Oryj23/5uyZcvCzs4u3+fMj9fLWAiBGzdu4O233wYgdaq6du0a1q9fj0GDBqm309Zkml+WlpYICAhAQEAAMjMzMXr0aPz888/44osvULVq1UJfp/QKm16LkRcvXmDHjh3o3LkzevXqlePf2LFj8fz5c/zxxx8ApG+Q7dq1w+7du3Hnzp1sx7pz5w52796Ndu3a5fpNs7B69eqFGTNm4Mcff8x2b+R1kydPho2NDUaNGoUnT55ke+/p06f44IMPYGtrq37cIDev72tpaYkaNWpACAGlUgkzMzN069YNu3fvxj///JNjf9U3644dO+L06dM4efKk+r3k5GSsWLECXl5eqFGjhtY4GjRogCpVqmDhwoVISkrK8b7qEZuMjIwcTXOurq6oUKECUlNTcz2+ubk5/P398fvvv2f7f42MjMSBAwe0xqaNv78/HBwcMHfuXI3Py6ridnFxwXvvvYc1a9bkuK6y1k5USSs/Aw7Ur18f3t7eWLJkSY7tVccsX7486tati/Xr12fb5t9//8XBgwe1fhkrqF9++SXbbYFt27bh4cOH6i8xqt+drJ9bCJHjMQ5dvX4tm5mZqZOz6too7HVKr7BGWYz88ccfeP78Obp06aLx/XfffVc9+EBgYCAAYO7cuXj33XdRv359dTf+6OhorFixAgqFAnPnzjVYvI6Ojpg5c2ae27355ptYv349+vfvj9q1ayMoKAje3t6Ijo7G6tWr8fjxY2zevFld68hNu3bt4ObmhmbNmqFcuXKIjIzEDz/8gE6dOqnvbc6dOxcHDx5EixYtMHLkSPj4+ODhw4fYunUrwsPD4eTkhKlTp2Lz5s3o0KEDxo0bhzJlymD9+vWIiorC9u3b82w6MzMzw6pVq9ChQwfUrFkTQ4cOhbu7O+7fv48jR47AwcEBu3fvxvPnz+Hh4YFevXqhTp06sLe3x6FDh3DmzJkcz/W9btasWdi/fz+aN2+O0aNHIz09Xf0MaV7N2LlxcHDATz/9hIEDB6J+/fp4//334eLigjt37mDPnj1o1qwZfvjhBwDAd999B19fX/V1pfr/2rNnDyIiIgBIXxgA4LPPPsP7778PCwsLBAQEaKz1mZmZ4aeffkJAQADq1q2LoUOHonz58rhy5Qr+++8/9ReAb775Bh06dECTJk0QFBSkfjwkv9earsqUKQNfX18MHToUMTExWLJkCapWrYoRI0YAAKpXr44qVapg0qRJuH//PhwcHLB9+/ZC3/cbPnw4nj59itatW8PDwwO3b9/G999/j7p166rvQRb2OqUsZOptSwYQEBAgrK2tRXJycq7bDBkyRFhYWIjHjx+r10VGRorAwEDh6uoqSpUqJVxdXcX7778vIiMjc+yf9REPbfJ6PCQ3rz8ektXFixdF3759Rfny5YWFhYVwc3MTffv2zXf39Z9//lm899574o033hBWVlaiSpUqYvLkyeLZs2fZtrt9+7YYNGiQcHFxEVZWVqJy5cpizJgx2brO37x5U/Tq1Us4OTkJa2tr0ahRI/Hnn3/m+7MIIcT58+dFjx491PFUqlRJ9OnTR4SGhgohhEhNTRWTJ08WderUEaVLlxZ2dnaiTp064scff8zX5z169Kho0KCBsLS0FJUrVxbLly9XPxaRVW6Ph2h6REb1ufz9/YWjo6OwtrYWVapUEUOGDBH//PNPtu3+/fdf0b17d3UZVatWTXzxxRfZtpk9e7Zwd3cXZmZm+XpUJDw8XLRt21ZdHm+//bb4/vvvs21z6NAh0axZM2FjYyMcHBxEQECAuHz5crZtVOUQFxeXbb2m61aInNeu6v928+bNYtq0acLV1VXY2NiITp065Xgk5vLly8LPz0/Y29uLsmXLihEjRogLFy4IAGLt2rV5nlv1XtbHQ7Zt2ybatWsnXF1dhaWlpahYsaIYNWqUePjwYbb9CnOdqh4fyxpjSaUQgndqiYh0ERYWhlatWmHr1q3o1auX3OGQgbHuTUREpAUTJRERkRZMlERERFrwHiUREZEWrFESERFpwURJRESkRYkbcCAzMxMPHjxA6dKlCzyTARERFX1CCDx//hwVKlTQOgBDiUuUDx48gKenp9xhEBGRibh7967WWVtKXKJUDVV29+5drTNN5EWpVOLgwYNo164dLCws9BVekcdyyR3LRjOWS+5YNprpq1wSExPh6emZ53y3JS5RqppbHRwcCp0obW1t4eDgwAs4C5ZL7lg2mrFccsey0Uzf5ZLXbTh25iEiItKCiZKIiEgLJkoiIiItmCiJiIi0YKIkIiLSgomSiIhICyZKIiIiLZgoiYiItGCiJCIi0oKJkoiISAtZE+WxY8cQEBCAChUqQKFQ4Pfff89zn7CwMNSvXx9WVlaoWrUq1q1bZ/A4iYio5JI1USYnJ6NOnTpYtmxZvraPiopCp06d0KpVK0RERGDChAkYPnw4Dhw4YOBIicgUxccD9+5Jr4bYnkxLfDxQvTpQvrxxzyvroOgdOnRAhw4d8r398uXL4e3tjW+//RYA4OPjg/DwcCxevBj+/v6GCpOITFBkJBAeDiQlAfb2gK8v4OOjv+3JtERGAjVqSD/b2EivTk5AcrLhz12kZg85efIk/Pz8sq3z9/fHhAkTct0nNTUVqamp6uXExEQA0ujzSqWywLGo9i3MMYojlkvuWDaaFaRcEhKA48eln729gbg4ablsWemPZ2G3NxW8ZiQJCUDnzq8SpI2NVB7W1ko0bAicPFmw4+a3XBVCCFGwU+iXQqHAzp070a1bt1y3eeuttzB06FBMmzZNvW7v3r3o1KkTUlJSYKMqxSxmzpyJWbNm5Vi/adMm2Nra6iV2IiIqelJSUtCvXz88e/ZM67SLRapGWRDTpk3DxIkT1cuqiTrbtWtX6PkoQ0JC0LZtW84TlwXLJXcsG80KUi4JCcCuXYAQgIuLVENUKICuXXOvUeqyvangNSNJSADq1cvE48e3YGbmDRubdKxZE4phw9rA3d0KZ88W7LiqFsa8FKlE6ebmhpiYmGzrYmJi4ODgoLE2CQBWVlawsrLKsd7CwkIvF56+jlPcsFxyx7LRTJdycXEBmjWT7jlGRUn3HJs1k9brY3tTU9KvmdjYTJR1Hon793cCOACgDgDgxQsFju5KhoWFU4GOm98yLVKJskmTJti7d2+2dSEhIWjSpIlMERGRXHx8ADc3qTOHnR3g7Kzf7ck0PHmSiQ8+GIkL/66DAgpY4BIAqVfP6WpBcH7wf4B3M4PGIGuiTEpKwo0bN9TLUVFRiIiIQJkyZVCxYkVMmzYN9+/fxy+//AIA+OCDD/DDDz/gk08+wbBhw3D48GH89ttv2LNnj1wfgYhk5OysW8LTdXuSV2ZmJsaMGYHw8DUwU5jhI9tmqFc6EjesNwMoh2qWUcCLFwaPQ9ZE+c8//6BVq1bqZdW9xMGDB2PdunV4+PAh7ty5o37f29sbe/bswUcffYSlS5fCw8MDq1at4qMhRETFRHy8VOu3fvkEkz/9EFu2boVCYYZhDSbBN/YFYpMt4V7qLoBygKsrUKWKwWOSNVG2bNkS2jrdahp1p2XLljh//rwBoyIiIjmonnVNvH4f27cPx8lb+2FuZoYFI2eh9JPGiFLEwv7mRbwrTuAmGko3mr29DR5XkbpHSURExVN8vJQkRXIyPBPOISElDmYKc6wYMBLDqtkj/sphJF//F3Yuj2FvkYSbgPRgZXy8wdvTmSiJiEh2yclAUmwKvK3uw/zFC8zovxBHL99Eu+buQMxZOGc+gfPzSCApCUpzc2mniAigZ08mSiIiKv6sov9D5P6tsC3TEOWe3cezBBvU86oPu+cXgFKlAAsL6UFYGxugQgVpp8hI4PFjwMPDoLFxmi0iItKbggw8nx4Xh/EfD8PK8FnYfX8Xoqx9oIiLga/FKTjbK4EWLQBHRylZOjsDKSnSjvb2gBGG92ONkoiI9KIgA8+np6djQFAQtpw+jVLm5nj/vfJoWQOwi34G567vAVWrSskxMRE4fBh4+VLq7QoAnp7SgL0GxkRJRESFpu6MI6SOqLGx0rKbW+63ENPT09G/f3/8tns3LMzNsXXkSHR9rz4Qeweo5PAqSQJAu3bA06fAb78BGRnSuh492OuViIiKhuRkqSbp7Q2Ym0uVvqioV9NgvT4iklKpRP/+/bF161ZYWFhg+5w5CHByejXGoK9vzgz7/vtA48ZSFn70CGjf3iifjYmSiIgKzc5Oym+xsVKSjI2VBp4/dw64dUuqaaryX/XqQp0kLUuVwvZBg9DZyQmoXVvqmJPbGIPx8dJ9ysqVpURpJOzMQ0REhebsLCVBhUKqFD56BMTEAL/+Cpw9+6rTang4kJCggL+vL6wtLLDjgw/QuXNn6c1Ll3JPkpGRwLZtwNat0lQwRsQaJRER6YVq4Pn794FDhwArK6kWaWUFXLkCNGki1TSTk4GgHj3Q/skTuNerl7Ot9vVE+foN0Lg4aX1CglGmgGGNkoiI9MbZWZrjUwjA3R2wtZVqmc+fp2H58o+RmRkLOzsAdnZw9/CQMmdGhvRqby/VKF+nugHq6iolVVVyVD0mYmBMlEREpFeq+5UpKUC1akBCQhoOHeqN8PBFWLeuExwdM3O21SoUmjvwZD2gKqmqapS2tkb5PGx6JSIivVLlwPBw4OXLVFy82BsPHuyGtbU1vv12DszM/ldHy+8koVkPGBUFlC4trXdyMsrnYaIkIiK98/EBnJ1TMWBAT/z33x5YW1vjjz/+QNu2bbNvmN9JQrMmVSsr4MQJwwSuARMlERHp3cuXLxEU1BOhoXthY2OD3bt3o039+sC//0obuLvrPpi5KqkaYdi6rJgoiYhI78aPH4+9e6Uk+eeff6J1+fLA99+/SpS1agG9e+c9xp0JYGceIiLSu2nTpqFGjRrYs2cPWterBxw4AFy/Lo3N+sYb0s8HDug2enp8vJRoIyMNF7gGrFESEZFeCCGgUCgAAF5eXrh48SLMzc1fTSeimv0DAFJTpXW5PTeZtYNPfLw09+TBg1KSNDMDBg8Grl6VaqYGxkRJRESF9uLFC/Tu3RtBQUHo3r07AEhJEniV8G7dkpKeENJ9RmfnnM9Nvj4FSfnywI0bQFiY1OPV0vLVPsHBwMcfG3ziZja9EhFRoaSkpKBLly7Ys2cPhg0bhmfPnmXfwNkZ8PcH3nxTmmj5yRPpZ3//7Enu9RF4kpKALVuk9QqFtJyU9CpR/vefNAyQgbFGSUREBaZKkqGhobCzs8Mff/wBR0fHnBv6+AD/93+vEpumXq+vT0FSurQ0D+UbbwDW1kBamrRNVJS0/cuXhv1w/8NESUREBZKcnIyAgAAcOXIE9vb22LdvH3x9fXPfIa9nJl+fguT5c8DBAcjMlIb4+esvqclWNWCBra3mIe/0jE2vRESks+TkZHTu3FmdJPfv3689SebH68Pa2dsDgYFSMhQCqF4dqFfv1WTN1atLHYQMjDVKIiLS2YoVKxAWFobSpUtj//79aNq0qX4OrGlYu/h4qck2LQ24efNVcrSxMUqNkomSiIh0Nn78eNy+fRuBgYFo0qSJfg/+ehOt6mcbG2n4Ohsb/Z4vD0yURESkleqxRiAZ5cpZwsLCAmZmZliyZInxgkhOljr3tG8v1SwBqWlW03OYesZESUREuVI91vj48XOsWdMRVaqUx+7dG2FhhHuD2ag6+iQnSx19gNznr9QzduYhIiKNVI81vnjxHL/80gE3boTj2LGDOH/+lv5PpBq9JzdZO/pER0vr3n3X4LVJgDVKIiqGXh8BjQomORl4/DgRv/zSAVeunICdnRNGjgxBhQrV9HeS10fi8fXNfaB0VUefxERpSLtqeoxDCyZKIipWdPm7S9plZDzDqlXtcevW37C3d8a4cSHw8mqgv9bO10fiiY2Vlt3cTOobDpteiajYeP3vrhDSsi4TVJDk2bNnCAz0x61bf8PW1hkjRx6Cl1cD+PrqMYepRuJxdZVG4nF1lZalnkM5RUYC27YBO3dKy1ev6ikQ7VijJKJi4/UR0FxdpefWjdAxstj577//cOHCBZQpUwY7dhxClSr19N+U/fpIPLGxOTvoqNrRlcpX34K8vKT3/v67YBNA64iJkoiKjfz83aX8adq0Kf7880+88cYbqFu3rmFOouqgEx7+aiSerFXWrO3oaWlS0nz3XWkIOyFe1T6ZKImI8ievv7ukXXx8PGJjY1Htf51k2rRpY/iTahqJRwomezt6dLQ0Ok9UlLSsUBjtWxATJREVK7n93SXtnj59irZt2+L+/fs4cuQIfIzVAyq3Lsqvt6N7eQGPHklNsNHR0no+HkJEVDB5TVJB2T19+hR+fn44f/48XFxckJGRYZwTa+uirKkdvUoVwM9Pano14uMh7PVKRFSCPXnyBG3atMH58+fh6uqKI0eOoFatWoY/cV5dlF+fSUShkJa9vYEKFQwfXxasURIRFWGFGVzhyZMn8PPzQ0REhDpJ1qhRwzhB5aeLsom0ozNREhEVUYUZXEFVk7xw4QLKlSuHw4cP6ydJ5jeo/HZRNoF2dDa9EhEVEVmHRC3s4AqlSpWClZUV3NzcEBYWpr+aZH6Dyq1p1QRvLrNGSURUBLxeUatatXCDKzg6OuLAgQOIi4vDm2++qZ8gdR3x4fWmVUD6JmBi3ZWZKImITFxCQs4hUS9ckCphugyuEBsbiz179mDo0KEAACcnJzg5Oekv0IKM+KBqWn39m0Dt2oCHh0kkTTa9EhGZuJSUnEOiCgHUqZP/lsuYmBi0atUKw4YNw/Llyw0TaEGbU19vsn3wAFi2DFi/XhrbNTLSMPHmE2uUREQmztZWc0Wtbl3pX16dQh89eoTWrVsjMjISFSpUKPiIO/npzVqQnqpZm2xfvABiYoDUVKBcOSAzU/YZRZgoiYhMnJOT9qH5tOWPhw8fonWLFrhy/Trcy5fHkbCwgt2T1KWLra49VbM22ZqbA48fA2XLSuttbGQf2Z6JkoioCChIRe3hw4do1awZrkZFwcPJCUfGjEHV9HTdT27oeSOzDtL76BFgZSXVJm1sct7njI+XJm42IiZKIqIiQpeKWkpKClq1aIGrUVHwdHbGkTlzUMXcvGAJzhjzl2X9JnDvHnDpUs7qs6pWm5wsxXL1KmCEUYSYKImIiiFbW1sE9emDH378EUfmzkVld3cgI6NgCc5Y85epvgl4eEjjuGatPmet1XI+SiIi0ofJH3+MkS4ucDQzk5JkQROcHPOXvV59zlqrNfJ8lHw8hIiomLh//z769++PRNU9PGdnOLZrp5/Rb3x8gF69gN69pVdjTcOlkrVWm5kpreN8lERElF93795Fq1atcPPmTWRkZCA4OFh6Q58Di8s57mrWWi3noyQiIl3cuXMHrVq1wq1bt+Dt7Y2vv/46+wYmMLC4XqiSfmIi56MkIqL8uX37Nlq2bIlbt26hcuXKCAsLQ6VKleQOy3CcnY0+HyUTJRFRERUdHY2WLVsiKioKVapUQVhYGCpWrCh3WMUOm16JiIogIQT69u2L6OhodZL08PDQ/UCFmfm5hGCiJCIqghQKBVavXo1Ro0YhODgY7u7uuh+kMDM/F1QRTMxMlERERUh6ejpKlZL+dNeoUQPHjh2DQqHQ/UCGHpZOEzkSsx7wHiURURFx69Yt1KpVC4cPH1avK1CSBF49wJ917i7VA/yaxMdLQ8vFx2s/bm7bvZ6YhZCW8zqeCWCNkoioCLh58yZatWqFu3fvYvLkyThz5gzMzApR19E2LN3rzaP5rQlq284Y48UaiOw1ymXLlsHLywvW1tZo3LgxTp8+rXX7JUuWoFq1arCxsYGnpyc++ugjvHz50kjRElFJk9+KlCHduHEDLVu2xN27d1G9enXs2bOncEkSyH2S5UePpMmSt26VXv/+O381wbxqjFkTc2GG05OBrDXKLVu2YOLEiVi+fDkaN26MJUuWwN/fH1evXoWrq2uO7Tdt2oSpU6dizZo1aNq0Ka5du4YhQ4ZAoVBg0aJFMnwCIirOTOGW2oMHDzBmzBjcv38fPj4+OHz4MNzc3PRz8NdH7QGk5Jj1vuWxY4BSCdSsqb0mmFeNUY7xYvVE1kS5aNEijBgxAkOHDgUALF++HHv27MGaNWswderUHNufOHECzZo1Q79+/QAAXl5e6Nu3L06dOmXUuImo+JOjr8vrrl+/js8//xxPnz5FjRo1cPjwYZQrV06/J8k6as+9ezmTXVwcUKpU3jOH5GeGEV2H0zORHrKyJcq0tDScPXsW06ZNU68zMzODn58fTp48qXGfpk2b4tdff8Xp06fRqFEj3Lp1C3v37sXAgQNzPU9qaipSU1PVy6rBgpVKJZRKZYHjV+1bmGMURyyX3LFsNDPVcklMlP5Ge3lJk1W4ukpDjCYmSn//jWHp0qV4+vQpfHx8cPDgQZQpUybvckpIAFJSAFtbwMlJtxNaWQGlS0vJ0cVFei1XDqhRA7h8WSoAe3tpjFV7e6mmqWJvDzRpIjXV5rWdqgC1fZarV6Vjqarz776rHrJOX9dMfvdXCCFEoc5UQA8ePIC7uztOnDiBJk2aqNd/8sknOHr0aK61xO+++w6TJk2CEALp6en44IMP8NNPP+V6npkzZ2LWrFk51m/atAm2traF/yBERAaSnp6OjRs3omvXrnDSNelRnlJSUtCvXz88e/YMDg4OuW5XpHq9hoWFYe7cufjxxx/RuHFj3LhxA+PHj8fs2bPxxRdfaNxn2rRpmDhxono5MTERnp6eaNeundaCyYtSqURISAjatm0LCwuLAh+nuGG55I5lo5kpl4uWSo3B3L9/H+XLl4eZmRmUSiVKlSqVv7JJSAB27ZLailW1QYUC6NpV95plYWql+vDgAbBz56vqfGamVEvt3h2oUEFv14x6OrI8yJYoy5YtC3Nzc8TExGRbHxMTk+uN6i+++AIDBw7E8OHDAQC1a9dGcnIyRo4cic8++0xjLzArKytYWVnlWG9hYaGXX0p9Hae4YbnkjmWjmSmWS61agLu78W6TRUZGolWrVujatWu2lrJ8lU1qKvD8+av7iy4uUqeZ1FRA13J1cSlA9Hrk4CAVeNb7nXZ20vosn6Ww10x+95Xt8RBLS0s0aNAAoaGh6nWZmZkIDQ3N1hSbVUpKSo5kaG5uDkAa95CISN+cnQEPD8MnycuXL6Nly5aIiYnBqVOnkJSUpNsBivDjFznk9uiKTB16ZG16nThxIgYPHoyGDRuiUaNGWLJkCZKTk9W9YAcNGgR3d3fMmzcPABAQEIBFixahXr166qbXL774AgEBAeqESURU1Pz3339o3bo1YmNjUbduXRw6dAgODg66dVYpwo9faKTPCacLSdZEGRgYiLi4OEyfPh2PHj1C3bp1sX//fnX35zt37mSrQX7++edQKBT4/PPPcf/+fbi4uCAgIABz5syR6yMQERXKv//+i9atWyMuLg716tXDoUOHUKZMmYIdzISSi16YyITTsnfmGTt2LMaOHavxvbCwsGzLpUqVwowZMzBjxgwjREZEZFiXLl1C69at8fjxY9SvXx8hISEFT5IqJpJcihPZh7AjIiqpbt26hYSEBDRo0KBwNUkyKNlrlEREJVXXrl2xZ88evPPOO3BmLdBkMVESERnRhQsX4OTkhEqVKgEA2rVrl/dOCQnSYx7F4b5jEcRESURkJOfOnYOfnx+cnJxw9OhReHp65m/HXbukZySL0GTHxQnvURIRGcHZs2fh5+eH+Ph4lCtXLn8jgyUkSK9FcLLj4oSJkojIwP755x91kmzSpAkOHDgAR0fHvHdMSZFeXVxezeaRlCQ9/kFGw0RJRGRAZ86cQdu2bZGQkICmTZti//79+R9nWjVxQ1xc0R9tpwhjoiQiMpBz586pk2SzZs10S5LAqwHJTWQot5KKnXmIiAzEw8MD7u7uqF27Nvbu3YvSpUsX7EBdu7LXq4yYKImIDMTV1RVHjhyBra0t7Asz27OTk+4zgJDesOmVqAiLjwfu3WMnSFNy8uRJrF+/Xr3s6upauCQpB15Y2bBGSVRERUZKTwqoJhXm43XyO3HiBNq3b4+kpCSULVsWnTp1kjsk3fHCyoE1SqIiKD5e+lvGx+tMx/Hjx+Hv74/nz5+jZcuWaNmypdwh6Y4XlkZMlERFUHKy9IXf1ZWP15mC8PBwdU2ydevW+PPPP2FXFB/h4IWlERMlURFUnCazL+r++usvdZJs06YNdu/eDVvV849FDS8sjZgoiYog1WT2fLxOXrdu3UKHDh2QnJyMtm3bFu0kCfDCygU78xAVUcVtMvuiyNvbG2PGjEFERAR+//132NjYyB1S4fHCyoGJkqgI42T28lIoFJg/fz6USiUsLS3lDkd/eGFlw6ZXIiIdHD58GN26dcOLFy8ASMmyWCVJyoGJkogon0JDQ9G5c2fs2rULCxYskDscMhImSiKifDh06BA6d+6MFy9eoFOnTpg6darcIZGRMFESEeUhJCQEAQEBePnyJTp37ozt27fDyspK7rDISJgoiYi0OHDggDpJBgQEYNu2bUySJQx7vRIR5SIlJQWDBw9Gamoqunbtit9++810Ou7Ex/MRDiNhoiQiyoWtrS3++OMPLFu2DCtXrjSdJMmBy42KiZKI6DXJycnqsVobNWqERo0ayRxRFq8PXB4bKy27ubFmaSC8R0lElMWff/6JypUr48yZM3KHohkHLjc6Jkoiov/ZvXs3evTogdjYWCxfvlzucDTjwOVGx0RJRATgjz/+QM+ePaFUKtG7d2/TTZQcuNzoeI+SiEq8Xbt2oXfv3lAqlQgMDMSvv/6KUqVM+M8jBy43KhO+EoiIDG/nzp3o06cP0tPT8f7772PDhg2mnSRVOHC50bDplYhKLCEEVq1ahfT0dPTt27foJEkyKiZKIiqxFAoFtm3bhgULFuCXX35hkiSNmCiJyKji44F796RXuVy6dAlCCACAjY0NJk+ezCRJuWKiJCKjiYwEtm0Dtm6VXiMjjR/D1q1bUa9ePXz66afqZEmkDRMlERnF6wPKCCEtJyQYL4YtW7agb9++yMjIwMOHD5koKV+YKInIKHIbUCYlxTjn37x5M/r164eMjAwMHToUq1evhpkZ/wRS3niVEJFR5DagjK2t4c+9adMmDBgwAJmZmRg2bBhWrVoFc3Nzw5+YigUmSiIyitwGlHFyMux5f/31VwwcOBCZmZkICgrCypUrWZMknbCbFxEZjaYBZZRKw54zLS0NmZmZGD58OH7++WcmSdIZEyURGZWxB5QZNmwY3nzzTTRr1oxJkgqEVw0RFTvbt29HbGyserl58+ZMklRgvHKIqFhZs2YNevfujdatW+PZs2dyh0PFABMlERUbq1evxvDhwyGEQMuWLeHg4CB3SFQMMFESUbGwcuVKdZL8v//7P3z//fdQKBRyh0XFABMlERV5K1aswMiRIwEA48ePx9KlS5kkSW/Y65WIirRff/0Vo0aNAgBMmDABixYtMlySjI/nZMklEBMlERVpvr6+qFSpEnr06IFvv/3WcEkyMlIanDYpSRpSyNdXejCUij0mSiIq0ry8vHD27FmUKVPGsDXJrCO6x8ZKy25urFmWALxHSURFzrJly7Bjxw718htvvGHYe5K5jeienGy4c5LJYI2SiIqU7777DuPHj0epUqVw/vx51KpVy/AnzTqiu6vrqxHd7ewMf26SHWuURFRkLF26FOPHjwcATJo0CTVr1jTOiXMb0Z3NriUCa5REVCQsXrwYEydOBAB8+umn+Oqrr4z7CIimEd2pRGCiJCKTt2jRInz88ccAgM8++wyzZ8+W5zlJY4/oTiaBTa9EZNIOHjyoTpJffPGFfEmSSizWKInIpPn5+WH48OFwd3fHzJkz5Q6HSiAmSiIySZmZmTAzM4OZmRlWrFjBWiTJhk2vRGRy5s2bh8DAQCiVSgBgkiRZMVESkUmZO3cuPv30U2zbtg1//PGH3OEQyZ8oly1bBi8vL1hbW6Nx48Y4ffq01u0TEhIwZswYlC9fHlZWVnjrrbewd+9eI0VLRIb01Vdf4bPPPgMAzJ49Gz179pQ5IiKZ71Fu2bIFEydOxPLly9G4cWMsWbIE/v7+uHr1KlxdXXNsn5aWhrZt28LV1RXbtm2Du7s7bt++DScnJ+MHT0R69dVXX+HLL78EAMyZMweffvqpzBERSWRNlIsWLcKIESMwdOhQAMDy5cuxZ88erFmzBlOnTs2x/Zo1a/D06VOcOHECFhYWAKQBkYmoaAsODkZwcDAA6f6kpt9/IrnIlijT0tJw9uxZTJs2Tb3OzMwMfn5+OHnypMZ9/vjjDzRp0gRjxozBrl274OLign79+mHKlCkwNzfXuE9qaipSU1PVy4mJiQAApVKp7ihQEI8fK9WvZcsW+DDFjqpMC1O2xZU+yiYhAUhJAWxtgeLSkHL9+nX1AOdz5szBxx9/zOvnf/j7pJm+yiW/+8uWKB8/foyMjAyUK1cu2/py5crhypUrGve5desWDh8+jP79+2Pv3r24ceMGRo8eDaVSiRkzZmjcZ968eZg1a1aO9QcPHoStrW2hP8fp0yGFPkZxFBLCcskNyyanzz77DNHR0ahZsyb7HGjAa0azwpZLSkpKvrYrUs9RZmZmwtXVFStWrIC5uTkaNGiA+/fv45tvvsk1UU6bNk09PiQg1Sg9PT3Rrl07ODg46BxDQgKwaxcAKOHiEoK4uLYALNC1a/H5hl8YSqUSISEhaNu2rbp5nCSFKRvVdScE4OICxMVJ43IX1etOCIG4uDi4urqqv9VPmjSJ18xr+Pukmb7KRdXCmBfZEmXZsmVhbm6OmJiYbOtjYmLg5uamcZ/y5cvDwsIiWzOrj48PHj16hLS0NFhaWubYx8rKClZWVjnWW1hYFKiAU1OB58+luVulz2GBqCgLpKYCvI5fKWj5lgQFKZus1525uZQso6JQJK87IQS++OILrFq1CkeOHEHVqlUB8JrRhmWjWWHLJb/7yvZ4iKWlJRo0aIDQ0FD1uszMTISGhqJJkyYa92nWrBlu3LiBzMxM9bpr166hfPnyGpOkIaimpYuLk5bj4jgtHRle1ukQMzKK7nSIQgh89tlnmDNnDmJiYnDs2DG5QyLKk6zPUU6cOBErV67E+vXrERkZiQ8//BDJycnqXrCDBg3K1tnnww8/xNOnTzF+/Hhcu3YNe/bswdy5czFmzBijxZx1WjqA09KRcRSH6RCFEPj0008xb948ANLckqNGjZI5KqK8yXqPMjAwEHFxcZg+fToePXqEunXrYv/+/eoOPnfu3IGZ2atc7unpiQMHDuCjjz7C22+/DXd3d4wfPx5Tpkwxatw+PkDZssCJE9I9IhcXo56eSqiiPB2iEAJTp07FggULAADfffcd/u///k/mqIjyR/bOPGPHjsXYsWM1vhcWFpZjXZMmTfD3338bOKq8qTpQFMWOFFR0FcXpEIUQ+OSTT7Bw4UIAwA8//GDUViCiwpI9URJR8fby5Uv89ddfAKQhK0ePHi1zRES6YaIkIoOysbHBgQMHcPDgQfTu3VvucIh0Jvug6ERU/AghcPjwYfWyo6MjkyQVWTolyufPn+Ps2bNISkoCAJw7dw6DBg1C7969sXHjRoMESERFixAC48ePR5s2bfDtt9/KHQ5RoeW76fXYsWPo3LkzkpKS4OzsjM2bN6NXr15wd3eHubk5duzYgZSUFIwYMcKQ8RKRCRNCYNy4cfjhhx+gUCg4sw8VC/muUX7++efo3bs37t69iwkTJiAwMBBjx45FZGQk/v33X8yaNQvLli0zZKxEZMKEEBg7dqw6Sa5atQpBQUFyh0VUaPlOlBcvXsTkyZPh7u6OKVOmIDExEYGBger333//fdy8edMgQRKRacvMzMSYMWPw448/QqFQYM2aNRg2bJjcYRHpRb6bXhMTE1GmTBkA0vBztra2KF26tPr90qVL53skdiIqPoQQGDNmDJYvXw6FQoG1a9di8ODBcodFpDf5TpQKhQIK1bhtGpaJqGRSKBSoUqUKzMzMsG7dOgwcOFDukIj0Kt+JUgiBNm3aoFQpaZeUlBQEBASoByNPT083TIREZPImTZqEjh07okaNGnKHQqR3+U6Ur8/32LVr1xzb9OzZs/AREZHJy8zMxIIFC/Dhhx/C0dERAJgkqdgqcKIkopIpMzMTw4cPx9q1a/Hnn3/i2LFj2SYvICpueHUTUb5lZGQgKCgIa9euhZmZGcaOHcskScUex3olonzJyMjAsGHD8Msvv8Dc3BwbN27M9ogYUXHFRElEecrIyMDQoUOxYcMGmJubY/PmzRy7lUoMJkoiytPHH3+sTpLBwcHo1auX3CERGQ1vLhBRnkaOHAkPDw9s2bKFSZJKnHzVKL/77rt8H3DcuHEFDoaITFONGjVw7do12NjYyB0KkdHlK1EuXrw4XwdTKBRMlETFQHp6OkaOHIn+/fujTZs2AMAkSSVWvhJlVFSUoeMgIhORnp6O/v3747fffsOOHTsQHR3N6bKoRCvwPcq0tDRcvXqVQ9cRFSNKpRL9+vXDb7/9BgsLC/zyyy9MklTi6ZwoU1JSEBQUBFtbW9SsWRN37twBAPzf//0f5s+fr/cAicg4lEol+vbti61bt8LS0hI7duxAly5d5A6LKLv4eODBA6OeUudEOW3aNFy4cAFhYWGwtrZWr/fz88OWLVv0GhwRGUdaWhoCAwOxfft2dZLs3Lmz3GERZRcZCWzbBuzcKS1fvWqU0+r8HOXvv/+OLVu24N133802zVbNmjU5cTNREbVs2TLs3LkTlpaW2LlzJzp27Ch3SJL4eCA5GbCzA5yd5Y6G5BQfD4SHA0IAXl7Sur//BtzdDX5t6Jwo4+Li4OrqmmN9cnIy56ckKqLGjh2Ls2fPon///ujQoYPc4UgiI6U/jElJgL094OsL+PjIHRXJJTlZuha8vQEzMylhJiVJ6w2cKHVuem3YsCH27NmjXlYlx1WrVqFJkyb6i4yIDCotLQ2ZmZkAAAsLC/z666+mkySz1h68vaXX8HBpPZVMdnbSF6bYWOB/1y3s7aX1BqZzjXLu3Lno0KEDLl++jPT0dCxduhSXL1/GiRMncPToUUPESER6lpqait69e8PNzQ3Lly83vRlAstYezM0BV1cgKsootQcyUc7OUqtCeDgQHS1dG+++a5TrQeffDl9fX0RERCA9PR21a9fGwYMH4erqipMnT6JBgwaGiJGI9Cg1NRW9evXC7t27sWHDBkRGRsodUk5Zaw8ZGdKrkWoPZMJ8fIBevYDu3aXlatWMctoCDYpepUoVrFy5Ut+xEJGBvXz5Ej179sTevXthbW2N3bt3o2bNmnKHlVPW2kNU1Kt7lKxNkrOzdD1ERBjtlPlKlImJifk+oIODQ4GDISLDefnyJXr06IF9+/bBxsYGu3fvVg9PZ5J8fAA3N/Z6JdnlK1E6OTnlu0drRkZGoQIiIv17+fIlunfvjv3798PGxgZ79uxBq1at5A4rb87OTJAku3wlyiNHjqh/jo6OxtSpUzFkyBB1L9eTJ09i/fr1mDdvnmGiJKJCOX36NA4dOgRbW1vs2bMHLVu2lDskoiIjX4myRYsW6p+//PJLLFq0CH379lWv69KlC2rXro0VK1Zg8ODB+o+SiArlvffew5YtW/DGG29k+30morzp3Ov15MmTaNiwYY71DRs2xOnTp/USFBEVXkpKCu7du6de7tGjB5MkUQHonCg9PT019nhdtWoVPD099RIUERVOSkoKunTpgubNm+P27dtyh0NUpOn8eMjixYvRs2dP7Nu3D40bNwYg3f+4fv06tm/frvcAiUg3KSkpCAgIwOHDh2Fvb48HDx6gUqVKcodFVGTpXKPs2LEjrl+/joCAADx9+hRPnz5FQEAArl27ZjoDKROVUMnJyejcuTMOHz6M0qVL48CBAxxakqiQCjTggIeHB+bOnavvWIioEJKTk9GpUyccPXqUSZJIjwqUKBMSErB69Wr10Fc1a9bEsGHD4OjoqNfgiCh/kpKS0KlTJxw7dgwODg44cOAA3n33XbnDIioWdG56/eeff1ClShUsXrxY3fS6aNEiVKlSBefOnTNEjESUhxcvXuDJkydwcHDAwYMHmSSJ9EjnGuVHH32ELl26YOXKlShVSto9PT0dw4cPx4QJE3Ds2DG9B0lE2rm4uODw4cO4e/cuJycg0rMC1SinTJmiTpIAUKpUKXzyySf4559/9BocEeUuMTERu3btUi+7uroySRIZgM6J0sHBAXfu3Mmx/u7duyhdurRegiIi7RITE9G+fXt0794dv/zyi9zhFC/x8cC9e5wkmtR0bnoNDAxEUFAQFi5ciKZNmwIAjh8/jsmTJ2cb1o6IDOPZs2do3749/v77bzg7O5vmNFlFVWSkNLVXUtKrqb18fOSOimSmc6JcuHAhFAoFBg0ahPT0dACAhYUFPvzwQ8yfP1/vARLRK8+ePYO/vz9OnToFZ2dnHDp0CPXr15c7LNMWH5+/qbri46UkKQTg7S1NFh0eLk31xRlMSjSdE6WlpSWWLl2KefPm4ebNmwCkiZxtbW31HhwRvZKQkAB/f3+cPn0aZcqUwaFDh1CvXj25wzJtutQQk5Ol7by9AXNzwNVVmjQ6OZmJsoQr0HOUAGBra4vatWvrMxYiysWLFy/Qrl07nDlzBmXKlEFoaCjq1q0rd1imTdcaop2dlExjY6UkGRsrLdvZGT92Min5TpTDhg3L13Zr1qwpcDBEpJm1tTVat26NW7duITQ0FHXq1JE7JNOnaw3R2VmqcYaHS9upaqCsTZZ4+U6U69atQ6VKlVCvXj0IIQwZExG9RqFQYN68eRg3bhwqVKggdzhFQ0FqiD4+Uo0zP/c0qcTId6L88MMPsXnzZkRFRWHo0KEYMGAAypQpY8jYiEq0p0+f4ssvv8S8efNgY2MDhULBJKmLgtYQnZ2ZICmbfD9HuWzZMjx8+BCffPIJdu/eDU9PT/Tp0wcHDhxgDZNIz548eYI2bdpg6dKlGDFihNzhFF0+PkCvXkDv3tIrH/WgAtBpwAErKyv07dsXISEhuHz5MmrWrInRo0fDy8sLSUlJhoqRqER5/Pgx2rRpg4iICLi6umLatGlyh1S0OTsDHh6sJVKBFbjXq5mZGRQKBYQQyMjI0GdMRCWWKklevHgR5cqVw+HDh1GjRg25wyIq0XSqUaampmLz5s1o27Yt3nrrLVy6dAk//PAD7ty5A3t7e0PFSFQixMXFoXXr1uokeeTIESZJIhOQ7xrl6NGjERwcDE9PTwwbNgybN29G2bJlDRkbUYkhhEDPnj1x6dIluLm54ciRI6hevbrcYRERdEiUy5cvR8WKFVG5cmUcPXoUR48e1bjdjh079BYcUUmhUCjw7bffYvDgwdi5cyeqVasmd0hE9D/5TpSDBg2CQqEwZCxEJY4QQv179c477+DSpUswNzeXOSoiykqnAQeISH9iYmLQo0cPLFmyBO+88w4AMEkSmSCd56MkosJ79OgRWrVqhRMnTmDYsGHIzMyUOyQiyoVJJMply5bBy8sL1tbWaNy4MU6fPp2v/YKDg6FQKNCtWzfDBkikRw8fPkSrVq0QGRkJDw8P7Ny5E2ZmJvGrSEQayP7buWXLFkycOBEzZszAuXPnUKdOHfj7+yM2NlbrftHR0Zg0aRKaN29upEiJCu/p06do27Ytrly5Ak9PT4SFhaFq1apyh0VEWsieKBctWoQRI0Zg6NChqFGjBpYvXw5bW1uts5BkZGSgf//+mDVrFipXrmzEaIkK7sGDB/j8889x7do1VKxYEWFhYahSpYrcYRFRHgo8Mo8+pKWl4ezZs9mG6DIzM4Ofnx9OnjyZ635ffvklXF1dERQUhL/++kvrOVJTU5GamqpeTkxMBAAolUoolcoCx67atzDHKI5YLrmbPXs2Hjx4gIoVKyIkJASenp4sJ/Ca0YZlo5m+yiW/+8uaKB8/foyMjAyUK1cu2/py5crhypUrGvcJDw/H6tWrERERka9zzJs3D7Nmzcqx/uDBg7C1tdU55teFhIQU+hjFEcslp3bt2iE6Ohp9+vRBZGQkIiMj5Q7JpPCayR3LRrPClktKSkq+tpM1Uerq+fPnGDhwIFauXJnvUYGmTZuGiRMnqpcTExPh6emJdu3awcHBocCxKJVKhISEoG3btrCwsCjwcYoblkt2CQkJcHR0hEKhgFKphJWVFcvmNbxmcsey0Uxf5aJqYcyLrImybNmyMDc3R0xMTLb1MTExcHNzy7H9zZs3ER0djYCAAPU6Vbf6UqVK4erVqznu+VhZWcHKyirHsSwsLPRy4enrOMUNywW4c+cOWrVqhd69e2PevHnq9SwbzVguuWPZaFbYcsnvvrJ25rG0tESDBg0QGhqqXpeZmYnQ0FA0adIkx/bVq1fHpUuXEBERof7XpUsXtGrVChEREfD09DRm+ES5unPnDlq2bIlbt27ht99+Q0JCgtwhEVEByd70OnHiRAwePBgNGzZEo0aNsGTJEiQnJ2Po0KEApKHz3N3dMW/ePFhbW6NWrVrZ9ndycgKAHOuJ5HL79m20atUKUVFRqFy5MsLCwuDs7MwOGURFlOyJMjAwEHFxcZg+fToePXqEunXrYv/+/eoOPnfu3OHD2FRkREdHo1WrVoiOjkaVKlUQFhYGDw8PucMiokKQPVECwNixYzF27FiN74WFhWndl2PQkqmIjo5Gy5Ytcfv2bVStWhVhYWFwd3eXOywiKiRW1Yj05O+//8adO3fw5ptvMkkSFSMmUaMkKg7ef/99KBQKNG/eHBUqVJA7HCLSEyZKokK4desW7Ozs1PfUAwMDZY6IiPSNTa9EBXTjxg20aNECbdq0yXMQfyIqupgoiQrg+vXraNmyJe7du4fMzEzOJ0lUjDFREuno2rVraNmyJe7fv48aNWrgyJEjGkeSIqLigYmSSAdXr15Fy5Yt8eDBA9SsWROHDx/OMag/ERUv7MxDJUJ8PJCcDNjZAc7OBTvG1atX0apVKzx8+BC1atVCaGgoXF1d9RsoEZkcJkoq9iIjgfBwICkJsLcHfH0BHx/dj2NtbQ0rKyvUrl0boaGhcHFx0X+wRGRymCipWIuPl5KkEIC3NxAbKy27ueles6xUqRLCwsJga2vLJElUgvAeJRVryclSTdLVFTA3l16TkqT1+XH58mXs2rVLvVypUiUmSaIShomSijU7O6m5NTYWyMiQXu3tpfV5+e+//9CyZUv06tULBw8eNHywRGSSmCipWHN2lu5JKhRAVJT06uubd7Prv//+i1atWiEuLg61a9dGw4YNjRMwEZkc3qOkYs/HR7onmd9er5cuXULr1q3x+PFj1K9fHyEhIShTpoxxgiUik8NESSWCs3P+Ou9cvHgRrVu3xpMnT9CgQQOEhITAuaDPkxBRscCmV6L/uX37tjpJNmzYEIcOHWKSJCLWKIlUPD090b17d1y4cAEHDx6Ek5OT3CERkQlgoiT6HzMzM/z8889ISUmBvb293OEQkYlg0yuVaOfOncOIESOgVCoBSMmSSZKIsmKNkkqss2fPws/PDwkJCXB3d8fMmTPlDomITBBrlFQi/fPPP+ok2bRpU0ycOFHukIjIRDFRUolz5swZdZJs1qwZ9u/fDwcHB7nDIiITxURJJcqpU6fg5+eHZ8+ewdfXF/v27UPp0qXlDouITBgTJZUYL168QLdu3ZCYmIjmzZszSRJRvjBRUolhY2ODX3/9Fe3bt8fevXvZu5WI8oW9XqnYS09PR6lS0qXepk0btG7dGgqFQuaoiKioYI2SirXjx4/Dx8cHly9fVq9jkiQiXTBRUrEVHh6O9u3b48aNG5g9e7bc4RBREcVEScXSX3/9hfbt2yMpKQlt2rTB6tWr5Q6JiIooJkoqdo4dO4YOHTogOTkZfn5+2L17N2xtbeUOi4iKKCZKKlaOHj2qTpJt27bFH3/8ARsbG7nDIqIijImSig0hBGbPno2UlBT4+/tj165dTJJEVGhMlFRsKBQKbN++HZMnT8bvv//OJElEesFESUXe3bt31T87OjpiwYIFsLa2ljEiIipOmCipSDt06BCqVauGhQsXyh1K0RIfD9y7J70SkVZMlFRkhYSEICAgAC9evMDRo0eRkZEhd0hFQ2QksG0bsHWr9BoZKXdERCaNiZKKpAMHDiAgIAAvX75EQEAAtm3bBnNzc7nDMn3x8UB4OCAE4O0tvYaHs2ZJpAUTJRU5+/fvR9euXZGamoouXbpg27ZtsLKykjss/TNE82hyMpCUBLi6Aubm0mtSkrSeiDTioOhUpOzbtw/du3dHamoqunbtit9++w2WlpZyh6V/kZFSTS8pCbC3B3x9AR+fwh/Xzk46XmyslCRjY6VlO7vCH5uomGKNkoqUq1evIjU1Fd27dy++SdKQzaPOzlLSVSiAqCjp1ddXWk9EGrFGSUXKhAkT4OXlhU6dOsHCwkLucAxD1Tzq7f2qeTQqSlqvj4Tm4wO4uUnHs7NjkiTKA2uUZPKOHDmCZ8+eqZe7detWfJMkkL15NCPDMM2jzs6AhweTJFE+MFGSSfvjjz/g7+8Pf39/PH/+XO5wjIPNo0QmhU2vZLJ27dqF3r17Q6lUwsvLq2QNScfmUSKTwURJJmnnzp3o06cP0tPT8f7772PDhg0oVaqEXa7OzkyQRCaATa9kcnbs2KFOkv369SuZSZKITAYTJZmUXbt2ITAwEOnp6ejfvz9++eUXJkkikhX/ApFJeeutt1CmTBn4+/tj7dq1HJaOiGTHREkmxcfHB2fOnIG7uzuTJBGZBDa9kuy2bNmC0NBQ9XLFihWZJInIZLBGSbLavHkzBgwYACsrK5w+fRq1atWSOyQiomxYoyTZbNq0CQMGDEBmZib69euHGjVqyB0SEVEOrFGSLH799VcMHjwYmZmZGD58OH7++WeYmf3ve1t8vO4P2hdkHyKifGCiJKPbsGEDBg8eDCEERowYgeXLl79KkgWZXspQU1IREYFNr2RkR44cUSfJUaNGZU+SBZleypBTUhERgTVKMjJfX1/07NkTLi4u+OGHH14lSaBg00sZekoqIirxmCjJqCwsLLB582aYmZllT5JA9umlXF3zN71UQfYhItIBm17J4FavXo1Ro0YhMzMTAFCqVKmcSRIo2PRSnJKKiAyMNUoyqJUrV2LkyJEAgNatWyMwMFD7DgWZXopTUhGRAZlEjXLZsmXw8vKCtbU1GjdujNOnT+e67cqVK9G8eXM4OzvD2dkZfn5+Wrcn+axYsUKdJMeNG4c+ffrkb0dnZ8DDQ7eEV5B9iIjyQfZEuWXLFkycOBEzZszAuXPnUKdOHfj7+yM2Nlbj9mFhYejbty+OHDmCkydPwtPTE+3atcP9+/eNHDlps3LlSowaNQoAMH78eCxZsgQKhULmqIiIdCd7oly0aBFGjBiBoUOHokaNGli+fDlsbW2xZs0ajdtv3LgRo0ePRt26dVG9enWsWrUKmZmZ2cYKJXnt27cPY8aMAQB89NFHWLx4MZMkERVZst6jTEtLw9mzZzFt2jT1OjMzM/j5+eHkyZP5OkZKSgqUSiXKlCmj8f3U1FSkpqaqlxMTEwEASqUSSqWywLGr9i3MMYqjGzduYPXq1QCACRMmYP78+UhPT5c5KtPAa0YzlkvuWDaa6atc8ru/rIny8ePHyMjIQLly5bKtL1euHK5cuZKvY0yZMgUVKlSAn5+fxvfnzZuHWbNm5Vh/8OBB2Nra6h70a0JCQgp9jOLm448/xvXr19GiRQvs27dP7nBMDq8ZzVguuWPZaFbYcklJScnXdkW61+v8+fMRHByMsLAwWFtba9xm2rRpmDhxono5MTFRfV/TwcGhwOdWKpUICQlB27ZtYWFhUeDjFBfJycmws7NTf0ObPn06y+U1vGY0Y7nkjmWjmb7KRdXCmBdZE2XZsmVhbm6OmJiYbOtjYmLg5uamdd+FCxdi/vz5OHToEN5+++1ct7OysoKVlVWO9RYWFnq58PR1nKLsu+++w+LFixEWFoYKFSoAYLlow7LRjOWSO5aNZoUtl/zuK2tnHktLSzRo0CBbRxxVx5wmTZrkut+CBQswe/Zs7N+/Hw0bNjRGqJSLJUuWYPz48YiOjsbWrVvlDoeISO9kb3qdOHEiBg8ejIYNG6JRo0ZYsmQJkpOTMXToUADAoEGD4O7ujnnz5gEAvv76a0yfPh2bNm2Cl5cXHj16BACwt7eHvb29bJ+jJFq8eLG6Wfuzzz7Dxx9/zI47RFTsyJ4oAwMDERcXh+nTp+PRo0eoW7cu9u/fr+7gc+fOnWzDnf30009IS0tDr169sh1nxowZmDlzpjFDL9G+/fZbTJo0CQDw+eef48svv+QjIERULMmeKAFg7NixGDt2rMb3wsLCsi1HR0cbPiDSauHChZg8eTIAqdPOzJkzmSSJqNiSfcABKlpevHiBdevWAZBq8bNmzWKSJKJizSRqlFR02NjY4PDhw9i+fTs+/PBDucMhIjI41igpXy5cuKD+2dXVlUmSiEoMJkrK05w5c1C3bl310HRERCUJEyVpNXv2bHz++ecAkOuMLkRExRkTJeVq1qxZmD59OgBpzNysg9cTEZUU7MxDGs2cOVM9mPzXX3+NTz75ROaIiIjkwURJ2QghMHPmTHz55ZcApOECVc9MEhGVREyUlINqBpCFCxfi448/ljkaIiJ5MVFSNgqFAnPmzEHHjh3h6+srdzhERLJjZx6CEAJr1qzBixcvAEjJkkmSiEjCRFnCCSEwbdo0BAUFoVu3bsjIyJA7JCIik8Km1xJMCIEpU6bgm2++AQAEBATA3Nxc5qiIiEwLE2UJJYTAJ598goULFwIAfvjhB4wZM0bmqIiITA8TZQkkhMCkSZOwaNEiAMCyZcswevRomaMiIjJNTJQl0PTp09VJ8qeffsIHH3wgc0RERKaLnXlKoC5dusDJyQk///wzkyQRUR5YoyyB3nnnHdy4cQNvvPGG3KEQEZk81igLKCEh+6spE0Jg6tSpOH36tHodkyQRUf4wURZAZCSwa5f0865d0rKpEkJg7Nix+Prrr9G+fXvEx8fLHRIRUZHCRKmj+HggPBwQQloWQlo2xfyTmZmJMWPG4Mcff4RCocC3334LZ2dnucMiIipSmCh1lJwMJCUBLi7SsouLtJycLG9cr8vMzMTo0aPx008/QaFQYO3atRg6dKjcYRERFTlMlDqyswPs7YG4OGk5Lk5atrOTN66sMjMz8cEHH+Dnn3+GQqHAunXrMHjwYLnDIqKiLj4euHfPNJvQDIi9XnXk7Az4+gLHj0vLCgXQrJm03lQsW7YMK1euhJmZGdavX48BAwbIHRIRFXWRkdJ9pqQkqXbg6wv4+MgdlVGwRlkAPj5A167Sz127mt61Mnz4cLRv3x6//PILkyQRFV7Wzhne3qbdOcMAWKMsICen7K9yy8zMhEKhgEKhgI2NDfbu3QuFQiF3WERUHKg6Z3h7A+bmgKsrEBUlrTel5jQDYY2yGMjIyEBQUBCmTZsG8b/uuEySREZQUu7ZqTpnxMYCGRnSq6l1zjAg1iiLOFWSXL9+PczNzdG3b1/UqVNH7rCIir+SdM9O1TkjPFyqSao+bwmoTQJMlEVaRkYGhg4dig0bNsDc3BybNm1ikiQyhtfv2cXGSstubsU3efj4SJ8vOVmqSRbXz6kBm16LqIyMDAwZMkSdJIODg9GnTx+5wyIqGVT37FxdX92zM8UHqvXN2Rnw8ChRSRJgoiwwOcd6TU9Px6BBg/Drr7+iVKlS2LJlC3r16mX8QIhKqhJ+z66kYaIsALnHeg0PD8fmzZvVSbJnz57GDYCopFPds1MopHt2CkWJumdX0vAepY5UtyZUVI8TGfPWRMuWLbFq1So4Ozuje/fuxjkpEWVXgu/ZlTRMlDrK+jgRII31aozHidLT0/Hs2TP19FjDhg0z3MmIKH+cnZkgSwA2vepIjrFelUol+vXrh/feew8xMTGGO5EpKSnPpxGRyWONUkfGHutVqVSib9++2L59OywtLXHp0iWUK1fOMCczFSXp+TQiMnmsURaAscZ6VSqVeP/999VJcseOHfDz8zPMyUxFCR9TkohMDxNlARl6rNe0tDQEBgZix44dsLS0xM6dO9GpUyfDnMyUlNTn04jIZDFRmqC0tDT06dMHO3fuhJWVFXbt2oWOHTvKHZZx8Pk0IjIxTJQm6MmTJ7h48aI6SbZv317ukIyHz6cRkYlhZx4TVL58eRw5cgQ3btxAmzZt5A7H+Ph8GhGZENYoTURqaiqOHTumXq5UqVLJTJIqJXRMSSIyPUyUJuDly5fo0aMH2rRpg507d8odDhERZcFEKTNVkty7dy8sLCzg6Ogod0hERJQF71HK6OXLl+jevTv2798PGxsb/Pnnn2jdurXcYRERURZMlDJ58eIFunXrhoMHD8LW1hZ79uxBy5Yt5Q6LiIhew0Qpg9TUVHTt2hUhISGwtbXF3r170aJFC7nDIiIiDXiPUgYWFhbw9vaGnZ0d9u3bxyRJRGTCmChlYGZmhp9++gn//PMP3nvvPbnDISoYzvBCJQQTpZEkJydjzpw5UCqVAKRkWb16dZmjIiqgyEhg2zZg61bpNTJS7oiIDIaJ0giSk5PRuXNnfP755xg1apTc4RAVDmd4oRKGidLAkpKS0LFjR4SFhaF06dIYMWKE3CERFQ5neKEShonSgFRJ8tixY3BwcMDBgwfRpEkTucMiKhzO8EIlDBOlgTx//hwdOnTAX3/9pU6S7777rtxhERUeZ3ihEobPURqAEAK9evVCeHg4HB0dcfDgQTRq1EjusIj0hzO8UAnCGqUBKBQKTJkyBeXLl0dISAiTJBVPnOGFSgjWKA2kdevWuHnzJmxsbOQOhYiICoE1Sj159uwZunXrhsuXL6vXMUkSERV9rFHqwbNnz+Dv749Tp07h2rVruHTpEszNzeUOi4iI9MAkapTLli2Dl5cXrK2t0bhxY5w+fVrr9lu3bkX16tVhbW2N2rVrY+/evUaKNKeEhAS0a9cOp06dQpkyZbBx40YmSaL8UA2Bl5AgdyREWsmeKLds2YKJEydixowZOHfuHOrUqQN/f3/ExsZq3P7EiRPo27cvgoKCcP78eXTr1g3dunXDv//+a9S4N2yQnpNs3LgjTp8+jTfeeAOHDx9GvXr1jBoHUZEUGQmsXw+sXAls2qS/43L8WTIA2RPlokWLMGLECAwdOhQ1atTA8uXLYWtrizVr1mjcfunSpWjfvj0mT54MHx8fzJ49G/Xr18cPP/xgtJg7dgQmTIjHzJkzERX1Dyws3kBoaCjq1KljtBiIiqz4eGmM2LNngbt3gYgIaX1ha5Ycf5YMRNZ7lGlpaTh79iymTZumXmdmZgY/Pz+cPHlS4z4nT57ExIkTs63z9/fH77//rnH71NRUpKamqpcTExMBAEqlUj1AuS42bACOHweUymm4ceMGFIqysLTcj7Nna6BGDd2PV9yoyrQgZVvcsWz+5+5d4MoVoEwZwNkZStXv5P37gJNTwY6ZkCD9YgLS+LNxcdJy2bIFP6YJ4DWjmb7KJb/7y5ooHz9+jIyMDJQrVy7b+nLlyuHKlSsa93n06JHG7R89eqRx+3nz5mHWrFk51h88eBC2trY6x/zGG8AvvwDJyW2wZMkl9O/fH15e9wDcg4y3Sk1OSEiI3CGYLJYNgMDAHKtCbt8Gbt8u+DFdXF797OoqvZ44UfDjmRBeM5oVtlxSUlLytV2x7/U6bdq0bDXQxMREeHp6ol27dnBwcND5eBs2AB99BFhbK7FihR1GjmyLly8tsHgxMHCgPiMvmpRKJUJCQtC2bVtYWFjIHY5JYdn8T0IC8PPPwM2bgIUFlEIgpHNntG3UCBZlyxb8mLt2STOZuLhINUqFAujatcjXKHnN5KSvclG1MOZF1kRZtmxZmJubIyYmJtv6mJgYuLm5adzHzc1Np+2trKxgZWWVY72FhUWBCnjYMOn2h6qV5+VLCzRrZoFhw3Q+VLFW0PItCUp82bi4AD17AgcOSPcry5QBAFiULVvwcnFxAZo1k6b7ioqSBmlv1ix7LbMIK/HXTC4KWy753VfWRGlpaYkGDRogNDQU3bp1AwBkZmYiNDQUY8eO1bhPkyZNEBoaigkTJqjXhYSEGHVWjr17AVVfo8WLwSRJpKusY8VaWemniZTjz5KByN70OnHiRAwePBgNGzZEo0aNsGTJEiQnJ2Po0KEAgEGDBsHd3R3z5s0DAIwfPx4tWrTAt99+i06dOiE4OBj//PMPVqxYYdS4Bw6UEiabW4kKyNlZ+qfPjiqqYxLpkeyJMjAwEHFxcZg+fToePXqEunXrYv/+/eoOO3fu3IGZ2aunWJo2bYpNmzbh888/x6effoo333wTv//+O2rVqiXXRyAiomJM9kQJAGPHjs21qTUsLCzHut69e6N3794GjoqIiMgEBhwgIiIyZUyUREREWjBREhERacFESUREpAUTJRERkRZMlERERFowURIREWnBRElERKQFEyUREZEWTJRERERamMQQdsYkhACQ/3nIcqNUKpGSkoLExEROf5MFyyV3LBvNWC65Y9lopq9yUeUBVV7ITYlLlM+fPwcAeHp6yhwJERGZgufPn8PR0THX9xUir1RazGRmZuLBgwcoXbo0FApFgY+TmJgIT09P3L17Fw4ODnqMsGhjueSOZaMZyyV3LBvN9FUuQgg8f/4cFSpUyDZL1etKXI3SzMwMHh4eejueg4MDL2ANWC65Y9loxnLJHctGM32Ui7aapAo78xAREWnBRElERKQFE2UBWVlZYcaMGbCyspI7FJPCcskdy0YzlkvuWDaaGbtcSlxnHiIiIl2wRklERKQFEyUREZEWTJRERERaMFESERFpwUSpxbJly+Dl5QVra2s0btwYp0+f1rr91q1bUb16dVhbW6N27drYu3evkSI1Ll3KZeXKlWjevDmcnZ3h7OwMPz+/PMuxKNP1mlEJDg6GQqFAt27dDBugTHQtl4SEBIwZMwbly5eHlZUV3nrrLf4+/c+SJUtQrVo12NjYwNPTEx999BFevnxppGiN49ixYwgICECFChWgUCjw+++/57lPWFgY6tevDysrK1StWhXr1q3TX0CCNAoODhaWlpZizZo14r///hMjRowQTk5OIiYmRuP2x48fF+bm5mLBggXi8uXL4vPPPxcWFhbi0qVLRo7csHQtl379+olly5aJ8+fPi8jISDFkyBDh6Ogo7t27Z+TIDU/XslGJiooS7u7uonnz5qJr167GCdaIdC2X1NRU0bBhQ9GxY0cRHh4uoqKiRFhYmIiIiDBy5Iana9ls3LhRWFlZiY0bN4qoqChx4MABUb58efHRRx8ZOXLD2rt3r/jss8/Ejh07BACxc+dOrdvfunVL2NraiokTJ4rLly+L77//Xpibm4v9+/frJR4mylw0atRIjBkzRr2ckZEhKlSoIObNm6dx+z59+ohOnTplW9e4cWMxatQog8ZpbLqWy+vS09NF6dKlxfr16w0VomwKUjbp6emiadOmYtWqVWLw4MHFMlHqWi4//fSTqFy5skhLSzNWiLLRtWzGjBkjWrdunW3dxIkTRbNmzQwap5zykyg/+eQTUbNmzWzrAgMDhb+/v15iYNOrBmlpaTh79iz8/PzU68zMzODn54eTJ09q3OfkyZPZtgcAf3//XLcvigpSLq9LSUmBUqlEmTJlDBWmLApaNl9++SVcXV0RFBRkjDCNriDl8scff6BJkyYYM2YMypUrh1q1amHu3LnIyMgwVthGUZCyadq0Kc6ePatunr116xb27t2Ljh07GiVmU2Xov78lblD0/Hj8+DEyMjJQrly5bOvLlSuHK1euaNzn0aNHGrd/9OiRweI0toKUy+umTJmCChUq5Lioi7qClE14eDhWr16NiIgII0Qoj4KUy61bt3D48GH0798fe/fuxY0bNzB69GgolUrMmDHDGGEbRUHKpl+/fnj8+DF8fX0hhEB6ejo++OADfPrpp8YI2WTl9vc3MTERL168gI2NTaGOzxolGc38+fMRHByMnTt3wtraWu5wZPX8+XMMHDgQK1euRNmyZeUOx6RkZmbC1dUVK1asQIMGDRAYGIjPPvsMy5cvlzs02YWFhWHu3Ln48ccfce7cOezYsQN79uzB7Nmz5Q6tWGONUoOyZcvC3NwcMTEx2dbHxMTAzc1N4z5ubm46bV8UFaRcVBYuXIj58+fj0KFDePvttw0Zpix0LZubN28iOjoaAQEB6nWZmZkAgFKlSuHq1auoUqWKYYM2goJcM+XLl4eFhQXMzc3V63x8fPDo0SOkpaXB0tLSoDEbS0HK5osvvsDAgQMxfPhwAEDt2rWRnJyMkSNH4rPPPtM6p2JxltvfXwcHh0LXJgHWKDWytLREgwYNEBoaql6XmZmJ0NBQNGnSROM+TZo0ybY9AISEhOS6fVFUkHIBgAULFmD27NnYv38/GjZsaIxQjU7XsqlevTouXbqEiIgI9b8uXbqgVatWiIiIgKenpzHDN5iCXDPNmjXDjRs31F8cAODatWsoX758sUmSQMHKJiUlJUcyVH2hECV42G6D//3VS5egYig4OFhYWVmJdevWicuXL4uRI0cKJycn8ejRIyGEEAMHDhRTp05Vb3/8+HFRqlQpsXDhQhEZGSlmzJhRbB8P0aVc5s+fLywtLcW2bdvEw4cP1f+eP38u10cwGF3L5nXFtderruVy584dUbp0aTF27Fhx9epV8eeffwpXV1fx1VdfyfURDEbXspkxY4YoXbq02Lx5s7h165Y4ePCgqFKliujTp49cH8Egnj9/Ls6fPy/Onz8vAIhFixaJ8+fPi9u3bwshhJg6daoYOHCgenvV4yGTJ08WkZGRYtmyZXw8xFi+//57UbFiRWFpaSkaNWok/v77b/V7LVq0EIMHD862/W+//SbeeustYWlpKWrWrCn27Nlj5IiNQ5dyqVSpkgCQ49+MGTOMH7gR6HrNZFVcE6UQupfLiRMnROPGjYWVlZWoXLmymDNnjkhPTzdy1MahS9kolUoxc+ZMUaVKFWFtbS08PT3F6NGjRXx8vPEDN6AjR45o/LuhKovBgweLFi1a5Ninbt26wtLSUlSuXFmsXbtWb/Fwmi0iIiIteI+SiIhICyZKIiIiLZgoiYiItGCiJCIi0oKJkoiISAsmSiIiIi2YKImIiLRgoiQiItKCiZKohAkLC4NCoUBCQkK+9/Hy8sKSJUsMFhORKWOiJDIhQ4YMgUKhwAcffJDjvTFjxkChUGDIkCHGDyyf7t27B0tLS9SqVUvuUIj0homSyMR4enoiODgYL168UK97+fIlNm3ahIoVK8oYWd7WrVuHPn36IDExEadOnZI7HCK9YKIkMjH169eHp6cnduzYoV63Y8cOVKxYEfXq1cu2bWpqKsaNGwdXV1dYW1vD19cXZ86cybbN3r178dZbb8HGxgatWrVCdHR0jnOGh4ejefPmsLGxgaenJ8aNG4fk5GSd4hZCYO3atRg4cCD69euH1atX67Q/kalioiQyQcOGDcPatWvVy2vWrMHQoUNzbPfJJ59g+/btWL9+Pc6dO4eqVavC398fT58+BQDcvXsXPXr0QEBAACIiIjB8+HBMnTo12zFu3ryJ9u3bo2fPnrh48SK2bNmC8PBwjB07VqeYjxw5gpSUFPj5+WHAgAEIDg7WOdkSmSS9zUNCRIWmmmorNjZWWFlZiejoaBEdHS2sra1FXFyc6Nq1q3qqoaSkJGFhYSE2btyo3j8tLU1UqFBBLFiwQAghxLRp00SNGjWynWPKlCkCgHpqpqCgIDFy5Mhs2/z111/CzMxMvHjxQgghTZe2ePFirbH369dPTJgwQb1cp04dvU51RCSXUnInaiLKycXFBZ06dcK6desghECnTp1QtmzZbNvcvHkTSqUSzZo1U6+zsLBAo0aNEBkZCQCIjIxE48aNs+33+qzvFy5cwMWLF7Fx40b1OiEEMjMzERUVBR8fnzzjTUhIwI4dOxAeHq5eN2DAAKxevdqkOx8R5QcTJZGJGjZsmLr5c9myZQY7T1JSEkaNGoVx48bleC+/nYc2bdqEly9fZkvKqmR77do1vPXWW3qLl8jYeI+SyES1b98eaWlpUCqV8Pf3z/F+lSpVYGlpiePHj6vXKZVKnDlzBjVq1AAA+Pj44PTp09n2+/vvv7Mt169fH5cvX0bVqlVz/LO0tMxXrKtXr8bHH3+MiIgI9b8LFy6gefPmWLNmja4fncikMFESmShzc3NERkbi8uXLMDc3z/G+nZ0dPvzwQ0yePBn79+/H5cuXMWLECKSkpCAoKAgA8MEHH+D69euYPHkyrl69ik2bNmHdunXZjjNlyhScOHECY8eORUREBK5fv45du3bluzNPREQEzp07h+HDh6NWrVrZ/vXt2xfr169Henp6ocuDSC5MlEQmzMHBAQ4ODrm+P3/+fPTs2RMDBw5E/fr1cePGDRw4cADOzs4ApKbT7du34/fff0edOnWwfPlyzJ07N9sx3n77bRw9ehTXrl1D8+bNUa9ePUyfPh0VKlTIV4yrV69GjRo1UL169Rzvde/eHbGxsdi7d68On5rItCiEEELuIIiIiEwVa5RERERaMFESERFpwURJRESkBRMlERGRFkyUREREWjBREhERacFESUREpAUTJRERkRZMlERERFowURIREWnBRElERKTF/wN1z1wlOOSlmQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(5, 5))\n", + "modela_is_better = modela > modelb\n", + "ax.scatter(modela[modela_is_better], modelb[modela_is_better], alpha=0.3, s=10, color=\"red\", marker=\"o\")\n", + "ax.scatter(modela[~modela_is_better], modelb[~modela_is_better], alpha=0.3, s=10, color=\"blue\", marker=\"o\")\n", + "ax.plot([0, 1], [0, 1], color=\"black\", linestyle=\"--\")\n", + "ax.set_xlabel(\"Model A\")\n", + "ax.set_ylabel(\"Model B\")\n", + "ax.set_title(\"AUPIMO scores direct comparison\")\n", + "ax.grid()\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The dashed line is where both models have the same AUPIMO score.\n", + "\n", + "Notice that there are images where one performs better than the other and vice-versa." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Parametric Comparison\n", + "\n", + "Before using the statistical test, let's first visualize the data seen by the test.\n", + "\n", + "We'll use a _paired_ t-test, which means we'll compare the AUPIMO scores of the same image one by one." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcsAAAGXCAYAAABslwhJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dX/vzPbd9WsLndZlixjWuhYlm0M2NhgIIRQE0oMpuVN8ibhDSQQSAK8tCQEEnoJyc8EQglvCKaYYrBlTDdusootd3VZbVfaNvf3x2pXs6stM7Pa8dXqfJ6HB2v3nr33e++ZMzN37pwrMMYYCIIgCIIgCIIgCIIgCIIgCGIcIx7uBhAEQRAEQRAEQRAEQRAEQRDE4YYmywmCIAiCIAiCIAiCIAiCIIhxD02WEwRBEARBEARBEARBEARBEOMemiwnCIIgCIIgCIIgCIIgCIIgxj00WU4QBEEQBEEQBEEQBEEQBEGMe2iynCAIgiAIgiAIgiAIgiAIghj30GQ5QRAEQRAEQRAEQRAEQRAEMe6hyXKCIAiCIAiCIAiCIAiCIAhi3EOT5QRBEARBEARBEARBEARBEMS4hybLCYIgCIIgCGKcc+edd0IQhLDPpk+fjquuuurwNIhQxFVXXYXp06cf7mYQBEEQBEGkDTRZThAEQRAEMc549NFHIQgCTj755Kjf7969G4Ig4MEHH4z6/YMPPghBELB79+7QZwsXLoQgCKH/cnNzceKJJ+LZZ5+FJEmhcldddRUyMjLCfi9oW15eHrW+NWvWhH73lVdeGfH9tm3b8L3vfQ+TJk2CxWLBxIkTcfnll2Pbtm2JuoLgkA0bNuDOO+9Ed3f34W4KQRAEQRAEMc6gyXKCIAiCIIhxxqpVqzB9+nR89tlnaGxsHLXfnTx5Mv7+97/j73//O26//Xb4fD6sWLECv/zlLxPaWq1WNDY24rPPPovaXqvVGtXutddew3HHHYf3338fV199NR599FGsWLECH374IY477jj861//SlrXeKWurg5PPfWU7vVu2LABv/nNb2iyXAFPPfUU6urqDnczCIIgCIIg0gaaLCcIgiAIghhHNDU1YcOGDfjDH/6AgoICrFq1atR+Ozs7G9/73vfwve99D//93/+NmpoaTJ48GX/+85/h9Xrj2paVlWHWrFn4xz/+Efb54OAg/vWvf+Hss88eYbNz5058//vfx4wZM7B582bcddddWLFiBX73u99h8+bNmDFjBr7//e9j165do6YxVQwODoatwOcBi8UCk8kUt4zT6dSpNYScYL+bTCZYLJbD3BqCIAiCIIj0gSbLCYIgCIIgxhGrVq3ChAkTcPbZZ+PCCy8c1cnySOx2O0455RQ4nU60t7cnLH/ppZfipZdeCps0fuONN+ByuXDRRReNKP/AAw/A5XLhySefREFBQdh3+fn5eOKJJ+B0OnH//fcnrPuRRx7BnDlzYLfbMWHCBJxwwgl44YUXwsocOHAAK1aswMSJE2GxWFBaWoobbrgBHo8nVGbXrl347ne/i9zc3JD+N998M+x31q5dC0EQ8OKLL+K2227DpEmTYLfb0dvbCwD49NNPcdZZZyE7Oxt2ux0LFixATU1N2G/09fXhJz/5CaZPnw6LxYLCwkKceeaZ+OqrrxJqXb9+PU488URYrVaUlZXhiSeeiFouMmf5X//6VwiCgI8++gg33ngjCgsLMXny5ND3b731Fqqrq+FwOJCZmYmzzz47aiqcHTt24KKLLkJBQQFsNhtmzZqFX/3qVwACudNvvvlmAEBpaWko/Y485U80Pv30UyxbtgwTJkyAw+HA0UcfjT/96U9hZT744INQ+3JycnDeeeehtrY2rEwwd3t9fT2+973vITs7GwUFBbj99tvBGMO+fftw3nnnISsrC8XFxfj9738fZh8c25deegm//OUvUVxcDIfDgXPPPRf79u0LK7tu3Tp897vfxdSpU2GxWDBlyhT893//NwYGBsLKBVMX7dy5E8uWLUNmZiYuv/zy0HeROctffPFFHH/88cjMzERWVhaOOuqoEX2hxk//+c9/4u6778bkyZNhtVpx+umnj+obKQRBEARBEDxhPNwNIAiCIAiCIPRj1apVuOCCC2A2m3HppZfisccew+eff44TTzwxJfXt2rULBoMBOTk5CctedtlluPPOO7F27VosWrQIAPDCCy/g9NNPR2Fh4Yjyb7zxBqZPn47q6uqovzd//nxMnz59xCRgJE899RR+9KMf4cILL8SPf/xjDA4OYvPmzfj0009x2WWXAQAOHjyIk046Cd3d3Vi5ciUqKytx4MABvPLKK3C5XDCbzWhtbcXcuXPhcrnwox/9CHl5eXj++edx7rnn4pVXXsG3v/3tsHp/97vfwWw24+c//zncbjfMZjM++OADLF26FMcffzzuuOMOiKKI5557DosWLcK6detw0kknAQCuv/56vPLKK/jhD3+II444Ap2dnVi/fj1qa2tx3HHHxdS6ZcsWLF68GAUFBbjzzjvh8/lwxx13oKioKG4fybnxxhtRUFCAX//616EVzn//+99x5ZVXYsmSJbjvvvvgcrnw2GOPYd68efj6669DE7qbN29GdXU1TCYTVq5cienTp2Pnzp144403cPfdd+OCCy5AfX09/vGPf+CPf/wj8vPzAWDEwxA5a9aswTnnnIOSkhL8+Mc/RnFxMWpra/Gf//wHP/7xjwEA7733HpYuXYoZM2bgzjvvxMDAAB555BFUVVXhq6++GjHhfPHFF2P27Nm499578eabb+Kuu+5Cbm4unnjiCSxatAj33XcfVq1ahZ///Oc48cQTMX/+/DD7u+++G4Ig4Be/+AXa2trw0EMP4YwzzsCmTZtgs9kAAC+//DJcLhduuOEG5OXl4bPPPsMjjzyC/fv34+WXXw77PZ/PhyVLlmDevHl48MEHYbfbY/bFpZdeitNPPx333XcfAKC2thY1NTWhvlDrp/feey9EUcTPf/5z9PT04P7778fll1+OTz/9NOaYEARBEARBjFkYQRAEQRAEMS744osvGAC2Zs0axhhjkiSxyZMnsx//+Mdh5ZqamhgA9sADD0T9nQceeIABYE1NTaHPFixYwCorK1l7eztrb29ntbW17Ec/+hEDwJYvXx4qd+WVVzKHwxH2ewsWLGBz5sxhjDF2wgknsBUrVjDGGDt06BAzm83s+eefZx9++CEDwF5++WXGGGPd3d0MADvvvPPiaj733HMZANbb2xuzzHnnnReqPxZXXHEFE0WRff755yO+kySJMcbYT37yEwaArVu3LvRdX18fKy0tZdOnT2d+v58xxkJaZsyYwVwuV9jvlJeXsyVLloR+kzHGXC4XKy0tZWeeeWbos+zsbHbTTTfFbXM0zj//fGa1WtmePXtCn23fvp0ZDAYWeWswbdo0duWVV4b+fu655xgANm/ePObz+cI05uTksGuvvTbMvqWlhWVnZ4d9Pn/+fJaZmRlWf1B7kGj+FQufz8dKS0vZtGnT2KFDh2L+5rHHHssKCwtZZ2dn6LNvvvmGiaLIrrjiitBnd9xxBwPAVq5cGVbH5MmTmSAI7N577w19fujQIWaz2cL6KDi2kyZNCvO5f/7znwwA+9Of/hT6TD72Qf73f/+XCYIQ1j9XXnklA8BuueWWEeWvvPJKNm3atNDfP/7xj1lWVlbY+ESi1k9nz57N3G53qOyf/vQnBoBt2bIlZh0EQRAEQRBjFUrDQhAEQRAEMU5YtWoVioqKcNpppwEABEHAxRdfjBdffBF+vz/p39+xYwcKCgpQUFCA2bNn45FHHsHZZ5+NZ599VvFvXHbZZXjttdfg8XjwyiuvwGAwjFjpCgTSkABAZmZm3N8Lfh9McRKNnJwc7N+/H59//nnU7yVJwuuvv47ly5fjhBNOGPG9IAgAgNWrV+Okk07CvHnzQt9lZGRg5cqV2L17N7Zv3x5md+WVV4ZWGQPApk2b0NDQgMsuuwydnZ3o6OhAR0cHnE4nTj/9dHz88cehFDU5OTn49NNPcfDgwbj65fj9frzzzjs4//zzMXXq1NDns2fPxpIlSxT/zrXXXguDwRD6e82aNeju7sall14aanNHRwcMBgNOPvlkfPjhhwCA9vZ2fPzxx/jBD34QVj8w3Idq+frrr9HU1ISf/OQnI95eCP5mc3MzNm3ahKuuugq5ubmh748++miceeaZWL169Yjfveaaa0L/NhgMOOGEE8AYw4oVK0Kf5+TkYNasWVFz4l9xxRVhvnnhhReipKQkrC752DudTnR0dGDu3LlgjOHrr78e8Zs33HBDvK4ItcnpdGLNmjUxy6j106uvvhpmszn0d/BNjrGwFwBBEARBEIRaaLKcIAiCIAhiHOD3+/Hiiy/itNNOQ1NTExobG9HY2IiTTz4Zra2teP/991X/ZuQE5/Tp07FmzRq89957WL9+PVpaWvCf//wnlEpDCZdccgl6enrw1ltvYdWqVTjnnHOiTogHPwtOmsdCyaT6L37xC2RkZOCkk05CeXk5brrpprAc4e3t7ejt7cWRRx4Zt649e/Zg1qxZIz6fPXt26Hs5paWlYX83NDQACEyiBx86BP97+umn4Xa70dPTAwC4//77sXXrVkyZMgUnnXQS7rzzzoSTl+3t7RgYGEB5efmI76K1Oxax2r1o0aIR7X733XfR1tYGYHhyNVE/qmHnzp0JfzPY77HGJvhAQk7kZH52djasVusIX87OzsahQ4dG/G5kHwuCgJkzZ4blXt+7d29oAj8jIwMFBQVYsGABAITGOYjRaAzLDx+LG2+8ERUVFVi6dCkmT56MH/zgB3j77bfDyqj108i+mDBhAgBE1U0QBEEQBDHWoZzlBEEQBEEQ44APPvgAzc3NePHFF/Hiiy+O+H7VqlVYvHgxAMBqtQLAiI0Gg7hcrrByQRwOB84444yk2llSUoKFCxfi97//PWpqavDqq69GLZednY2SkhJs3rw57u9t3rwZkyZNQlZWVswys2fPRl1dHf7zn//g7bffxquvvopHH30Uv/71r/Gb3/wmKT3xkK8sBhBaNf7AAw/g2GOPjWqTkZEBALjoootQXV2Nf/3rX3j33XfxwAMP4L777sNrr72GpUuXpqzN8dr997//HcXFxSPKG41j75ZDvnI+3mcAwBhT/ft+vx9nnnkmurq68Itf/AKVlZVwOBw4cOAArrrqqrBNbgHAYrFAFBOvcyosLMSmTZvwzjvv4K233sJbb72F5557DldccQWef/551e0ERlc3QRAEQRAE74y9K1eCIAiCIAhCNatWrUJhYSH+8pe/jPjutddew7/+9S88/vjjsNlsKCgogN1uR11dXdTfqqurg91uV7ViXA2XXXYZrrnmGuTk5GDZsmUxy51zzjl46qmnsH79+rCUEkHWrVuH3bt347rrrktYp8PhwMUXX4yLL74YHo8HF1xwAe6++27ceuutKCgoQFZWFrZu3Rr3N6ZNmxa1z3bs2BH6Ph5lZWUAgKysLEUPHUpKSnDjjTfixhtvRFtbG4477jjcfffdMSfLCwoKYLPZQivB5cQaayUE211YWBi33TNmzACAhP2oJiVLsO6tW7fGrDvY77HGJj8/Hw6HQ3GdSojsY8YYGhsbcfTRRwMIbLRaX1+P559/HldccUWoXLz0KUoxm81Yvnw5li9fDkmScOONN+KJJ57A7bffjpkzZybtpwRBEARBEOkMpWEhCIIgCIJIcwYGBvDaa6/hnHPOwYUXXjjivx/+8Ifo6+vDv//9bwCBlaSLFy/GG2+8gb1794b91t69e/HGG29g8eLFMVecJsuFF16IO+64A48++mhYruRIbr75ZthsNlx33XXo7OwM+66rqwvXX3897HY7br755rj1RdqazWYcccQRYIzB6/VCFEWcf/75eOONN/DFF1+MsA+usF22bBk+++wzfPLJJ6HvnE4nnnzySUyfPh1HHHFE3HYcf/zxKCsrw4MPPoj+/v4R37e3twMIrEqOTNNRWFiIiRMnwu12x/x9g8GAJUuW4PXXXw8b19raWrzzzjtx2xaPJUuWICsrC/fccw+8Xm/MdhcUFGD+/Pl49tlnR/iVfJVycOK6u7s7Yd3HHXccSktL8dBDD40oH/zNkpISHHvssXj++efDymzduhXvvvtu3AcyWvnb3/4WliLolVdeQXNzc+hBRvDYketmjOFPf/pTUvVG+rIoiqEJ+qBvJOunBEEQBEEQ6QytLCcIgiAIgkhz/v3vf6Ovrw/nnntu1O9POeUUFBQUYNWqVbj44osBAPfccw9OOeUUHHfccVi5ciWmT5+O3bt348knn4QgCLjnnntS1t7s7GzceeedCcuVl5fj+eefx+WXX46jjjoKK1asQGlpKXbv3o1nnnkGHR0d+Mc//hFafRyLxYsXo7i4GFVVVSgqKkJtbS3+/Oc/4+yzzw7lOr/nnnvw7rvvYsGCBVi5ciVmz56N5uZmvPzyy1i/fj1ycnJwyy234B//+AeWLl2KH/3oR8jNzcXzzz+PpqYmvPrqqwnTaIiiiKeffhpLly7FnDlzcPXVV2PSpEk4cOAAPvzwQ2RlZeGNN95AX18fJk+ejAsvvBDHHHMMMjIy8N577+Hzzz/H73//+7h1/OY3v8Hbb7+N6upq3HjjjfD5fHjkkUcwZ86chCltYpGVlYXHHnsM3//+93HcccfhkksuQUFBAfbu3Ys333wTVVVV+POf/wwAePjhhzFv3ryQXwXH680338SmTZsABB4aAMCvfvUrXHLJJTCZTFi+fHnU1d+iKOKxxx7D8uXLceyxx+Lqq69GSUkJduzYgW3btoUeAjzwwANYunQpTj31VKxYsQIDAwN45JFHFPuaWnJzczFv3jxcffXVaG1txUMPPYSZM2fi2muvBQBUVlairKwMP//5z3HgwAFkZWXh1VdfTToP+DXXXIOuri4sWrQIkydPxp49e/DII4/g2GOPDeUkT9ZPCYIgCIIg0hpGEARBEARBpDXLly9nVquVOZ3OmGWuuuoqZjKZWEdHR+iz2tpadvHFF7PCwkJmNBpZYWEhu+SSS1htbe0I+wULFrA5c+YkbMuVV17JHA6HatsPP/yQAWAvv/zyiO82b97MLr30UlZSUsJMJhMrLi5ml156KduyZUvC9jDG2BNPPMHmz5/P8vLymMViYWVlZezmm29mPT09YeX27NnDrrjiClZQUMAsFgubMWMGu+mmm5jb7Q6V2blzJ7vwwgtZTk4Os1qt7KSTTmL/+c9/FGthjLGvv/6aXXDBBaH2TJs2jV100UXs/fffZ4wx5na72c0338yOOeYYlpmZyRwOBzvmmGPYo48+qkjvRx99xI4//nhmNpvZjBkz2OOPP87uuOMOFnlrMG3aNHbllVeG/n7uuecYAPb5559H/d0PP/yQLVmyhGVnZzOr1crKysrYVVddxb744ouwclu3bmXf/va3Q300a9Ysdvvtt4eV+d3vfscmTZrERFFkAFhTU1NcTevXr2dnnnlmqD+OPvpo9sgjj4SVee+991hVVRWz2WwsKyuLLV++nG3fvj2sTLAf2tvbwz6P5reMjfTd4Nj+4x//YLfeeisrLCxkNpuNnX322WzPnj1httu3b2dnnHEGy8jIYPn5+ezaa69l33zzDQPAnnvuuYR1B7+bNm1a6O9XXnmFLV68mBUWFjKz2cymTp3KrrvuOtbc3Bxml4yfNjU1jWgjQRAEQRBEuiAwRjuzEARBEARBEARBJMvatWtx2mmn4eWXX8aFF154uJtDEARBEARBqITesSMIgiAIgiAIgiAIgiAIgiDGPTRZThAEQRAEQRAEQRAEQRAEQYx7aLKcIAiCIAiCIAiCIAiCIAiCGPdQznKCIAiCIAiCIAiCIAiCIAhi3EMrywmCIAiCIAiCIAiCIAiCIIhxD02WEwRBEARBEARBEARBEARBEOMe4+FuwFhFkiQcPHgQmZmZEAThcDeHIAiCIAiCIAiCIAiCIAiCiAJjDH19fZg4cSJEMfb6cZos18jBgwcxZcqUw90MgiAIgiAIgiAIgiAIgiAIQgH79u3D5MmTY35Pk+UayczMBBDo4KysLEU2Xq8X7777LhYvXgyTyaTIxu/3Y+fOnSgrK4PBYEiJjR516KGd175Sq10PHVps0kU7+TtpH0/+rsUmXbSTv5N28vfRtxmv2snfSTv5++FvV7po57WvSDsd66moQ4tNumjnta949HetNlro7e3FlClTQnO6MWGEJnp6ehgA1tPTo9jG4/Gw119/nXk8HsU2kiSxvr4+JklSymz0qEMP7bz2lVrteujQYpMu2snfSXuq6uDR37XYpIt28nfSnqo6xqu/MzZ+tZO/k/ZU1cFjX9E9K/k7T+3iUTuvOnj0dy026aKd177i0d+12mhB6VwurSznHEEQkJGRkVIbPerQAo86eNStl026aCd/J+2pqkMtvI5humgnfyftqapDLbzqIO18aee1r7QwXrXzqoO086Wd177SwnjVzqsO0s6Xdl77Si3pdC+ihtjZzAku8Pv9qK+vh9/vT5mNHnVogUcdPOrWyyZdtJO/k/ZU1aEWXscwXbSTv5P2VNWhFl51kHa+tPPaV1oYr9p51UHa+dLOa19pYbxq51UHaedLO699pZZ0uhdRA02WjwEkSUq5jR51aIFHHTzq1ssmXbSTv6feJtV18OonauF1DNNFO/l76m1SXQevfqIWXnWQ9tTCow49dGupJ12086qDtKcWHnXQsZ5aeNVB2lMLjzp41K2nTaqgyXKCIAiCIAiCIAiCIAiCIAhi3EOT5QRBEARBEARBEARBEARBEMS4hybLOUcURZSWlkIUlQ+VWhs96tACjzp41K2XTbpoJ38n7amqQy28jmG6aCd/J+2pqkMtvOog7Xxp57WvtDBetfOqg7TzpZ3XvtLCeNXOqw7Szpd2XvtKLel0L6IGPlpBxMVoNKbcRo86tMCjDh5162WTLtrJ31Nvk+o6ePUTtfA6huminfw99TaproNXP1ELrzpIe2rhUYceurXUky7aedVB2lMLjzroWE8tvOog7amFRx086tbTJlUc1snyjz/+GMuXL8fEiRMhCAJef/31sO8ZY/j1r3+NkpIS2Gw2nHHGGWhoaAgr09XVhcsvvxxZWVnIycnBihUr0N/fH/p+9+7dmD9/PhwOB+bPn4/du3eH2Z9zzjl49dVXUyVRM5LHg761a9Fy992oX7kSLXffjb61ayF5PIltJQkNDQ2Kk+OrKZ9Mu9SSSh161BHsq/Z770XxqlVov/feuH2lpW/1sEmmDqXaQ3Yp9EU9jimturXUkWo/UduuZBjrx7pa9BoPrfXwOOZabPSoQwu8naO1xlI1cU5PX+TpvK61TWpseI3vep5z00U7b/6eDDzGax7juxabdDm3abHRI5am8hpea3m96tDCeNXO6/U4b9q12tD81Nj1d71tUslhnbZ3Op045phj8IMf/AAXXHDBiO/vv/9+PPzww3j++edRWlqK22+/HUuWLMH27dthtVoBAJdffjmam5uxZs0aeL1eXH311Vi5ciVeeOEFAMDPfvYzTJo0Cc888wxuu+02/PznP8crr7wCAHjppZcgiiK+853v6CdaAZLHg9bHn0Dr2vXoHvSjl4nIat6EnK+2oGjzFhRdfx1Es3mEndvnR01jBz6qa0NTcydK67xYMKsQVTPzYTEaDlu71DLoGsCXr72D9g8/hr+tFTsKi1Bw2nwcf8ESWO22pH9fD8L7yodOL8PAJ5uQ8/XWqH2lpW/1sEm+jsTak+/f1OhIrk2p09355FNwbtwIiCIgSXDXN8C9ow6DW7chb+W1o+InhDpCsXdHK75pEPEVq8WCyqKosVev+J5O457qc5tedaQa/c8JyuJcuviiPP4yQYDg8cJd3wBPXX3M+KsFNb7Ia9/qf84d29fKWtqUDjGLUAeNeerQK74T4w9ez9Na4DEGpVP/EvxxWCfLly5diqVLl0b9jjGGhx56CLfddhvOO+88AMDf/vY3FBUV4fXXX8cll1yC2tpavP322/j8889xwgknAAAeeeQRLFu2DA8++CAmTpyI2tpa/OEPf0B5eTmuuuoq/PznPwcAdHd347bbbsMHH3ygj1gV9Kxbj13vrMV+QyY8Disg+dEjGtDqHoTznbWwzpmDCacvCrNx+/x4fO1O1DR2QhAYmI9hR0sfapv7sWV/D65fWJZ0ENPSLrUMugaw5rYHYNz0JUyiCGY0wbSnCb3P7sSarzbjzLtuHjFhzmPgjuwrr3sQLos1Zl9p6Vs9bEajjkTaR6N/U6Ej2TalQrdzwwY4N26EqagIgt2OgZ4emLOzwVwuODduhPXIOchcuDBuu1KhnWdSHR8iY6/XD+xo7UdtizNq7NUrvqfLuOtxbtOjDj04HOcEJXEuXXxRHn9hs8G/dy/MU6cCAwMx469a1Poir32rtV1q4nW6XCtraVO6xCxCOTTmqcW5YQP6PvkEh+w5OOgGOpmIPCEDE62A9MknoxLf9YLH+2K94FE7r+dptfAag9Klf/VCzQIv4jBPlsejqakJLS0tOOOMM0KfZWdn4+STT8Ynn3yCSy65BJ988glycnJCE+UAcMYZZ0AURXz66af49re/jWOOOQbvvfceFi9ejHfffRdHH300AODmm2/GTTfdhClTpihqj9vthtvtDv3d29sLAPB6vfB6vYp+I1guUfmGN99D96AfhiI7MkUBHo8Es9kAn8mO7tZuNLz5Hr41vzrM5qO6dqxvaEdRlhV2s4jeXi+ysmxweSSsb2jH7OIMnDarIGp9fr8ffr8fXq837isPWtqlVvtnL78F46Yv4MnNB7Pa4PV4IZhNEAYGYN70BT57+S2cetnyUHm3T8KTHzfhk12dEAQAXgm1zb3YfrAXm/Ycwsr5pbAYY2cbUqpdbXl5X2WIApxewGExwB+jr7T0rR42ydahRHuy/ZsqHWrblYxupXX0rVsHJgiAzQZJksAYgyRJEGw2MEFA37p1sFZVJdVXWtolR+mxrqWOQdcgvn59DTo/Wg+pvRW1BUXIWzAP3zr/TFjt1hHlk4kPStskj702k4gDTmDSBBsGvNFjr17xPZlxVzvmgPpx19K/qTq3fVTXjk9qD+LEzkaU7t4K06EOeCfko2n6kfjEOzNuHan0d7Xl9T4nKI1zevtiqvo3Mv4CgddFxTjxV20dav1d7/gOKPN5Le1SG6/1vlZO1TW8ljbpERe1aE+mHp6OdTmpOreptUlmzLW0S48x12KTqjq6P1qHAz1uNLm9EABIDOh2eXHIBcwYdMP0Uez4zpOOZO+Lx/Kx7vZJePqDerR/tB5le7fhyP5D6MuYgPenzsHmBfNwzaKKUdWux/yJHseUUt16xyCe5qf00KFHHWHxAYDXD9Q292F7c9+o3RcfDhstKB1zgTHGUtYKFQiCgH/96184//zzAQAbNmxAVVUVDh48iJKSklC5iy66CIIg4KWXXsI999yD559/HnV1dWG/VVhYiN/85je44YYbcODAAVx33XXYvHkzjj76aDzxxBPYuXMnfvazn+Gdd97B9ddfjy+++AKLFy/Gww8/DHOM1zTuvPNO/OY3vxnx+QsvvAC73T56HQHA9+QL8A164c3MGvGdqa8XRqsJxpWXhX3+apOIg06gMEqWkrZBYKId+E5pcg6npV1q6fl/byCrrRn9E0YG28zudvQUlCD7e8OT5dsOCXjvgIAJZsAiexg26Ad6PMDpkxjmTNDfxdX2lZa+1cNGr3apRQ8dqW6TFopXrYLg8cKfNbIOQ28vmNmElssv171deuD3+NDzxlrk7d4JSRDgM1lg9LohMobO6WXIXr4QBnP481894oPa2KtXfE+Xcdfj3PZ6o4Q5n36II9saIQkCPCYLzEO+tbVoJraddBrOn8n/fujj+ZygB1rir1r0iCd6oKVdauN1ulwra2mTHjoIvki3MfdJQF2PgB3dAnq9QJYJqMxhmJXNEGc+M2XYn3sBXX1euDOyIArDn/sZYO3vRW6mCa6r+T9P8XpfrAe17X4Y3l2LOa2NgDh8LQeJYVvRTPgXL8TsgpErZ1Pti7yep9XyapOItl4fTupqwIz99chw9aHfnoldkyvwWV45CjONhyUGpUv/6sF4jg+RuFwuXHbZZejp6UFWlOv6INyuLB8tJk2ahP/85z+hv91uN5YsWYLnn38ed911FzIzM1FXV4ezzjoLTzzxBP7rv/4r6u/ceuut+OlPfxr6u7e3F1OmTMHixYvjdrAcr9eLNWvW4Mwzz4TJZIpZ7pVXPsCElr0YzMgAADAwCAicua2uXhzKLca5y5aF2bzz0jeYki2hMNMCILDaVBRFAAIsfW7YTCKWLTsmzMbtk7BhZyfWN3agrXcQhVlWzJuZj7lleVGfKmlpl1rtq//6GoSMLGREqUPwupHt82KZrI6v3qxFgbsf0/McI3Tv7nTCnZOBZctmx6yPMQav1wuTyQRBEGKWU1te3lcMDM5+JxwZDggQovaVlr7VwybZOpRoT7Z/U6VDbbuS0a20jvbNm+Gubwi8+h/h7549e2CpKMdxo+AnatslR+mxrraOT154A7b9e+ApLAasdhjAAAhgAy4U798Dh0vAqeeH60gmPijVLY+9kiThwP79mDR5MkRRjBp79YrvyYy72jEH1I+7lv5Vql1tHXV3PY+juvbAWzARPosVDAweCDC6B3BU115IvZ1YtuzKUdGtpl1qy+t9TlAa5/T2xVT1rzz+SpKE/fv3Y/LQsR4r/qqtQ62/6x3fAWU+r6VdauO1XrFUjW4t7dLSJj3iohbtydTD07EuJ1XnNrU2yYy5lnalcsyDqxu/bumEaBOQkylgwMfw9QCDtSQv7urGVPXvm//3ETL6m2DJHHluMzu74cydhLNHMZamSkey98Vj+Vhv/v0qTOvcDX/hyGu5Izv3YE9HL5ZdGf5AW+6LggXwDnZhMCMXXw9g1HyR92sgpWO+ZtUXmLf1DZTvqwUTRXjMFuQ6D2Fa7SeYPKUbm+ctx7JlJ8S05+naV612PXToUcdXb9ai2HkIp3bvQknDN0BbM1BYgubyY/BJzgy4cyYkfV98OGy0EMwSkghuJ8uLi4sBAK2trWEry1tbW3HssceGyrS1tYXZ+Xw+dHV1hewjueeee7B48WIcf/zxuPbaa3HXXXfBZDLhggsuwAcffBBzstxiscBisYz43GQyKT64lNr0HXk8cg7uhskzCK/FCq/HC7PZDJN7EMzvR9+Rx4+wL8qyobalD6IogjEJ/f1OZGdnQRBEDHj9mJ7nCLNx+/x4pqZpOO+U141DAz7saHGitqU/at4pLe1S3V+5+TDu2QWvIICBheoQIMDoGYS3eGKYfYfThwyLKaruDIsJHU5f3Pr8fj927dqF8vJyGAyJ8zQpLR/WV+ZAeggBAkye6H2lpW/1sEm6DgXak+7fFOkAouS+K8mLmfsuGd1KtWdWV8NTVw8MDECw29Hf34fsoZzlAmPIrK4eFT9R265oqImNSuo49HENTKIBsAVuAII6YHeA9R4KfH9l+EbRycQHpbrlsTeIKIoQxeixV4/4rrUetdqjoXTctfSvUu1q65i1vxZ+iPBbbZD7lt9qh4guzNpfm/y5TUO71JbX/ZygMM7p7Yup6l95/BVtgeWdoigG4nGM+Ku2DrX+frjiOxDf57W0S2281iuWqtGtpV1a2qRHXNSiPZl6eDrWozHa5za1Nsn6Li/XcgCwbmcrNjYdQkmOHXaziJ6eXhTnZ8HlkbBx9yEcO20CFlUWjZoOJTb1U+fg2H27gCjnNqMAbJ06B+cfhvtJtTZar3sljyeQt33dOhRv2YLuzZuRWV0Nx9y5CTdH5EV79vZNEA1GeKJcyxkNBmRv3wST6aowG7kv2kwi9g10YUpBBga8o+eLvF4DDboG8OVr76D9g4/hbj6Ad//vIxQsmo/jL1gyYn84ADi6tQFTmrbBlVcIr8UCj8cDc1YuTO5BTGnaBpRXwmQ6Nel2qS2vy/yUDjr0qKOrZwCLvn4HZft3gAkCev0MWa37kNeyF7bJlfgm47zDej2u1UYLSseb28ny0tJSFBcX4/333w9Njvf29uLTTz/FDTfcAAA49dRT0d3djS+//BLHH388AOCDDz6AJEk4+eSTR/xmbW0tXnjhBWzatAkAQvlwgMCTJb/fn3phCpi57DTU1m7HrIN1sBlEDIgG2CQ/JL+EuimzMXvZaSNsqivysWNvJ/K2bEfp7i0wdrXDl1uApulHYXf+TFRX5IeVr2nsQE1jJ4qzrUMXKn5kZzvg8kio2dmJoyZnjzg5aGmXWvJPq0bvs42AywnI09u4nBAkCfmnheecKsy0oLalL+pvOT0+TM0d3RQ5SonsK/gZstx9MftKS9/qYTMadSTSrgU9dKjdyEQP3Y65czG4dRucGzcCogBIDJ7uQ4DE4DjlFDjmzk26r7SS6g1DhEOd8FtH5iUHAL/FCuFQ54jP9YgP1RX52HawF063DzbT8IS50+2DxDAi9mqN78E67ObEdWith0e0aFfLFLiwx2SB3y/BaBhexeD1S5CMFkyDK+k69OBwnBOUxLl08UV5/GWCAENfHzx79kBgseOvWtT6O699q6VdauO1XrFULWrbpaVNeugg+CKdxnxdfQdEUYDDYgRjw2kbHBYjRCHwfawJylThPvp4NO5pxOzmusDeFEPnNoEx1E6uhPvo43Vtj1a0XPdKHg9aH38CrWvXo3vQh04vw8Anm5Dz9VYUbd6CouuvSzhhzgO5g30YMJgRbS3qoMGM3MGR/SL3RXl+5NH0RR7P04OuAay57QEYN30JkyjCBwGmvU3ofXYn1ny1GWfedfOICfPj2uvRChEDRnPYBOKA0QKbIOK49np9RQzBY//yylEtdZgUfOBhtqC/vx/IyIDJM4hJTdsglVcCGDmHOp45rJPl/f39aGxsDP3d1NSETZs2ITc3F1OnTsVPfvIT3HXXXSgvL0dpaSluv/12TJw4MZTXfPbs2TjrrLNw7bXX4vHHH4fX68UPf/hDXHLJJZg4cWJYXYwxrFy5En/84x/hcDgAAFVVVXjqqadQUVGBv/3tb7j00kt10x6PqtkTsfXi7+PDteswc882ZPR3oS27CI3T5qBoYTWqZk8cYTN3ahacu9bC+M2XYIIIt9EE277dmLN3F2YdczzmXn1iWHktFypa2qWW4y9YgjVfbYb5my/Beg6BGU0w+7wQmATfMcfj+AuWhJXn9eIxsq+s3W04lF0Ys6+09K0eNqNRRyLtWtBDh9oHSnroFs1m5K28FtYj56B//XoMNDXBUlqKjHnzYq7+0OO4jXyw4PUDO1r7UdviHLUd0tmEPBj37EK0bHgG9yC8RSN1qH2IqIWqmfnYsr8HNTs7IYCh3wP4O51gEFBVloeqmeF1aDqmZHWIACSvD4e8LkhA1Dq01sMjWrSrpWj6JLjaOtHk9UPwAkxi8Eg+MAClRj+Kpk9Kug49OBznBCVxLl18UR5/+9atA9uyBZaKcsWr75Sg1t957Vst7VIbr/WKpanWrim+z8zH1qYOtMrq6M/IReO0OZi5sHpUdACpfwhOKEcP39WLtj43HObo/uMwG9HW59a5RUDVESV46uBSuDrLUbp7C1jrQRwqmoim6Ufhy/yZuPaIksQ/wgFa7ot71q3HrnfWYr8hEx6HFV73IFwWK1rdg3C+sxbWOXMw4fRFesrQRN7UErR+vQ0DURY+2Lxu5E2dOcJGD1/Ucq4a8WZznTfmm81a+PK1d2Dc9CU8uflgVhsG+/thzMiAMOCC+Zsv8eVr76Dqe+eH2RR6++GckImuKNfKBTmZKPT2J90uLfB6HcQjvD7w4JnDOln+xRdf4LTThp/2BHOCX3nllfjrX/+K//mf/4HT6cTKlSvR3d2NefPm4e2334ZVtrpw1apV+OEPf4jTTz8doijiO9/5Dh5++OERdT355JMoKirCOeecE/rszjvvxGWXXYaTTz4ZZ511Fm666aYUqlWOxWjAdWdWoqY0Hx/VVaGppQulxbk4PU6Q9H72Kea01uPQjCk46BYwMOCG0WbBRAvDhNZ6eD/7FNaFC0PlI08O8pRAsU4OWtqlFqvdhjPvujnwWtCHH0Nqb4Nn0mQUnBb9taDIi0fmU3/xKE+foAQl5cP6asdcfNOwB8eUT8PpMW4ytPStHjZJ16FAe9L9myIdkQ+UgsdIrAdKyepWql00m5G5cCHs1dXo27kThWVlcV9TGo3jNlG75A8WbCYR+5ydmJLnwIA39psqauuIfOskFLJivHUCqH+IqLZNQKB/r19YhqMmZwcmFHo7UVmUEXNCQesxFaqjrg1NLR6UFmfEvXBOdtzVxkUtqO5fhdrV1pFVPQ8Td+yAzW7EQbeAvgEJmTZT4PzpsiCrep5iTUpJ+XlHj3OCwjh3OHwxFf0LDMdfa1UVPl+9GsctW6b4Vc5U+Lse8V0LWtqlNl7rFUtTrV1Lm0ySH99t+ACtDevRPehHLxNR0NuMbzW0oWiSF6bTywHE1qJkzN0+P55YsyM0IV/Z3YbBLwvx/rQ52LqwGtedWTnqxy5Px3oypELHaPguL9ojVz/L70GVvPWXiv4dvp804fPiSvQf6kTGhLyYCx9Go12p1aH8vnjnWx+ge1CCociBTFFAvxfIsBjhMznQ3daDnW99gBMSTJbzoL1s6SK4a2vR73Ri0GwNTeaaPIPIsYgoWzpSQ7JvoKbi2ixyARL88d9s1tKujg/XwSSKgM0OMNmGjkOpLTs+XAdETJabCwsx9dAhOHKy0Nw9ELpWLsmxIe+QC+bCwoR9wcu1b7Lw4O9ayssfeACAVwL63D4Ayh546KFDq02qEBhj42PL01Gmt7cX2dnZCXdQleP1erF69WosU3FzpZSWu++Bu64O5unTR3zn2b0bllmzUPyrX4Y++82/t6G2pQ+l+Y4R5Zs6+jG7OAt3nDtn1NqXSu3Bp6/r6jvQ1udGYaYF1RX53Kx8SaV23hnL2m9a9RUGvX4UZo1M/dHWOwiryYC/XH5cVNuxrFsL8ngiSRL27d2LKVOnQhTFUYsnoVcGv/kSTBTht1hhcA9CkAJvnUR7ZbBv7Vq0P/U0Dtlz0OwJ5PW0mQwoMUuY4OpGwbXXIFP2EDFZxtu4yxnL2iWPB51PPgXnxo0QRBGi3Q7J5QKTJDhOOQV5K6+NuWp4LOtOFtJO2kdTu97xWi08jXnf2rXofPoZmIqKIDqGr+MlpxPe1lbkXbMi6b76YMs+1P7+L6g8uAOCwRDIbWoQwPx+7JhYidk/uwmLjpqSpBL+4WnctaD1HimVuj/Y0YrH1+5CcbYVDsvwuj2n24eW3kFcv2CG7mlYgMg3KQIPgsfimxRqx/ydi1ZgoM8JIb8AjDH09/cjIyMDgiCAdbTDlunAkn8+cxiUqCM8nYwfToMZDr8HOVYDihbOi5pORu6LNpMYun8Z8EqHzRf1OD7+fcFVEDxuSBPyR4y5eKgDzGzBua/9NcxGj/OO3oz1+K6WlrvvwUBdHTpzitDc7UJnTz/ysjNQkmNH3qEW2Corw+YLtRLcA8FZswG+9nYYCwrgqJo7am9hjgZK53K5zVlOBGCMwel0wuFwxN0R1tfeDjGU45vB6/XBZDICECDa7fC1t4eVl7+m5bAY4PP6YDQZ4XT7FaUvUdquZFBah8VowKLKIpw2q1B1m9Tq4Em33jbpol1p+fDVBix0jABCSvLh6zEeqbJJ9jVGJXWEv3WyDujsgL9oIgpOq465GY2zZgMMBgMmluRhYkRc9Ozug7NmQ8wLu3Txdy026aJdaXl5eg1nTQ0Gm1tgnVUBR1VVSi7sxvKxniw8audRtxabsT7mesdrnrSrLe+s2RB4sOcY2vB6qK9EhwOCKEbtq+AE2sf17Wg+5ELJBDvmVxTEnEBrXP0hZuyrxWCU3KYz9tWicfWHWHTUFbpr17sOtfCkQ75CVRQBqwjUOt3YdrB31FLkBetR41thq5+FQLsGJUBiid8KTmX/Bu8nq8tysXp1E5Ytm614Ao0nf1d7X9xlzURu9yEMRvnO6vegy1o8qlpSpV00m1F0/XXIOPqo4Wu5kuK413JqUynqoUP+ZrP8/lNpHnUldWhJbSnft0UQRUgWC0S3O7SwJNG+Lbz4SbLwqENpeUfVXAzW1qLEJKFk6gTs3duHqVMnAAMD8DIGR1XsMVRaR+QCJMligb+rC4O1tRjcui3uAiQt2lMNP2vciahIkoT9+/eHbToRDWNBASRXYBMyxgCn0xl6q0ZyuWAsKAgrXzUzH1Uz89DSO4imdif2tPegqd2Jlt5BRa+bKW1XMqitQ0ub9KhDLXro0GKTLtqVlq+uyIckMTjdvsBTd6czEMBTlA+fR39XalOYaYHTE32DZKfHh8JMy6i0y2q3oep752P5k/ej8t5bsfzJ+1H1vfOjTpQD4Q8RI+NitIeIWtqUDDyNYbJ1qIU3HcH0GgW33ILBH96EgltuQebChSlZATGWj/Vk4VE7j7q12Iz1Mdc7XvOkXW15tX0VnDR9fO0u1Db34lCfE7XNvXh87S48vnYn3L6R5+/MbV9BNBjgs4S/Xeez2CAYDMjc9tWoaNFaXq861MKTDnmKvOl5dthEH6bn2VGcbUXNzk7UNHYobmMstPhWMKXM9QtmYFZRBiSfG7OKMnD9ghkJJ/DH27GuRx19c46D5PfD6B4I+9zoHgDz+9E3J/pbtKlulxYbtddycl+sLMqAyQBUHmZflC9Akt9/AsoWICmpI/+0agiSFEhtKSdOasvgwpK8a1bAXFGOQckPc0U58q5ZkXACVGm7kimv1UYtPOpQWt4xdy4cp5wCb2srPHv2wNDbC8+ePfC2tiZ84KG0DueGDXBu3AhTURFM06Zh0GaDado0mIqK4Ny4Ec4NG0ZFi17QyvI0IfikSHI6IdiHV7xKTmfgiV/Ek6IRue+a3aOet5EgxjLptJlSqpG/qWIz8bPRrrGgAO66uqjfSS4XLFPS/xVygiCIsQDFa+Wo7auaxg5s3NGCkzobR2yeutE/M+q+IrmDfRgwmBFtXdegwYzcweh5fgl+iNx7J4jSFapKkE/I280ienr8yM52wOWJv2dNcPXzgvJ8NDQ0oLy8PO7+O0TqmLnsNNTWbsesg3WwGUTAz5Dl7oPkl1A3ZTZmLzst8Y+MYZJ5oyAVJJtHXQnHX7AEa77aDPM3X4L1dMEKEeb+bgiMwXfM8Tj+giVR7eT7ZvU0NKBwjB63wTQhfevWoXjLFrRv3jyqm7Xzih4b1cvffJNn+4735hvP0GR5miB/NQaiAEgMnu5DgMRiPilKlwuVYMDrX78erKkJbaWlyJg3L+0DHpFa6IGScpJ5jTGVqH2ISKhH7QVnKCdoXRuamjtRWuelY4ogCIrXKlDbVzXbm1H95VuY3VwHJggYEA3IbNmL3OY9sJdUoKYka8SEZt7UErR+vQ0DfglGcXjK3OuXYPO6kTd1ZmpFEkmTbIo8JegxIU+klqrZE7H14u/jw6HNfK3dbTiUXYjGaXNQtLAaVbNHpuQgUod8AZLdnJoFSGGpLT/4GP7mA/CUTELBovkxU1umC/I0IUwQIHi8cNc3wFNXryhNyFhH7Ub1au/bwlNDR9Sd4C1BHqHJcs4RBAFmszlhzh75k6L+9TVw79kNy7TpyJiXOOeq0jqStVGLkjrkAQ+iCAGAu74B7h11igKeWh286D4cNumiXU354AOlhRUF2L17N6ZPn56yHZr1GI9U2YQ9WNjRim96O1FZlKF4Y6RUaQ9/iBiID57ubkBKnF8vXfxdi43S8movOMPypwqAIAmoa+lHbXO/ovypvB4jauFVx3jVzqNuLTZjfcz1jtc8aVdbXm1fWTZ/iZn7a+GaUACfxQKv1wufyQSjexAz9+9A/+YvgQuODbMpW7oI7tpa9DudGDBb4ZWAPrcPZs8gciwiypYuOiza9a5DLTzpkK9QFSDAIIoQht4VGK0VqvIJ+cg6lEzI8+gnWuBRh9LyFqMB151ZiZrSfHy0Y25oc9PTD/M1vN51qCVVOiJz+gs+CYd8LkU5/dW0K5ja0nvx2ao3ueR1DJXYyNOEwGaDf+9emKdOBQYG4Ny4EdYj58Rd+cyLDiB8v4jdLV2YXu+Lu1+EWrTct0W++SYahudNlLwlqMexqwaaLOccURQxY8YMZWWHnhRlLlyIkhTVkYyNWpTUIQ94osOBYGZkyelUFPDU6uBF9+GwSRftY9nfkymfaptkXmNMlfbwjRs3wKhiR24ex1wvG6Xl1V5wyl/XDmxcNPQ7bl/c17VTrSNZG7XwqmO8audRtxabsT7mesdrnrSrLa+2r2bt2w4fE0L5x02mwPc+iw0CBMzat31EHdnV8zBj2zY41q5Ht7MPnV6GPF8fcqxGFJ2+ENnV80ZFi9byetWhFp50yFeoOixGZGZlARjdFaphKSMEIVQHoGxCnkc/0QKPOtSU5/EaXu861JIqHfIFSOvqO9DW50ZhpgXVFfmKJkHHsnY96pCnCZHnxVaaJoQXHeEbOAtwmG3Y0dKP7Qf7Rm0DZy33bfI330SHA1mZgXOC0rcE9fBfNdAGn5zDGEN3d3dYzp/RttGjDi0oqUMe8AAGj8cNgIUFvGTrSKa8FvQaj/GqfSz7e7JtGo/agw8Ri355KzLuvANFv7xV0caNPOrWy0Zp+fD4O0ys+Ct/XVser+Wvax8OHcnaqIVXHeNVO4+6tdikw5jrGa950662vJq+mgIX3CYLvH4JAINf8gNg8PoluI0WTIEr6u8XXX8dyn50AypOPRaTJxhRceqxKPvRDSi6/rpRHxNejxG18KSjamY+qmbmoaV3EE0d/TjQ1Yemjn609A6OWoq86op8SBKD0+2D/LyudEKeRz/RAo869NCtV7t41J5KHcGHF79efgTuPnsGfr38CCyqLFI0+TnWtae6Dl97O5jdjgPdA/hq7yHU9Qj4au8hHOgeAFOQJoQXHfKJ7NJ8O3KsAkrzR3cDZy33bWGbiO7ejYGDB+DZvVvRJqKAfnFLKTRZzjmSJKGlpUX1DrpqbPSoQwtK6pDnRWIMcLkGEDy2lORF0qOv1KLXeIxX7WPZ35NtE2kff/6uxUZpebUXnPLXtRljQ/E6ELCVvK7No59ogVcd41U7j7q12KTLmGuxSRftqdJRNH0SCowSBrx+9A364Bz0om/QhwGvHwVGP4qmT4pqF5yQL7jlFrRcfjkKbrlF0cMLLVp49RO18KQjuEL1+gUzMKsoA/B5MKsoA9cvmDEqqw6BiAn5dif2dfShqd2peEKeRz/RAo869NCtV7t41M6rDtIe30bIy8P+A52oPdiL7oHAQ73uAR9qD/Zi/4EOCHl5Y0JH+H4Rw/dUShcgKUHLfVvwzbe8a1bAXFEON2MwV5Qj75oVivLB6xW3lEJpWIgxTWReJDlK8iIRBEEQ2hDy8rD/s81osjAgsK80ugd86Hb1otTdidKTjgkrH/a6dgSjlT+VIAiCCCereh4m7tgBm92Ig24BfS4/Mm0mTLQwTHBZkJUgpQoxdgmuUF1Qno+GhgaUl5fDYBi9zbTD9qypa0NTsxulxRm0cTdBEFyyu/RI9H34ObLMHjCrHf1eIMNihDDgQp/Lg92lRyL642O+aOtzI0uUMGnHVyhp2ARjVzt8uQVoLj8WnYXlo7KBc2GmBfX7uzDp4PYRdezNKcXUydEfLAQftNurq9HT0IDCUT7v6AlNlhNjGnleJEG2867SvEgEQRCENtRecMrzp9rNwy+2jWb+VIIgCCKc4Iag4saNyBMFDFgZbHADAwyOU09N+Fo0QcQj1RPyBEEQo8UH9unIm3YEZjfXgbl6AD9DlrsPAmOonTobnfbpqDpMbQtu2Bl48NiJ0jpvzAePxTYRee+9EdAhCBgQDchs2Yvc5j0QSyrQufySpNtTXZqF/Nf+jsqDOyAYDKE6cg40QZhYidnVNyWtg3dospxzBEGAw+FQvYOuGhs96tCCkjqCNwDOjRsBUYRBFODp7gYkSVFeJD36Si16jcd41T6W/T3ZNqXSRvJ44NywAX3r1qF4yxa0b96MzOrqhBuzaWkXr36iFjV1BPu3f30NxH170TZlKjLmVR3W/lV7wVk1Mx9b9vegZmdgV3XRz3Co0wWJIe7r2lq107FO2uMRvJj/uL4de9q6Ma3eh/kVBSm5mOc1ZvE45lps0kV7qnTINwTtX18Dz769sKg4h2iBF+3J1qEWXnWQdr6063E9ruV6UQs8aU+mDrXwqoO0x7dpGZCwr2o5pLZKlDRsAms9iENFE9Fcfiw2F5bDNBA//UeqdIRt2CkAIhNR19KP2ub+qBt2LnLtRu+e7ejNzQdsNni9PvhMRsDlQuneWhzj2g3gWEVtjMW32hpgaW/AflsOvGYrwCQcEkSYPIM4tr0BR7Q1AAjP4qBWRyR6+K8aaLKcc0RRxBSVqUTU2uhRhxaU1CG/AXDWbICxvR3GggI4quYquijQo6/Uotd4jFftY9nfkymfShvJ40Hnk0/BuXEjmCBA8Hjhrm+Ap64eg1u3JcxRxqN2nsZc3r+CKMJmt8NTX4/OHTsOa/+qveCUv669rr4DbX1uFGZaUF2RH3OCMhntdKyT9liEXcyLAhxmC3a09GP7wT5FF/Nq4TVm8TjmWmzSRXsqdQRfi85cuBAlqmrQBk/ak6lDLbzqIO18adfjelzL9aIWeNGutbzWxT686UjGRi1jWXthpgW1Tg8OVB6HfRXHYt/evZgydSpEUURvRz9mZ1pGtV1Ky8s37AxsqBnA6fahZmcnjpqcjUWVRaHPpzdtRZPDgibBBGHQB6NBxOCgD0w0o9RuxvSmrQDOV9zOaLg3bsTEvAxYcgrR0jOIAa8fNpMBxSVZyDskwb1xI3D6oqR0RKKH/6qBNvjkHEmS0NHRoXpTADU2etShBaV1BG8ACm+9BdbbfoXCW9VtQJTqvlKLXuMxXrWPdX9Ppk2psnFu2ADnxo0wFRXBPG0a/FlZME+bBlNREZwbN8K5YcOototXP1GL0jrk/WuaNg2+rCyYOOjfwkwLeiURByqPw2dnX4XXzvgePjv7KhyoPA69koDCKBecwde1bz9nNn6zZCpuP2c2FlUWxZyYTEY7HeukPRbyi/nSPDuyzEBpnh3F2VbU7OxETWPyGyOpbVOyNuky5lps0kU7r32lhfGqnVcdpJ0v7Xpcj2u5XtQCL9q1lA8+XOh8+hm46xtCi306n34GnU8+BcnjGRM6krVRy1jWXl2RD0licLp9YZ8rTQmZKh3yDTvBGAYHB4E4G3ayzk5MnpSH2SVZyLGbACYhx27C7JIsTJ6UD9bZqah98fC1t8Not2NSjg3HTc3BCZMzcNzUHEzKscHocMDX3p60jkj0ukZRCk2Wcw5jDB0dHaGdZ1Nho0cdWuBRB4+69bJJF+3k76Nv46zZAEEUITocYZ+LDgcEUYSzJv7FOY/aeRrzyP4dHBwEcPj7N5kLTj2007FO2mMhv5hnCFzMMyi/mFcLrzGLxzHXYqOmvOTxoG/tWrTecw/af/ELtN5zD/rWro07KaIVHsdQjzHXq108audVB2nnS7te1+Nqrxe1wIt2LeWTWezDk45kbdQylrVXzcxH1cw8tPQOYnenEz0eYHenEy29g3FTQqZaR1ufGw5zYOGQ/LoUABxm44gNO40FBRBcrqGJ7Ak4psiC46ZOwKQcGwSXC8aCAkXti4exoACSyxX6OxhPAECKUYdaHZHodY2iFJosJwiCIJLC194OUbbBrhzRbo/65JlQDq/9m+wFpxJ41U6MbeQX85EouZgnxiaRqwjh9iheRUgQBME7dM2kjmQX+xBjj2BKyOsXzEBlUQZMBqCyKAPXL5gx6in41FCYaYHT44/6ndPjG/G2rqNqLpgkQXI6wz6XnE4wSYKjKvmNu7XUoVYH71DOcoIgCCIpjAUFcNfVRf1Ocrlg4Sj32FiE1/6V5yD/aEcrvuntRGVRBhZUFo3aJom8aifGNoWZFtS29EX9zunxYWpu9MkGYmwjX0Uo2O0Y6OmBOTsbzOWCc+NGWI+cg8yFC3Vv1/CGfOvBmprQVlqKjHnzUrYhH0EQ6QldM6mDHi6MT4IpIavLcrF6dROWLZsNk8l0WNtUXZGPbQd74XT7YDcPr2eO9bauY+5cDG7dBufGjYAoABKDp/sQIDE4TjkFjrmjMFmuoQ61OniHJss5RxAEZGdnq94JWI2NHnVogUcdPOrWyyZdtJO/j76No2ouBmtrA0+ebbbQ50qfbvOonacxl/evYLfDPDR5wkP/ar3g1EM7HeukPRbyi3mH2QCz2QwBQsou5nmNWTyOuRYbpeXlqwgZY6F4Il9FOJqT5UraJd+QD6IIo8EAd30D3DvqFG3Ix+O5Ta928aidVx2knS/telyPa7le1AIv2rWUT+bhAk86krVRC2kffR1VM/OxZX8PanZ2QhQAAxNwqNMFiSHq27qi2Yy8ldfCeuQc9K+vgW//flgmT0bGvKpRe9CupQ61OiLR6xpFKTRZzjmiKKKkRN2+9Wpt9KhDCzzq4FG3Xjbpop38ffRt5E+emSDA0NcHz549EJiyp9s8audpzOX9K4gizHY7vG1tgRsfTvpXLanU7vb5UdPYgXX1HWjrc6MwswvVFfmKVrvzpF1reT1t1MKL9siLeYfZiNZOp+KLebXwGrN4HHMtNkrLy1cRCoIAu2xFYSpWESppl3y1u+hwIPiCsuR0KlrtzmN811IPT36SDLzqIO18adfjelzL9aIatF5r8eQnWhb76HmNmS7+rsUmXbQrLS9/W3fYtyxxfUs0m5G5cGFK34hTW4cWHWH16XSNohTKWc45kiShublZ9U7Aamz0qEMLPOrgUbdeNuminfx99G2CT57zrlkBS0U5mNkES0U58q5ZkXBVnJZ28eonalFah7x/zRUVcAMwV1Rw1b9qSZV2t8+Px9fuxONrd6G2uRfd/S7UNvfi8bW78PjanXD7oufRU9uuZODR37XaqIUX7WE5K4szAb8HlcWZKctZyWvM4nHMtdgoLS/frIoxBpfLFdpEKtZmVcmgpF2Rq92DbVKaM5fH+K5Xu3jUzqsO0s6Xdj2ux7VcLyolmWstnvzEMXcuHKecAm9rKzx79sDQ2wvPnj3wtrZGfbig9zVmuvi7Fpuxrn3QNYCa//c6Xl/xM/zrvO/j9RU/Q83/ex2DroGYNsG3dW8/ZzZuW1SC28+ZjUWVRQmvSXnSDWjXobYePaDJcs5hjKGnp0f1TsBqbPSoQws86uBRt1426aKd/D01NsEnzwW33IKWyy9HwS23IHPhQkUX5jxq523Mg/1beOst8P3kxyi8la/+VUuqtNc0dqCmsRPF2VZMz7cjy8QwPd+O4mwranZ2oqaxY1TaJXk86Fu7Fu333oviVavQfu+96Fu7VtEGgTz6u1YbtfCkPXQxf/Zs3FyVh9vPVn4xrxZeYxaPY67FRmn5yM2qPEPHa6pSFChpV2TOXI8shihZ7c5jfNerXTxq501H8FzVes896L7tNrTec4/ic5VaeNOejI1aeNKRzPWiUpK51uLJT9Qu9tHrGlNrea02auFpDJO1UYuSOgZdA1hz2wPoffY5mPbsAtxumPbsQu+zz2HNbQ/EnTBXWkcy5bWQTvciaqA0LARBEARBpAXr6jsgigIcFiMYG16V4LAYIQqB7xdVFiVVhzzHMBMECB4v3PUN8NTVK8oxTBDE4UGPDbHUQhvyEakiMh8+JElVPnyCiIUe11p6EXy4YK2qwuerV+O4Zcti7r2TTrqJ1PHla+/AuOlLeHLzwWw2eD0eCGYzBJcL5m++xJevvYOq751/uJtJKIAmywlCAcH8ZB/VtaGpuROldV4smFWoKPcSQRAEoQ9tfW44zNFjssNsRFufO+k65DmGYbPBv3cvzFOnAgMDinIME6khXc7TkscD54YN6F+/HqypCW2lpciYN2/UNmwaz4RvVrUeA01NsBzm/o3ckC9IKjfkI8YH8nOVYLdjoKcH5uxsMJeLzlVEUuhxrcUj41U3oY6OD9fBJIqAzQ5AtkLa7gDrPYSOD9cBNFk+JqDJcs4RBAH5+fmqdwJWY6NHHVrgRUcwP1lNY2AjMJNoQl1LP2qb+7Flf8+o5zfVazz06F+18KqDR+28+okWeNTOo269bMay9sJMC2pb+gLlIcBqtUJAoLzT48PUXHtMW6V1yHMMy3PqyXMMx5uA4NHftdqoJVXakzlP86Q7ciWo2WhUvBI0XcZci42a8sFVhI7582Hq6kJubi5EMTVZKZW0K3y1e2DMPd3dgKRsQz4e47te7eJRO086IvPhW61WAMrPVWpRo2P4oWANTAcPoG3iJGTMq0r40Cpd4hxPfqKFZK61xrJ2Pa4xkymv1UYtvI4hL9qFQ53wD8VbAYDRYESwtN9ihXCoM+k6kimvhXS6F1EDTZZzjiiKyM/PT6mNHnVogRcd8vxkDsvwIeN0+1CzsxNHTc4e1Veu9BoPPfpXLbzq4FE7r36iBR6186hbL5uxrL26Ih/bDvbC6fbBYTGGJgecbh8kFvg+2ToicwyH2SvIMcyjv2u1UUuqtCdznuZJt3wlqOhwhD6XnM6EK0HTZcy12Ixl7fLV7s6aDfC1t8NYUABH1VxFq915jO9a6uHVT9TCkw75uUoQhND5EFB2rlKL0nbJHwoKogiz3Q5PfT06d+xI+FBwLB/ryZTXqw6lJHOtNZa163GNmUx5rTZq4XUMedHOJuTBuGcXAstpBBgMw4s1DO5BeIsmJl1HMuW1kE73ImqgDT45R5Ik7Nu3T/VOwGps9KhDC7zokOcnA2Nw9vcDjIXlJxtN9BoPPfpXLbzq4FE7r36iBR6186hbL5uxrL1qZj6qZuahpXcQTR392NN6CE0d/WjpHURVWR6qZsa/AFNSh7GgAJLLFd3e5YKxoCDpOpIpr6eNWlKlPZnzNE+6I1eC9jv7wRgLWwmabB3J2qiF15jFk3b5hnzsZz9VtSEfj/Fdr3bxqJ0nHfJzlTyeAMrOVUoJbiLafNfdqL/uOjTfdXfcTUTlDwVN06Zh0GGHado0mIqK4Ny4Ec4N6R/nePITLSRzrTWWtetxjZlMea02auF1DHnRnn9aNQRJAlxOAAxerxcAA1xOCJKE/NOqk64jmfJaSKd7ETXQynLOYYzB6XSq3kVWjY0edWiBFx3y/GQMDF6fDwwMAoSU5CfTazz06F+18KqDR+28+okWeNI+Iu9xSXfK8h7zOoY8jrlSG4vRgOsXluGoydnDY1iUoXgMldQhzzEMmy30udIcwzz5e7I2akmV9mTO0zzpjnxrwef1hf6daCVouoy5Fpt00c5rX2lhvGrnSUdkPvxgPBnNfPiRqaP8kgR3fT3ccVaJRz4UDLZLSXoYOtb58PdkrrXGsnY9rjGTKa/VRi28jiEv2o+/YAnWfLUZ5m++BOs5BMlogsnnhcAk+I45HsdfsCTpOpIpr4V0uhdRA02WE0QC5PnJIlGSn4wgiLGBPO+xIDAwH8OOlr6U7U9ApAaL0YBFlUVYUJ6PhoYGlJeXh70CmSzyHMNMEGDo64Nnzx4IjCnKMUyMPulynjYWFMBdVxf1O8nlgmXKFJ1bRBDEWCU8H74ASAye7kOANHrnKi2biCabyozgg1Rfa/HKeNVNKMdqt+HMu27Gl6+9g/YPP4bU1grPpMkoOG0+jr9gCax2W+IfIbiAJsuJccnwxjLrwZqa0FZaiox586Lmh5TnJ7ObhzMXKc1PRhDE2ECe99huFtHT40d2tgMuj5SS/QmIsYk8x3DfunVgW7bAUlGOzOpqRTmGidEnXc7TkStBg4zmSlCCIMYH8nNV//r1GGhqgiXO/Y4WIleJh+qOs0qcHgoSBJHuWO02VH3vfPgvXa74oYqa+SlCH2iynHNEUURxcTFEUXl6ebU2etShhVTpiNxYxmI2wVPfgM4ddVFfGayamY8t+3tQs7MTogCYRQMOdbogMSjKT6YWvcZDDz9RC686eNTOq59ogRftYXmPwWC32yAIQlje49HezJfHMeRxzLXYpLKOYI5ha1UVPl+9GsctWwaTyZSSdvHqJ1pIlfZkztM86ZavBA1en3i7uwMT5QlWgqbLmGuxSRftvPaVFsardt50BM9VGQsWwNbTg+zsbAiCoLhtiQjfRBRD101DdcdYJS5/KCg67CEbJQ8F6Vjny9/1aheP2nnTEZxoddbUwHKwGe0TS+CoqkrJRCtv2pOxUUuqdKidn0qmTVpIp3sRNdBkOecIgoCcnJyU2uhRhxZSpUP+yqDocIQ+l5zOqK8MyvOTravvQFufG4WZFlRX5Kckj7Fe46GHn6iFVx08aufVT7TAi3Z53mNAgNlsCX2Xiv0JeB1DHsdciw35e+pt1JIq7cmcp3nSLV8J6qzZAF97O4wFBXBUzU14w5suY67FJl2089pXWhiv2nnVkSrt4avEw6+bYq0Sj3woKNrt8Lhcih4K8qQ9mTp49RMtjFftqdQxPPEduA4YTHAdEDnRarTb4a6rx2Bt7L0DkoHXMeRx3FM1P5VMm7SQTvciauBjyp6IiSRJ2LVrl+pdZNXY6FGHFlKlI/KVwd6+XjDGwl4ZjCSYn+z2c2bjZ6fm4PZzZmNRZVFK8hfrNR56+IlaeNMheTzoW7sWzXfdjbprr0XzXXejb+1aSB6P4vYphdfjlsdxT5WOwkwLnB5/4A/G0NfbCwy9Vuz0+FCYaYlpqwVex5DHMddiQ/4+vrRrPU/zpju4ErTw1lvg+dF/ofDWW5C5cGHCG910GXMtNuminde+0sJ41c6rjlRpd1TNBZOkwKpw2T1VvFXiwYeCedesgLmiAi6/D+aKCuRdsyLhpB5P2pOpg1c/0cJ41Z4qHcGJ786nn8FgXR36u7owWFeHzqefQeeTT0W9B5VPtJqmTYPLZoVp2jSYiorg3LgRzg0j5zaSgdcx5HHclZbXMj+ltU1aSKd7ETXQynLOYYzB4/Go3kVWjY0edWghVToiN5aR/MMHY6KNZXjUrZdNumhXWl7+lB6iCEmS4K6vh3tHap7S83rc8jjuqdIRmffYL0lgYHC5/SnJe8zrGPI45lpsyN9Je6rqUAuvOkg7X9p57SstjFftvOpIlfbITUQlicHT2ZlwE9HgQ0F7dTV6GhpQqHCTRJ60J1MHr36ihfGmXZ5X2t3UhFYVeaWVtEvLprmRE63BuY14ewckA69jOJaP9fE+P+X2+VHT2IGP6trQ1NyJ0hInFswqTEkWBzXQZDkx7qCNZQglaLlYIcY2YXmPAUheHw55XZCQmv0JCIIgCIIgxip6bCJKELwQuZAKkgR3fQPcCvJKK0XLprmRE61yEk20Enwwnuen3D4/nlizA61r12Hmnm04sr8L/Rm5eH/aHGxdWI3rzqw8bBPmNFlOjDvkG8sI8id4CjaWIcYPWi5WiLGNPO9x4Mm2G6XFGQmfbAdXmfStW4fiLVvQvnkzMqur6UaRIAiCIIi0RusqcYIYa+ixkErLxPd4nmhNF8bz/FRN7UEYXvo7Fh3cAcFgwIBoQF7PQUz9eh92tO5GzeSbsOiow+PDNFnOOaIoYvLkyap3kVVjo0cdWkiVjsiNZawWC7zd3Yo2luFRt1426aJdaXn5xYogAA6HA4Iw9BspeErP63HL47inUkcw7/FpswrhdDqHxl2IWV6+yoQJAgSPF+76Bnjq6hXtXs7jGPI45lpsyN9Je6rqUAuvOkg7X9p57SstjFftvOog7Xxp57WvtDCetMsXUgEsdG8oKFxIpaRd8onvyPvPmJvmyiZaRYc9ZJOqiVZex3AsH+vjeX6qcfWHmLGvFoN5hfBZLJAkBp8owOgexIx9tWhc/SEWHXVFshI0QZPlnCMIAjIyMlJqo0cdWkiVDvkrg8Fdpo3Tp8fdZVprm7Sg13jo4Sdq4UlH+FN6ASaTKfRdKp7S83rc8jjuPPmJfJUJbDb49+6FeepUYGBA0e7lPI4hj2OuxYb8nbSnqg618KqDtPOlnde+0sJ41c6rDtLOl3Ze+0oL40l7+Krv8HtDJQuplLQrfOLbEaoj3sR35ESraLfD43IpmmjVAq9jmEqfD+bUXlffgbY+NwozLaiuyE+YU5vmpxLbZG77CqLBAI/FCgAQxcDTIZ/FBovBgMxtXwE4PJPlqX3USCSN3+9HfX09/H5/ymz0qEMLqdQRfGWw4JZfwHXjDSi45RfIXLgwYcoEHnXrZZMu2pWWd1TNBZOkwMUJY+jp6QlsmpKip/S8Hrc8jjtPfhK+ymQYJbuX8zqGPI65Fhvyd9KeqjrUwqsO0s6Xdl77SgvjVTuvOkg7X9p57SstjCftxoICSC4XAITdGwKBhVTGgoKk2+WYOxeOU06Bt7UV7t1N6G5qgnt3E7ytrTEnvoMTrXnXrIC5ohz9Pi/MFeXIu2bFqORR16IjWRuejnW3z4/H1+7E42t3YXtzDzq6e7C9uQePr92Fx9fuhNsXuz41bRqv81O5g30YMAQ0MjB4PG4wBI6rQYMZuYN92hueJLSyfAwgSVLiQkna6FGHFnjUwaNuvWzSRbuS8vKn9BAFMInBc6gLkFhKntIrbVcy5fW0SXUdvPhJspvq8DqGPI65Fhvy99TbpLoOXv1ELbzqIO2phUcdeujWUk+6aOdVB2lPLTzqoGN9dInMKx2aKFexkCpRu7Rumqv33gG8jmEqxr2msQM1jZ0ozrbCbhbR0+NHdrYDLo+Emp2dOGpyNhZVFo1qm3jw99GoQ4lN3tQStH69DQN+CUaDgOBOcV6/BJvXjbypM1XXO1rQZDkxLgm+ShPYxK8TpXXehJv4EeMLrRcrxPiCNtUhCIIgCIIgiPQmciEVJAZP96FRX0hFm+byxbr6DoiiAIfFCMaGJ38dFiNEIfB9vMlyIj5lSxfBXVuLfqcTg2ZrYIGi5IPJM4gci4iypYsOW9tospwYdwRfpalp7IQgMDAfw46WPtQ292PL/h5cv7CMJswJAHSxQiRGvsoENlvo8/GwezlBEARBEARBjAdoIdX4pK3PDYc5+v2/w2xEW59b5xalF9nV8zBj2zY41q5Ht7MPvcyALMGPHKsRRacvRHb1vMPWNpos5xxRFFFaWqp651k1NnrUoYVU6ZC/SuOwGCD57RANIpxuf8JXaXjUrZdNumgfb/5+OGzUwpN2yeMJbNpZUwN7axvaiwrhqKqKeREsX2XCBAGGvj549uyBwBKvMuF1DHkccy025O+kPVV1qIVXHaSdL+289pUWxqt2XnWQdr6089pXWhhv2oMLqTIWLECuxwOz2QxBEFLSrnTw9+Db/B/Xt6O1ZwBF9bWYX1GQ8G1+nrQXZlpQ2xLImy0IArIyM0Nj7vT4MDU3ejpOrW3iyd+TqUOpjWg2o+j665Bx9FFw1tTA09oGc4L7b72gyfIxgNGofpjU2uhRhxZSoUP+Kg3AIAztuKv0VRoedetlky7ax5O/Hy6bVNeRCh2Sx4POJ58K7SYv2O1w19VjsHYHBrdui7pJjnyVSd+6dWBbtsBSUY7M6mpFJ3hexzBVYy5/GOFtb4epoEDVxRAPfjIa8KpjvGrnUbcWm3QZcy026aKd177SwnjVzqsO0p5aeNRBx3pq4UmHfFK6rc+NwkyLoklprShpl/xtflEE7CYDdrT0YfvBPkVv8/NyrFdX5GPbwV443T44LIbQ3JHT7YPEAt+PdpvGm7/LH0JJkgRRFBU/hEolqX3USCSNJEloaGhQlVBfrY0edWghVTrkr9IEdrLuDW3QkehVGh5162WTLtrHm78fDhu18KLduWEDnBs3wlRUBNO0aXCazTBNmwZTURGcGzfCuWFDVLvh3ctvQcvll6PgllsU7V7O6ximasyDDyM6n34Gg3X16O/oxGBdPTqffgadTz4FyeMZ1XaRv5P2VNWhFl51kHa+tPPaV1oYr9p51UHa+dLOa19pYbxq50lHcFL68bW7UNvci45Dvaht7sXja3fh8bU74fb5FbdxNNslf5t/ep4dFubG9Dw7irOtqNnZiZrGjqTrSNZGCVUz81E1Mw8tvYNoandiV3MXmtqdaOkdRFVZHqpmxp4s58lPkiGd7kXUQCvLiXGH/FWaSGK9ShNcDdm/fj1YUxPaKD8ZQaQdzpoNEEQRosMReoAGAKLDAUEU4azZgMyFCw9fA8c48ocRgt2OgZ4emLOzwVwuODduhPXIOdS/hG7QeZ0gCIIgtEHnUH6QT0rbzSJ6evzIznbA5ZESpphNJVo2xgyukP+org1NzZ0orfNiwazClK2QV4LFaMD1C8tw1OTsoXa5UVqccdjbRaQemiwnxh3yV2ns5uGXK2K9SiNPzQBRBCQJ7voGuHfUxUzNQBDE2MPX3g7RHj3vnGi3w9fernOL0gt6GEHwwng/r9MkB0EQBKGV8X4O5Q0tk9J6oHZjTHnaFkFgYD6GHS19qG3uV5S2JZVYjAYsqizCgvJ8NDQ0oLy8HAYDTZKnO1ynYfH7/bj99ttRWloKm82GsrIy/O53vwu7yWaM4de//jVKSkpgs9lwxhlnoKGhIfS92+3G97//fWRlZaGiogLvvfdeWB0PPPAA/uu//ks3TcThR/4qze4OFzpdPuzucMV8lUa+GtI8bRqQmwuzgtQMBEGMLYwFBZBcrqjfSS4XjAUFOrcovaCHEQQvjOfzujwdkru+AXB74K5vUJwOiSAIghjfjOdzKI+onZTWi8JMC5ye6ClgnB4fCjMtYZ/JV8iX5juQZzeiNN+hKG0LQaQCrifL77vvPjz22GP485//jNraWtx33324//778cgjj4TK3H///Xj44Yfx+OOP49NPP4XD4cCSJUswODgIAHjyySfx5Zdf4pNPPsHKlStx2WWXhSbbm5qa8NRTT+Huu+8+LPqUIIoiysvLVe88q8RG8njQt3Yt2u+9F47HH0f7vfeib+1aRTdKWtqlFrV1KC0ffJXm+gUzUFmSifwJWagsycT1C2ZEfWIpXw0pCEB2djYEIXw15GiSyjFPxobHMddio1f/qoVXHeNJu6NqLpgkQXI6w451yekEkyQ4quYqrm+02nQ4bFI15vKHEfL+BZQ9jODFT5KFVx3jSXs6nteVlpdPclimT0N2aSks01M3ycGT9mRt1MKjDj1069UuHrXzqoO086Wd175SSjLn0LGuPZk6UqVDPiktCAKys7NCmyNGm5ROFqXtqq7IhyQxON2+sHbFeptfvkJeXl6+Qn402pUM4+1YT6YOXuO1GvhoRQw2bNiA8847D2effTamT5+OCy+8EIsXL8Znn30GILCq/KGHHsJtt92G8847D0cffTT+9re/4eDBg3j99dcBALW1tTj33HMxZ84c3HTTTWhvb0dHR+BAu+GGG3DfffchKyvrcElUhM/nG3WbsJVFdfXwuwbgVrHRmtZ2qUVtHUrLB1+luWP5HPzxwiNxx/I5WFRZFPXVnsjVkPINB1K1GjIVYz4aNjyOuRYbvfo31XXw6ida4EG7Y+5cOE45Bd7WVnh274Fn6P/e1lY4TjkFjrmjO1mupE2HyyYVYy5/GAEMx1I1DyN48JPRgFcd40V7up7XlZSXT3IAw9pT9aBAabuStSF/T20dWhiv2nnVQdpTC486UqU72XPoWNaebB2p0CGflAYAJgUWhsaalB4NlLQrbGPMDidaewL/j/U2f+QK+aAOQPkK+VSNe3CRaes99+DAf/8Urffco3iRKS9+kizpdC+iFK5zls+dOxdPPvkk6uvrUVFRgW+++Qbr16/HH/7wBwCBleEtLS0444wzQjbZ2dk4+eST8cknn+CSSy7BMcccg7///e8YGBjAO++8g5KSEuTn52PVqlWwWq349re/ragtbrcbbvfwAdrb2wsA8Hq98Hq9in4jWE5peSCQimbnzp0oKytTnBdJiY1z3Tr0b9gAY3ExBJsNvb29yCooAHO50P/JJzDNroRj/vxRa5ce2lPVV2JeLtz1DRAlCYyxQF9lBZ50+pxOWCZNjKtLrfZU6UjWRksdPGrXo46x7O/J2oxp7YKA7Kuvgml2JZw1NejZvQfZM8vgqKqC/ZRT4BcE+OlYj4oS7ZYTT4R182YMfPoZIAoYkBhsogBIDLaTT4LlxBPj2nPjJzLGtL8naTOWtafjeV1peU9bK2CzQYqiHTYbPG2taas9GZux7O/J1kHayd9TUYcWm3TRzmtfKdWezDl0rGtPpo5U6ThpWg42lU7AJ7s6A+dy7yBgsoIxhlNn5OGkaTkxdaXS30UAK6qmYXZxBtY1dKCppRPlxXmoLs/H3LI8iEyC1zv8oCXfYcSO1kHkS2YwJsn8SkS/24vJOZZRvU9Qqp15POh65hkMbPwUEEUMMAZbVxcGtm2Hc/Nm5K5YASFGjn6e/EQOj/6u1UYLSnULTJ4AnDMkScIvf/lL3H///TAYDPD7/bj77rtx6623AgisPK+qqsLBgwdRUlISsrvooosgCAJeeukleL1e/OQnP8Hq1auRn5+PP/7xjzjiiCNw4oknYu3atXjiiSfw4osvoqysDM8++ywmTZoUtS133nknfvOb34z4/IUXXoA9Rg5Wnin4979hbm6BN3/kk0ZTRwc8JcVoP/fcw9Ay/nDU7sCEj9bCm5UNZhl+jUlwu2Hq7cWhBQvgnF15GFtIEAQxNhB8PtgbGmFvqIehrw/+zEy4yivgKp8JZuT6+T2RRozn8zpd/xEEQRDJMJ7Pobzik4C6HgE7ugX0eoEsE1CZwzArm8HIdS6JYbYdEvDeAQE5ZsAqmycd9AM9HuD0SQxzJug/dUn+nn64XC5cdtll6OnpiZtlhOs703/+859YtWoVXnjhBcyZMwebNm3CT37yE0ycOBFXXnmlot8wmUz4y1/+EvbZ1VdfjR/96Ef4+uuv8frrr+Obb77B/fffjx/96Ed49dVXo/7Orbfeip/+9Kehv3t7ezF1xkxULzwdmVmZI8obBAEW0/BR7vL44PX68MEHH2DRokUwmYa7XhQEWCPKBvH7JTTt2oXSGTNgMIgjyg54/GAIDxpBmxkzZiDDZo5atuu998EmTYKhoGDoiXAfcnOyA0+EbTYwsxlzzlgcvVMBWAxC6KmPVwKkOM9c7GYjvF4v1qxZg/mnLYJoiO12dvPwd65BDxp3DmuPxGYyhPJxuX0SPF5fWF/FK+sfel0ssn8BwGo0QBQDZT0+Cd75C9FnscDz+edgfj8GGGATAMFggP2ss3DUNYGniR6fBJ/sNbQgwXFfuvgMWC3m0O9GKxts0/49TagonwmDwQCvX4LXH70sAJgNIgQw7Ny5E1Onl0KCELescUin2+NFXcPOmP1rMogwDX3u80sY8MTuX3lZv8Tg9vnDtMt93iiKMBtHlg1ql9chLytJDIO+kZuEBG3KZ5bBZjHFLRssv3d3EyorAv3LGMOAN3pZADCIIoxCoH9nzJgBT+yhCB33QX+vWhB+rEcrG6RvwBOzf6PFiGi+G62s/LiPtBEgwGbWFk8Gvf6ox31wzM8560yYTKa4ZYPI44lPAvwJ4knwqfPkqdOBODnN5Mf9gNuLhsbY/q4mnkTGiOCxHM3fY5UFRo6HxWiAIUbZSJvKipkwD9WRKEYYwLBndxPKysogQVAcT6ZNL4U/TjyRH/cDbjfefvf9Eee3aGX9EoPL7Q0ct1H6N1aMiObz8WLEaMWTeDHC6/Xhow8/wNIlAX9PGE8EAUYRIX93+2P7ejBGBP29ZMr0qL4LjDzu1cST4HEfrX/jxYhIf48sG+24l9eRqSCeBMvPqSwPrTBxe/1xY4SSeMKGzuu+Lz4HmIQBicECATAYYF68GGVXXT1ilZA8RjgH3Hj3vdj+HnncuzXEk2jjES9GxIsn8hgxaLGh//m/QszNHXqzsA852VkQBgbg8/uRefElmFM1L2b/CsyPD99/H2eeeSYE0QBPnHhiMogQNcQTj9eHHfWNMeN1ZIwIxpNo5WMd92rjSaS/G0QRlqGysY57tfHE75ewZ/cuzK4Y9nf5PUEkauJJ8LjXEk96XYN4//2R9y9A7BihJJ7Ij/to5eX3BGriSawYoSWeGCHhvffew5lnnglJMITuH6JhMxkgSRJ27tyJKdNKwYTY/i4/7hNdn6iJJ7FiRKJ4EnkdEenv8vuHWNccwTpmlZfBYg74u88vxY0RIhj2Dl2fMAiK48n00hnwxZkzkx/LauKJJDH0Dbij3q9HKxsvnsSLEZHl1cSTmWUzYLcO+3usGKE2noiCAAMkrFmzBmeeeSa8LLb/CgtOg8tuC7wpyCT0+1no3jjyHBp53PcPeLArhv/GihGx7nlixYhE8STacS/3+WyHNW5ZeR1HzJoJ49BiD/kcQzTMIrBr167A9QkT4pa1Gg1gbPTjSWSMGHB7Yvp7rBgRrX8TxQi5jc1sDJWVx4hTfQyGmt34tKkL7qEV8oLZCgOAs2fk4QfzpsW5igiPJxDEsDmGSIyiCIH5sWbNGiw6/QxIQuz7yd5Nm+HLL4B52jRIkoRDPb3IysoMzJvt3Yv8QTdyhubNImOEM871SazjPul4EmUeMpKgv595xiJk2Kxxywbr2N20C0fMUh5PTLLrE48fI+YYgsiPe7/fj211DSgtje6/Su415MSKEX29fTFt5HA9WX7zzTfjlltuwSWXXAIAOOqoo7Bnzx787//+L6688koUFxcDAFpbW8NWlre2tuLYY4+N+psffvghtm3bhqeffho333wzli1bBofDgYsuugh//vOfY7bFYrHAYgnfHGHqT1/FvD99HrX8abMK8NzVJ4X+PuW37w85tRH47OOwsieX5uKl604dtr13LbqckfmP9gIAjp6cjX//cPgmZuHv1+FA90DUNpQXdmHNTxeE/l72yAY0tPUDAK7bOYDpvc04uC/wCoLNKOD83AmBG8GBAaw5ZMTdv/sg6u/mOsz4/JeLYDKZYDKZcOXTn+HTpq6oZW0mA2p/d1bo75+8sh0fxdmcYfe9Z4f+fctL3+Ctra0h7ZFs/+0S2IeC+i3/+gavfrV/6JuR5b+87QzkZQRO2r99cyv+vnFPRIlhm3X/cxqm5AbeFnhgTS2e/HgXTP5SHGv24ri2ekxw9+GQJRNfFVbgrgsuR8lQ3s8/r63Hn95viKHMiLJvDeD40kDZZzfsxP++tSNmPzywdBLmmEwwGAz4xxe78ev/2xaz7LNXnYAF5fkwmUxYvb0dv3h1a8yyf7nsOJx9dOBYeXtbG/7rxb2I1b8PXHg0vnvClECf7GzFD/76xdA3I8v/9rw5uOLU6QCAL3Z24tKnNsq+Dff5W5dW4roFZQCA7fu6cd5faqLUHqjjx6eX47/PrAAA1Lf2YfEfP45SNsA180Tcds4cAMC+Lheq7/8wZtnlldl4aE6gfzv73Tj+rui+DgDfOW4y7v/OkTCZTPBBxDG/ey9m2WVHFePRy48P/X3CvbHbGxkjqkIxYmT/xo8R4eWVxYiATXlhRswYEcmknDbU3HJ66O/vPPEpNu/viVrWYTTg28tNocny7z37RdwYsfXOM0Px5Ia/fYkP62LnOtx979kQRREmkwm3/F/tUIyIjjxG/OK1rXjt64OI5e+xY8TI8tFixDDh/v7uf89HRVHggWrsGBGo4/9uqsIxU3IAJI4Rq1YUoaq8EAASxoinv38cpg7172tfH8TNr2yOWfYvlx2Hs+YUwmQy4cOGQ/ivFzfFLCuPER/WteN/Pht5fgsSO0aM7N/EMWLYRlmMCJRfOX8GfrlsNoDEMeJ7JwN3ffsoAEgYI04qEHHuUP+6PD4c87s1McsuO6oYj1xybMjfK+98O2bZYIwI+nvVA+tiTrJFxogz/vdDdLm8iNa/iWPEsE3iGDE85pNybKi5ZVHom3gxItfejK9+PfxAPl6MsBgFbP/NEaGL85X/7+u4MWLn3WeF+venL27C6i0tUcuZ/KX45Oqj4d24AYO7d+NLbwZeFiZh08FSeO9bP6K8PEY88EYtVsXx99gxYuR4JI4RwzbKYkSg/D+uPQWnluUF/i2LESa/D98dKMAxn9dDEgQMGi34Vn4HcqxGZJx6KtZmzsDPY1z/AcDDFx8d+B2TCe/WduCmF76KWfaBC4/GBd+aCJPJhI27e3DN32OXlceIz3YfwuVxrk9ix4iR5RPHiGGbxDFieMy/f8o0/O78IwEkjhEXfMuHP1z8LQBIGCOqp2fgr0PXJwBwzO3vxix72qwCPH3F8SF//9bdaxLGiGA8OeOhmqEYMZLIGHHuYx/jQHd0f08cI4b7V1mMCJTPdZjx1e1nhj6Nfx1xIOxeI3GMGI4nP/7n5pgxAgC+uT3QXpPJhFv+tV12rzGSL287Azm2wFjcv2Yn/t+n0f0XCI8R971Tj6fXx/b32DFiZPnEMWLYJlaMGGZ4zJ+96gQsqiwCALz+zb641xGPXJKL5ccG3tR+t7Y5boy47ztH4lvZgT77qKFDdq8xkt+eNweXnzQFJpMJmw704fJnot+DA+ExYuvBPnwnTjyJHiOi+3viGDFch7IYESj/neMm4/cXHQMgcYxYeqQbj33vhNDf8WLESZPt+MecYX8fno8Yycmlufh/Pwj8rslkwryo8xEBjp6cjdevvx7Oo49G//r1+GjdNjQbMvBVYcWIc2hkjLgoFCNGjkfiGDFsoyxGBMpHzkfEjhGBcZfPRySKEVvuqIBt6H4nfD5iJJ/J5k/ufqM2ynzEMOv+5zRMzLbAZDLh4bVNeHr97phl5THikQ934uEPYvt79BgR3d8Tx4jhOpTHiL1h8xGJYkRVmR0rqmegamY+ahrjx4g7l8/G3IJA/362uztiPiKcW5dW4gdzpwIA6tsH8J0nPo1Z9tk9e1Ce7YAoiugd9GLNzn4AgfNc7qAL7ubtuHcwcHyPjBFrQ7ojSRwjhm2UxYhA+cj5iNgxwogF3dvx/A9ODn0SL0YcXWzDv44cjifR5yyHyk7Oxr9uODXk76c/9FGcOcvhGCGKIn76Vgv2dEf3X1X3GiquI2LB9WS5y+UasROqwWAIbSJRWlqK4uJivP/++6HJ8d7eXnz66ae44YYbRvze4OAgbrrpJqxatSqU1iWYhcbr9cLvj/30Kd34qrACZT0HYPW5MWi0QBRFCIIQ2mitYeoRce0NBgMqKipS2kYhzhNUvfEajPi8+Ah8XhzeL7HyUyXL5MlTVOVpCo7HN1/sU2zDyy7Do4UaPTk5OZr6N94T1PQndcej2ngSLC98/qViGyHOioGxiCgq91/RIGrq34bNzVqalhak8vyj1d+BXQnLhuDo/BkVFe0TBVFTvE6E12CEff582M9YhBIAT//zG3we5yY3XfAajHi5fBEaciaHFgD4ppch75wz4Jg7F2xz7AeQWgiOx/4dyn9XTXwbC6g5/2RmZqTE30eUF2JP0qQ7qcyDGro+2R574Uok4/l6XBS0XZ907uxMSXvGAmquTxwOR8r8XTSbkblwITIXLsRT934QcyIs3VEVr0Vt/i421iq2Sbf7nfO/NTk0CZ8IUWX/KsWdNQGSqw3AyP61+txoseeOep08YrPZUnp9ErQxm80AEm+cqgdc5yy/6qqr8N577+GJJ57AnDlz8PXXX2PlypX4wQ9+gPvuuw8AcN999+Hee+/F888/j9LSUtx+++3YvHkztm/fDqvVGvZ7v/rVr+B2u/Hggw8CCKR5ufnmm/HGG2/g4YcfRnNzM958801Fbevt7UVOfiEOHmxGVpQ0LNHSJni9XrzzzrtYsmRxaMVlrLJBGGNwOl1wOOwQBEFRGpagTYbDAbvFGLUs83jQ88wzGPwssFEBM1tg9HrAJAmOU05BxtU/AJO1MRKbyQCn0wmHwwG3T1KUhmX16tU4/cwlEOPkpQ17VcLjQ2+/M6Q9WhuG0yb44fNLYX0Vr6x/aHflyP4F4qdNiCwfr2yQ4Life/ZSRWlYGGPwuQeRlZkBQRAUpWExiAKcTifMVht8UuyxCHtFyufHod7+mP0bmYbF7fPH7N/YaVhG+ny8NCyR/askbULQJjszI/TKUbw0LIwxuAcGMCE78PpU4jQsAswGEU6nE3a7HYO+OK+TDh2fQX9feEb4sR6tbBCn2xuzf6PFiGi+G61s2HEfYaMkDUuseBI7DUtgzL+9fJniNCxq40mgTU4YzVbEyYoTdtwPen3o7RudeBI7DctIf1cTT5SkYQna5GZnJnwlOohJFOAeHIDD4YBPYorjicVqgzdOPAlLwzLoxhur3x5xfotW1i8xDHp9Mfs3VoyI5vPxYkQy8SQr0wHr0FsJ8dOwePHeu+/i3HOWKUrDIgoCLEYx5O+JylpNhpC/CyZLzJvkZOJJ8LiP1r/x07CE+7uSVyPldTgsprhl5eULJmTJjuXRiye2oX5wOp0wWqyI4+5hMaJ/wI3Vb8X29xHp3Pyxz5+xYkS08YgXI+LFk1gxImgzISsDJqMhbtkgguTHu++8jWXLlilKw2LUEE98fgldPX0x43VkjFAaT+THvdp4EunvBjHQx8HfinYsq40njDEMDgwgd+j6BEj8mrMe8aTXOYi333knqr/HihFK4on8WI5WPlEaFj3iiRES3nrrLSxbtgySIIbuH6KhJp7Ij3u314+evtjX42riSawYkSiejEzDEu7vStKwRIsnidKwGEUBnqHrE7/EFMcTq82e4HeHj2U18SSQhmUw6v16tLLx4km8GBFZXlU8yXDAKk9bGiNGaIknBkhYvXo1li1bFjcNizxGMMbQ0d0Luz16/0Ye9y63D/3O6NfjsWJErHueWDFCSzyR+3y2wxa3rLyO/JzM0AMZ+RxDNKxGES6XCw6HAx6/lKCsAYIQiCcmiy1uuig18WRkGhZ3TH+PFSOi9W+iGCG3sRgNUdOwRCufk5UBs4Z4IjEoSsOyevVqLDlradw0LO5169Dz3LMwFRVBsNsx6PHCZDRCcjnhb2tD1tU/gH3+/NDvymPEQJzrk1jHfbLxJN7cYpCgvy87awky7InTsDDGMOByIS8nS9P1yaBXUpSGRW080ZqGpbe3DyUFuWM7Z/kjjzyC22+/HTfeeCPa2towceJEXHfddfj1r38dKvM///M/cDqdWLlyJbq7uzFv3jy8/fbbIybKt27din/+85/YtGlT6LMLL7wQa9euRXV1NWbNmoUXXnhBVfuY1w272RA2CLGwm43wCgwWQ+DfsfIYB8sG8fv92NfWjLzy8qhPcuTOEs0mZlmzEbYbroPzmKPQv349upuaYK8oR8a8eXDMnQsxwYppv9+P/fv3o7y8POxgTITFZIirXY7JIKArjvaw3zUaYBQQt6/kZYMk6l+zUYQZoqLykWWDBMc9eLKJVzZYR0PTAWQM1SG/gYyFfDzMCvwRAEQBivvXOJTHWEn/GkQh5MOJfF5eNqgjVh1iRNkRNtnlCcuGyrccRHZmoA5BiF1WbhPsXyXHe5BEx7ocq1FU1L/B303ku0Hkx/1oxpNYx31wzJWUldehJp5IkhQqr/QJt0lMTTyRH8uJ/H004smwv2cMa0sQI+T9axqKKfHQ4u9Gg6jo/AYEjnul/i6PEYn8N/K4H614Ei9GeIXwjZNSEU+0+LuaeCLPE5jIRh4jEvl7tGNZbTyR+3uwTaMdT+Tllfavxajc381GEQZB2flTftyP5vVJrBgRzd8TxROvd/imxCi7OY6FlngigCmO12riiZhEPInn77GOe7XxJHh9kpM53CYe4onNbFDs72riifz4TFT+cMUTr3c4VY38/iEWWuKJUVR+PZ6qeBJ53MfzdzXxJFGMkPeX0WA47PEkeNwr8Xc18STyuI9XXk08AWLHCC3xxOsdnohU2r+SJKGztRm5Cn3eYhSwV+F4BI9PPeKJ3OcTlQ2rQ3Y9nihGyP1XbTyxxNnzTY7aeCIwZf4etuhFZTwZaTP8XawYkWw8MRgSz9F5hyacDaIQeqAdDWt1FXy12+HcuBEQBbglFng4ITFknnoqcufPgxilLlHF9Yn8uB/NeAJEP5aD/m6J8O+48aS1GROyMjRdn0SbY4iG2niiZh5SXtansD1cT5ZnZmbioYcewkMPPRSzjCAI+O1vf4vf/va3cX/ryCOPRENDeB5IURTx6KOP4tFHHx2N5o45gq9P2aur0dPQgEIVF3YEQRAEQRAEQRAEQRAEkSySxwPnhg3oX78erKkJbaWlihdzpgrRbEbeymthPXIO+tevx0BTEywctItIPVxPlhMEQRAEQRAEQRAEQRAEkZ5IHg86n3xqaAW3CEgS3PUNcO+ow+DWbchbee1hnTCnRabjD5os5xxBEGA2m1Vt5qHWRo86tMCjDh5162WTLtrJ30l7qupQC69jmC7ayd9Je6rqUAuvOkg7X9p57SstjFftvOog7Xxp57WvtDBetfOqYyxrd27YAOfGjaHc4O7+PpgzMsFcLjg3boT1yDnIXLhwVNulFh7HkEfdetqkEpos5xxRFDFjxoyU2uhRhxZ41MGjbr1s0kU7+TtpT1UdauF1DNNFO/k7aU9VHWrhVQdp50s7r32lhfGqnVcdpJ0v7bz2lRbGq3ZedYxl7c6aDRBEEaLDAQDIygxsvCg4HBBEEc6aDXEny3nUzqufqCWd7kXUEH8XDeKwwxhDd3c3WJxdXpO10aMOLfCog0fdetmki3byd9KeqjrUwusYpot28nfSnqo61MKrDtLOl3Ze+0oL41U7rzpIO1/aee0rLYxX7bzqGMvafe3tEO32oAU8HjeAQHnRboevvX3U26UWHseQR9162qQSmiznHEmS0NLSAkmSEhfWaKNHHVrgUQePuvWySRft5O+kPVV1qIXXMUwX7eTvpD1VdaiFVx2knS/tvPaVFsardl51kHa+tPPaV1oYr9p51TGWtRsLCiC5XAAAxgCXawDBOVPJ5YKxoGDU26UWHseQR9162qQSSsNCEARBjIDH3cgJgiBiQTGLIAiCIAhibOKomovB2lpITieE0ApzQHI6wSQJjqq5h7F1xHiEJssJgiCIMHjejZwgCCISilkEQRAEQRBjF8fcuRjcum3oWk4AJAZP9yFAYnCccgocc2mynNAXmiznHEEQ4HA4VO8iq8ZGjzq0wKMOHnXrZZMu2snfE9tE7kbudTlhtjsU70auFp60J1OHWuhY508Hj9p59RMtpEp7MjGLR91abNJlzLXYpIt2XvtKC+NVO686SDtf2nntKy2MV+286hjL2kWzGXkrr4X1yDnoX18Dz769sEyZiox5VYreEuRRO69+opZ0uhdRA02WJ4FNECANDEAyRulGgwGixRL6U3K5IHm9EDyewL9NpuGyogjRag0rK2dSXh4wOAgpWtmBASBKAvxJeXmA2w3YbAnLAsCk/HyI4nAKe2lwEIiTK0i02zFlyhTFZUO/63ZD8noVlYXXG649AsFmCx1IkscD+Hwxy0crGyTSRrBaIQz1BfN4wGRlI8snKgsgNO7M7weGxj1W2SCTJ04c/l2vFyxOnwlmM0SjEVOmTAHzegPjEaesMOSvgiTF71+TCUKwvT4f4PHE7l95Wb8fzO0O0y73ecFohDB0spOXDRLWv/KykgQWQ9ukvDwIPh+goCwATCoqCvk7YwxsYCBmWRiNEM3mQP8yNuL4DCPacS8/1uOUxeBg7PGIESOilk8QI8JsBAFilBjRv/YjgDEIFgvg98NhsQJ+P0TZbuSOU06JetwHxzzsMzXxxO0G/P64ZUVRxJQpUwLxJE5Z+XEfLz5Elk0YT2Ic91H9XU08sVggGAwxy8ptBNmYKokRwf6NV9bt8+OTfb1Yt7MbbX1uFNkPobo0C6fMyIPFaBj5uxExIur5LVpZvx9wu2P3b5wYMSJeJ4gRWuMJ5PEkToyQvN5A7BkiYTwZOu5D/q4gnoT83eWK6rsARhz3quKJLEaMsIkRI0La5WMeWTbGcR+sA/JrgzgxYlJeXvj1SZQYIY9ZgiAgw5ER+MJqDcU0x0knjfhtwWYb7l+PB1Kc87I8RjCPJ76/Rxz3WuJJUHuYvyeIETHjSZzjflJeHgRJCqzIT1AWAJjsBob5fAF9MRBMJogmU+D86fPFvz6RxQiBsfjxOiJGKI4nEce9mngywt+Hrg2A+Me9mngCAJMKC8P9XUGMUBRPho57LfFEGhiI7e9xYkTCeBJx3EeWFxXEiKjxJM51hJJ4IofJ7vEi7x8iURVPZMe9kOj6RE08iRMj4saTiOM+0t/l9w+q4omCGBG6PlETT/z+uP4uP5ZVxRNJguRyxfR3NfEkUYwIK68mnni9QMS9RixUxRNRBAwGxWWDMUIURUzKz4/Zv5HHfbx4HS9GRLOJFyPixpMox73c55GdHbesvA75pJ6SGBGK14nKyuI1G814EhEj4sX3eDFiRDxRECOCNkxeNspx7zjpJDhOOglFGHmvoTieRJljCCtrNALBazq/P+78VFg8iaI9VlkmSfGvx+Mc90nFkyjzEZGE/N3tDs1PxSobqqOgQFU8Ea3WYX+PMw8pP+7VxhNV85CyslK8ezV5dYyXrUbHGL29vThw0skxv3csmI+pTzwR+nvHt46LeeKzn3gipv39b6G/60+dC/+hQ1HLWo88EqWvvBz6u3HR6fAePBi1rLmsDGVv/if0985zzoGncWfUsmJxMco/eD90ADRd+F0Mbt0ataxhwgTMrFmPrq4u5ObmYt+VV8H1+edRywo2Gyq//gperxerV6/Gsf95E65166KWBYDZO2pD/973ox+j/913Y5ad9dWXoQPg4C23ouf112OWLd9QA2NuLgCg5be/xaEX/hGzbNl778E8eRIAoPX+B9D17LMxy85449+wlJcDANof+TM6/vKXmGUn/+MFZH7rWwCAzmeeQdsDD8Ysm/3wwyg+43SIooiuVavQ+ru7Yv/u44/BMX8+urq6YPjoI7T86raYZSc99EdknXUWAKBn9Vs4+NOfxixbcs89yLng2wCAvrVrsf/6G2KWLbr9NuRefjkAwPnpZ9h75ZUxyxbe/HPkrVgBABjYsgW7v3tRzLL5N92Egv/6IQDA3dCAXcvPjVl2wtVXo/gX/wMA8Ow/gJ1nnBGzrPXb38a0u++CKIrwdXWhYW5VzLLZ55+P4nvuRldXF3KsVjSccGLMsplLlmDynx4K+XvFL26JWZaLGDGzDGX/URYjBLsd2eecA19bGwSrFd79+2PGCJ/DgcqNn8A0dPLd8/0r4saIii+/CMWT/TfcAOdHH0ctCwRihCRJ6OrqwsBvf6c4Rhy45Rb0vv5/McvyECOmv/xP2I46CkDiGDHlr88h45RTACBhjJj02KPwHHUUcnNz0fv6/6H5l7+MWfalZTdgx6wTYRIklNd9ie+++VjMsvIY0f3++2i+6Ycxy/IQI3J/8AMU/c/NABLHiJxLL0HJHXcAQMIY0XP8cTj+r3+FyWSC5HKh7rjjY5bNXLIEE//4h5C/1x0xJ2bZYIwI+nvHmYu5jhGmiRMx84P3Q38nuo6o+GRD6O94MQJWa+BYHro+2XvddXFjRPZ3vwu32w2LxQLXJ5/Au39/zLKzvvoSsFrR1dUF94MPKo4RB++4Ez0vvRSzLA8xYurzz8NxcuABgZIYkXXaaQCA7tf+FTdGFD/4ID72+7Bs2TIMvP8+Dvzkv2OWLbnnHmSdfx66urpg3rIFB264MWZZeYzo37gR+666OmZZHmLEhMsuRfGvfw0gcYzIOv88TLr3XgBIGCPMCxei9NG/hPy9tnJ2zLKOBfMx+bHHQvGk/vgTEsaIYDzpWn6u4hjRsOh0+DiOEcF7jSCJYsSs7dtC/bv/xz9B3zvvxCw749ONeHvtWixbtgztt/864b2GmJODrq4ueP/yF3T/48WYZeUxouW++3Houedit4GDGDH58cdCb+ckihET//AHZC9bCgDoffvtuDGi+O674F+wALm5uXB+/HHCe42cSy9FV1cXrI2NimOE85tvsPfiS2KW5SFGZJ9/Pibe+78AEseIjMWLMeXhP4X+jhcjzKeegtJnngn5e6J7jYnPPoPVq1dj2bJlaJq/QFGMkCQJDYtOh9TSEr0NkTHi7HPg2cl3jJDPRySKEeVffA5jRuABfaL5iLL169ALIDc3F2133ZXwXsM4sQRdXV3wPfOs4hjR9vAj6Hz00ZhleYgR8vkIJTFiwne+AyDxfEThbb8CO+ss5ObmYuDzLxLea2RdcQVWr16NRVOnYv+ll8UsK48RA3X12H3eeTHL8hAjgvMRQeLFCHt1NaY99WTo73gxwnTssZjxwqpQPEl0rzHtny+Frk92nXGmonsNSZLQuOxs+Hfvjt6GUYwRR9TtQE9PD7KysqLaA4AY8xtiXCH5/VDz3IQxho6ODlU2hHJ6eno0jofyOhjSbeyU6xkcHCB/14iS3cjVorZ/g+XVVaKhYRyTKv/NsZswPd+ODKOEgkxLwvLpSioPdV38PZ1gTHXsHYyzgnnkzw/1b5rFCDWk8tym5fyZdudaFXI8HndKr0/GfTyBXv6uyipVzTksqLm/YAya/FfVGKZbPFGBx+NNeTxljMV9yzPd0Sdeq6gj3eKJGjkq44mm9qRZ/6rB61UXT7Re//k5iie0slwjvb29KM7JwcHmZmRlZo4sEOX1B6/Xi3fefRdLFi8OrbgEEDcNi9/vR+POnZhZVgaDwaAoDUvIZuZMmIaedMYqGyq/axcqjjwyUAcSv9LALBY0NDSgvLwcgteb8PWH4Erbs04/HSYx9jMa+asSXpcLjfX1w9ojiEyb4He7w/sqTtnga08j+hfxX4mOLK8kDUtw3M9avhzmobGLl2LB7/ejce9eVFRWwmAwKEqxIAkCGhoaMHP6dIhxxkL+ipTP7UZDbW3s/o147ck3MBC7f2OkYYnm8/FSLIzoXwVpE4I25bMqYbRZ45YNld+9GxVHHBHoXwVpWJjBEOjfmTMhxnn9K3jch/x94cLwYz1K2SDevr6Y/RstRkTz3ahlZcf9CJsYr0/3rVuHrr8+D1NhIQS7Hb09PcjKzgY8HnhbW5F3zYqYaViCY770/PND2lXFE58vYRoWv9+PhoYGlE2dipGeO4z8uPcODKCxrm504kmM4z6qv6uJJwrSsIT8/YgjYAweGwlihGQwoLGpCeXl5RAlKWrZe1bXoq61H1MKsyGJAnp6epGT4YBR8mN3pxOzijLxy2XhKxPkx71nYABv/+c/I89vUcoyvx8+lyt2/8aIEVHjdZwYkUw8mTlrFkxDx0a8GOH1evHOe+9h6bnnwmQyKUrDwozGYX+P84poMEaE/H3SpKi+C2DEca8qngwd91FjSpwUCyP8XcGrkfI6TLJrp1gxIli+4qijhq9PorwSLY9ZYlYWenp6kJ2dDamvD97WVuRedSUyq6tH/L5gswVWxTU0oGzaNBjiXBLLY4TH6cTbq1fH9veI496nIZ5E9fc4MSJuPIkRI0LxZPZsGIfOR4niiU8Q8Na772LZsmUwCkLCV6IlUQycP0tLIcZLmyWLET6PBw3bt8eO1xExQnE8kR33SuOJ2+fHxl2dWFffhi2N+3DUzCmorijEqRVFsNrjxwi18cTv96OxqQkVc+YM+3uCNCyK48nQca8lnrh7e/HOO+9E9/cYMUJRPJEd99HKJ0rDEjOexEiboDSeyPEZjXjrrbewbNmyQHxIkGJBcTyRHfe+gUE01O2I7e9q4kmMGJEwnkQc95HxXUmKhajxJEHaBEkU0bh7d+D6hDHl8WTGDIjxxkJ2LKuKJ5IET19f9Pv1KGXjxZN4aRNGlFeQhiVkU1EBk/zYiBEjVMcTUYTfYAitLDfEOQ/IY4Tf70f91q2YOWNG9JgScdx7+/vR2NgYfTxixIhY9zyxYkTCeBLluJf7vEVBGpaQvx95JIxDx0ai1CqS2YzGxsZAvPb7E6ZhkRgL+Pu06RBZnPt7NfEkIkZ4BgZi+3uMGBE1niSIEXIbo80WNw2LvHx5ZSWMwfkTNfEESJiGxScIWL16NZYuWQJjvPkTeTzxetGwbZvieOJzOmNfj8c47pOOJwrSsIT8felSWOTzhfHiSeR8YYJ4wkym4esTj0dRGha18URrGpbevj5MKC5OuLKccpYnwQBjEG228DzbMRDtdoheL5jZHPh3rAk0hA8q8/sDOavsdohRHCYsB1ikTcR30cqGylvCVxCG5T6NgvyJT6KyYb9rscTVHlk2nvawsmYz2NDkdaLyotk8nDsyQf8KZnMo4CUqH1k2VN/QuAuy8rHKhuqQl5XdQMZkaDwEkylhX4V+12hU3L+C0QjRbldUXjAYIAz5cCKfl5cFEvSvKIaVjbQRzKaEZUPlZW0RBCFm2SBBfxcEQdHxHiTRsR5ZVrG/2+0JfTdUVnbcK40nmaedBk9DY2A38kNdgMTg7e+DfDfyWJusBMc87DM18cSifDWzaLEo9nfRbE5JPJEfywn9fRTiScjfVcQIJuvfWGWb3QLMDjuYwQAMXZAzgwE+owlmR+D7eL4vGI2Kzm9A4LjXEk8SxuuI4z6ZeCL373gxQvR6w3LaqoknANTHE6X+riaeBCfxFMQUeTxJ5O/Rjnt5HYnKysuHlY0SI6LFLE/3IUBiyKiqQuZppyXcGEo0m5WfP81m5f4+9Ltq48moXp/EOO5D8UTuwwniiSC7ARaMxjDbqATPn0aj4vguKOyvYFnF8UR23CuJJx6zBU9u2Imaxk4IAoNLNGPbIR+2bmzG5g4Prl9YBovREPO4VxtPmN8/Iu4nihG6xBObTbG/q4onsmM74fWJmngSw8+UxhM5cn+X3z8kQl08MSn391TFk4jjPl58VxVPEsSIsOsTNfHEYEgY00O/qyaeiGLgGluBv6uKJxHHfdx4nSieRN6zj2Y8kfu7ingiWCyKY4posym/PglOko52PIly3Mt9PlFZeR3ynOWJYoTc3xXFk6C/m1Xc36uNJ4KgzN8jFr2oiSeRNmH3MDGO+1D/yu/Z1cSTiDmGqAz5u2AwKJ7PEkRRdTxRFK9lx/1oxhMg+rEc8nc18URh2SBh1ycx5iGjoSqeqJmHlJWN97BVDk2Wc44gCMjOzla9i6waGz3q0AKPOnjUrZdNumgnf09sE7kbuW//flgmT1a8G7laeNKeTB1q4elYL8y0oLalL1AeAsxmMwQEyjs9PkzNVX7TNFptStaGjvXxoz2ZmMWjbi026TLmWmxSVUdNYwdqGjtRnG2FzSRin7MTU/IcGPBKqNnZiaMmZ2NRZRH3OpKtQwvjVTuvOkg7X9p57SstjFftvOog7Xxp57Wv1JJO9yJqoMlyzhFFESUlJSm10aMOLfCog0fdetmki3byd2U2otmMzIULQ5u1pBLetGutQy08HevVFfnYdrAXTrcPDosR9qHVAk63DxILfD+a8DqGPI47T36SLKnUrjVm8ahbi42a8m6fHzWNHVhX34G2PjcKM7tQXZGPqpn5sBiVrV5LRbu02qSqjnX1HRBFAQ6LEZLsNV+HxQhRCHwfb7KcFx3J1qGF8aqdVx2knS/tvPaVFsardl51kHa+tPPaV2pJp3sRNdAGn5wjSRKam5vDLtJH20aPOrTAow4edetlky7ayd9Je6rqUAtPY1g1Mx9VM/PQ0juIpo5+7G3vQVNHP1p6B1FVloeqmaM7Wc7rGPI47jz5SbLwqJ1H3VpslJZ3+/x4fO1OPL52F2qbe9Hd70Jtcy8eX7sLj6/dCbdvdDdW4km7Wpu2Pjcc5ugPDxxmI9r64uQI19AuXvtKC+NVO686SDtf2nntKy2MV+286iDtfGnnta/Ukk73ImqgyXLOYYyhp6dH9S6yamz0qEMLPOrgUbdeNuminfydtKeqDrXwNIYWowHXLyzD9QtmYFZRBgzMh1lFGbh+wYxQXt7RhNcx5HHcefKTZOFRO4+6tdgoLS9PLTI9344sE8P0fDuKs62o2dmJmsYOxW0czXYlY5OqOgozLXB6oj88cHp8KMyMn++aFx3J1qGF8aqdVx2knS/tvPaVFsardl518KZd8njQt3YtWu+5B9233YbWe+5B39q1gc1QR6mOZGzUwuMY8qhbT5tUQmlYCIIgCIKAxWjAosoiLCjPD+1eHnUncoIgxizy1CKMqU8tMp6Qp6eymYbXF6UqPRWhjGAaoY/q2tDU3InSOi8WzCpMSRohgiAIQhuSx4POJ58KbL4uioAkwV3fAPeOOgxu3Ya8ldeO+j5YBDGa0GQ5QRAEQRAEQYwDkk0tMp6ompmPLft7ULOzEwIY+j2Av9MJBiEl6amIxATTCNU0dkIQGJiPYUdLH2qb+7Flf09K3oQiCIIg1OPcsAHOjRthKiqCYLdjoKcH5uxsMJcLzo0bYT1yji57YxGEVigNC+cIgoD8/HzVu8iqsdGjDi3wqINH3XrZpIt28nfSnqo61MLrGKaLdvJ30p6qOtTCkw55ahEBAqxWKwQEbJSkFlELT9rV2sjTU1UWZcBkACpVpKfiRUeydWghVe2SpxGakZ+BSbkZmJGfoSiN0Hg71pO1UQtp50vHWD/W9a5DLbzq4Em7s2YDBFGE6HAAAKxWKwBAdDggiCKcNRuSriNZG7XwOIY86tbTJpXQynLOEUUR+fnqVq6otdGjDi3wqINH3XrZpIt28nfSnqo61MLrGKaLdvJ30p6qOtTCkw55ahGHxRi6eU1VahGetGuxCaanqi7LxerVTVi2bDZMJlNK2sVrX2khVe2SpxEChidflKQRGm/HerI2aiHtfOkY68e63nWohVcdPGn3tbdDtNsBBCZBg/EaAES7Hb729qTrSNZGLTyOIY+69bRJJbSynHMkScK+fftU7yKrxkaPOrTAow4edetlky7ayd9Je6rqUAuvY5gu2snfSXuq6lALTzqqZuajamYeWnoH0dTRjz2th9DU0Y+W3sGUpBbhSXuyNmrhUYceulPZrrA0QozB2d8PDG0EliiNEI9jrsUmXfxdi026aOe1r7QwXrXzqoMn7caCAkguF4DAxo39zv7Qxo2SywVjQUHSdSRroxYex5BH3XrapBKaLOccxhicTqfqXWTV2OhRhxZ41MGjbr1s0kU7+TtpT1UdauF1DNNFO/k7aU9VHWrhSYc8tcisogwYBQmzVKQWUQtP2pO1UQuPOvTQncp2ydMIMTB4fT4wBGwSpRHiccy12KSLv2uxSRftvPaVFsardl518KTdUTUXTJIgOZ0AAJ/XBwCQnE4wSYKjam7SdSRroxYex5BH3XrapBJKw0IQBEEQBEEQ44RgapEF5floaGhAeXk5DAbaFJHgH3kaIbt5eM1XqtIIEUQ8JI8Hzg0b0L9+PVhTE9pKS5Exbx4cc+dCNJsPd/MI4rDimDsXg1u3wblxIyAKgMTg6T4ESAyOU06BY27syXKC4AGaLCcIghhDuH1+1DR24KO6NjQ1d6K0zosFswpRNTN/1FcEEgRBEARB8ELVzHxs2d+Dmp2dEAFIXh8OeV2QgJSkESKIWEgeDzqffGpoIlAEJAnu+ga4d9RhcOs25K28libMiXGNaDYjb+W1sB45B/3r12OgqQkWeqBEjCFospxzRFFEcXExRFF5xhy1NnrUoQUedfCoWy+bdNE+lv3d7fPj8bU7UdPYCVEEzEYz6lr7Udvcjy37exK+Qj+WtSfbpvHq71ps0kU7+TtpT1UdauFVB2nnSzuvfaWFVLUrmEboqMnZ+Li+HQe7BEzMzcD8ioKEiwZ4HHMtNuni71pseNLu3LABzo0bYSoqguiwQ/B4YDabITldcG7cCOuRc5C5cOGotWm8Het616EWXnXwpl00m5G5cCEyFiyAracH2dnZEARhVOtIxkYtPI4hj7r1tEklNFnOOYIgICcnJ6U2etShBR518KhbL5t00T6W/b2msQM1jZ0ozrbCYRkO3063DzU7O3HU5GwsqixKqo7RsFELj2PIo269bNJFO/l76m3UwqN2HnVrsUmXMddiky7aee0rLaSyXcE0QvGud0ajTVrgdQxJuzobJThrNkAQRYgOBwDAbA7kyxcdDgiiCGfNhpiT5bz2lRZ4HEPyd3U2aiHtyuvgta/Ukk73ImrgY8qeiIkkSdi1a5fqXWTV2KSyDrfPjw92tOKuN2vxXL2Iu96sxQc7WuH2+Ue9Xbz2lVr00KHFJl2069W/alFSx7r6DoiiEJgoZwx9vb0AY3BYjBCFwPfJ1jEaNmrhcQx51K2XTbpoJ38n7amqQy286iDtfGnnta+0MF6186qDtI++dl97O0S7HUBgU7revt7QpnSi3Q5fe/uotolHf9erXTxq51UHaedLO699pZZ0uhdRA60s5xzGGDwej+pdZNXYpKoOecoIQWDw+oEdrf2obXEqShnBi45k61CLHjq02KSLdr36Vy1K6mjrc8NhDhwzDAx+SQIDgwABDrMRbX3upOsYDRu18DiGPOrWyyZdtJO/k/ZU1aEWXnWQdr6089pXWhiv2nnVQdpHX7uxoADuurrQ35J/eHJHcrlgmTJlVNvEo7/r1S4etfOqg7TzpZ3XvlJLOt2LqIFWlhMpQ54yYnqeA9lmYHqeA8XZVtTs7ERNY/xVsARBhFOYaYHTE/2tDKfHh8JMi84tIojxSTJvTREEQRAEMbZxVM0FkyRITmfY55LTCSZJcFTNPUwtIwiCIEYDWllOpAx5ygj5qxTylBFq8w0SxHimuiIf2w72wun2wW4eftbpdPsgscD3BEGklmTfmiIIgiAIt8+PmsYOfFTXhqbmTpTWebFgVmHCjUoJPnDMnYvBrdvg3LgREAVAYvB0HwIkBscpp8AxlybLCYIgxjI0Wc45oihi8uTJqneRVWOTqjrkKSMiUZIyghcdydahFj10aLFJF+169a9alNRRNTMfW/b3oGZnJ0QBsIpGHOp0QWJAVVkeqmbGnywfy9qTbdN49XctNumiPVV1yN+asplE7HN2YkqeAwNeSdFGu7zoGA0btfConUfdWmzSZcy12KSLdl77SgvjVbvSOuQPXUURsBotqGvtR21zf8KHruni71pseNIums3IW3ktrEfOgbOmBmhugbWkGI6qKjjmzoVoNo9qm3j0d73axaN2XnWQdr6089pXakmnexE10GQ55wiCgIyMjJTapKqOwkwLalv6on7n9PgwNdc+qu3ita/UoocOLTbpol2v/lWLkjosRgOuX1iGoyZnY119B9r63CjNtKC6Il/RSqSxrD2Z8nrVoRY61vnTocQm2bemeNExGjZq4VE7j7q12KTLmGuxSRftvPaVFsardqV1yB+6OizDt+NOty/hQ9d08XctNrxpF81mZC5ciMyFC1PeJh79XUs96aKdVx2knS/tvPaVWtLpXkQNfEzZEzHx+/2or6+H3688D6pam1TVUV2RD0licLp9YZ8rTRnBi45k61CLHjq02KSLdr36Vy1K67AYDVhUWYTbzq7Ej0/MwG1nV2JRZZGiV3bHuvZk2jRe/V2LTbpoT1Udyb41xYuO0bBRC4/a1ZTXmqueNx3J2KiFtPOlQw/derWLR+1K65A/dGVMQk9PNxiTwh66JltHsjZq4XUMedTOa19pYbxq51UHaedLO699pZZ0uhdRA60sHwPIV66lyiYVdchTRghg6PcA/k4nGARFKSO0tIvXvlKLHjq02KSLdr36N9V18OonWuBRO4+69bJJF+2pqCPZt6a0tItXP9ECj9qVlE82Vz0vOkbDRo86eNEueTxwbtiAvnXrULxlC9o3b0ZmdXXCNAta28VrX2lhvGpXUkfkQ1fGhr9T8tCVjvXU1qEFHnXQsZ5aeNVB2lMLjzp41K2nTaqgyXIiZchTRny0oxXf9HaisigDCyqLaPMagiAIYkwi32jXZqKNdscLyeaqJ8YekseDziefgnPjRjBBgODxwl3fAE9dPQa3bkPeymsVTZgTRCSj8dCVIAiCIIjUQZPlREoJpoyoLsvF6tVNWLZsNkwm0+FuFkEQBEFoYjTemiLGHsnmqifGHs4NG+DcuBGmoiLAZoN/716Yp04FBgbg3LgR1iPnqM5VTBBA+ENXu5keuhIEQRAEbyiaLN+8ebPqHz7iiCNgNNJcfLKIoojS0lLVu8iqsdGjDi3wqINH3XrZpIt28nfSnqo61MLrGKaL9lTVkexbU7zoGA0btfCoXWn5ZHLV86QjWRu1jGXtzpoNEEQRosMR9oBEdDggiCKcNRviTpbzoiPZOrQwXrUrrUP+0FUUAJvRjEOdLkgMCR+60rE+9rXz2ldaGK/aedVB2vnSzmtfqSWd7kXUoGg2+9hjj4UgCGDyhGpxEEUR9fX1mDFjRlKNIwJoeeig1kaPOrTAow4edetlky7ayd9Tb5PqOnj1E7XwOobpoj1VdST71hQvOkbDJtV18OInyaZN4EXHaNjoUQcP2n3t7RDt0cdVtNvha28f9Xbx2ldaGK/alZ5Dgg9dP65vR1ufG9PyLZhfUaDooSsd66mtQws86qBjPbXwquP/t3fn8VFVd//AP/cmmUkyCQlkRWUJ+6YIokAiElHUR1oXfLRWVNxQFKqoVbF93HBDreLjUhFUaFXU+nvU2lZLcQlCQihirSA7BFcSkghZJiSTzD2/PzBpIoHMvTP35ps7n/fr5atlZr4553POucnMyc29zG4viTkk5nayxi4hb9mvXbsWJSUlHf63a9cuxMfH29nnqGIYBrZv327qQvdma5xowwqJOSTmdqrGLdm53pndrjbMkjqHbsnO9c7skXz9hEHpMAwFf0NTm8dDuWyCpBzh1pjVlbPHZmTAqKtrv76uDrEZGRHtl9SxsiJas5tpo/mXrndNGYobT/DhrilDMWlIVocb5TzWu352qWNlRbRml5qD2WVllzpWZrnps4gZIW3bT5w4EQMGDEBqampIX/SUU05BQkJCOP0iIiIiIhKB16qPPr68XNRv3gzD7wdafa4x/H4ow4AvL7cTe0dEXU1DUxCFOyqwcutelOypRM7WRkwcnBnSXxMQEZGzQtos//jjj0190ffee89SZ4iIiIiIpAn3WvXU9fhyc1G/8Uv4i4uhNA0xNTUIfPUVNKXgGzcOvlxulhNRaBqaglhYsBOFOyqhaQqqSWFLaQ0276nFhm+rMDO/P3+OEBEJEvYFYfx+P4LBILp16xaJ/hARERERiRPuteqpa9E9HqRdOwPxI4ajZtUqqA0b4B00EMkTJsCXmwvd4+nsLhJRF1G4owKFOyqRnRKPRI+OqqogUlJ8qAsYKNxZiWOPScGkIVmd3U0iIvqR5duMbtq0CWPGjEFycjK6d++OY489FuvXr49k3wgHb5Y6cOBA03eRNVPjRBtWSMwhMbdTNW7JzvXO7Ha1YZbUOXRLdq53ZrerDbOk5mD2jmt0jwfJ+fnImDsXpdOmIWPuXCTn54e0US4pRzhtWBGt2aXmYPbOz75qWwV0XYPPGwtN05CS0g2advDfunbw+XDbCOf1VkmcQylzHm5NV17v4da4JbvUsTLLTZ9FzLDci+uuuw6zZ89GbW0tKisrMXXqVFx++eWR7Bv9qKmpqeMXhVnjRBtWSMwhMbdTNW7JzvVuf43dbUhdJ2ZJnUO3ZOd6t7/G7jakrhOzpOZgdntJzOFEbivtuCW71BzMbq+O2thb0wCf5z+XWVGGavn/Pk8s9tY0hN1GuK+3SuIcSpjzSNR01fUeiRq3ZJc6Vma56bNIqELeLD/33HPx3Xfftfy7vLwc55xzDhITE5Gamoqzzz4bZWVlEe/gd999h0svvRRpaWlISEjAsccei08//bTleaUU7r77bvTs2RMJCQk4/fTTsX379pbnGxoacNlll6Fbt24YNGgQPvjggzZf/7HHHsOvfvWriPc7UgzDQElJiem7yJqpcaINKyTmkJjbqRq3ZOd6Z3a72jBL6hy6JTvXO7Pb1YZZUnMwu6zsUsfKimjNLjUHs3d+9sxkL/yBIICD+xfVNTVQ6uCGuT/QhMxkb9hthPN6qyTOoZQ5D7emK6/3cGvckl3qWJnlps8iZoS8WX7ppZdi0qRJeOqpp6CUwuzZszF8+HBcfPHFuOCCC3DWWWdhzpw5Ee3cvn37kJeXh7i4OLz//vvYtGkTHn/8cXTv3r3lNY8++iieeuopLFy4EGvXroXP58OZZ56J+vp6AMCiRYuwfv16rFmzBtdeey0uueSSlh9MJSUlWLx4MR588MGI9puIiIiIiIiIaMKgdBiGgr+h7VmT/oYmGOrg80REJEfIN/i88MILccYZZ+COO+7AuHHjsHDhQvzjH/9AQUEBgsEg5s6dixNPPDGinXvkkUfQq1cvLFmypOWxnJyclv+vlMKTTz6J//mf/8G5554LAPjjH/+IrKwsvPPOO7j44ouxefNmnHPOORg+fDj69euH2267DRUVFcjIyMD111+PRx55hDcnJaJOYwQC8BcVoXb1aqiSEuzNyUHSySdHxc3DGpqCKNxRgZVb96JkTyVytjZi4uBM5A1Ihzc2puMvQEQkWDR/fycKBd8HULTIG5CODd9WoXBnJXQARmMT9jXWwQCQ1z8NeQO4WU5EJEnIm+UAkJKSgoULF2L16tWYPn06Jk+ejPvvvx+JiYm2dO7dd9/FmWeeiQsvvBArV67E0UcfjRtuuAEzZswAcPDM8NLSUpx++ult+jh27FisWbMGF198MUaOHImXX34ZBw4cwPLly9GzZ0+kp6fj1VdfRXx8PM4///yQ+tLQ0ICGhv9cS6y6uhoA0NjYiMbGxpC+RvPrQn09AASDQSil0NjYGPKfI5itcaINJ7JLHSuz2Z3IYaXGLdklrXcVCOCHF1/EgeK1gK4DUKjfshX1mzbD/8UX6HH11dAOs6EidZ2Emr2hycCiT0qwZlclNA1Ak4HNe6qx6ftqfP7VPlx7Sg68se3/8ZPUdSJxvVupcUt2Ses9nDakrhO3ZLdrvYfz/d2pHDzWud5DYVf2cN4HWMnC9S5rvVup6crZdQBX5/XB0OwkrNpegd2lDeib6cOEgenI7Z8GXRlobDx8/ySud6f6JTG71BxS1nu4NW7JLnWsJK53qzVWhJpbU83XJAnBDz/8gJKSEgwYMACJiYl46KGHsGzZMixYsABnn3225c4eTnx8PADglltuwYUXXoh169bhpptuwsKFCzF9+nQUFRUhLy8P33//PXr27NlSd9FFF0HTNLzxxhtobGzEnDlz8N577yE9PR0LFizAsGHDcOKJJ6KgoADPP/88Xn/9dfTv3x8vvfQSjj766Hb7cu+99+K+++475PFly5bZ9ssCInI33+Yt6L6yAI3dUqC8/7lWodbQgLjqauybOBH+oUM6sYf2+XKfhg++09DdA3hbnTxWHwSqAsBpRysM7x7yjyciIlGi+fs7USj4PoC6uiYD2FqlYct+DdWNQLc4YEiqwuAUhSP8noeIiDpRXV0dLrnkElRVVR3xKiMhb5YvW7YM11xzDbp164b6+nr88Y9/xDnnnIMtW7Zg5syZyMzMxNNPP42srKyIhfB4PBgzZgyKiopaHrvxxhuxbt06rFmzJqTN8vZceeWVOP7445GTk4Pf/OY3WLt2LR599FFs3LgR//d//9duTXtnlvfq1QsVFRUhX8alsbERK1aswOTJkxEXFxdSjVIKdXV1SExMhKZpttQ40YYT2aWOldnsTuSwUuOW7JLWe/n8+WjYth2ePn0AKDQ1NSE2NhaAhsBXX8E7aCAy5s7ttBxWakLN/sDfNmNLWS36pvnw0+y7K/0YkpWE/5kytNNyuGW9W6lxS3ZJ6z2cNqSuE7dkt2u9h/P93akcPNa53kNhV/Zw3gdYycL1Lmu9W6mRlL31X0bougZvDNAQBAxDYXy/tCP+ZYTUseL3OR7rdrRhpcYt2aWOlcT1brXGiurqaqSnp3e4WR7yZVjuvPNOvPTSS7j44ouxfv16XHXVVTjnnHMwZMgQFBQUYPHixRg/fjx27doVkQAA0LNnTwwbNqzNY0OHDm3Z0M7OzgYAlJWVtdksLysrw/HHH9/u1/z444/x5Zdf4oUXXsBtt92Gs88+Gz6fDxdddBGeeeaZw/bF6/XC6z30LtVxcXEhH1xWaoLBIEpLSzFw4EDExIR27T6zNU600czO7FLHqlmo2Z2aj2jNLmm9G5U/INbng67rP/5wOICUlBRomoZYnw9G5Q+HrZe6Tpp1lL3C34Qkb9yP2Y0fs3eDpulI8sahwt/Uqdndst6t1Lglu6T1Hk4bUtdJs66e3a71Hs73d6dy8Fjnejcj0tnDeR9gJQvXu6z1bqVGUvZVO8tQXLIPPVMTkejRUVVVjaO6d0NdwEDx7n04vk93TBrS/kmEUseqGb/P8Vjv7H65JbvUsWomab1brbEi1PkO+Q+EamtrMXjwYABA//79UVdX1+b5GTNmoLi42EQXO5aXl4etW7e2eWzbtm3o06cPgIM3+8zOzsaHH37Y8nx1dTXWrl2L8ePHH/L16uvrMWvWLDz//POIiYlBMBhsc72eYDAY0f4TER1JbEYGjJ98L21m1NUhNiPD4R45JzPZC3+g/e+5/kATMpMP/eUkEVFXEc3f34lCwfcB1JWt2lYBXdfg87Y999DnjYWuHXyeiIi6rpA3y6dPn44pU6bgkksuwUknnYTLLrvskNdkZmZGtHM333wziouL8dBDD2HHjh1YtmwZFi1ahFmzZgEANE3DnDlz8MADD+Ddd9/Fhg0bcPnll+Ooo47Ceeedd8jXu//++3H22Wdj1KhRAA5uxr/11lv44osv8MwzzyAvLy+i/SciOhJfXi6UYcDw+9s8bvj9UIYBX15uJ/XMfhMGpcMwFPwNTW0e9zc0wVAHnyci6qqi+fs7USj4PoC6sr01DfB52j/z0eeJxd6ahnafIyKiriHky7A88cQTOPXUU7FlyxZcccUVOOOMM+zsFwDgxBNPxNtvv40777wT8+bNQ05ODp588klMmzat5TW33347/H4/rr32Wuzfvx8nn3wy/v73v7fcHLTZxo0b8ac//Qmff/55y2P//d//jYKCAkyYMAGDBw/GsmXLbM9klqZp8Hg8pq7ZY7bGiTaskJhDYm6natySXdJ69+Xmon7jl/AXFwO6Dg1AYP9+wDDgGzcOvtzDb6ZIXSehyhuQjg3fVqFwZyV0DdCaDOxrqoOhgLz+acgbcPgPyVLXiVlS59At2SWt93DakLpOrJCYXeL3dyv9csucW6lxS3apY2VFKO2E8z4g1DbCeb0VUueQ2SOfPTPZi82lNQfbgIYYXYeGg234A03o3SMxon2SuN6d6pfE7FJzMLus7FLHyiw3fRYxI+QbfFJb1dXVSElJ6fCi8K01Njbivffew9lnn236OuddHbMzezRlN5PbCATgLyqCv7AITeXliM3IgC8vF77cXOgej0M9jhwz2RuagijcUYFV2yqwt6YBmcleTBiUjrwB6fDG2nedMrtE63oHojd7tOYGmD2U7G77/g5E77xHa27A3uzS3wdE67xHa24g9OwfbSnDwoJdyE6Jb3MpFn9DE0qr6zFzYr/DXrNcKs579GWP1twAs0drdiD0vdyQLsPy1FNPob6+PuTGFy5ciJqampBfT4enlML+/fth5ncaZmucaMMKiTkk5naqxi3Zpa133eNBcn4+sn5zJ5LuvQdZv7kTyfn5HW6kSF0nZnhjYzBpSBbu/vkwPDilH+7++TBMGpLV4QdkqevELKlz6Jbs0ta71TakrhMrJGaX+P3dSr/cMudWatySXepYWRFqO1bfB5hpw+rrrZA6h8we+ex5A9KRNyANpdX1KKmoxXc/1KCkohal1fUd/mWE1LGyQuIccr0zu10k5pCY28kaO4W0WX7zzTeb2vy+/fbbUV5ebrlT9B+GYaC0tBSGYdhW40QbVkjMITG3UzVuyc71zux2tWGW1Dl0S3aud2a3qw2zpOZgdlnZpY6VFdGaXWoOZo98dm9sDGbm98fMif0wOCsJaApgcFYSZk7sh5n5/Y/4Cx+pY2WFxDnkemd2u0jMITG3kzV2Cuma5UopnHbaaYiNDe0S5wcOHAirU0REREREREREEjX/ZcTEgenYvn07Bg4ciJiYzr98EBERhS+k3e977rnH1Bc999xz0aNHD0sdIiIiIiIiIiIiIiJymi2b5RQ5mqbB5/OZvousmRon2rBCYg6JuZ2qcUt2rndmt6sNs6TOoVuyc70zu11tmCU1B7PLyi51rKyI1uxSc3T17M03gv1kWzm+2rsffbY14ZRBGSHdCFZidqnrxIpozS41B7PLyi51rMxy02cRM0K7rgp1Gl3X0atXL1trnGjDCok5JOZ2qsYt2bnemd2uNsySOoduyc71zux2tWGW1BzMLiu71LGyIlqzS83RlbM3NAWxsGAnCndUQtc1+DxebCmtxabva7Dh26oOrw8uMbvUdWJFtGaXmoPZZWWXOlZmuemziBkh3eCTOo9hGKioqDB9YXwzNU60YYXEHBJzO1Xjluxc78xuVxtmSZ1Dt2Tnemd2u9owS2oOZpeVXepYWRGt2aXm6MrZC3dUoHBHJbJT4pGTlohuHiAnLRHZKfEo3FmJwh0VEe+XWRLnkMe6rDm3UhNtx7rTbVghMYfE3E7W2Imb5cIppVBRUQGllG01TrRhhcQcEnM7VeOW7FzvzG5XG2ZJnUO3ZOd6Z3a72jBLag5ml5Vd6lhZEa3ZpeboytlXbas4eEa5NxYKCvX19VBQ8HljoWsHn490v8ySOIc81mXNuZWaaDvWnW7DCok5JOZ2ssZO3CwnIiIiIiIiIlH21jTA52n/Mis+Tyz21jQ43CMiIooGljfLKyoqUFFx5N/kEhERERERERGZlZnshT8QbPc5f6AJmcleh3tERETRwNRm+f79+zFr1iykp6cjKysLWVlZSE9Px+zZs7F//36buhjdNE1DSkqK6bvImqlxog0rJOaQmNupGrdk53pndrvaMEvqHLolO9c7s9vVhllSczC7rOxSx8qKaM0uNUdXzj5hUDoMQ8Hf0AQNGjweDzRo8Dc0wVAHn490v8ySOIc81mXNuZWaaDvWnW7DCok5JOZ2ssZOsaG+8IcffsD48ePx3XffYdq0aRg6dCgAYNOmTVi6dCk+/PBDFBUVoXv37rZ1Nhrpuo6ePXvaWuNEG1ZIzCExt1M1bsnO9c7sdrVhltQ5dEt2rndmt6sNs6TmYHZZ2aWOlRXRml1qjq6cPW9AOjZ8W4XCnZXQtYOXXimr9MNQQF7/NOQNOPJmucTsUteJFdGaXWoOZpeVXepYmeWmzyJmhHxm+bx58+DxeLBz5048//zzmDNnDubMmYNFixZhx44diIuLw7x58+zsa1QyDAN79uwxfRdZMzVOtGGFxBwScztV45bsXO/MblcbZkmdQ7dk53pndrvaMEtqDmaXlV3qWFkRrdml5ujK2b2xMZiZ3x8zJ/bDkOxkIBjAkOxkzJzYDzPz+8Mb2/71zMPpl1kS55DHuqw5t1ITbce6021YITGHxNxO1tgp5M3yd955B7/73e+QlZV1yHPZ2dl49NFH8fbbb0e0c3TwjrBVVVWm7yJrpsaJNqyQmENibqdq3JKd653Z7WrDLKlz6JbsXO/MblcbZknNweyysksdKyuiNbvUHF09uzc2BpOGZOGuKUNxW14a7poyFJOGZHW4UW61X2ZJnEMe67Lm3EpNNB7rTrZhhcQcEnM7WWOnkC/DsmfPHgwfPvywz48YMQKlpaUR6RQRERERERERAUYgAH9REWpXr4YqKcHenBwknXwyfLm50D2ezu4eERGRq4S8WZ6eno7du3fjmGOOaff5kpIS9OjRI2IdIyIiIiIiIopmRiCAykWL4S8uBnQdMAw0bNuOhi1bUb/xS6RdO4Mb5l0Af+FBRNR1hLxZfuaZZ+K3v/0tVqxYAc9Pvpk3NDTgrrvuwllnnRXxDkY7TdOQnp5u+i6yZmqcaMMKiTkk5naqxi3Zud6Z3a42zJI6h27JzvXO7Ha1YZbUHMwuK7vUsbIiWrPblcNfVAR/cTHisrKgJSZCNTTA4/VC1dXBX1yM+BHDkZyfH9F+mSV1DqVk/+kvPDyxsaZ+4SFxvTvVL4nZpeZgdlnZpY6VWW76LGJGyJvl8+bNw5gxYzBw4EDMmjULQ4YMgVIKmzdvxu9//3s0NDTg5ZdftrOvUUnXdaSnH/ku3+HWONGGFRJzSMztVI1bsnO9M7tdbZgldQ7dkp3rndntasMsqTmYXVZ2qWNlRbRmtyuHv7AImq5D9/kAAPHx8QAAzeeDpuvwFxYdcbO8K2d3ug0rQprDVr/waJ5HADD8/pB+4SFxvZtpp6EpiMIdFVi1rQJ7axqQmVyGCYPSkTcgvcNrz0vMzvXO7Ha83qk2zHLTZxEzQr7B5zHHHIM1a9Zg2LBhuPPOO3Heeefh/PPPx29/+1sMGzYMhYWF6NWrl519jUqGYeCbb74xfRdZMzVOtGGFxBwScztV45bsXO/MblcbZkmdQ7dk53pndrvaMEtqDmaXlV3qWFkRrdntytFUXg49MRHAwRug1fprW26Apicmoqm8POL9MkvqHErJ3voXHq3nUG/1C49w2wjn9VaF0k5DUxALC3ZiYcEubN5TjX3Vtdi8pxoLC3ZhYcFONDQFw24jnNdbwfXO7Hb1KVrXu9UaO4V8ZjkA5OTk4P3338e+ffuwfft2AMCAAQN4rXIbKaXg9/tN30XWTI0TbVghMYfE3E7VuCU71zuz29WGWVLn0C3Zud6Z3a42zJKag9llZZc6VlZEa3a7csRmZKBh69aWfzc1NrX8f6OuDt4OTljrytmdbsOKUNpo/QsPoO0chvILD4nrPdR2CndUoHBHJbJT4pHo0VFVVY2UlETUBQwU7qzEscekYNKQrLDaCOf1VnC9M7tdfYrW9W61xk4hn1neWvfu3XHSSSfhpJNO4kY5ERERERERkQ18eblQhgHD72/zuOH3QxkGfHm5ndQzClVsRgaMurp2nzPq6hCbkeFwj5yzalsFdF2Dz9v2PE2fNxa6dvB5IiJpQj6z/KqrrgrpdS+99JLlzhARERERERHRQb7cXNRv/PLHm0NqgKEQ2L8PMBR848bBl8vNcul8ebmo37wZht8PrdUZ5tHwC4+9NQ3wedq/LrnPE4u9NQ0O94iIqGMhb5YvXboUffr0wahRo8ScFh8NdF1HdnY2dD30PwIwW+NEG1ZIzCExt1M1bsnO9c7sdrVhltQ5dEt2rndmt6sNs6TmYHZZ2aWOlRXRmt2uHLrHg7RrZyB+xHD4Cwuhvt+D+KN6wpeXB19uLnSPJ+L9MkvqHErJ3voXHpquw+uJQ+P+/Qc3ykP4hYfE9R5qO5nJXmwurQEAaJqGxMQEaJoGAPAHmtC7R+Jha0NtI5zXW8H1zux29Sla17vVGjuFvFl+/fXX47XXXkNJSQmuvPJKXHrppbwEiwM0TUNqaqqtNU60YYXEHBJzO1Xjluxc7/bXmCUxu8TcTtW4JTvXu/01ZknMLjG3lRq3zLmVGrdklzpWVkRrdjtz6B4PkvPzkZyf70i/nGhD4jqxIpQ22v7CowhN5eWIzciALy83pF94SFzvobYzYVA6vvy+Gv6GJvi8sfB4vAAAf0MTDHXw+XDbCOf1VnC9m2sjWrNLHSuz3PRZxIyQt+yfffZZ7NmzB7fffjv+8pe/oFevXrjooouwfPlynmluI8MwsGvXLtN3kTVT40QbVkjMITG3UzVuyc71zux2tWGW1Dl0S3aud2a3qw2zpOZgdlnZpY6VFdGaXWoOZpeRvfkXHpl3zkXgxl8h8865SM7P73Cj3EwbVl9vVSjt5A1IR96ANJRW16Okoha7S39ASUUtSqvrkdc/DXkDjrxZLjE71zuz29WnaF3vVmvsZOr8dq/Xi1/+8pdYsWIFNm3ahOHDh+OGG25A3759UVtba1cfo5pSCoFAwPRdZM3UONGGFRJzSMztVI1bsnO9M7tdbZgldQ7dkp3rndntasMsqTmYXVZ2qWNlRbRml5qD2WVllzpWVoTSjjc2BjPz+2PmxH4YnJWEOF1hcFYSZk7sh5n5/eGNbf965mbaCOf1VkidQ2aXlV3qWJnlps8iZoR8GZaf0nUdmqZBKYVgMBjJPhERERERERERURfnjY3BpCFZmDgwHdu3b8fAgQMRE3PkTXIios5k6szyhoYGvPbaa5g8eTIGDRqEDRs24JlnnsHXX3+NpKQku/pIRERERERERERERGSrkM8sv+GGG/D666+jV69euOqqq/Daa68hPf3I15ei8Om6jmOOOcb0XWTN1DjRhhUSc0jM7VSNW7JzvYdW09AUROGOCnyyrRx79tWh57bNOGVQBvIGpHf455JmSctutQ2zeKzLyyExu9R1YoXE7BJzW6lxy5xbqXFLdqljZUW0Zpeag9llZZc6VlZEa3apOZhdVnapY2WWmz6LmBHyZvnChQvRu3dv9OvXDytXrsTKlSvbfd1bb70Vsc7RwTvCmj1r32yNE21YITGHxNxO1bglO9d7xzUNTUEsLNiJwh2V0HUNPk8MtpTWYtP3NdjwbVVI1xe0o19WX+9UG2bxWJeXQ2J2qevEConZJea2UuOWObdS45bsUsfKimjNLjUHs8vKLnWsrIjW7FJzMLus7FLHyiw3fRYxI+Qt+8svvxynnnoqUlNTkZKSctj/KLKCwSC2bdtm6rrwZmucaMMKiTkk5naqxi3Zud47rincUYHCHZXITolH37QEeFU9+qYlIDslHoU7K1G4oyLkNiPZL6uvd6oNs3isy8shMbvUdWKFxOwSc1upccucW6lxS3apY2VFtGaXmoPZZWWXOlZWRGt2qTmYXVZ2qWNllps+i5gR8pnlS5cutbEbdCSGYdhe40QbVkjMITG3UzVuyc71fmSrtlUcPKPcGwulDDTfkNrnjYWuHXx+0pAs022H269wXu9UG2bxWLe3hse6/TV2tyF1nZglNQez20tiDidyW2kn1NcbgQD8RUWoXb0awZIS7M3JQdLJJ8OXmwvd44lon6yQOofMbi+JObr6se50G2ZJzcHs9pKYQ2JuJ2vsEvJmORERRYe9NQ3wedq/zIrPE4u9NQ0O94iIqOtpvvfDyq17UbKnEjlbGzFxcKYt934gigZGIIDKRYvhLy4GdB0wDDRs246GLVtRv/FLpF07o8MNcyIiIqKOhLxZPnXq1JBex2uWU2vNZ3/UrFqF7A0bUP7FF0ieMCGksz+IqHNkJnuxubSm3ef8gSb07pHocI+IiLqW1vd+0DQF1aSwpbQGm/fU2nLvB6Jo4C8qgr+4GHFZWdASE3GgqgqelBSoujr4i4sRP2I4kvPzO7ubRERE1MWFvFnO65F3Dl3XkZOTY/ousmZq7Gqj9dkfStOgBRrRsG07Alu3hXT2h5Qc4bZhlhM5rNS4JbtT42uWpBwTBqXjy++r4W9ogs8bg27JydA0Df6GJhjq4PORJCl7OG2YxWNdXg6J2aWuEyskZrcrd+t7P/i8MTCCidBjdPgbgijcWYljj0k54uWsJI6VFVLnUGJ2qWNlhV398hcWQdN16D4fAIXk5GRoGqD5fNB0Hf7CosNulkuccys1blnvVmrckl3qWFkRrdml5mB2WdmljpVZbvosYkbIm+VLliyxsx90BLGx5q+WY7bGjjZan/2BhAQEv/4ant69gQMHQj77Q0KOSLRhlhM5rNS4JbtT42t3G3blyBuQjg3fVqFwZyV0DUiMi0FdYxCGAvL6pyFvQGQ3y0PtVzivd6oNs3is21vDY93+GrvbkLpOOtL63g+AgqZrAMzd+0HiWFkhdQ4lZpc6VlbY0a+m8nLoif/567bWH6j1xEQ0lZdHtE9WSJ1DZreXxBxd+VjvjDbMkpqD2e0lMYfE3E7W2MXUlv3u3buxePFiPPvss/jyyy/t6hO1YhgGtm/fbupC92Zr7Gqj7dkf/6G3Ovsjkv2SOlZmOZHDSo1bsjs1vmZJyuGNjcHM/P6YObEfBmcloamhDoOzkjBzYj9bLh0gKXs4bZjFY11eDonZpa4TKyRmtyt363s/KKVQVVUN9ePdkkO594PEsbJC6hxKzC51rKywq1+xGRkw6uoAAEoBVVVVLTchN+rqEJuREZE+NTQF8dGWMjzwt81Ysk3HA3/bjI+2lKGhKRiRHOHUuGW9W6lxS3apY2VFtGaXmoPZZWWXOlZmuemziBkhb9t//PHH+NnPfoYDBw4cLIyNxUsvvYRLL73Uts5R1/bTsz9aC+XsDyLqPN7YGEwakoWJA9Oxfft2DBw4EDExvL4uEVEoeO8Hosjz5eWifvNmGH4/tFafMQy/H8ow4MvLDbuNn95voDEIbCmrxeZSP+83QEREFCVCPrP8rrvuwuTJk/Hdd9+hsrISM2bMwO23325n36iLa332x091dPYHERERUVc1YVA6DEPB39DU5nG77v1AFA18ubnwjRuHxrIyBL7aDfzwAwJf7UZjWRl848bBlxv+Znnr+w30TfMhxQP0TfMhOyUehTsrUbijIvwgREREJFrIZ5Zv3LgRRUVF6NmzJwDgsccew/PPP4/KykqkpaXZ1kHqulqf/YGEhJbHI3n2BxEREZE0be79AMBobMK+xjoYsO/eD0Rup3s8SLt2BuJHDEft6tU4UFICb04Okk4+Gb7cXOgeT9httL7fQOs/BTdzvwEiIiLq2kLeLK+urkZ6+n/e2CcmJiIhIQFVVVXcLLeRrusYOHCg6bvImqmxqw1fbi7qN34Jf3ExlKYhpqYGga++gqZUSGd/SMkRbhtmOZHDSo1bsjs1vmZJzRGt2SXmdqrGLdm53pndrjZC0Xzvh2OPScEn28qxt8aDzGQvThmUgbwB6R1exkHiWFkhdQ4lZpc6VlbY2S/d40Fyfj6SJk5EpmFA13VomhaxNlrfb+CnOrrfgNQ5lLjerdS4JbvUsbIiWrNLzcHssrJLHSuz3PRZxAxTtxpdvnw5UlJSWv5tGAY+/PBDbNy4seWxc845J3K9IwBAU1MTPCbPlDBbY0cbrc/+qFm1CmrDBngHDUTyhAkhn/0hIUck2jDLiRxWatyS3anxNUtqjmjNLjG3UzVuyc71zux2tRGK5ns/nDo4E4FAAB6PJ6RNPav9csucW6lxS3apY2VFV80e7v0GpOSIRI1ZzC4rB491WXNupcYt691KjVuySx0rs9z0WSRUprbsp0+fjvPOO6/lvwMHDuC6665r+ff5559vVz+jlmEYKCkpMX0XWTM1drbRfPZHxty5KJ02DRlz5yI5Pz+kjXJJOcJpwywnclipcUt2p8bXLKk5ojW7xNxO1bglO9c7s9vVhllSczC7rOxSx8qKrpw9nPsNSMoRbo1ZzC4rB491WXNupcYt691KjVuySx0rs9z0WcSMkM8sl9JhIiIiIiIiokhrfb8BDQq1ASBY6YeCxvsNEBERRQlTl2EhIiIiIiIicqPW9xtYuaUM/66uxJCsJEwckhXS/QaIiIio6wt5s/ypp55q9/GUlBQMGjQI48ePj1inDmf+/Pm48847cdNNN+HJJ58EANTX1+PWW2/F66+/joaGBpx55pn4/e9/j6ysg3cp/+GHHzB9+nR8/PHHGDhwIF566SWMGjWq5WvOmjUL/fr1w6233mp7/62ycoF7szVOtGGFxBwScztV45bsXO/219jdhtR1YpbUOXRLdq53+2vsbkPqOjFLag5mt5fEHE7dOKsrZ2++38CE/j3w3nslOPvsoYiLi7OlT1Zq3LLerdS4JbvUsbIiWrNLzcHs9pKYQ2JuJ2vsEvJm+YIFC9p9fP/+/aiqqkJubi7effdd9OjRI2Kda23dunV4/vnncdxxx7V5/Oabb8bf/vY3vPnmm0hJScHs2bMxdepUFBYWAgAefPBB1NTU4LPPPsNzzz2HGTNm4NNPPwUAFBcXY+3atYf9RYAEMTExGDRokK01TrRhhcQcEnM7VeOW7FzvzG5XG2ZJnUO3ZOd6Z3a72jBLag5ml5Vd6lhZEa3ZpeZgdlnZpY6VFdGaXWoOZpeVXepYmeWmzyJmhLxtX1JS0u5/+/btw44dO2AYBv7nf/7Hlk7W1tZi2rRpWLx4Mbp3797yeFVVFV588UU88cQTmDRpEk444QQsWbIERUVFKC4uBgBs3rwZF198MQYNGoRrr70WmzdvBgA0NjZi5syZWLhwIWJi5P45nVIKtbW1UErZVuNEG1ZIzCExt1M1bsnO9c7sdrVhltQ5dEt2rndmt6sNs6TmYHZZ2aWOlRXRml1qDmaXlV3qWFkRrdml5mB2WdmljpVZbvosYkZErlner18/zJ8/H1dddVUkvtwhZs2ahSlTpuD000/HAw880PL4+vXr0djYiNNPP73lsSFDhqB3795Ys2YNxo0bh5EjR+Kjjz7CNddcg+XLl7ecmf7oo48iPz8fY8aMCakPDQ0NaGhoaPl3dXU1gIOb7o2NjSF9jebXhfp6AAgGg/jqq6/Qv3//kDf1zdY40YYT2aWOldnsTuSwUuOW7FzvzB5N691KjVuyc70zO9d75GuiNTvXO7Pb0ScrNW5Z71Zq3JJd6lgxO491O9qwUuOW7FLHSuJ6t1pjRai5NRWhbfvdu3djxIgRqK2tjcSXa/H666/jwQcfxLp16xAfH4/8/Hwcf/zxePLJJ7Fs2TJceeWVbTaxAeCkk07CqaeeikceeQRVVVW4/vrrUVhYiL59++K5555DXFwcpkyZgjVr1uC3v/0t/vGPf2DMmDFYvHgxUlJS2u3Hvffei/vuu++Qx5ctW4bExMSIZiYiIiIiIiIiIiKiyKirq8Mll1yCqqoqdOvW7bCvi8iZ5QCwYcMG9OnTJ1JfDgDwzTff4KabbsKKFSsQHx9v6WukpKRg2bJlbR6bNGkSHnvsMbz66qvYtWsXtm7dihkzZmDevHl4/PHH2/06d955J2655ZaWf1dXV6NXr14444wzjjjArTU2NmLFihWYPHlyyDeJCQaD2Llzp+nfyJipcaINJ7JLHSuz2Z3IYaXGLdm53pk9mta7lRq3ZOd6Z3au98jXRGt2rndm53rv/H65JbvUsWJ2Hut2tGGlxi3ZpY6VxPVutcaK5quEdCTkzfLDfcGqqiqsX78et956K6ZPnx7qlwvJ+vXrsXfvXowePbrlsWAwiE8++QTPPPMMli9fjkAggP379yM1NbXlNWVlZcjOzm73ay5ZsgSpqak499xzMXXqVJx33nmIi4vDhRdeiLvvvvuwffF6vfB6vYc8HhcXF/LBZaUmJiYGCQkJ8Hg8Id8Z1myNE200szO71LFqFmp2p+YjWrNzvTN7NK13KzVuyc71zuxc75GvaRat2bnemT3SbUgcq2b8zMr1LqFfErNLzSFxvVupcUt2qWPVTNJ6t1pjRajzHfJmeWpqKjRNa/c5TdNwzTXXYO7cuaF+uZCcdtpp2LBhQ5vHrrzySgwZMgR33HEHevXqhbi4OHz44Ye44IILAABbt27F119/jfHjxx/y9crLyzFv3jysXr0awMGN99bX6wkGgxHtfyTouo5+/frZWuNEG1ZIzCExt1M1bsnO9c7sdrVhltQ5dEt2rndmt6sNs6TmYHZZ2aWOlRXRml1qDmaXlV3qWFkRrdml5mB2WdmljpVZbvosYkbI2/Uff/wxPvroo0P++/TTT7F//34sXLgQHo8nop1LTk7GiBEj2vzn8/mQlpaGESNGICUlBVdffTVuueUWfPzxx1i/fj2uvPJKjB8/HuPGjTvk682ZMwe33norjj76aABAXl4eXn75ZWzevBmLFi1CXl5eRPsfCUop7N+/3/RdZM3UONGGFRJzSMztVI1bsnO9M7tdbZgldQ7dkp3rndntasMsqTmYXVZ2qWNlRbRml5qD2WVllzpWVkRrdqk5mF1WdqljZZabPouYEfJm+cSJE9v9b9SoUUhKSgIAbNy40baOHs6CBQvws5/9DBdccAFOOeUUZGdn46233jrkdcuXL8eOHTtwww03tDw2e/Zs9OvXD2PHjkUgEMA999zjZNdDYhgGSktLYRiGbTVOtGGFxBwScztV45bsXO/MblcbZkmdQ7dk53pndrvaMEtqDmaXlV3qWFkRrdml5mB2WdmljpUV0Zpdag5ml5Vd6liZ5abPImaEfYPPmpoavPbaa3jhhRewfv162y9lUlBQ0Obf8fHxePbZZ/Hss88ese7MM8/EmWee2eaxxMRE/OlPf4p0F4mIiIiIiIiIiIioi7F81fRPPvkE06dPR8+ePfG73/0OkyZNQnFxcST7RkRERERERERERETkCFNnlpeWlmLp0qV48cUXUV1djYsuuggNDQ145513MGzYMLv6GNU0TYPP5zvszVUjUeNEG1ZIzCExt1M1bsnO9c7sdrVhltQ5dEt2rndmt6sNs6TmYHZZ2aWOlRXRml1qDmaXlV3qWFkRrdml5mB2WdmljpVZbvosYkbIm+U///nP8cknn2DKlCl48skncdZZZyEmJgYLFy60s39RT9d19OrVy9YaJ9qwQmIOibmdqnFLdq53ZrerDbOkzqFbsnO9d93sRiAAf1ER/IVF0MrLsTcjA768XPhyc6F3cDN5rnd7+2UWs8vK4URuK+24JbvUHMwuK7vUsbIiWrNLzcHssrJLHSuz3PRZxIyQL8Py/vvv4+qrr8Z9992HKVOmICYmxs5+0Y8Mw0BFRYXpC+ObqXGiDSsk5pCY26kat2Tnemd2u9owS+ocuiU713vXzG4EAqhctBiVL7yI+q1b0VBdjfqtW1H5wouoXLQYRiAQdhvhvN4Krndmt6tPEte7U/2SmF1qDmaXlV3qWFkRrdml5mB2WdmljpVZbvosYkbIm+WrV69GTU0NTjjhBIwdOxbPPPMMKioq7OwbAVBKoaKiAkop22qcaMMKiTkk5naqxi3Zud6Z3a42zJI6h27JzvXeNbP7i4rgLy5GXFYWPH36IJCUBE+fPojLyoK/uBj+oqKw2wjn9VZwvTO7XX2SuN6d6pfE7FJzMLus7FLHyopozS41B7PLyi51rMxy02cRM0LeLB83bhwWL16MPXv24LrrrsPrr7+Oo446CoZhYMWKFaipqbGzn0RERETkcv7CImi6Dt3na/O47vNB03X4C4+8WU5ERERERBSOkDfLm/l8Plx11VVYvXo1NmzYgFtvvRXz589HZmYmzjnnHDv6SERERERRoKm8HHpiYrvP6YmJaCovd7hHREREREQUTUxvlrc2ePBgPProo/j222/x2muvRapP1IqmaUhJSTF9F1kzNU60YYXEHBJzO1Xjluxc78xuVxtmSZ1Dt2Tneu+a2WMzMmDU1bX829Pqhp5GXR1iMzLCbiOc11vB9c7sdvVJ4np3ql8Ss0vNweyysksdKyuiNbvUHMwuK7vUsTLLTZ9FzIiNxBeJiYnBeeedh/POOy8SX45a0XUdPXv2tLXGiTaskJhDYm6natySneud2e1qwyypc+iW7FzvXTO7Ly8X9Zs3w/D7oft8SPzxLHPD74cyDPjycsNuI5zXW8H1zux2vN6pNqyI1uxSczC7rOxSx8qKaM0uNQezy8oudazMctNnETPCOrOc7GcYBvbs2WP6LrJmapxowwqJOSTmdqrGLdm53pndrjbMkjqHbsnO9d41s/tyc+EbNw6NZWVo2L0btd98g4bdu9FYVgbfuHHw5R55s5zrvevNebg1bskudaysiNbsUnMwu6zsUsfKimjNLjUHs8vKLnWszHLTZxEzuFkunFIKVVVVpu8ia6bGiTaskJhDYm6natySneud2e1qwyypc+iW7FzvXTO77vEg7doZSLvmangHDUSTrsE7aCDSrrkaadfOgN7qsixW2wjn9VZwvTO7XX2SuN6d6pfE7FJzMLus7FLHyopozS41B7PLyi51rMxy02cRMyJyGRYiIiIiokjQPR4k5+cjccIEVG3fjsyBAxETE9PZ3SIiIiIioijAM8uJiIiIiIiIiIiIKOpxs1w4TdOQnp5u+i6yZmqcaMMKiTkk5naqxi3Zud6Z3a42zJI6h27JzvXO7Ha1YZbUHMwuK7vUsbIiWrNLzcHssrJLHSsrojW71BzMLiu71LEyy02fRczgZViE03Ud6enpttY40YYVEnNIzO1UjVuyc70zu11tmCV1Dt2Sneud2e1qwyypOZhdVnapY2VFtGaXmoPZZWWXOlZWRGt2qTmYXVZ2qWNllps+i5jBM8uFMwwD33zzjem7yJqpcaINKyTmkJjbqRq3ZOd6Z3a72jBL6hy6JTvXO7Pb1YZZUnMwu6zsUsfKimjNLjUHs8vKLnWsrIjW7FJzMLus7FLHyiw3fRYxg2eWC6eUgt/vN30XWTM1TrRhhcQcEnM7VeOW7FzvzG5XG2ZJnUO3ZOd677rZG5qCKNxRgZVb96JkTyVyeu7HxMGZyBuQDm/skW/0yfXeNec8nBq3ZJc6VlZEa3apOZhdVnapY2VFtGaXmoPZZWWXOlZmuemziBncLCciIiIiERqaglhYsBOFOyqhaQqqSWFLaQ0276nFhm+rMDO/f4cb5kRERERERFbxMixEREREJELhjgoU7qhEdko8ctJ9SEuMRU66D9kp8SjcWYnCHRWd3UUiIiIiInIxbpYLp+s6srOzoeuhT5XZGifasEJiDom5napxS3aud2a3qw2zpM6hW7JzvXfN7Ku2VUDXNfi8sdA0DYmJCdC0g//WtYPPh9tGOK+3guud2e3qk8T17lS/JGaXmoPZZWWXOlZWRGt2qTmYXVZ2qWNllps+i5jBy7AIp2kaUlNTba1xog0rJOaQmNupGrdk53q3v8Ysidkl5naqxi3Zud7trzErlDb21jTA52m+zIoGj8fb8pzPE4u9NQ1htxHO663gejfXRrRmlzpWVkRrdqk5mN1cjVkSc/BYN9eGWVJzMLu5GrMk5pCY28kaO8nYsqfDMgwDu3btMn0XWTM1TrRhhcQcEnM7VeOW7FzvzG5XG2ZJnUO3ZOd675rZM5O98AeCB/+hFGqqq4Efb/TjDzQhM9l72NpQ2wjn9VZwvTO7XX2SuN6d6pfE7FJzMLus7FLHyopozS41B7PLyi51rMxy02cRM3hmuXBKKQQCAdN3kTVT40QbVkjMITG3UzVuyc71zux2tWGW1Dl0S3au966ZfcKgdHz5fTX8DU1I9OgIGgYUFOoagjDUwefDbSOc11vB9c7sdvVJ4np3ql8Ss0vNweyysksdKyvs7FdDUxCFOyqwcutelOypRE5PPyYOzkTegPQj3uhb4pxbqXHLerdS45bsUsfKLDd9FjGDm+VEREREJELegHRs+LYKhTsroQMwGpuwr7EOBoC8/mnIG3DkzXIiIiLq2hqaglhYsBOFOyqhaQqqSWFLaQ0276nFhm+rMDO//xE3zImIwsXNciIiIiISwRsbg5n5/XHsMSk/nk3WgJzspJDOJiMiIiJ5jEAA/qIi1K5eDVVSgr05OUg6+WT4cnOhezyHvL5wRwUKd1QiOyUeiR4dVVVBpKT4UBcwULizEscek4JJQ7I6IQkRRQtulgun6zqOOeYY03eRNVPjRBtWSMwhMbdTNW7JzvXO7Ha1YZbUOXRLdq73rpvdGxuDSUOycOrgTPj9fvh8PmiaFtE2rL7eCq53ZrerTxLXu1P9kphdag5ml5Vd6lhZEUo7RiCAykWL4S8uhqbriPd6Edi2HZVbtqJ+45dIu3bGIRvmq7ZVQNc1+LyxABSSfnwf4PPGQtcOPn+4zXKJc26lxi3r3UqNW7JLHSuz3PRZxAxulgunaRqSkpJsrXGiDSsk5pCY26kat2Tnemd2u9owS+ocuiU71zuz29WGWVJzMLus7FLHyopozS41B7PLyi51rKwIpR1/URH8xcWIy8qC7vO1PG74/fAXFyN+xHAk5+e3qdlb0wCfp/kvyTTExsW1POfzxGJvTUNYfQqX1DlkdlnZpY6VWW76LGKGjC17OqxgMIht27YhGAzaVuNEG1ZIzCExt1M1bsnO9c7sdrVhltQ5dEt2rndmt6sNs6TmYHZZ2aWOlRVdPbsRCKCmoADl8+cj+9VXUT5/PmoKCmAEAhHtk5Uat6x3KzVuyS51rKwIpR1/YRE0XYfu80EphaqqKiiloPt80HQd/sKiQ2oyk73wBw5+TaUMVFXth1LGwa8XaEJmsjesPoVL6hwyu6zsUsfKLDd9FjGDZ5Z3AYZh2F7jRBtWSMwhMbdTNW7JzvVuf43dbUhdJ2ZJnUO3ZOd6t7/G7jakrhOzpOZgdntJzOFEbivtSMne+pIRStOgBRrRsG07Alu3HfaSEeH0yUqNW9a7lRq3ZJc6VlZ01E5TeTn0xMSWfyulWv6/npiIpvLyQ2omDErHl99Xw9/QhESPjuYSf0MTDHXw+XD6FAlS55DZ7SUxh8TcTtbYhWeWExERERERUdRrfckIT58+CHbrBk+fPojLyoK/uBj+okPPgiWiw4vNyIBRV9fuc0ZdHWIzMg55PG9AOvIGpKG0uh67K+pQWdeE3RV1KK2uR17/NOQNOPJmORFRuLhZTkRERERERFGv9SUjWjvSJSOI6PB8eblQhgHD72/zuOH3QxkGfHm5h9R4Y2MwM78/Zk7sh8HZSYiP1TA4OwkzJ/bDzPz+8MbGHFJDRBRJvAyLAxqagijcUYGVW8rw7+06PlObMXFIFvIGpHf4jV7XdeTk5Ji+i6yZGifasEJiDom5napxS3aud2a3qw2zpM6hW7JzvTO7XW2YJTUHs8vKLnWsrOjK2X96yYg2X+Mwl4yw2icrNW5Z71Zq3JJd6lhZEUo7vtxc1G/8Ev7iYmi6joT4eDTu339wo3zcOPhyD90sBw5umE8akoVTB2ciEAjA4/FA07SI9ClcUueQ2WVllzpWZrnps4gZ3Cy3WUNTEAsLdqJwRyU0TaExCGwpq8XmUj82fFsV0m9GY2PNT5PZGifasEJiDom5napxS3aud/tr7G5D6joxS+ocuiU717v9NXa3IXWdmCU1B7PbS2IOJ3JbaUdK9tiMDDRs3druc0ZdHby9ekW0T1Zq7GojnBO87OyX021YITGHlGNd93iQdu0MxI8YDn9hIRrLyxHXpzd8eXnw5eYe8R4AobYR7uutkDqHzG4viTkk5nayxi4ytuxdrHBHBQp3VCI7JR5903xI8QB903zITolH4c5KFO6oOGK9YRjYvn27qQvdm61xog0rJOaQmNupGrdk53pndrvaMEvqHLolO9c7s9vVhllSczC7rOxSx8qKrpzdyiUjrPbJSo1dbTSf4LWwYBe2lNW2nOC1sGAXFhbsRENTsFP65XQbVkjMIe1Y1z0eJOfnI2PuXPhnzkTG3LlIzs8PaaNcYnapc8jssrJLHSuz3PRZxAxultts1bYK6LoGn7ftb0h83ljo2sHniYiIiIiIqHP5cnPhGzcOjWVlCHz1FWKqqxH46is0lpUd8ZIRXV24J3gRERG5iZxz3F1qb00DfJ72/2zN54nF3poGh3tEREREREREP9X6khE1q1ZBbdgA76CBSJ4wIeRLRnRFrU/wan1WX+sTvCYNyerEHhIRETmHm+U2y0z2YnNpTbvP+QNN6N2j/RvIEBERERERkbOaLxkRn5eHde+9h9Fnn424uLjO7pateIIXERHRf/AyLDabMCgdhqHgb2hq87i/oQmGOvj8kei6joEDB5q+i6yZGifasEJiDom5napxS3aud2a3qw2zpM6hW7JzvTO7XW2YJTUHs8vKLnWsrIjW7FJzhFKTmeyFP9D+dcn9gSZkJns7pV9Ot2GFxBw81mXNuZUat6x3KzVuyS51rMxy02cRM2T0wsXyBqQjb0AaSqvrsbvSj6oAsLvSj9LqeuT1T0PegCNvlgNAU1NTh68Jt8aJNqyQmENibqdq3JKd693+GrvbkLpOzJI6h27JzvVuf43dbUhdJ2ZJzcHs9pKYw4ncVtpxS3apOTqqCfcEL7v61RltWCExB491e0nNwez2kphDYm4na+zCzXKbeWNjMDO/P2ZO7IchWUmIiwGGZCVh5sR+mJnfH97Y9v/crZlhGCgpKTF9F1kzNU60YYXEHBJzO1Xjluxc78xuVxtmSZ1Dt2Tnemd2u9owS2oOZpeVXepYWRGt2aXmCKUmb0A6Tu7TDcmfr8WQ//cCfv6PVzDk/72A5M/X4uTe3To8wasrZw+XxBxuONaNQAA1BQUoffBB7LrhBpQ++CBqCgpgBAIR7ZMVUueQ2WVllzpWZrnps4gZvGa5A7yxMZg0JAsT+vfAe++V4Oyzh7r+undEREREREQkX5wRxIXbP0LZ9tXYX9+EyqBCz+rvMWr7XmQd3Yi40wYCOPJJXkSRYgQCqFy0GP7iYkDXAcNAw7btaNiyFfUbv0TatTNce7NdIpKBm+VEREREREREUcpfVISGf/4TGTm9kJGQAO/XX6N3797AgQNo+Oc/4T/uWCTn53d2NylK+IuK4C8uRlxWFrTERByoqoInJQWqrg7+4mLEjxjO9UhEtuJlWLoAKxe4N1vjRBtWSMwhMbdTNW7JzvVuf43dbUhdJ2ZJnUO3ZOd6t7/G7jakrhOzpOZgdntJzOHUjbOiNbvUHB3V+AuLoOk6dJ+vbZ3PB03X4S8s6pR+dUYbVkjM0ZWP9Z+uR03TDtaGuB4lzrmVGresdys1bskudazMctNnkVDxzHLhYmJiMGjQIFtrnGjDCok5JOZ2qsYt2bnemd2uNsySOoduyc71zux2tWGW1BzMLiu71LGyIlqzS80RSk1TeTn0xMR2n9MTE9FUXt4p/XK6DSsk5ujqx3rr9ahpGlJSUlqe62g9SpxzKzVuWe9WatySXepYmeWmzyJmyNm2p3YppVBbWwullG01TrRhhcQcEnM7VeOW7FzvzG5XG2ZJnUO3ZOd6Z3a72jBLag5ml5Vd6lhZEa3ZpeYIpSY2IwNGXV27zxl1dYjNyOiUfjndhhUSc3T1Y73telRobGwEcLCmo/Uocc6t1LhlvVupcUt2qWNllps+i5gherP84Ycfxoknnojk5GRkZmbivPPOw9atW9u8pr6+HrNmzUJaWhqSkpJwwQUXoKysrOX5H374AT//+c+RlJSEUaNG4V//+leb+lmzZuHxxx93JI8VhmHg22+/NX0XWTM1TrRhhcQcEnM7VeOW7FzvzG5XG2ZJnUO3ZOd6Z3a72jBLag5ml5Vd6lhZEa3ZpeYIpcaXlwtlGDD8/ra1fj+UYcCXl9sp/XK6DSsk5ujqx3rr9agU4P/xf0NZjxLn3EqNW9a7lRq3ZJc6Vma56bOIGaI3y1euXIlZs2ahuLgYK1asQGNjI8444wz4W/0Qv/nmm/GXv/wFb775JlauXInvv/8eU6dObXn+wQcfRE1NDT777DPk5+djxowZLc8VFxdj7dq1mDNnjpOxiIiIiIiIiETw5ebCN24cGsvKEPjqK8RUVyPw1VdoLCuDb9w4+HKPvFlOFElt1+Nu4IcfEPhqN9cjETlG9DXL//73v7f599KlS5GZmYn169fjlFNOQVVVFV588UUsW7YMkyZNAgAsWbIEQ4cORXFxMcaNG4fNmzfj4osvxqBBg3Dttddi0aJFAIDGxkbMnDkTL7zwAmJiYhzPRkRERERERNTZdI8HadfOQPyI4ahZtQpqwwZ4Bw1E8oQJ8OXmQvd4OruLFEVar8fa1atxoKQE3pwcJJ18MtcjETlC9Gb5T1VVVQEAevToAQBYv349Ghsbcfrpp7e8ZsiQIejduzfWrFmDcePGYeTIkfjoo49wzTXXYPny5TjuuOMAAI8++ijy8/MxZsyYkNpuaGhAQ0NDy7+rq6sBHNx0P3gNrY41vy7U1wMH/xQhJiYGTU1Npv4Uw0yNE204kV3qWJnN7kQOKzVuyc71zuzRtN6t1LglO9c7s3O9R74mWrNzvTO7HX2yUmNrG5qG+Lw8xJx0EtatWIFjJ09GXFwcggCCHYxBl8/+I653Qdl/XI+e8eNR+/XX6NG7N3Rd73A98liXtd6t1Lglu9SxkrjerdZYEWpuTUm5enoHDMPAOeecg/3792P16tUAgGXLluHKK69ss4kNACeddBJOPfVUPPLII6iqqsL111+PwsJC9O3bF8899xzi4uIwZcoUrFmzBr/97W/xj3/8A2PGjMHixYvb3Gm5tXvvvRf33XffIY8vW7YMiYe5czgRERERERERERERda66ujpccsklqKqqQrdu3Q77ui5zZvmsWbOwcePGlo3yUKWkpGDZsmVtHps0aRIee+wxvPrqq9i1axe2bt2KGTNmYN68eYe92eedd96JW265peXf1dXV6NWrF84444wjDnBrjY2NWLFiBSb/+Fv6UCilUF1djW7dukHTNFtqnGjDiexSx8psdidyWKlxS3aud2aPpvVupcYt2bnemZ3rPfI10Zqd653Zud47v19uyS51rJidx7odbVipcUt2qWMlcb1brbGi+SohHekSm+WzZ8/GX//6V3zyySc45phjWh7Pzs5GIBDA/v37kZqa2vJ4WVkZsrOz2/1aS5YsQWpqKs4991xMnToV5513HuLi4nDhhRfi7rvvPmwfvF4vvF7vIY/HxcWFfHBZqQkGg6ioqED37t1Dvra62Ron2mhmZ3apY9Us1OxOzUe0Zud6Z/ZoWu9WatySneud2bneI1/TLFqzc70ze6TbkDhWzfiZletdQr8kZpeaQ+J6t1LjluxSx6qZpPVutcaKUOdbt60HEaCUwuzZs/H222/jo48+Qk5OTpvnTzjhBMTFxeHDDz9seWzr1q34+uuvMX78+EO+Xnl5OebNm4enn34awMHJaH29nmAwaGMaIiIiIiIiIiIiIpJK9Jnls2bNwrJly/DnP/8ZycnJKC0tBXDw0ioJCQlISUnB1VdfjVtuuQU9evRAt27d8Ktf/Qrjx4/HuHHjDvl6c+bMwa233oqjjz4aAJCXl4eXX34ZZ5xxBhYtWoS8vDxH8xERERERERERERGRDKLPLH/uuedQVVWF/Px89OzZs+W/N954o+U1CxYswM9+9jNccMEFOOWUU5CdnY233nrrkK+1fPly7NixAzfccEPLY7Nnz0a/fv0wduxYBAIB3HPPPY7kMkPTNPh8PlPX7DFb40QbVkjMITG3UzVuyc71zux2tWGW1Dl0S3aud2a3qw2zpOZgdlnZpY6VFdGaXWoOZpeVXepYWRGt2aXmYHZZ2aWOlVlu+ixihugzy5VSHb4mPj4ezz77LJ599tkjvu7MM8/EmWee2eaxxMRE/OlPfwqrj3bTdR29evWytcaJNqyQmENibqdq3JKd653Z7WrDLKlz6JbsXO/MblcbZknNweyysksdKyuiNbvUHMwuK7vUsbIiWrNLzcHssrJLHSuz3PRZxAzRZ5YTYBgGKioqYBiGbTVOtGGFxBwScztV45bsXO/MblcbZkmdQ7dk53pndrvaMEtqDmaXlV3qWFkRrdml5mB2WdmljpUV0Zpdag5ml5Vd6liZ5abPImZws1w4pRQqKipCOsveao0TbVghMYfE3E7VuCU71zuz29WGWVLn0C3Zud6Z3a42zJKag9llZZc6VlZEa3apOZhdVnapY2VFtGaXmoPZZWWXOlZmuemziBncLCciIiIiIiIiIiKiqMfNciIiIiIiIiIiIiKKetwsF07TNKSkpJi+i6yZGifasEJiDom5napxS3aud2a3qw2zpM6hW7JzvTO7XW2YJTUHs8vKLnWsrIjW7FJzMLus7FLHyopozS41B7PLyi51rMxy02cRM2I7uwN0ZLquo2fPnrbWONGGFRJzSMztVI1bsnO9M7tdbZgldQ7dkp3rndntasMsqTmYXVZ2qWNlRbRml5qD2WVllzpWVkRrdqk5mF1WdqljZZabPouYwTPLhTMMA3v27DF9F1kzNU60YYXEHBJzO1Xjluxc78xuVxtmSZ1Dt2Tnemd2u9owS2oOZpeVXepYWRGt2aXmYHZZ2aWOlRXRml1qDmaXlV3qWJnlps8iZnCzXDilFKqqqkzfRdZMjRNtWCExh8TcTtW4JTvXO7Pb1YZZUufQLdm53pndrjbMkpqD2WVllzpWVkRrdqk5mF1WdqljZUW0Zpeag9llZZc6Vma56bOIGdwsJyIiIiIiIiIiIqKox81yIiIiIiIiIiIiIop63CwXTtM0pKenm76LrJkaJ9qwQmIOibmdqnFLdq53ZrerDbOkzqFbsnO9M7tdbZglNQezy8oudaysiNbsUnMwu6zsUsfKimjNLjUHs8vKLnWszHLTZxEzYju7A3Rkuq4jPT3d1hon2rBCYg6JuZ2qcUt2rndmt6sNs6TOoVuyc70zu11tmCU1B7PLyi51rKyI1uxSczC7rOxSx8qKaM0uNQezy8oudazMctNnETN4ZrlwhmHgm2++MX0XWTM1TrRhhcQcEnM7VeOW7FzvzG5XG2ZJnUO3ZOd6Z3a72jBLag5ml5Vd6liZYQQCqCkowJ4HHsS2667DngceRE1BAYxAIOL9kpbdahsS14kVzC4rhxO5neqXxOxSczC7rOxSx8osN30WMYNnlgunlILf7zd9F1kzNU60YYXEHBJzO1Xjluxc78xuVxtmSZ1Dt2Tnemd2u9owS2oOZpeVXepYhcoIBFC5aDH8xcWAriNoGGjYtg0NW7agfuOXSLt2BnSPJ2L9kpQ9nDYkrhMrmF1WDidyO9Uvidml5mB2WdmljpVZbvosYgY3y4mIiMg1jEAA/qIi1K5eDVVSgr05OUg6+WT4cnMPu1FDRETh8RcVwV9cjLisLGiJiThQVQVPSgpUXR38xcWIHzEcyfn5nd1NIiIiog5xs5yIiIhc4adnNsIw0LBtOxq2bO3wzEYiIrLOX1gETdeh+3xtzgrTfT5oug5/YRE3y4mIiKhL4Ga5cLquIzs7G7oe+uXlzdY40YYVEnNIzO1UjVuyc70zu11tmCV1Drty9tZnNuq+RGiBADweDwx/aGc2SswudZ1YITG7xNxWatwy51Zq3JJd6liFqqm8HHpiIgBA04DExARo2o/tJiaiqbw8ov2SlD2cNiSuEyuYXVYOJ3I71S+J2aXmYHZZ2aWOlVlu+ixiBjfLhdM0DampqbbWONGGFRJzSMztVI1bsnO9219jlsTsEnM7VdOVs7c+sxEAPB4vgNDPbJSYXeo6sUJidom5rdS4Zc6t1Lglu9SxClVsRgYatm5tbqnl+y8AGHV18PbqFdF+ScoeThsS14kVzB56G1LHyopozS41B7ObqzFLYg6JuZ2ssZOMLXs6LMMwsGvXLtN3kTVT40QbVkjMITG3UzVuyc71zux2tWGWtDk0AgHUFBRgzwMPYuuMGdjzwIOoKSiAEQiE3Fak+2S2pvWZjUopVNdUt1wOoKMzG632yyyJ691qjVkSs0vMbaXGLXNupcYt2aWOVah8eblQhgHjx5tzNX//Nfx+KMOALy83ov2SlD2cNiSuEyuYXVYOJ3I71S+J2aXmYHZZ2aWOlVlu+ixiBs8sF04phUAgYPousmZqnGjDCok5JOZ2qsYt2bnemd2uNsySNIc/vda3YRho2LYNDVu22HKtb7tytD2zETCC/3mz1dGZjVb7ZZbE9W61xiyJ2SXmtlLjljm3UuOW7FLHKlS+3FzUb/zyx58jGgxDIVBZCRgKvnHj4Ms9/GZ5V88eThsS14kVzC4rhxO5neqXxOxSczC7rOxSx8osN30WMYOb5URERFGu9bW+tcREHKiqgiclBaoutGt9S+HLy0X95s0w/H5oP55hDiCkMxuJiMg63eNB2rUzED9iOGpXr8aBkhJ4c3KQdPLJ8OXm8ubKRERE1GVws5yIiCjKtb7Wd+vf5od6rW8pfnpmIwyFwP59IZ3ZSESHZwQC8BcVoWbVKmRv2IDyL75A8oQJ3ASlNnSPB8n5+UicMAFV27cjc+BAxMTEdHa3iIiIiEzhZrlwuq7jmGOOMX0XWTM1TrRhhcQcEnM7VeOW7FzvzG5XG2ZJmsPW1/rWNMDn80HTfqwP4VrfZtmVo/WZjf7CQmBPKeJ7ZsOXlxfSpp7EeZe0TsIlMbvE3FZq7Gyj9WWalKZBCzSiYdt2BLZu6/AyTV09ezgk5nAit1P9kphdag5ml5Vd6lhZEa3ZpeZgdlnZpY6VWW76LGIGN8uF0zQNSUlJttY40YYVEnNIzO1UjVuyc70zu11tmCVpDtte61tDXFxcy3OhXOvbLDuzN5/ZaOVMeInzLmmdhEtidom5rdTY2UbryzQhIQHBr7+Gp3dv4MCBDi/T1NWzh0NiDidyW2nHLdml5mB2WdmljpUV0Zpdag5ml5Vd6liZ5abPImbI2LJ3OSMQQE1BAcrnz0f2q6+ifP581BQUwAgEOqwNBoPYtm0bgsFgyO2ZrXGiDSsk5pCY26kat2Tnemd2u9owS9Ic+vJyoQzj4LW9lUJVVRWUUrZd61vqHEqcd0nrJFwSs0vMbaXGzjZaX6aptdaXaeqMfjnZhhUScziR26l+ScwuNQezy8oudaysiNbsUnMwu6zsUsfKLDd9FjGDZ5bbLJw/XW35GoZhvl2TNU60YYXEHBJzO1Xjluxc7/bX2N2G1HVilpQ5/Om1vpWhENj3g63X+pY6hxLnXco6iQSJ2SXmtlJjVxutL9P0U6FcpqkrZw+XxBxO5LbSjluyS83B7PaSmIPHur2k5mB2e0nMITG3kzV24Wa5zcL501UiIiIntL7Wd+3q1ThQUgJvTg6STj6ZN/AjinJtL9PUlh2XaSIiIiIi6kzcLLdZ6z9dbf1bktZ/usrNciIi6mzN1/pOnDABVdu3I3PgQMTExHR2t4iok/nyclG/eTMMvx9ISGh53K7LNBERERERdSZultss3D9d1XUdOTk5pu8ia6bGiTaskJhDYm6natySneud2e1qwyypc+iW7FzvzG5XG2ZJzRFqTevLNClNQ0xNDQJffQVNdXyZpq6ePRwScziR26l+ScwuNQezy8oudaysiNbsUnMwu6zsUsfKLDd9FjGDm+U2i8SfrsbGmp8mszVOtGGFxBwScztV45bsXO/219jdhtR1YpbUOXRLdq53+2vsbkPqOjFLao5Qalpfpqlm1SqoDRvgHTQQyRMmhHSZpq6cPVwScziR20o7bskuNQez20tiDh7r9pKag9ntJTGHxNxO1thFxpa9i/nycqEM4+CfrrYS6p+uGoaB7du3m7rQvdkaJ9qwQmIOibmdqnFLdq53ZrerDbOkzqFbsnO9M7tdbZglNYeZmubLNGXMnYvSadOQMXcukvPzQ7pJfVfPbpXEHE7kdqpfErNLzcHssrJLHSsrojW71BzMLiu71LEyy02fRcyQs23vUuH86SoREREREREREREROYOb5TYL909XiYiIiIiIiIiIiMh+3Cx3QPOfrsbn5WHde+9h9NlnIy4urrO7RUREREREREREREQ/4jXLhdN1HQMHDjR9F1kzNU60YYXEHBJzO1Xjluxc78xuVxtmSZ1Dt2Tnemd2u9owS2oOZpeVXepYWRGt2aXmYHZZ2aWOlRXRml1qDmaXlV3qWJnlps8iZsjoBR1RU1OT7TVOtGGFxBwScztV45bsXO/219jdhtR1YpbUOXRLdq53+2vsbkPqOjFLag5mt5fEHE7kttKOW7JLzdGVsxuBAGoKClD20EP47uZbUPbQQ6gpKIARCNjWL7MkziGPdXtJzcHs9pKYQ2JuJ2vsws1y4QzDQElJiem7yJqpcaINKyTmkJjbqRq3ZOd6Z3a72jBL6hy6JTvXO7Pb1YZZUnMwu6zsUsfKimjNLjVHV85uBAKoXLQYlS+8iPqt2+D/4QfUb92GyhdeROWixR1umEvMLnWdWBGt2aXmYHZZ2aWOlVlu+ixiBjfLiYiIiIiIiEgUf1ER/MXFiMvKgqdPH6BHD3j69EFcVhb8xcXwFxV1dheJiMiFuFlORERERERERKL4C4ug6Tp0n6/N47rPB03X4S/kZjkREUUeN8u7ACsXuDdb40QbVkjMITG3UzVuyc71bn+N3W1IXSdmSZ1Dt2Tnere/xu42pK4Ts6TmYHZ7Sczh1I2zojW71BxdNXtTeTn0xMSWf2ua9p/axEQ0lZfb0i+zJM4hj3V7Sc3B7PaSmENibidr7BLb2R2gI4uJicGgQYNsrXGiDSsk5pCY26kat2Tnemd2u9owS+ocuiU71zuz29WGWVJzMLus7FLHyopozS41R1fOHpuRgYatWwEc3ChPSUlpec6oq4O3V6+I98ssiXPIY13WnFupibZj3ek2rJCYQ2JuJ2vsJGfbntqllEJtbS2UUrbVONGGFRJzSMztVI1bsnO9M7tdbZgldQ7dkp3rndntasMsqTmYXVZ2qWNlRbRml5qjK2f35eVCGQYMvx+AQmNjIwAFw++HMgz48nIj3i+zJM4hj3VZc26lJtqOdafbsEJiDom5nayxEzfLhTMMA99++63pu8iaqXGiDSsk5pCY26kat2Tnemd2u9owS+ocuiU71zuz29WGWVJzMLus7FLHyopozS41R1fO7svNhW/cODSWlaFh9274v/kGDbt3o7GsDL5x4+DLPfJmucTsUteJFdGaXWoOZpeVXepYmeWmzyJm8DIsRERERERERCSK7vEg7doZiB8xHLWrV+NASQm8OTlIOvlk+HJzoXs8nd1FIiJyIW6WExERERERkaOMQAD+oiLUrl4NVVKCvdwEpXboHg+S8/OROGECqrZvR+bAgYiJiensbhERkYu5ZrP82WefxWOPPYbS0lKMHDkSTz/9NE466SQAwC233IKlS5fC5/Nh/vz5mDZtWkvdm2++iT/+8Y/4y1/+0lldPyJN0+DxeNrc+TvSNU60YYXEHBJzO1VjZ/b6ugNY/9ZylH+8CkZ5GbZkZCHj1Ak4YeqZiE9MiGi/pK33hqYgCndU4JNt5dhd+gP6bmvCKYMykDcgHd7Yw38QkLpOzPjPh+RCaF/txt4+fZF0cl6HH5K7+noPpw1m77rHutnvc05+X7RaY5bEOZSY20qN3W00/6xauaUM/96u4zO1GROHZIn4WcX1Lme9m3lPYwQCqFy0GP7iYkDXoQFo2LYdDVu2on7jl0i7dkZE3guE8700VFbakPweyApp69eJebfSL7Ovt5rDiTm30o60dWKV1BzMLiu71LEyS+pnVrtpSsrV08Pwxhtv4PLLL8fChQsxduxYPPnkk3jzzTexdetWrF27FjNmzMBf//pXbN++HVdddRW++eYbpKeno6qqCieeeCI++OAD9O7d21Sb1dXVSElJQVVVFbp16xZSTWNjI9577z2cffbZiIuLsxK1y2J2Zj9c9vq6A1jxP48h9vP1ULqOYHw8YurroRkGmo4/AZMfuC3ib2rtFuqcNzQFsbBgJwp3VELXNfg8MfAHgjAMhbwBaZiZ3/+ImxAShZq99YdkTdehJybCqKs7eLOmceM6/JAsEY/16Mseam6z3+e6wvfFaJ1zIPqyt/5ZpWkKtfsqkdQ9DUppXfZnlVnRNuet2fWepqagAJUvvIi4rCzoPl/L44bfj8ayMqRdczWS8/PD6nu430vteh8r/T1QV1/v4cy7pOxOvxeQlN1p0Zo9WnMDzB6t2YHQ93JdcYPPJ554AjNmzMCVV16JYcOGYeHChUhMTMRLL72EzZs3Iz8/H2PGjMEvf/lLdOvWDSUlJQCA22+/Hddff73pjXInKaWwf/9+03eRNVPjRBtWSMwhMbdTNXZlX//WcsR+vh6BHulo7Hk0GlO6o7Hn0Qh0T0Psv9dj/VvLI9ovSeu9cEcFCndUIjslHjnpiUiN15CTnojslHgU7qxE4Y6KiPZJUnZ/URH8xcWIy8qCp28fGKkp8PTtg7isLPiLi+EvKopon6Ss93DbYPaueayb/T7n9PdFqzVmSZxDibmt1NjZRuufVX3TfEjxAH3TfGJ+VnG9y1jvZt/T+AuLDm4U+3wAFAKBBgAKus8HTdfhLzz8+4BQs4T7vTQUVtqQ/h7ICknr14l5t9Ivs68PJ4cTc26lHUnrJBxSczC7rOxSx8osqZ9Z7dblL8MSCASwfv163HnnnS2P6bqO008/HWvWrMENN9yARYsWYd++fdi1axcOHDiAAQMGYPXq1fjss8/w+9//PqR2Ghoa0NDQ0PLv6upqAAd/K9PY2BjS12h+XaivB4BgMIjvvvsO8fHxIV+bzWyNE204kV3qWJnN7kQOKzV2ZS//6BPE6TpUfAKgFJoam6B74oCERKiqH1D+0Sdo/MWUTs1h13pfuaUMmqaQEKcjGAzC7/cjJiYGCXE6NCis3FKGCf17dFoOKzWhZq9ZtQpK04CEBASDBvz+OsTExEJLSIDSNNSsWoX4vLxOy8Fjvetnl7TezX6fc/r7op3Zw2lD6jqJtvXe+meVYRgAAMMwxPys4nqXsd7NvqcJ7C0DEhJgGAaUUv95H/Dje4PA3rIjthlKlnC/l9r1Plb6e6Cu/pk1nHmXdKyHk8OJn21W2pG0TlqLtp/rzbr6sR5ODde7rPVutcaKUHN3+cuwfP/99zj66KNRVFSE8ePHtzx+++23Y+XKlVi7di3uvfdevPLKK0hISMC8efMwZcoUnHDCCVi6dCnWrFmDp59+Gunp6Vi0aBGGDx/ebjv33nsv7rvvvkMeX7ZsGRITE23LR+R29QuXIaaxEfVJh/4JTHxtNYJxcYifeUkn9Mx+S7bpaAwCKe38pW1VAIiLAa4cZDjfMQdkv/oqtEAjgu386VNMdTWUJw6lre4vQdSVmf0+F83fF0meaP5ZRaEzu04y3n0Xnj2laExPP+T1cRUVCPTMRvk554TVJye+l1ppg++B7OWWn6FuyUFEJEldXR0uueSSDi/D0uXPLA/Fvffei3vvvbfl3/fddx9OP/10xMXF4YEHHsCGDRvw17/+FZdffjnWr1/f7te48847ccstt7T8u7q6Gr169cIZZ5xh6prlK1aswOTJk0O+NlAwGMTOnTvRv39/U7+RMVPjRBtOZJc6VmazO5HDSo1d2f/255WI+7oEsUlJOPhnuI3weOIAaPDU7keg59E4++yzOzWHXev9M7UZW8pq0SvNB6UMVFdXo1u3btA0HcFKP4ZkJeHss4d2Wg4rNaFmL//iCzRs2w5P795QSrXKriHw1VfwDhqI0YeZ96683sNtg9m75rFu9vuc098X7cweThtS10m0rffWP6sMw8B3336Lo485Brou42cV17uM9W72PY0/KQn7XnwJsWlp0BITW16v6urQFAyi+yWXwHfKKWFlCfd7qV3vY6W/B+rqn1nDmXdJx3o4OZz42WalHUnrpLVo+7nerKsf6+HUcL3LWu9Wa6xovkpIR7r8Znl6ejpiYmJQVlbW5vGysjJkZ2cf8votW7bglVdewb/+9S+89NJLOOWUU5CRkYGLLroIV111FWpqapCcnHxIndfrhdfrPeTxuLg40xfFN1MTExODbt26wePxQNdDu8S82Ron2mhmZ3apY9Us1OxOzYeU7BmTTkH1SzuhHagDEhOh6/rBP8Gtq4OmFDImnXLEcZO4Tpp1NOcTh2Rhc6kfBxoN+Dwx8MR5EKMfvCGWgoaJQ7IOWy91nTTrKHvyhAkIbN0GHDgAPTERcZ446LoO9eO8J0+Y0KnZeax3/eyS1rvZ73NOf1+0M3s4bUhdJ82iZb23/lmVEHfwdbqu40CjIeJnFde7jPVu9j1NtwkT0Lh5C/zFxYCuI1bX0FRVBRgGksaPR7cJE6CH+X0u3O+loWS30ob090Ch5O6MfoX6+kjMu4RjPZwc5rv3RQAALRVJREFUTvxss9KOpHXSnmj5uf5TXfVYD7cG4HqXst6t1lgR6nx3+c1yj8eDE044AR9++CHOO+88AAevo/jhhx9i9uzZbV6rlMJ1112HJ554AklJSQgGg4dcrycYDDra/47ouo5evXrZWuNEG1ZIzCExt1M1dmU/YeqZWPHZF/D8ez1U9T7o3njENPx4p/eRJ+CEqWdGtF+S1nvegHRs+LYKhTsroWuAzxOLvZV+GArI65+GvAGH/mlyOH2SlN2Xm4v6jV/CX1wMTdcRn5iIxvIKKMOAb9w4+HJzI9onKes93DaYvWse62a/zzn9fdFqjVkS51Bibis1drbR+meVBoXaABCs9ENBE/Gziutdxno3+55G93iQdu0MxI8YDn9hEWLLyxGbkQFfXi58ubnQPe1cz8VklnC/l4bCShvS3wNZIWn9OjHvVvpl9vXh5HBizq20I2mdhENqDmaXlV3qWJkl9TOr3ezbrnfQLbfcgsWLF+MPf/gDNm/ejOuvvx5+vx9XXnllm9e98MILyMjIwM9//nMAQF5eHj766CMUFxdjwYIFGDZsGFJTUzshweEZhoGKioqWGyrZUeNEG1ZIzCExt1M1dmWPT0zA5AduQ7crr0Sgdz80xcQh0Lsful15JSY/cBviExMi2i9J690bG4OZ+f0xc2I/DMlOhmY0YUh2MmZO7IeZ+f3hjT38nx9JXSehav6QnHbN1fAMGoSArsEzaBDSrrkaadfOOOKH5K683sNtg9m75rFu9vuc098XrdaYJXEOJea2UmNnG21+VmUlIS4GGJKVJOZnFde7jPVu5T2N7vEgOT8fmXfORfz//BaZd85Fcn5+hxvloWYJ93tpKKy0If09kBWS1q8T826lX2ZfH04OJ+bcSjuS1kk4pOZgdlnZpY6VWVI/s9qty59ZDgC/+MUvUF5ejrvvvhulpaU4/vjj8fe//x1ZWVktrykrK8ODDz6IoqKilsdOOukk3HrrrZgyZQoyMzPxhz/8oTO6f0RKKVRUVKB79+621TjRhhUSc0jM7VSNndnjExOQd+l5CP7y59i+fTsGDhwY8nWqJK4TM7yxMZg0JAsTB6abyi51nZjR/CE5ccIEbN++HZmCsvNY7/rZpa13s9/nnPy+aLXGLIlzKDG3lRq722j+WTWhfw+8914Jzj57aEh/xuqG7FZJzGF3bonvacL5XhoqK21Ifg9khbT168S8W+mX2ddbzeHEnFtpR9o6sUpqDmaXlV3qWJkl9TOr3VyxWQ4As2fPPuSyK61lZWVh9+7dhzx+99134+6777axZ0REREREREREREQknSsuw0JEREREREREREREFA5ulgunaRpSUlIO3vnaphon2rBCYg6JuZ2qcUt2rndmt6sNs6TOoVuyc70zu11tmCU1B7PLyi51rKyI1uxSczC7rOxSx8qKaM0uNQezy8oudazMctNnETNccxkWt9J1HT179rS1xok2rJCYQ2Jup2rckp3rndntasMsqXPoluxc78xuVxtmSc3B7LKySx0rK6I1u9QczC4ru9SxsiJas0vNweyysksdK7Pc9FnEDJ5ZLpxhGNizZ4/pu8iaqXGiDSsk5pCY26kat2Tnemd2u9owS+ocuiU71zuz29WGWVJzMLus7FLHyopozS41B7PLyi51rKyI1uxSczC7rOxSx8osN30WMYOb5cIppVBVVQWllG01TrRhhcQcEnM7VeOW7FzvzG5XG2ZJnUO3ZOd6Z3a72jBLag5ml5Vd6lhZEa3ZpeZgdlnZpY6VFdGaXWoOZpeVXepYmeWmzyJmcLOciIiIiIiIiIiIiKIer1luUfNvO6qrq0OuaWxsRF1dHaqrqxEXFxdSTTAYRG1tLaqrqxETE2NLjRNtOJFd6liZze5EDis1bsnO9c7s0bTerdS4JTvXO7NzvUe+Jlqzc70zO9d75/fLLdmljhWz81i3ow0rNW7JLnWsJK53qzVWNO/hdnQGOzfLLaqpqQEA9OrVq5N7QkREREREREREREQdqampQUpKymGf15SUC8J0MYZh4Pvvv0dycjI0TQupprq6Gr169cI333yDbt26hdzWiSeeiHXr1pnqn9kau9twKrvEsbKS3YkcVmrckp3rndnteL3U9W6lxi3Zud6Z3Y7XR+t6B6I3O9c7s3O9d36/nGiD653Zeax3fr+caIPrXd56t1pjllIKNTU1OOqoo6Drh78yOc8st0jXdRxzzDGWart162bqgIyJiTH1eis1TrQB2J9d6lgB5rI7NR/Rmp3rndntagOQt96t1LglO9c7s9vVBhC96x2I3uxc78xuRxsSxwrgZ1audzn9kphdag6J691KjVuySx0rQN56t1pjxZHOKG/GG3x2AbNmzbK9xok2rJCYQ2Jup2rckp3r3f4au9uQuk7MkjqHbsnO9W5/jd1tSF0nZknNwez2kpjDidxW2nFLdqk5mN1eEnPwWLeX1BzMbi+JOSTmdrLGLrwMi4Oqq6uRkpKCqqoqR35bIgmzM3s0ZY/W3ACzM3t0ZY/W3ACzM3t0ZY/W3ACzR2P2aM0NMDuzR1f2aM0NMHu0ZjeDZ5Y7yOv14p577oHX6+3srjiO2Zk9mkRrboDZmT26skdrboDZmT26skdrboDZozF7tOYGmJ3Zoyt7tOYGmD1as5vBM8uJiIiIiIiIiIiIKOrxzHIiIiIiIiIiIiIiinrcLCciIiIiIiIiIiKiqMfNciIiIiIiIiIiIiKKetwsJyIiIiIiIiIiIqKox81yBz377LPo27cv4uPjMXbsWPzzn//s7C7Z7t5774WmaW3+GzJkSGd3yxaffPIJfv7zn+Ooo46Cpml455132jyvlMLdd9+Nnj17IiEhAaeffjq2b9/eOZ2NoI5yX3HFFYesgbPOOqtzOhthDz/8ME488UQkJycjMzMT5513HrZu3drmNfX19Zg1axbS0tKQlJSECy64AGVlZZ3U48gIJXd+fv4h8z5z5sxO6nHkPPfcczjuuOPQrVs3dOvWDePHj8f777/f8rwb57tZR9ndOuc/NX/+fGiahjlz5rQ85uZ5b6297G6d947ev7h5zjvK7tY5B4DvvvsOl156KdLS0pCQkIBjjz0Wn376acvzbn0vB3Sc3a3v5/r27XtILk3TMGvWLADuPtY7yu7WYz0YDOKuu+5CTk4OEhIS0L9/f9x///1QSrW8xq3HeijZ3XqsA0BNTQ3mzJmDPn36ICEhAbm5uVi3bl3L826dd6Dj7G6Z90jsyfzwww+YNm0aunXrhtTUVFx99dWora11MIV5kcjd3s+E+fPnO5hCFm6WO+SNN97ALbfcgnvuuQefffYZRo4ciTPPPBN79+7t7K7Zbvjw4dizZ0/Lf6tXr+7sLtnC7/dj5MiRePbZZ9t9/tFHH8VTTz2FhQsXYu3atfD5fDjzzDNRX1/vcE8jq6PcAHDWWWe1WQOvvfaagz20z8qVKzFr1iwUFxdjxYoVaGxsxBlnnAG/39/ymptvvhl/+ctf8Oabb2LlypX4/vvvMXXq1E7sdfhCyQ0AM2bMaDPvjz76aCf1OHKOOeYYzJ8/H+vXr8enn36KSZMm4dxzz8WXX34JwJ3z3ayj7IA757y1devW4fnnn8dxxx3X5nE3z3uzw2UH3DvvR3r/4vY57+i9mxvnfN++fcjLy0NcXBzef/99bNq0CY8//ji6d+/e8hq3vpcLJTvgzvdz69ata5NpxYoVAIALL7wQgLuP9Y6yA+481h955BE899xzeOaZZ7B582Y88sgjePTRR/H000+3vMatx3oo2QF3HusAcM0112DFihV4+eWXsWHDBpxxxhk4/fTT8d133wFw77wDHWcH3DHvkdiTmTZtGr788kusWLECf/3rX/HJJ5/g2muvdSqCJZHai5o3b16bNfCrX/3Kie7LpMgRJ510kpo1a1bLv4PBoDrqqKPUww8/3Im9st8999yjRo4c2dndcBwA9fbbb7f82zAMlZ2drR577LGWx/bv36+8Xq967bXXOqGH9vhpbqWUmj59ujr33HM7pT9O27t3rwKgVq5cqZQ6OMdxcXHqzTffbHnN5s2bFQC1Zs2azupmxP00t1JKTZw4Ud10002d1ykHde/eXb3wwgtRM9+tNWdXyv1zXlNTowYOHKhWrFjRJms0zPvhsivl3nk/0vsXt895R+/d3Drnd9xxhzr55JMP+7yb38t1lF2p6Hk/d9NNN6n+/fsrwzBcf6z/VOvsSrn3WJ8yZYq66qqr2jw2depUNW3aNKWUu4/1jrIr5d5jva6uTsXExKi//vWvbR4fPXq0+u1vf+vqee8ou1LunHcrezKbNm1SANS6detaXvP+++8rTdPUd99951jfw2F1L6pPnz5qwYIFDvZUNp5Z7oBAIID169fj9NNPb3lM13WcfvrpWLNmTSf2zBnbt2/HUUcdhX79+mHatGn4+uuvO7tLjispKUFpaWmbNZCSkoKxY8dGxRooKChAZmYmBg8ejOuvvx6VlZWd3SVbVFVVAQB69OgBAFi/fj0aGxvbzPuQIUPQu3dvV837T3M3e/XVV5Geno4RI0bgzjvvRF1dXWd0zzbBYBCvv/46/H4/xo8fHzXzDRyavZmb53zWrFmYMmVKm/kFouM4P1z2Zm6d98O9f4mGOe/ovZsb5/zdd9/FmDFjcOGFFyIzMxOjRo3C4sWLW55383u5jrI3c/v7uUAggFdeeQVXXXUVNE2LimO92U+zN3PjsZ6bm4sPP/wQ27ZtAwD8+9//xurVq/Ff//VfANx9rHeUvZkbj/WmpiYEg0HEx8e3eTwhIQGrV6929bx3lL2ZG+e9tVDmeM2aNUhNTcWYMWNaXnP66adD13WsXbvW8T5Hgpm1PX/+fKSlpWHUqFF47LHH0NTU5HR3xYjt7A5Eg4qKCgSDQWRlZbV5PCsrC1u2bOmkXjlj7NixWLp0KQYPHow9e/bgvvvuw4QJE7Bx40YkJyd3dvccU1paCgDtroHm59zqrLPOwtSpU5GTk4OdO3fiN7/5Df7rv/4La9asQUxMTGd3L2IMw8CcOXOQl5eHESNGADg47x6PB6mpqW1e66Z5by83AFxyySXo06cPjjrqKHzxxRe44447sHXrVrz11lud2NvI2LBhA8aPH4/6+nokJSXh7bffxrBhw/D555+7fr4Plx1w95y//vrr+Oyzz9pc27GZ24/zI2UH3DvvR3r/4vY57+i9m1vnfNeuXXjuuedwyy234De/+Q3WrVuHG2+8ER6PB9OnT3f1e7mOsgPR8X7unXfewf79+3HFFVcAcP/399Z+mh1w7/f3uXPnorq6GkOGDEFMTAyCwSAefPBBTJs2DYC7P7d1lB1w77GenJyM8ePH4/7778fQoUORlZWF1157DWvWrMGAAQNcPe8dZQfcO++thTLHpaWlyMzMbPN8bGwsevTo0WXXQahr+8Ybb8To0aPRo0cPFBUV4c4778SePXvwxBNPONpfKbhZTrZq/Vvq4447DmPHjkWfPn3wpz/9CVdffXUn9oyccvHFF7f8/2OPPRbHHXcc+vfvj4KCApx22mmd2LPImjVrFjZu3Ojaa/IfzuFyt76u27HHHouePXvitNNOw86dO9G/f3+nuxlRgwcPxueff46qqir8v//3/zB9+nSsXLmys7vliMNlHzZsmGvn/JtvvsFNN92EFStWHHJGjtuFkt2t836k9y8JCQmd2DP7dfTeza1zbhgGxowZg4ceeggAMGrUKGzcuBELFy5s2TB2q1CyR8P7uRdffBH/9V//haOOOqqzu+K49rK79Vj/05/+hFdffRXLli3D8OHD8fnnn2POnDk46qijXH+sh5Ldzcf6yy+/jKuuugpHH300YmJiMHr0aPzyl7/E+vXrO7trtusou5vnnUJzyy23tPz/4447Dh6PB9dddx0efvhheL3eTuxZ5+BlWByQnp6OmJiYQ+6cXlZWhuzs7E7qVedITU3FoEGDsGPHjs7uiqOa55lrAOjXrx/S09NdtQZmz56Nv/71r/j4449xzDHHtDyenZ2NQCCA/fv3t3m9W+b9cLnbM3bsWABwxbx7PB4MGDAAJ5xwAh5++GGMHDkS//u//+v6+QYOn709bpnz9evXY+/evRg9ejRiY2MRGxuLlStX4qmnnkJsbCyysrJcO+8dZQ8Gg4fUuGXef6r1+5doONZb6+i9m1vmvGfPni1/KdNs6NChLZegcfN7uY6yt8dt7+e++uorfPDBB7jmmmtaHouWY7297O1xy7F+2223Ye7cubj44otx7LHH4rLLLsPNN9+Mhx9+GIC7j/WOsrfHTcd6//79sXLlStTW1uKbb77BP//5TzQ2NqJfv36unnfgyNnb46Z5bxbKHGdnZ2Pv3r1tnm9qasIPP/zQZdeB1bU9duxYNDU1Yffu3XZ2TyxuljvA4/HghBNOwIcfftjymGEY+PDDD9tc6zUa1NbWYufOnejZs2dnd8VROTk5yM7ObrMGqqursXbt2qhbA99++y0qKytdsQaUUpg9ezbefvttfPTRR8jJyWnz/AknnIC4uLg2875161Z8/fXXXXreO8rdns8//xwAXDHvP2UYBhoaGlw730fSnL09bpnz0047DRs2bMDnn3/e8t+YMWMwbdq0lv/v1nnvKHt7f5brlnn/qdbvX6LtWO/ovZtb5jwvLw9bt25t89i2bdvQp08fAO5+L9dR9va46f0cACxZsgSZmZmYMmVKy2PRcqy3l709bjnW6+rqoOttt0FiYmJgGAYAdx/rHWVvj9uOdQDw+Xzo2bMn9u3bh+XLl+Pcc8919by31l729rhx3kOZ4/Hjx2P//v1t/trgo48+gmEYLb8w7Gqsru3PP/8cuq4fclmaqNHZdxiNFq+//rryer1q6dKlatOmTeraa69VqampqrS0tLO7Zqtbb71VFRQUqJKSElVYWKhOP/10lZ6ervbu3dvZXYu4mpoa9a9//Uv961//UgDUE088of71r3+pr776Siml1Pz581Vqaqr685//rL744gt17rnnqpycHHXgwIFO7nl4jpS7pqZG/frXv1Zr1qxRJSUl6oMPPlCjR49WAwcOVPX19Z3d9bBdf/31KiUlRRUUFKg9e/a0/FdXV9fympkzZ6revXurjz76SH366adq/Pjxavz48Z3Y6/B1lHvHjh1q3rx56tNPP1UlJSXqz3/+s+rXr5865ZRTOrnn4Zs7d65auXKlKikpUV988YWaO3eu0jRN/eMf/1BKuXO+mx0pu5vnvD0TJ05UN910U8u/3TzvP9U6u5vnvaP3L26e8yNld/Oc//Of/1SxsbHqwQcfVNu3b1evvvqqSkxMVK+88krLa9z6Xq6j7G5/PxcMBlXv3r3VHXfccchzbj7WlTp8djcf69OnT1dHH320+utf/6pKSkrUW2+9pdLT09Xtt9/e8hq3HusdZXf7sf73v/9dvf/++2rXrl3qH//4hxo5cqQaO3asCgQCSin3zrtSR87upnmPxJ7MWWedpUaNGqXWrl2rVq9erQYOHKh++ctfdlakkISbu6ioSC1YsEB9/vnnaufOneqVV15RGRkZ6vLLL+/MWJ2Km+UOevrpp1Xv3r2Vx+NRJ510kiouLu7sLtnuF7/4herZs6fyeDzq6KOPVr/4xS/Ujh07Ortbtvj4448VgEP+mz59ulJKKcMw1F133aWysrKU1+tVp512mtq6dWvndjoCjpS7rq5OnXHGGSojI0PFxcWpPn36qBkzZrjml0Tt5QaglixZ0vKaAwcOqBtuuEF1795dJSYmqvPPP1/t2bOn8zodAR3l/vrrr9Upp5yievToobxerxowYIC67bbbVFVVVed2PAKuuuoq1adPH+XxeFRGRoY67bTTWjbKlXLnfDc7UnY3z3l7frpZ7uZ5/6nW2d087x29f3HznB8pu5vnXCml/vKXv6gRI0Yor9erhgwZohYtWtTmebe+l1PqyNnd/n5u+fLlCkC7c+nmY12pw2d387FeXV2tbrrpJtW7d28VHx+v+vXrp37729+qhoaGlte49VjvKLvbj/U33nhD9evXT3k8HpWdna1mzZql9u/f3/K8W+ddqSNnd9O8R2JPprKyUv3yl79USUlJqlu3burKK69UNTU1nZAmdOHmXr9+vRo7dqxKSUlR8fHxaujQoeqhhx7qcr8siSRNKaXsPHOdiIiIiIiIiIiIiEg6XrOciIiIiIiIiIiIiKIeN8uJiIiIiIiIiIiIKOpxs5yIiIiIiIiIiIiIoh43y4mIiIiIiIiIiIgo6nGznIiIiIiIiIiIiIiiHjfLiYiIiIiIiIiIiCjqcbOciIiIiIiIiIiIiKIeN8uJiIiIiIiIiIiIKOpxs5yIiIiIKAppmoZ33nnHcn1BQQE0TcP+/fvD6scVV1yB8847L6yvQUREREQUCbGd3QE3MwwDgUCgs7tBRERkSVxcHGJiYjq7G0RdVnl5Oe6++2787W9/Q1lZGbp3746RI0fi7rvvRl5eXmd3L2y5ubnYs2cPUlJSOrsrREREREQRwc1ymwQCAZSUlMAwjM7uChERkWWpqanIzs6Gpmmd3RWiLueCCy5AIBDAH/7wB/Tr1w9lZWX48MMPUVlZ2dldiwiPx4Ps7OzO7gYRERERUcRws9wGSins2bMHMTEx6NWrF3SdV7shIqKuRSmFuro67N27FwDQs2fPTu4RUdeyf/9+rFq1CgUFBZg4cSIAoE+fPjjppJPavO6JJ57AkiVLsGvXLvTo0QM///nP8eijjyIpKQkAsHTpUsyZMwevvPIKbr31VnzzzTc4++yz8cc//hFvvvkm7rnnHlRVVeGyyy7DggULWv4apG/fvrj66quxadMmvPvuu0hNTcVvfvMbzJo167B9/uabb3DrrbfiH//4B3Rdx4QJE/C///u/6Nu3b7uvLygowKmnnop9+/YhNTW1pa9vvPEG5syZg2+++QYnn3wylixZ0vI9JBgM4rbbbsNLL72EmJgYXH311VBKtfm6hmHgkUcewaJFi1BaWopBgwbhrrvuwn//939DKYXJkycjJiYGf//736FpGn744Qccd9xxuOqqqzBv3jxL80VEREREBHCz3BZNTU2oq6vDUUcdhcTExM7uDhERkSUJCQkAgL179yIzM5OXZCEyISkpCUlJSXjnnXcwbtw4eL3edl+n6zqeeuop5OTkYNeuXbjhhhtw++234/e//33La+rq6vDUU0/h9ddfR01NDaZOnYrzzz8fqampeO+997Br1y5ccMEFyMvLwy9+8YuWusceewy/+c1vcN9992H58uW46aabMGjQIEyePPmQfjQ2NuLMM8/E+PHjsWrVKsTGxuKBBx7AWWedhS+++AIejyek3HV1dfjd736Hl19+Gbqu49JLL8Wvf/1rvPrqqwCAxx9/HEuXLsVLL72EoUOH4vHHH8fbb7+NSZMmtXyNhx9+GK+88goWLlyIgQMH4pNPPsGll16KjIwMTJw4EX/4wx9w7LHH4qmnnsJNN92EmTNn4uijj8bdd98dUh+JiIiIiA6Hm+U2CAaDABDyhwoiIiKpmn/p29jYyM1yIhNiY2OxdOlSzJgxAwsXLsTo0aMxceJEXHzxxTjuuONaXjdnzpyW/9+3b1888MADmDlzZpvN8sbGRjz33HPo378/AOC///u/8fLLL6OsrAxJSUkYNmwYTj31VHz88cdtNsvz8vIwd+5cAMCgQYNQWFiIBQsWtLtZ/sYbb8AwDLzwwgstl11asmQJUlNTUVBQgDPOOCOk3I2NjVi4cGFLX2fPnt3mbO8nn3wSd955J6ZOnQoAWLhwIZYvX97yfENDAx566CF88MEHGD9+PACgX79+WL16NZ5//nlMnDgRRx99NJ5//nlcfvnlKC0txXvvvYd//etfiI3lRxsiIiIiCg+vD2IjXt+ViIi6Ov4sI7LuggsuwPfff493330XZ511FgoKCjB69GgsXbq05TUffPABTjvtNBx99NFITk7GZZddhsrKStTV1bW8JjExsWXzGQCysrLQt2/flku1ND/WfNmkZs2bza3/vXnz5nb7+u9//xs7duxAcnJyy1nxPXr0QH19PXbu3Bly5p/2tWfPni39qqqqwp49ezB27NiW52NjYzFmzJiWf+/YsQN1dXWYPHlySz+SkpLwxz/+sU0/LrzwQpx//vmYP38+fve732HgwIEh95GIiIiI6HC4WU6OKigogKZp2L9/f8g1ffv2xZNPPmlbn4iiEY9FIiJnxMfHY/LkybjrrrtQVFSEK664Avfccw8AYPfu3fjZz36G4447Dv/3f/+H9evX49lnnwVw8GbxzeLi4tp8TU3T2n0snBvL19bW4oQTTsDnn3/e5r9t27bhkksuCfnrtNevn16TvKN+AMDf/va3Nv3YtGkT/t//+38tr6urq8P69esRExOD7du3h/z1iYiIiIiOhJvl1OKKK66ApmmYOXPmIc/NmjULmqbhiiuucL5jIfr222/h8XgwYsSIzu6KeF19rt2uq87PvffeC03TWv5LSUnBhAkTsHLlys7umlhdda6JyLphw4bB7/cDANavXw/DMPD4449j3LhxGDRoEL7//vuItVVcXHzIv4cOHdrua0ePHo3t27cjMzMTAwYMaPNfSkpKRPqTkpKCnj17Yu3atS2PNTU1Yf369S3/HjZsGLxeL77++utD+tGrV6+W1916663QdR3vv/8+nnrqKXz00UcR6SMRERERRTdullMbvXr1wuuvv44DBw60PFZfX49ly5ahd+/endizji1duhQXXXQRqqur23wIo/Z15bmOBl11foYPH449e/Zgz549WLNmDQYOHIif/exnqKqq6uyuidVV55qIjqyyshKTJk3CK6+8gi+++AIlJSV488038eijj+Lcc88FAAwYMACNjY14+umnsWvXLrz88stYuHBhxPpQWFiIRx99FNu2bcOzzz6LN998EzfddFO7r502bRrS09Nx7rnnYtWqVSgpKUFBQQFuvPFGfPvttxHr00033YT58+fjnXfewZYtW3DDDTe0+Sun5ORk/PrXv8bNN9+MP/zhD9i5cyc+++wzPP300/jDH/4A4OBZ5y+99BJeffVVTJ48GbfddhumT5+Offv2RayfRERERBSduFlObYwePRq9evXCW2+91fLYW2+9hd69e2PUqFFtXtvQ0IAbb7wRmZmZiI+Px8knn4x169a1ec17772HQYMGISEhAaeeeip27959SJurV6/GhAkTkJCQgF69euHGG29sOeMqVEopLFmyBJdddhkuueQSvPjii6bqo1Goc20YBh5++GHk5OQgISEBI0eObPNn0MFgEFdffXXL84MHD8b//u//tmnriiuuwHnnnYff/e536NmzJ9LS0jBr1iw0NjbaH7SL6qrHYmxsLLKzs5GdnY1hw4Zh3rx5qK2txbZt20x9nWjCY5HInZKSkjB27FgsWLAAp5xyCkaMGIG77roLM2bMwDPPPAMAGDlyJJ544gk88sgjGDFiBF599VU8/PDDEevDrbfeik8//RSjRo3CAw88gCeeeAJnnnlmu69NTEzEJ598gt69e2Pq1KkYOnQorr76atTX16Nbt24R7dNll12G6dOnY/z48UhOTsb555/f5jX3338/7rrrLjz88MMYOnQozjrrLPztb39DTk4OysvLcfXVV+Pee+/F6NGjAQD33XcfsrKy2v0rHSIiIiIiUxRF3IEDB9SmTZvUgQMHLH+N+sYm9eHmUnXvnzeqG15Zr+7980b14eZSVd/YFMGetjV9+nR17rnnqieeeEKddtppLY+fdtppasGCBercc89V06dPb3n8xhtvVEcddZR677331JdffqmmT5+uunfvriorK5VSSn399dfK6/WqW265RW3ZskW98sorKisrSwFQ+/btU0optWPHDuXz+dSCBQvUtm3bVGFhoRo1apS64oorWtrp06ePWrBgwRH7/uGHH6rs7GzV1NSkNmzYoJKTk1VtbW3ExsZtzMz1Aw88oIYMGaL+/ve/q507d6olS5Yor9erCgoKlFJKBQIBdffdd6t169apXbt2qVdeeUUlJiaqN954o0173bp1UzNnzlSbN29Wf/nLX1RiYqJatGiRo7mtCDY0qOqPP1Z7HnhQfXPTHLXngQdV9ccfq2BDg21tdtVj8Z577lEjR45s+Xd9fb2aN2+eSk1NVVVVVREZG7fpCsdiJH6mEZHzQnn/REREREREbWlKmbjjDoWkvr4eJSUlyMnJQXx8vOn6hqYgFhbsROGOSui6Bp8nBv5AEIahkDcgDTPz+8MbGxPxfl9xxRXYv38/Fi9ejF69emHr1q0AgCFDhuCbb77BNddcg9TUVCxduhR+vx/du3fH0qVLW2761NjYiL59+2LOnDm47bbb8Jvf/AZ//vOf8eWXX7a0MXfuXDzyyCPYt28fUlNTcc011yAmJgbPP/98y2tWr16NiRMnwu/3Iz4+vuVrzpkz57B9nzZtGjIzM7FgwQIAwPHHH485c+Z02rV+6wJNh31O1zTEx8VE7LWJnljT/Qt1rp9//nn06NEDH3zwAcaPH99Sf80116Curg7Lli1r9+vPnj0bpaWlLWe9XnHFFSgoKMDOnTsRE3Mwz0UXXQRd1/H666+b7r9TjEAAlYsWw19cDE3XoScmwqirgzIM+MaNQ9q1M6B7PBFvt6sei/feey/uv/9+JCQkADh487Xk5GS88cYbOOussyI+TqEw6uoO/2RMDHSvN7TX6jr0Vt/P23utnphoun9d4VgM92caEXWOUN4/ERERERFRW+Z32ch2hTsqULijEtkp8fB5/zNF/oYmFO6sxLHHpGDSkCzb2s/IyMCUKVOwdOlSKKUwZcoUpKent3nNzp070djYiLy8vJbH4uLicNJJJ2Hz5s0AgM2bN2Ps2LFt6lpv8gDAv//9b3zxxRd49dVXWx5TSsEwDJSUlBz2JlSt7d+/H2+99RZWr17d8till16KF198sdM2y4fdvfywz506OANLrjyp5d8n3P8BDjQG233t2JweeOO6/4zZyY98jB/8gTav2T1/iuV+djTXO3bsQF1dHSZPntymLhAItLk8xLPPPouXXnoJX3/9NQ4cOIBAIIDjjz++Tc3w4cNbNucAoGfPntiwYYPlvjvBX1QEf3Ex4rKyoPt8LY8bfj/8xcWIHzEcyfn5trXf1Y5FABg8eDDeffddAEBNTQ3eeOMNXHjhhfj4448xZsyY0MNHyNbRJxz2Od/EU9C71S8HtuWdDNXquuGtJZ54Ivq8/MeWf+847XQEf3Jt3KFbNlvuJ49FIiIiIiIios7HzXKBVm2rOHhGubft9Pi8sdC1g8/buVkOAFdddRVmz54N4ODmi11qa2tx3XXX4cYbbzzkuVBvbLds2TLU19e32Qxs3uTbtm0bBg0aFLH+utGR5rq2thbAwRtpHX300W2e8/54Ru7rr7+OX//613j88cdbrj362GOPHXKT1bi4uDb/1jQNhmFENEuk+QuLDp5R3mqjHAB0nw+arsNfWGTrZjnQtY5FAPB4PBgwYEDLv0eNGoV33nkHTz75JF555ZWI9NWteCwSUSS1d28KIiIiIiI6Mm6WC7S3pgE+T/uXWfF5YrG3psH2Ppx11lkIBALQNK3dG0H1798fHo8HhYWF6NOnD4CDl35Yt25dy5/7Dh06tOUM02bFxcVt/j169Ghs2rSpzeaaWS+++CJuvfXWQ84iv+GGG/DSSy9h/vz5lr+2VZvmtX/zLODgpVVaW3/X6SG/dvUdp4bXsXYcaa6HDRsGr9eLr7/+GhMnTmy3vrCwELm5ubjhhhtaHtu5c2fE+9kZmsrLD3tpDT0xEU3l5bb3oSsdi4cTExODA4c5Y9tugz9bf/gnY9p+nx1UuPowLwSgt70f9oAPPwinW+3isUhERERERETUubhZLlBmshebS2vafc4faELvHuavi2tWTExMyyUcYmIO3bj3+Xy4/vrrcdttt6FHjx7o3bs3Hn30UdTV1eHqq68GAMycOROPP/44brvtNlxzzTVYv349li5d2ubr3HHHHRg3bhxmz56Na665Bj6fD5s2bcKKFSvwzDPPdNjPzz//HJ999hleffVVDBkypM1zv/zlLzFv3jw88MADiI11dqmbuY64Xa8N1ZHmOjk5Gb/+9a9x8803wzAMnHzyyaiqqkJhYSG6deuG6dOnY+DAgfjjH/+I5cuXIycnBy+//DLWrVuHnJyciPfVabEZGWj48RrSP2XU1cHbq5ftfegqx2KzpqYmlJaWAvjPZVg2bdqEO+64w+IIhMfMdcTtem2oeCwSERERERERdS6945eQ0yYMSodhKPgb2t7M0d/QBEMdfN4J3bp1Q7du3Q77/Pz583HBBRfgsssuw+jRo7Fjxw4sX74c3bt3B3Dw0g3/93//h3feeQcjR47EwoUL8dBDD7X5GscddxxWrlyJbdu2YcKECRg1ahTuvvtuHHXUUSH18cUXX8SwYcMO2SgHgPPPPx979+7Fe++9ZyJ1dDrSXN9///2466678PDDD2Po0KE466yz8Le//a1lA+66667D1KlT8Ytf/AJjx45FZWVlmzNbuzJfXi6UYcDw+9s8bvj9B2/ymZfrSD+6wrHY7Msvv0TPnj3Rs2dPHH/88fjTn/6E5557Dpdffrn54FGIxyIRERERERFR59GUUqqzO+E29fX1KCkpQU5ODuLj403XNzQFsbBgJwp3VkLXDl56xR84uFGe1z8NM/P7wxvb/mVaiChyjEAAlYsWw19cfPDa5YmJMOrqDm6UjxuHtGtnQPd4OrubRLYK92caERERERERUVfBy7AI5I2Nwcz8/jj2mBSs2laBvTUN6N0jERMGpSNvQDo3yokcons8SLt2BuJHDIe/sAhN5eXw9uoFX14ufLm53CgnIiIiIiIiInIRnlluA56FR0REbsGfaURERERERBQteM1yIiIiIiIiIiIiIop63CwnIiIiIiIiIiIioqjHzXIiIiIiIiIiIiIiinrcLLcRLwdPRERdHX+WERERERERUbTgZrkNYmJiAACBQKCTe0JERBSeuro6AEBcXFwn94SIiIiIiIjIXrGd3QE3io2NRWJiIsrLyxEXFwdd5+8kiIioa1FKoa6uDnv37kVqamrLL4KJiIiIiIiI3EpT/PtqWwQCAZSUlMAwjM7uChERkWWpqanIzs6Gpmmd3RUiIiIiIiIiW3Gz3EaGYfBSLERE1GXFxcXxjHIiIiIiIiKKGtwsJyIiIiIiIiIiIqKox4tpExEREREREREREVHU42Y5EREREREREREREUU9bpYTERERERERERERUdTjZjkRERERERERERERRT1ulhMRERERERERERFR1ONmORERERERERERERFFPW6WExEREREREREREVHU+/8BXMx9HHGlqgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "num_samples = modela.shape[0]\n", + "indexes = np.arange(num_samples)\n", + "\n", + "fig, ax = plt.subplots(figsize=(18, 4))\n", + "\n", + "# plot sample index vs score and their mean\n", + "ax.scatter(indexes, modela, s=30, color=\"tab:blue\", marker=\"o\", label=\"Model A\", zorder=3, alpha=0.6)\n", + "ax.axhline(modela.mean(), color=\"tab:blue\", linestyle=\"--\", label=\"Mean\", zorder=3)\n", + "ax.scatter(indexes, modelb, s=30, color=\"tab:red\", marker=\"o\", label=\"Model B\", zorder=3, alpha=0.6)\n", + "ax.axhline(modelb.mean(), color=\"tab:red\", linestyle=\"--\", label=\"Mean\", zorder=3)\n", + "\n", + "# configure the x-axis\n", + "ax.set_xlabel(\"Sample index\")\n", + "ax.set_xlim(0 - (eps := 0.01 * num_samples), num_samples + eps)\n", + "ax.xaxis.set_major_locator(IndexLocator(5, 0))\n", + "ax.xaxis.set_minor_locator(IndexLocator(1, 0))\n", + "\n", + "# configure the y-axis\n", + "ax.set_ylabel(\"AUPIMO [%]\")\n", + "ax.set_ylim(0 - 0.05, 1 + 0.05)\n", + "ax.yaxis.set_major_locator(MaxNLocator(6))\n", + "ax.yaxis.set_major_formatter(PercentFormatter(1))\n", + "\n", + "# configure the grid, legend, etc\n", + "ax.grid(axis=\"both\", which=\"major\", linestyle=\"-\")\n", + "ax.grid(axis=\"x\", which=\"minor\", linestyle=\"--\", alpha=0.5)\n", + "ax.legend(ncol=4, loc=\"upper left\", bbox_to_anchor=(0, -0.08))\n", + "ax.set_title(\"AUPIMO scores direct comparison\")\n", + "\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that several images actually have the same AUPIMO score for both models (e.g. from 10 to 15).\n", + "\n", + "Others like 21 show a big difference -- model B didn't detect the anomaly at all, but model A did a good job (60% AUPIMO).\n", + "\n", + "Let's simplify this and only show the differences." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxAAAAE8CAYAAABQCFeZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtQklEQVR4nO3dd1wU1/o/8M8CW0CadFGQZu9iiZpYopEoakyMvUvsJbEl8ZdE0asxTU2zxFzF3AgxMZZEEzX22GM3GvSqiNio0tsCe35/+GWu6y6wLAu74uf9evHSnTn77LNnDsM+OzNnZEIIASIiIiIiIgNYmTsBIiIiIiJ6erCAICIiIiIig7GAICIiIiIig7GAICIiIiIig7GAICIiIiIig7GAICIiIiIig7GAICIiIiIig7GAICIiIiIig7GAICIiIiIig7GAICKLFx4eDplMprXMz88PY8aM0Vp2/fp19OzZE05OTpDJZNi+fTsA4PTp0+jYsSNq1KgBmUyGCxcuVE3i1UzXrl3RtWtX6XFsbCxkMhk2bNhQ6a+9YcMGyGQyxMbGSsv8/PzQp0+fSn9tADh06BBkMhkOHTpUJa/3JI1Gg6ZNm2LJkiVmef0nyWQyhIeHl/t5VTlmngYV6Y/KGJMpKSmoUaMGfv/9d5PFpOqJBQRZnFWrVkEmk6F9+/Z61xfvcD/77DO96z/77DOdDxpdu3aFTCaTflxcXNC2bVusX78eGo1GajdmzBjY29trxSt+br169fS+3t69e6W4P//8s876K1euYMSIEahduzaUSiW8vb0xfPhwXLlypayuoHIaPXo0/v77byxZsgTff/892rRpg4KCAgwcOBAPHz7EihUr8P3336Nu3brmTvWZtmrVKov9AGmpuf3www+4c+cOpk2bJi0rLqpkMhmOHj2q8xwhBHx8fCCTyaqs0KoMv//+O2QyGby9vbX216ZU/CWFlZUV7ty5o7M+IyMDtra2kMlkWtvgafD4OCn+8fDwQLdu3bBr1y6ttq6urnjjjTfwwQcfmClbelrYmDsBoidFRkbCz88Pf/31F27cuIGgoCCTxK1Tpw6WLl0KAEhKSsJ//vMfhIWF4b///S8++uijUp+rUqlw48YN/PXXX2jXrp1OviqVCnl5eTrP27p1K4YOHQoXFxeEhYXB398fsbGxWLduHX7++Wds2rQJr776qkne37Pm2rVrsLL633cgubm5OHHiBN577z2tP/BXr17F7du38e233+KNN94wR6rVVt26dZGbmwu5XF6u561atQpubm46R5BKM3LkSAwZMgRKpbKcWZZPSbl17twZubm5UCgUlfr6Jfn0008xZMgQODk56axTqVSIiorC888/r7X88OHDuHv3bqX3WWUr/psQGxuLAwcOoEePHpX2WkqlEj/88APefvttreVbt26ttNesKosWLYK/vz+EEEhISMCGDRvQu3dv7NixQ6vAnDRpEr788kscOHAAL774ohkzJkvGIxBkUW7duoXjx49j+fLlcHd3R2RkpMliOzk5YcSIERgxYgRmzpyJY8eOoU6dOvj6669RUFBQ6nMDAwPRoEED/PDDD1rL8/LysG3bNoSGhuo85+bNmxg5ciQCAgJw6dIlLF68GGFhYfjXv/6FS5cuISAgACNHjkRMTIzJ3mNlycvLq7Rv/oylVCq1PrgmJSUBAJydnbXaJSYm6l1eEdnZ2SaL9TSTyWRQqVSwtrautNco7mtra2uoVCqdU9mqipWVFVQqlVbRWlXOnz+PixcvYtCgQXrX9+7dG5s3b0ZhYaHW8qioKAQHB8PLy6sq0qwU2dnZ+OWXXzBr1iy0atXKpH8T9Ondu7fOfh541Jf69vNPk169emHEiBEYOXIk5syZgyNHjkAul+u830aNGqFp06YWeSSOLAcLCLIokZGRqFmzJkJDQ/H6669X6h8LOzs7PPfcc8jOzpY+fJZm6NCh+PHHH7U+SO/YsQM5OTl6/7B/+umnyMnJwdq1a+Hu7q61zs3NDd988w2ys7PxySeflPnaX331FZo0aQI7OzvUrFkTbdq0QVRUlFabe/fuISwsDN7e3lAqlfD398fkyZOhVqulNjExMRg4cCBcXFyk9//bb79pxSk+r3bTpk14//33Ubt2bdjZ2SEjIwMAcOrUKbz88stwcnKCnZ0dunTpgmPHjmnFyMzMxFtvvQU/Pz8olUp4eHjgpZdewrlz58p8r0ePHkXbtm2hUqkQGBiIb775Rm+7x6+BCA8Pl05Lmjt3LmQymbS+S5cuAICBAwdCJpNpncN/9epVvP7663BxcYFKpUKbNm3w66+/ar1O8eH/w4cPY8qUKfDw8ECdOnWk9bt27cILL7yAGjVqwMHBAaGhoTqnpxWfGnfv3j30798f9vb2cHd3x5w5c1BUVKTVVqPR4IsvvkCzZs2gUqng7u6Ol19+GWfOnNFqt3HjRgQHB8PW1hYuLi4YMmSIzqkX169fx4ABA+Dl5QWVSoU6depgyJAhSE9PL2MrAGvXrkVgYCBsbW3Rrl07HDlyRKeNvvO34+PjMXbsWNSpUwdKpRK1atXCK6+8Ip1S6OfnhytXruDw4cPS6RTF26S0vtZ3DUSxP/74Ay1btoRKpULjxo11vi3Wdw2Nvpil5VbS+eabN2+WtoObmxtGjBiBe/fuabUpz/bXZ/v27VAoFOjcubPe9UOHDkVKSgr27t0rLVOr1fj5558xbNgwvc/Jzs7G7Nmz4ePjA6VSiQYNGuCzzz6DEEKrXX5+PmbOnAl3d3c4ODigX79+uHv3rt6Y9+7dw7hx4+Dp6QmlUokmTZpg/fr1Zb6/0mzbtg25ubkYOHAghgwZgq1bt+o92msqw4YNw4ULF3D16lVpWXx8PA4cOFBiXyYmJiIsLAyenp5QqVRo0aIFvvvuO512aWlpGDNmDJycnODs7IzRo0cjLS1Nb0xD9k0V5ezsDFtbW9jY6J6M8tJLL2HHjh0644GoGE9hIosSGRmJ1157DQqFAkOHDsXq1atx+vRptG3btlJeLyYmBtbW1gZ9Oz1s2DCEh4fj0KFD0mHdqKgodO/eHR4eHjrtd+zYAT8/P7zwwgt643Xu3Bl+fn46H+Cf9O2332LGjBl4/fXX8eabbyIvLw+XLl3CqVOnpD9o9+/fR7t27ZCWloYJEyagYcOGuHfvHn7++Wfk5ORAoVAgISEBHTt2RE5ODmbMmAFXV1d899136NevH37++WedU6n+9a9/QaFQYM6cOcjPz4dCocCBAwfQq1cvBAcHY8GCBbCyskJERARefPFFHDlyRDq9a9KkSfj5558xbdo0NG7cGCkpKTh69Ciio6PRunXrEt/r33//jZ49e8Ld3R3h4eEoLCzEggUL4OnpWWofvfbaa3B2dsbMmTMxdOhQ9O7dG/b29vD09ETt2rXx4YcfYsaMGWjbtq0U68qVK+jUqRNq166Nd999FzVq1MBPP/2E/v37Y8uWLTr9MWXKFLi7u2P+/PnSt+Lff/89Ro8ejZCQEHz88cfIycnB6tWr8fzzz+P8+fPw8/OTnl9UVISQkBC0b98en332Gfbt24dly5YhMDAQkydPltqFhYVhw4YN6NWrF9544w0UFhbiyJEjOHnyJNq0aQMAWLJkCT744AMMGjQIb7zxBpKSkvDVV1+hc+fOOH/+PJydnaFWqxESEoL8/HxMnz4dXl5euHfvHnbu3Im0tDS9p8IUW7duHSZOnIiOHTvirbfeQkxMDPr16wcXFxf4+PiUui0GDBiAK1euYPr06fDz80NiYiL27t2LuLg4+Pn54fPPP8f06dNhb2+P9957DwB0tq++vi7J9evXMXjwYEyaNAmjR49GREQEBg4ciN27d+Oll14q9blPMiS3x23YsAFjx45F27ZtsXTpUiQkJOCLL77AsWPHpO1QzNDtr8/x48fRtGnTEk8V8/PzQ4cOHfDDDz+gV69eAB4Vtunp6RgyZAi+/PJLrfZCCPTr1w8HDx5EWFgYWrZsiT179mDu3Lm4d+8eVqxYIbV94403sHHjRgwbNgwdO3bEgQMH9H4Tn5CQgOeee066RsDd3R27du1CWFgYMjIy8NZbb5X6HksSGRmJbt26wcvLC0OGDMG7776LHTt2YODAgUbFK0vnzp1Rp04dREVFYdGiRQCAH3/8Efb29nrfd25uLrp27YobN25g2rRp8Pf3x+bNmzFmzBikpaXhzTffBPCoz1955RUcPXoUkyZNQqNGjbBt2zaMHj1aJ2Z5902GSk9PR3JyMoQQSExMxFdffYWsrCyMGDFCp21wcDBWrFiBK1euoGnTpka9HlVzgshCnDlzRgAQe/fuFUIIodFoRJ06dcSbb76p1e7WrVsCgPj000/1xvn0008FAHHr1i1pWZcuXUTDhg1FUlKSSEpKEtHR0WLGjBkCgOjbt6/UbvTo0aJGjRpa8bp06SKaNGkihBCiTZs2IiwsTAghRGpqqlAoFOK7774TBw8eFADE5s2bhRBCpKWlCQDilVdeKfU99+vXTwAQGRkZJbZ55ZVXpNcvyahRo4SVlZU4ffq0zjqNRiOEEOKtt94SAMSRI0ekdZmZmcLf31/4+fmJoqIiIYSQ3ktAQIDIycnRilOvXj0REhIixRRCiJycHOHv7y9eeuklaZmTk5OYOnVqqTnr079/f6FSqcTt27elZf/884+wtrYWT+6u6tatK0aPHi09LmlcPLltinXv3l00a9ZM5OXlab3Hjh07inr16knLIiIiBADx/PPPi8LCQml5ZmamcHZ2FuPHj9eKGx8fL5ycnLSWjx49WgAQixYt0mrbqlUrERwcLD0+cOCAACBmzJih0zfFfR4bGyusra3FkiVLtNb//fffwsbGRlp+/vx5ve+7LGq1Wnh4eIiWLVuK/Px8afnatWsFANGlSxdpWXGfR0RECCEe/U6U9rtZrEmTJlpxipXU14+ve/z3um7dugKA2LJli7QsPT1d1KpVS7Rq1UpatmDBAp3xU1LMknIrHkcHDx4UQvyvn5o2bSpyc3Oldjt37hQAxPz586Vlhm7/ktSpU0cMGDCgxPxPnz4tvv76a+Hg4CD9zg4cOFB069ZNCPGon0JDQ6Xnbd++XQAQixcv1or3+uuvC5lMJm7cuCGEEOLChQsCgJgyZYpWu2HDhgkAYsGCBdKysLAwUatWLZGcnKzVdsiQIcLJyUnK68kxU5qEhARhY2Mjvv32W2lZx44dy9yvGqN4jCQlJYk5c+aIoKAgaV3btm3F2LFjhRBCANDat33++ecCgNi4caO0TK1Wiw4dOgh7e3tp317c55988onUrrCwULzwwgs6/WHovunJMVmS4nHy5I9SqRQbNmzQ+5zjx48LAOLHH38sNTY9u3gKE1mMyMhIeHp6olu3bgAenV89ePBgbNq0yaDD/GW5evUq3N3d4e7ujkaNGuGrr75CaGhouQ6xDxs2DFu3bpVOD7C2ttb7bVBmZiYAwMHBodR4xeuLTw/Sx9nZGXfv3sXp06f1rtdoNNi+fTv69u0rfUP9uOJTN37//Xe0a9dO60JLe3t7TJgwAbGxsfjnn3+0njd69GjY2tpKjy9cuIDr169j2LBhSElJQXJyMpKTk5GdnY3u3bvjzz//lE7vcnZ2xqlTp3D//v1S3//jioqKsGfPHvTv3x++vr7S8kaNGiEkJMTgOIZ4+PAhDhw4gEGDBiEzM1N6LykpKQgJCcH169d1TkMZP3681rn+e/fuRVpaGoYOHSo9Pzk5GdbW1mjfvj0OHjyo87qTJk3SevzCCy9oXQOzZcsWyGQyLFiwQOe5xdtx69at0Gg0GDRokNbrenl5oV69etLrFh9h2LNnD3JycgzumzNnziAxMRGTJk3SumC4+NSL0tja2kKhUODQoUNITU01+DWf9GRfl8bb21vrd9DR0RGjRo3C+fPnER8fb3QOZSnupylTpkClUknLQ0ND0bBhQ71HFsva/iVJSUlBzZo1S20zaNAg5ObmYufOncjMzMTOnTtLPOXm999/h7W1NWbMmKG1fPbs2RBCSDPzFE/l+WS7J48mCCGwZcsW9O3bF0IIrXEZEhKC9PR0g05ffNKmTZtgZWWFAQMGSMuGDh2KXbt2VWh8lWXYsGG4ceMGTp8+Lf1bWl96eXlh6NCh0jK5XI4ZM2YgKysLhw8fltrZ2NhoHW2ytrbG9OnTteIZs28y1MqVK7F3717s3bsXGzduRLdu3fDGG2/ovUC8eLwlJycb9VpU/fEUJrIIRUVF2LRpE7p164Zbt25Jy9u3b49ly5Zh//796NmzZ7li6rtvwLfffitd+FmvXj29px6VZsiQIZgzZw527dqFyMhI9OnTR2+RULysuJAoiSGFxjvvvIN9+/ahXbt2CAoKQs+ePTFs2DB06tQJwKOLhzMyMso8zHz79m29U+M2atRIWv94DH9/f612169fBwC9h9yLpaeno2bNmvjkk08wevRo+Pj4IDg4GL1798aoUaMQEBBQ4nOTkpKQm5urd7rcBg0amHRe8hs3bkAIgQ8++KDE6QoTExNRu3Zt6XFJ/VHSLCWOjo5aj4uvZ3hczZo1tT4I3bx5E97e3nBxcSkx9+vXr0MIUeK0wsWnufj7+2PWrFlYvnw5IiMj8cILL6Bfv34YMWJEqYXA7du3AUAnvlwuL3X7AY8ubP/4448xe/ZseHp64rnnnkOfPn0watSocl3I+2RflyYoKEjnd71+/foAHl2jUVkXEBf3U4MGDXTWNWzYUGdaVUO2f2lEGeeiu7u7o0ePHoiKikJOTg6Kiorw+uuvl5i7t7e3zn7n8X1B8b9WVlYIDAzUavfke05KSkJaWhrWrl2LtWvX6n3N4skMymPjxo1o164dUlJSkJKSAgBo1aoV1Go1Nm/ejAkTJpT43KysLGRlZUmPra2tdfq/JK1atULDhg0RFRUFZ2dneHl5lfh7fvv2bdSrV0/n4np9fVmrVi2dacKf7Etj9k2GateundaXTEOHDkWrVq0wbdo09OnTR+sLg+LxZq5JC8jysYAgi3DgwAE8ePAAmzZtwqZNm3TWR0ZGSgVE8bd9ubm5emMVf9v6+LeCAFCjRo0KT/9Xq1YtdO3aFcuWLcOxY8ewZcsWve2cnJxQq1YtXLp0qdR4ly5dQu3atXU+bD6uUaNGuHbtGnbu3Indu3djy5YtWLVqFebPn4+FCxdW6P2U5vGjDwCkowuffvopWrZsqfc5xX8cBw0ahBdeeAHbtm3DH3/8gU8//RQff/wxtm7dKp2jbU7F72XOnDklHt14cvrgkvrj+++/1/sh9ckLE001U5FGo4FMJsOuXbv0xnz8A8qyZcswZswY/PLLL/jjjz8wY8YMLF26FCdPntS6ENyU3nrrLfTt2xfbt2/Hnj178MEHH2Dp0qU4cOAAWrVqZVCMJ/u6okr6EGSKI5uGqsj2d3V1NajQGDZsGMaPH4/4+Hj06tXLpDOPlab4d2HEiBElfsHQvHnzcsW8fv26dNRVX7EcGRlZagHx2Wefae0f69atq/cC/JIMGzYMq1evhoODAwYPHlxls28Zs28ylpWVFbp164YvvvgC169fR5MmTaR1xePNzc3NJK9F1Q8LCLIIkZGR8PDwwMqVK3XWbd26Fdu2bcOaNWtga2sLd3d32NnZ4dq1a3pjXbt2DXZ2dpW24xs2bBjeeOMNODs7o3fv3iW269OnD7799lscPXpUZ352ADhy5AhiY2MxceLEMl+zRo0aGDx4MAYPHgy1Wo3XXnsNS5Yswbx58+Du7g5HR0dcvny51Bh169bV22fFs42UdXO14m8hHR0dDSrEatWqhSlTpmDKlClITExE69atsWTJkhILCHd3d9ja2krf7D+upG1trOJv0uVyudFFZXF/eHh4mGxe+sDAQOzZswcPHz4s8ShEYGAghBDw9/eXvmkvTbNmzdCsWTO8//77OH78ODp16oQ1a9Zg8eLFetsXj4Pr169rfetaUFCAW7duoUWLFga9j9mzZ2P27Nm4fv06WrZsiWXLlmHjxo0ATPutZvE3to/H/O9//wsA0kXsxadjpKWlaX2oLv52+HGG5lbcT9euXdP5dvratWsmvVlhw4YNtY7MluTVV1/FxIkTcfLkSfz4448ltqtbty727duHzMxMraMQT+4L6tatC41Gg5s3b2p9U/7k72PxDE1FRUUm+12IjIyEXC7H999/r1N8HT16FF9++SXi4uK0Tnd83KhRo7T2u+UtSocNG4b58+fjwYMH+P7770tsV7duXVy6dAkajUaryNDXl/v370dWVpZWkf9kX5pi31QexVP/Pn60BoA03oqPpBA9iddAkNnl5uZi69at6NOnD15//XWdn2nTpiEzM1Oaws7a2ho9e/bEjh07EBcXpxUrLi4OO3bsQM+ePSttbvrXX38dCxYswKpVq0q9qdTcuXNha2uLiRMnSoffiz18+BCTJk2CnZ0d5s6dW+rrPflchUKBxo0bQwiBgoICWFlZoX///tixY4fOVJ/A/w5F9+7dG3/99RdOnDghrcvOzsbatWvh5+eHxo0bl5pHcHAwAgMD8dlnn+n8sQH+dx+GoqIinWlCPTw84O3tjfz8/BLjW1tbIyQkBNu3b9fartHR0dizZ0+puZWXh4cHunbtim+++QYPHjzQWW/ItL4hISFwdHTEhx9+qPc+IobEeNKAAQMghNB7ZKl4O7722muwtrbGwoULdU5rEUJI4yUjI0PnvgDNmjWDlZVVqduhTZs2cHd3x5o1a7SmAN6wYUOJU04Wy8nJ0ZliMzAwEA4ODlqvWaNGjTJjGer+/fvYtm2b9DgjIwP/+c9/0LJlS+nIUHGx9+eff0rtsrOz9U61aWhubdq0gYeHB9asWaP13nbt2oXo6GiT3jOgQ4cOuHz5cqnbDXh09Gn16tUIDw9H3759S2zXu3dvFBUV4euvv9ZavmLFCshkMqnIL/73yVmcPv/8c63H1tbWGDBgALZs2aL3iwxjfheKT7sbPHiwzt+E4n2mvvs1FAsICECPHj2kn+JTPg0VGBiIzz//HEuXLtW5eejjevfujfj4eK2CrbCwEF999RXs7e2laaR79+6NwsJCrF69WmpXVFSEr776SiueKfZNhiooKMAff/wBhUKhUyicPXsWTk5OWkcliB7HIxBkdr/++isyMzPRr18/veufe+456aZygwcPBgB8+OGHeO6559C6dWtMmDBBukvp2rVrIZPJ8OGHH1Zavk5OTggPDy+zXb169fDdd99h+PDhaNasmc6dqJOTk/HDDz/onF/8pJ49e8LLywudOnWCp6cnoqOj8fXXXyM0NFT69vDDDz/EH3/8gS5dumDChAlo1KgRHjx4gM2bN+Po0aNwdnbGu+++K03zOGPGDLi4uOC7777DrVu3sGXLljIP0VtZWeHf//43evXqhSZNmmDs2LGoXbs27t27h4MHD8LR0RE7duxAZmYm6tSpg9dffx0tWrSAvb099u3bh9OnT2PZsmWlvsbChQuxe/duvPDCC5gyZYr0h7hJkyZlng5WXitXrsTzzz+PZs2aYfz48QgICEBCQgJOnDiBu3fv4uLFi6U+39HREatXr8bIkSPRunVrDBkyBO7u7oiLi8Nvv/2GTp066XxAK0u3bt0wcuRIfPnll7h+/TpefvllaDQaHDlyBN26dcO0adMQGBiIxYsXY968eYiNjUX//v3h4OCAW7duYdu2bZgwYQLmzJmDAwcOYNq0aRg4cCDq16+PwsJC6dvcxy9KfZJcLsfixYsxceJEvPjiixg8eDBu3bqFiIiIMq+B+O9//4vu3btj0KBBaNy4MWxsbLBt2zYkJCRgyJAhUrvg4GCsXr0aixcvRlBQEDw8PIy+4239+vURFhaG06dPw9PTE+vXr0dCQgIiIiKkNj179oSvry/CwsIwd+5cWFtbY/369dL2epyhucnlcnz88ccYO3YsunTpgqFDh0rTuPr5+WHmzJlGvR99XnnlFfzrX//C4cOHy7wWrLRrlIr17dsX3bp1w3vvvYfY2Fi0aNECf/zxB3755Re89dZb0j6pZcuWGDp0KFatWoX09HR07NgR+/fvx40bN3RifvTRRzh48CDat2+P8ePHo3Hjxnj48CHOnTuHffv24eHDhwa/31OnTknToupTu3ZttG7dGpGRkXjnnXcMjltexVOwlmbChAn45ptvMGbMGJw9exZ+fn74+eefcezYMXz++efSPrpv377o1KkT3n33XcTGxkr3K9F3T5aK7ptKsmvXLunISGJiIqKionD9+nW8++67OqfR7t27F3379uU1EFSyqp/4iUhb3759hUqlEtnZ2SW2GTNmjJDL5VpTBEZHR4vBgwcLDw8PYWNjIzw8PMSQIUNEdHS0zvMfn4q1NGVN41qSkqYKFUKIS5cuiaFDh4patWoJuVwuvLy8xNChQ8Xff/9dZj5CCPHNN9+Izp07C1dXV6FUKkVgYKCYO3euSE9P12p3+/ZtMWrUKOHu7i6USqUICAgQU6dO1ZqK8+bNm+L1118Xzs7OQqVSiXbt2omdO3ca/F6EeDQ96GuvvSblU7duXTFo0CCxf/9+IYQQ+fn5Yu7cuaJFixbCwcFB1KhRQ7Ro0UKsWrXKoPd7+PBhERwcLBQKhQgICBBr1qzROw1nRadxLe6PUaNGCS8vLyGXy0Xt2rVFnz59xM8//yy1eXyqTH0OHjwoQkJChJOTk1CpVCIwMFCMGTNGnDlzRmqjb1wJoX960cLCQvHpp5+Khg0bCoVCIdzd3UWvXr3E2bNntdpt2bJFPP/886JGjRqiRo0aomHDhmLq1Kni2rVrQgghYmJixLhx40RgYKBQqVTCxcVFdOvWTezbt0/v+3jSqlWrhL+/v1AqlaJNmzbizz//FF26dCl1Gtfk5GQxdepU0bBhQ1GjRg3h5OQk2rdvL3766Set2PHx8SI0NFQ4ODhoTQ1bWl+XNI1raGio2LNnj2jevLlQKpWiYcOGerf12bNnRfv27YVCoRC+vr5i+fLlemOWlFtJU2b++OOPolWrVkKpVAoXFxcxfPhwcffuXa025dn+JWnevLk0hfSTfVLS2Cz25DSuQjyahnjmzJnC29tbyOVyUa9ePfHpp59qTdEshBC5ublixowZwtXVVdSoUUP07dtX3LlzR2caVyEeTbs6depU4ePjI+3runfvLtauXSu1MWQa1+nTpwsA4ubNmyW2CQ8PFwDExYsXS33vhnp8GtfS4IlpXIV49L7Hjh0r3NzchEKhEM2aNdP7/lJSUsTIkSOFo6OjcHJyEiNHjpSmW36yvSH7popM46pSqUTLli3F6tWrdbZ5dHS0AGDwvoKeTTIheJtBIiIiS/b9999j6tSpiIuLq7KLo+nZ9NZbb+HPP//E2bNneQSCSsQCgoiIyMJpNBo0b94cQ4cOle6STWRqKSkpqFu3Ln766adSJwkhYgFBREREREQG4yxMRERERERkMBYQRERERERkMBYQRERERERkMBYQRERERERksGp/IzmNRoP79+/DwcGB05ERERERUbUghEBmZia8vb3LvBmsqVX7AuL+/fvw8fExdxpERERERCZ3584d1KlTp0pfs9oXEMW3kb98+bLRhYRGo0FSUhLc3d0rVOGZIo4l5ZKWloZjx46hU6dOFbqxkaX0C/u28mJYUi7s28rNxRT9W936hX1r+bmwbysvDve5lRfjzp07aNq0qfRZtypV+wKi+LQlBwcHODo6GhVDo9EgLy8Pjo6OFR5wFY1jabnY2dnB0dHR6L41ZS6WEMOUuVSnvrWkXNi3lZ9LRfpXrVbj//2//4ecnBwsX74cKpWqQrlYQr9YSt+aOhdL6hdL2C9Y2vuxpFy4z62cGMWFgzlO0edF1EREZDEKCgqwbNkyrF69GgUFBeZOh4iI9GABQUREREREBmMBQUREREREBqv210AQERERUeUrKirSOfVQrVbDxsYGarUaeXl5RsfWaDQoKChAXl5eha47qGiMqs5FLpfD2tra2FQrDQsIIiIiIqqQrKws3L17F0IIreUajQZeXl5ISkpCSkqK0fGFENBoNMjMzDT6omFTxKjqXGQyGerUqQN7e3tj060ULCCIiIiIyGhFRUW4e/cu7Ozs4O7urvWBuLCwEDk5ObCzs4ONjfEfO4UQKCwshI2NTYU+tFc0RlXmIoRAUlIS7t69i3r16lnUkQgWEERERERktIKCAggh4O7uDltbW611hYWFKCwshEqlYgFhRAx3d3fExsaioKCABQQRET094uLikJycbFBbtVpdodeytbXFpUuX8PDhQ50PIkRk2cxxP4LqzlL7lAUEERGVKC4uDg0aNkJebo5B7QMCArB8+XLEx8cbdddZKysrNGnSBImJiRW6yJGIiCoPCwgiIipRcnIy8nJz4NpnNuSuPmW2d8JDAEBaWlolZ0ZERObCAoKIiMokd/WB0iuozHY2uXEVeh21Wo0lS5YgOzsbixcvhkqlqlA8IiIyPR4fJiIii1FQUIBFixZh2bJlOvPJExGZ0pgxYyCTyTBp0iSddVOnToVMJsOYMWOqPrGnAAsIIiIiInom+fj4YNOmTcjNzZWW5eXlISoqCr6+vmbMzLKxgCAiIiIik8vOzi7x58m7UpfW9vEP96W1NUbr1q3h4+ODrVu3Ssu2bt0KX19ftGrVSlqm0WiwdOlS+Pv7w87ODsHBwfj555+l9UVFRQgLC4O/vz9sbW3RoEEDfPHFF1qvNWbMGPTv3x+fffYZvL294eXlhalTpz6VR1t5DQQRERERmVxpd0/u3bs3fvvtN+mxh4cHcnL0z/bWpUsXHDx4UHrs5+end2rpJ++Cbahx48YhIiICw4cPBwCsX78eY8eOxaFDh6Q2S5cuxcaNG7FmzRoEBQXh0KFDGDlyJDw8PNClSxdoNBrUqVMHmzdvhqurK44fP44JEyagVq1aGDRokBTn4MGDqFWrFg4cOIBr165h+PDhaNWqFcaPH29U7ubCAoKIiIiInlkjRozAvHnzcPv2bQDAsWPHsGnTJqmAyM/Px4cffoh9+/ahQ4cOEELA19cXx48fxzfffIMuXbpALpdj4cKFUkx/f3+cOHECP/30k1YBUbNmTXz99dewsrJCUFAQQkNDsX//fhYQRERERERZWVkoLCxEVlYW7O3tte5E/eRdlRMTE0uM8+Q9YWJjY02ap7u7O0JDQ7FhwwYIIRAaGgo3Nzdp/Y0bN5CTk4OXXnpJ63lqtVrrNKeVK1di/fr1iIuLQ25uLtRqNVq2bKn1nCZNmsDa2lo6WuLl5YXLly+b9P1UBRYQRERERGRyNWrUQGFhIYQQqFGjhlYBoa9taR4/PamstsYYN24cpk2bBuBRIfC4rKwsAMBvv/2G2rVrQwiBwsJC2NjYSFNNb9q0CXPmzMGyZcvQoUMHODg44NNPP8WpU6e0Ysnlcq3HMpkMGo3G5O+nspn1IurVq1ejefPmcHR0hKOjIzp06IBdu3ZJ6/Py8jB16lS4urrC3t4eAwYMQEJCghkzJiKiyqRSqXDy5Ens2rWL94Agoirz8ssvQ61Wo6CgACEhIVrrGjduDKVSibi4OAQFBWn9+Pg8usHmsWPH0LFjR0yZMgWtWrVCUFAQbt68aY63UiXMegSiTp06+Oijj1CvXj0IIfDdd9/hlVdewfnz59GkSRPMnDkTv/32GzZv3gwnJydMmzYNr732Go4dO2bOtImIqJJYW1ujbdu2SExM1DnFgYioslhbWyM6Olr6/+McHBwwZ84czJw5ExqNBp06dcLDhw9x8uRJODk5YfTo0ahXrx7+85//YM+ePfD398f333+P06dPw9/f3xxvp9KZtYDo27ev1uMlS5Zg9erVOHnyJOrUqYN169YhKioKL774IgAgIiICjRo1wsmTJ/Hcc8/pjZmfn4/8/HzpcUZGBoBHh5/S0tKMylOj0SA7OxtpaWk65+FVdRxLyiUzM1PrX3PmYikxTBWnuvWtJeXCvi1fDLVajYCAALg6KaCoUfYMJy7Wjw7PFxQUcJ9rwhiAacZudetbU8Vh31YsjlqthkajQWFhIQoLC3ViFP/75LryKioqgkwmM1kMjUYjnY4EAHZ2dgAgPRZCSHkvWLAALi4uWLp0KWJiYuDs7IxWrVrh3XffRWFhIcLCwnD27FkMHjwYMpkMgwcPxqRJk7B7924p3pOvV1RUBCGE1rInFRYWQqPRICMjQ2fq2+JTq8xBJoyd88rEioqKsHnzZowePRrnz59HfHw8unfvjtTUVDg7O0vt6tati7feegszZ87UGyc8PFzrKvhiUVFR0sAgIiLLVFBQgJ07dwIA+vTpo3O+MBFZHhsbG3h5ecHHxwcKhcLc6VQrarUad+7cQXx8vE6RkZOTg2HDhiE9PR2Ojo5VmpfZL6L++++/0aFDB+Tl5cHe3h7btm1D48aNceHCBSgUCq3iAQA8PT0RHx9fYrx58+Zh1qxZ0uOMjAz4+PigRYsW8Pb2NipHjUaD1NRU1KxZs8KVfEXjWFIumZmZOHfuHFq3bg0HBwez5mIpMUwVp7r1rSXlwr4tX4yrV69i+PDhcO0zBwo3nzLjuOTFI6ydO1xcXNCsWbNy55GdnY2BAwcCAP71r39Vi21kqu1sirH7NIw5c8Rh31YsjlqtRlJSEuzs7HSuXdJoNMjJyYGdnV2FcgEgXbhs7hhVmUteXh5UKhXatm2rU5zdv3+/Qq9fEWYvIBo0aIALFy4gPT0dP//8M0aPHo3Dhw8bHU+pVEKpVOost7e31ylGDKXRaKBWq+Hs7FzhX8SKxrGkXIo5ODgY3bemysVSYpgyDlB9+tbScgHYt4bGUCgUiImJQU66Gkrbsk8dUOc+uqOqXC43qn8fP+Lg7Oxc4QLCEraRKcctULGx+zSMOXPFAdi3xsbJy8tDSkoKbGxsdD4QF39rbmVlVaEP3MWn+lhbWxt9GpMpYlR1LjY2NrCysoKjo6NOcVZ8mr45mL2AUCgUCAoKAgAEBwfj9OnT+OKLLzB48GCo1WqkpaVp/TInJCTAy8vLTNkSERERET3bzDqNqz4ajQb5+fkIDg6GXC7H/v37pXXXrl1DXFwcOnToYMYMiYiIiIieXWY9AjFv3jz06tULvr6+yMzMRFRUFA4dOoQ9e/bAyckJYWFhmDVrFlxcXODo6Ijp06ejQ4cOJc7ARERERETmYSHz8lQrltqnZi0gEhMTMWrUKDx48ABOTk5o3rw59uzZI90qfMWKFbCyssKAAQOQn5+PkJAQrFq1ypwpExEREdFjiu+boFarYWtra+Zsqhe1Wg1A994U5mbWAmLdunWlrlepVFi5cqXOLcWJiIiIyDLY2NjAzs4OSUlJkMvlWhdcFxYWQq1WIy8vr8IXURfPWlSRC5crGqMqc9FoNNLsVqaYOcqULCsbIiJ6pqlUKuzfvx9paWk6M44QkWWSyWSoVasWbt26hdu3b2ut02g00lSkFZkRqvimblZWVhX60F7RGFWdi5WVFXx9fSt8Az1TYwFBREQWw9raGl27dkViYqLFHbInopIpFArUq1dPOuWmWEZGBk6fPo22bdtW6GZnGo0GKSkpcHV1rdD0thWNUdW5KBQKk0z/bGosIIiIiIiowqysrHSOHObl5aGwsBAKhaJCRxU1Gg3kcnmFjmSYIoal5WIuT1/GRERUbRUUFGDVqlWIiIhAQUGBudMhIiI9eASCiIgshlqtxvTp0wEA06ZNg1KpNHNGRET0JB6BICIiIiIig7GAICIiIiIig7GAICIiIiIig7GAICIiIiIig7GAICIiIiIig7GAICIiIiIig3EaVyIishhKpRK//vor0tPTOYUrEZGFYgFBREQWw8bGBqGhoUhMTISNDf9EERFZIp7CREREREREBmMBQUREFqOgoAAbNmzAjz/+iIKCAnOnQ0REevD4MBERWQy1Wo2wsDAAwLhx43gdBBGRBeIRCCIiIiIiMhgLCCIiIiIiMhgLCCIiIiIiMhgLCCIiIiIiMhgLCCIiIiIiMhgLCCIiIiIiMhincSUiIouhVCqxadMmZGRkcApXIiILZdYjEEuXLkXbtm3h4OAADw8P9O/fH9euXdNq07VrV8hkMq2fSZMmmSljIiKqTDY2Nhg4cCD69u0LGxt+x0VEZInMWkAcPnwYU6dOxcmTJ7F3714UFBSgZ8+eyM7O1mo3fvx4PHjwQPr55JNPzJQxEREREdGzzaxf7+zevVvr8YYNG+Dh4YGzZ8+ic+fO0nI7Ozt4eXlVdXpERFTFCgsLsWXLFmRkZGD06NFQKBTmTomIiJ5gUceH09PTAQAuLi5ayyMjI7Fx40Z4eXmhb9+++OCDD2BnZ6c3Rn5+PvLz86XHGRkZAICsrCykpaUZlZdGo0F2djbS0tJgZWX8QRtTxLGkXDIzM7X+NWculhLDVHGqW99aUi7s2/LFUKvVCAgIgKuTAooaosw4LtZyAEBBQYFR+9zs7GwMGTIEAPDyyy/DwcGh3DGKWco2MtV2NsXYfRrGnDnisG8rLw73uZUXIysry6jnmYJMCFH2X4QqoNFo0K9fP6SlpeHo0aPS8rVr16Ju3brw9vbGpUuX8M4776Bdu3bYunWr3jjh4eFYuHChzvKoqKgSiw4iIrIMeXl5UgGxadMmqFQqM2dERGSZcnJyMGzYMKSnp8PR0bFKX9tiCojJkydj165dOHr0KOrUqVNiuwMHDqB79+64ceMGAgMDddbrOwLh4+ODK1euwNvb26jcNBoNUlNTUbNmzQpXrBWNY0m5ZGZm4ty5c2jdunWFvyW0hH5h31ZeDEvKhX1bvhhXr17F8OHD4dpnDhRuPmXGccmLR1g7d7i4uKBZs2blziM7O1v6GxAXF1cttpGptrMpxu7TMObMEYd9W3lxuM+tvBj3799HkyZNzFJAWMQpTNOmTcPOnTvx559/llo8AED79u0BoMQCQqlU6p36z97eHs7Ozkblp9FooFar4ezsXOEBV9E4lpRLMQcHB6P71lS5WEoMU8YBqk/fWlouAPvW0BgKhQIxMTHISVdDaSsrM446twAAIJfLjepfuVwu/d/Z2bnCHzgsYRuZctwCFRu7T8OYM1ccgH1bWXEA7nMrI0bxafrmYNYCQgiB6dOnY9u2bTh06BD8/f3LfM6FCxcAALVq1ark7IiIiIiI6ElmLSCmTp2KqKgo/PLLL3BwcEB8fDwAwMnJCba2trh58yaioqLQu3dvuLq64tKlS5g5cyY6d+6M5s2bmzN1IiIiIqJnklkLiNWrVwN4dLO4x0VERGDMmDFQKBTYt28fPv/8c2RnZ8PHxwcDBgzA+++/b4ZsiYiIiIjI7KcwlcbHxweHDx+uomyIiMjcFAoF1q1bh8zMTN4DgojIQlnERdRERETAo4uox4wZg8TERK0LqomIyHJUfDoIIiIiIiJ6ZrCAICIii1FYWIjffvsN+/btQ2FhobnTISIiPXgKExERWYz8/Hz069cPAPDKK6/wOggiIgvEIxBERERERGQwFhBERERERGQwFhBERERERGQwFhBERERERGQwFhBERERERGQwFhBERERERGQwTuNKREQWQ6FQ4KuvvkJmZiancCUislAsIIiIyGLI5XJMmTIFiYmJkMvl5k6HiIj04ClMRERERERkMBYQRERkMYqKinDo0CEcP34cRUVF5k6HiIj04ClMRERkMfLy8tC9e3cAQEZGBk9jIiKyQDwCQUREREREBmMBQUREREREBmMBQUREREREBmMBQUREREREBuNF1EREZHK3bt0y6EZwbm5u8PX1rYKMiIjIVFhAEBGRyWhyMwB44/3330dMTEyZ7VW2drh2NZpFBBHRU4QFBBERmYxGnQMAcHphBLxecCm1bUHKHaTsXIbk5GSpgJDL5fj444+RlZXFKVyJiCwUCwgiIjI5GycvKG3Lf1RBoVBgzpw5SExMNOgUKCIiqnpmvYh66dKlaNu2LRwcHODh4YH+/fvj2rVrWm3y8vIwdepUuLq6wt7eHgMGDEBCQoKZMiYiIiIieraZtYA4fPgwpk6dipMnT2Lv3r0oKChAz549kZ2dLbWZOXMmduzYgc2bN+Pw4cO4f/8+XnvtNTNmTURElaWoqAinT5/GhQsXUFRUZO50iIhID7OewrR7926txxs2bICHhwfOnj2Lzp07Iz09HevWrUNUVBRefPFFAEBERAQaNWqEkydP4rnnnjNH2kREVEny8vKkfXtGRgavgyAiskAWdQ1Eeno6AMDF5dGFd2fPnkVBQQF69OghtWnYsCF8fX1x4sQJvQVEfn4+8vPzpccZGRkAgKysLKSlpRmVl0ajQXZ2NtLS0mBlZfxBG1PEsaRcMjMztf41Zy6WEsNUcapb31pSLuzb8sVQq9UICAiAq5MCihqizDiOTrYAAC97ORSq0turnRSwCwiAWq2W9s+PH4FOS0ur0FEIS9lGptrOphi7T8OYM0cc9m3lxeE+t/JiZGVlGfU8U5AJIcr+i1AFNBoN+vXrh7S0NBw9ehQAEBUVhbFjx2oVBADQrl07dOvWDR9//LFOnPDwcCxcuFBneVRUFOzs7ConeSIiMom8vDwMGTIEALBp0yaoVCozZ0REZJlycnIwbNgwpKenw9HRsUpf22KOQEydOhWXL1+WigdjzZs3D7NmzZIeZ2RkwMfHBy1atIC3t7dRMTUaDVJTU1GzZs0KV6wVjWNJuWRmZuLcuXNo3bo1HBwczJqLpcQwVZzq1reWlAv7tnwxrl69iuHDh8O1zxwo3HzKjOOYfBkTX2yEdX8l4aHKq9S26uQ7SNn5GSIjI9GwYUMA2kcgOnbsWC22kam2synG7tMw5swRh31beXG4z628GPfv3zfqeaZgEQXEtGnTsHPnTvz555+oU6eOtNzLy0s6tO3s7CwtT0hIgJeX/j9MSqUSSqVSZ7m9vb1WjPLQaDRQq9Vwdnau8ICraBxLyqWYg4OD0X1rqlwsJYYp4wDVp28tLReAfWtoDIVCgZiYGOSkq6G0lZUZxyU9FwAQn1WAxKLS2+enqxEfEwOFQiFti8eveXB2dq7wBw5L2EamHLdAxcbu0zDmzBUHYN9WVhyA+9zKiFF8mr45mHUWJiEEpk2bhm3btuHAgQPw9/fXWh8cHAy5XI79+/dLy65du4a4uDh06NChqtMlIiIiInrmGVVABAQEICUlRWd5WloaAgICDI4zdepUbNy4EVFRUXBwcEB8fDzi4+ORm/voGywnJyeEhYVh1qxZOHjwIM6ePYuxY8eiQ4cOnIGJiIiIiMgMjDqFKTY2Vu/MGPn5+bh3757BcVavXg0A6Nq1q9byiIgIjBkzBgCwYsUKWFlZYcCAAcjPz0dISAhWrVplTNpERGTh5HI55s+fj+zsbE7hSkRkocpVQPz666/S//fs2QMnJyfpcVFREfbv3w8/Pz+D4xkyAZRKpcLKlSuxcuXK8qRKRERPIYVCgQULFiAxMREKhcLc6RARkR7lKiD69+8PAJDJZBg9erTWOrlcDj8/PyxbtsxkyRERERERkWUpVwGh0WgAAP7+/jh9+jTc3NwqJSkiIno2aTQaXLlyBQ8fPoSbm5tJZi0iIiLTMuoaiFu3bpk6DyIiIuTm5qJ58+YAHk1RWJFpXImIqHIYfR+I/fv3Y//+/UhMTJSOTBRbv359hRMjIiIiIiLLY1QBsXDhQixatAht2rRBrVq1IJOVfXMhIiIiIiJ6+hlVQKxZswYbNmzAyJEjTZ0PERERERFZMKOuTlOr1ejYsaOpcyEiIiIiIgtnVAHxxhtvICoqytS5EBERERGRhTPqFKa8vDysXbsW+/btQ/PmzXXuFrp8+XKTJEdERERERJbFqALi0qVLaNmyJQDg8uXLWut4QTURERlLLpdj9uzZyMnJ0flyioiILINRBcTBgwdNnQcREREUCgU++eQTJCYmQqFQmDsdIiLSg7f4JCIiIiIigxl1BKJbt26lnqp04MABoxMiIqJnl0ajQWxsLFJSUuDm5gYrK37PRURkaYwqIIqvfyhWUFCACxcu4PLlyxg9erQp8iIiomdQbm4uAgMDAQAZGRlwcHAwc0ZERPQkowqIFStW6F0eHh6OrKysCiVERERERESWy6THhkeMGIH169ebMiQREREREVkQkxYQJ06cgEqlMmVIIiIiIiKyIEadwvTaa69pPRZC4MGDBzhz5gw++OADkyRGRERERESWx6gCwsnJSeuxlZUVGjRogEWLFqFnz54mSYyIiIiIiCyPUQVERESEqfMgIiIiIqKngFEFRLGzZ88iOjoaANCkSRO0atXKJEkREdGzycbGBpMnT0Zubi5sbCr0J4qIiCqJUXvnxMREDBkyBIcOHYKzszMAIC0tDd26dcOmTZvg7u5uyhyJiOgZoVQq8fXXXyMxMRFKpdLc6RARkR5GzcI0ffp0ZGZm4sqVK3j48CEePnyIy5cvIyMjAzNmzDB1jkREREREZCGMOgKxe/du7Nu3D40aNZKWNW7cGCtXruRF1EREZDQhBJKSkpCcnMyj2UREFsqoIxAajQZyuVxnuVwuh0ajMTjOn3/+ib59+8Lb2xsymQzbt2/XWj9mzBjIZDKtn5dfftmYlImI6CmQk5MDLy8vNGvWDDk5OeZOh4iI9DCqgHjxxRfx5ptv4v79+9Kye/fuYebMmejevbvBcbKzs9GiRQusXLmyxDYvv/wyHjx4IP388MMPxqRMREREREQmYNQpTF9//TX69esHPz8/+Pj4AADu3LmDpk2bYuPGjQbH6dWrF3r16lVqG6VSCS8vL2PSJCIiIiIiEzOqgPDx8cG5c+ewb98+XL16FQDQqFEj9OjRw6TJAcChQ4fg4eGBmjVr4sUXX8TixYvh6upaYvv8/Hzk5+dLjzMyMgAAWVlZSEtLMyoHjUaD7OxspKWlwcrKqIM2JotjSblkZmZq/WvOXCwlhqniVLe+taRc2Lfli6FWqxEQEABXJwUUNUSZcRydbAEAXvZyKFSlt1c7KWAXEAC1Wi3tn7Ozs6X1aWlpKCoqMuLdPGIp28hU29kUY/dpGHPmiMO+rbw43OdWXoysrCyjnmcKMiFE2X8R/s+BAwcwbdo0nDx5Eo6Ojlrr0tPT0bFjR6xZswYvvPBC+RORybBt2zb0799fWrZp0ybY2dnB398fN2/exP/7f/8P9vb2OHHiBKytrfXGCQ8Px8KFC3WWR0VFwc7Ortx5ERFR1cnLy8OQIUMAPPoboFKpzJwREZFlysnJwbBhw5Cenq7zubyylauA6NevH7p164aZM2fqXf/ll1/i4MGD2LZtW/kT0VNAPCkmJgaBgYHYt29fidda6DsC4ePjgytXrsDb27vceQGPqsTU1FTUrFmzwhVrReNYUi6ZmZk4d+4cWrduDQcHB7PmYikxTBWnuvWtJeXCvi1fjKtXr2L48OFw7TMHCjefMuM4Jl/GxBcbYd1fSXioKv30U3XyHaTs/AyRkZFo2LAhgEdHIOrUqQMAiIuLqxbbyFTb2RRj92kYc+aIw76tvDjc51ZejPv376NJkyZmKSDKdQrTxYsX8fHHH5e4vmfPnvjss88qnFRJAgIC4Obmhhs3bpRYQCiVSr03H7K3t5dueldeGo0GarUazs7OFR5wFY1jSbkUc3BwMLpvTZWLpcQwZRyg+vStpeUCsG8NjaFQKBATE4OcdDWUtrIy47ik5wIA4rMKkFhUevv8dDXiY2KgUCikbfH4DH/Ozs4V/sBhCdvIlOMWqNjYfRrGnLniAOzbyooDcJ9bGTGKT9M3h3IVEAkJCXqnb5WC2dggKSmpwkmV5O7du0hJSUGtWrUq7TWIiMh8bGxsMGrUKOTl5cHGxqjL9IiIqJKVa+9cu3ZtXL58GUFBQXrXX7p0qVwf7rOysnDjxg3p8a1bt3DhwgW4uLjAxcUFCxcuxIABA+Dl5YWbN2/i7bffRlBQEEJCQsqTNhERPSWUSiUiIiKQmJio92gyERGZX7mOmfTu3RsffPAB8vLydNbl5uZiwYIF6NOnj8Hxzpw5g1atWqFVq1YAgFmzZqFVq1aYP38+rK2tcenSJfTr1w/169dHWFgYgoODceTIEf5RISIiIiIyk3IdgXj//fexdetW1K9fH9OmTUODBg0APLrIbuXKlSgqKsJ7771ncLyuXbuitGu49+zZU570iIjoKSeEQHZ2NnJyckr9+0BEROZTrgLC09MTx48fx+TJkzFv3jxp5y6TyRASEoKVK1fC09OzUhIlIqLqLycnR5pNJCMjo0IXURMRUeUo9xVqdevWxe+//47U1FTcuHEDQgjUq1cPNWvWrIz8iIiIiIjIghg9xUXNmjXRtm1bU+ZCREREREQWruITUhMRERER0TODBQQRERERERmMBQQRERERERmMBQQRERERERnM6IuoiYiITM3a2hoDBgxAfn4+rK2tzZ0OERHpwQKCiIgshkqlwk8//YTExESoVCpzp0NERHrwFCYiIiIiIjIYCwgiIiIiIjIYCwgiIrIY2dnZsLa2Rq1atZCdnW3udIiISA8WEEREREREZDAWEEREREREZDAWEEREREREZDAWEEREREREZDAWEEREREREZDAWEEREREREZDDeiZqIiCyGtbU1evXqBbVaDWtra3OnQ0REerCAICIii6FSqbBz504kJiZCpVKZOx0iItKDpzAREREREZHBWEAQEREREZHBWEAQEZHFyM7OhoODAwICApCdnW3udIiISA+zFhB//vkn+vbtC29vb8hkMmzfvl1rvRAC8+fPR61atWBra4sePXrg+vXr5kmWiIiqRE5ODnJzc82dBhERlcCsBUR2djZatGiBlStX6l3/ySef4Msvv8SaNWtw6tQp1KhRAyEhIcjLy6viTImIiIiICDDzLEy9evVCr1699K4TQuDzzz/H+++/j1deeQUA8J///Aeenp7Yvn07hgwZUpWpEhERERERLHga11u3biE+Ph49evSQljk5OaF9+/Y4ceJEiQVEfn4+8vPzpccZGRkAgKysLKSlpRmVi0ajQXZ2NtLS0mBlZfxBG1PEsaRcMjMztf41Zy6WEsNUcapb31pSLuzb8sVQq9UICAiAq5MCihqizDiOTrYAAC97ORSq0turnRSwCwiAWq2W9s+PX/eQlpaGoqIirefEx8cbvC8XQkAul0OhUFSLfYspxu7TMObMEYd9W3lxuM+tvBhZWVlGPc8ULLaAiI+PBwB4enpqLff09JTW6bN06VIsXLhQZ/nFixd5/UQlOXfunLlTqLbYt5WHfWu45cuX/9//ikpt90gjAEBYO3cD2nsDLy5HQkICEhISAEDrFNXjx4+b5F4Q9+7dq3AMS8KxW3nYt5WHfWt6OTk5Znttiy0gjDVv3jzMmjVLepyRkQEfHx+0aNEC3t7eRsXUaDRITU1FzZo1K1yxVjSOJeWSmZmJc+fOoXXr1nBwcDBrLpYSw1RxqlvfWlIu7Nvyxbh69SqGDx8O1z5zoHDzKTOOY/JlTHyxEdb9lYSHKq9S26qT7yBl52eIjIxEw4YNAWgfgejYsaPWNirOxemFEbBxKj02AGgy4uGdch7z5s1Do0aNymyvN4YFbWdTjN2nYcyZIw77tvLicJ9beTHu379v1PNMwWILCC+vR38cEhISUKtWLWl5QkICWrZsWeLzlEollEqlznJ7e3s4OzsblYtGo4FarYazs3OFB1xF41hSLsUcHByM7ltT5WIpMUwZB6g+fWtpuQDsW0NjKBQKxMTEICddDaWtrMw4LumPZk+KzypAYlHp7fPT1YiPiYFCoZC2hVKpRJcuXaBWq+Hi4oIaNWro5OL1gguUtr5l5lKQoYZVfLxW/PKypO1crCJj92kYc+aKA7BvKysOwH1uZcQoPk3fHCz2PhD+/v7w8vLC/v37pWUZGRk4deoUOnToYMbMiIiostja2uLAgQPYunUrbG1tzZ0OERHpYdYjEFlZWbhx44b0+NatW7hw4QJcXFzg6+uLt956C4sXL0a9evXg7++PDz74AN7e3ujfv7/5kiYiIiIieoaZtYA4c+YMunXrJj0uvnZh9OjR2LBhA95++21kZ2djwoQJSEtLw/PPP4/du3eb5KI6IiIiIiIqP7MWEF27doUQJU/zJ5PJsGjRIixatKgKsyIioqoUHR0t/T83Nxd9+vQBAOzYsQN2dnZ62xERkflY7EXURERUvRVlpQIyGUaMGKF3fefOnUv9komIiMyDBQQREZmFJj8LEAKufWZD7vpoilhNQT4So94BAHgO+wiw+d+serkxZ5B+ZKNZciUiov9hAUFERGYld/WB0isIAKBR/+9GckqPAEDxv5mYClLuVHluRESky2KncSUiIiIiIsvDAoKIiIiIiAzGAoKIiIiIiAzGayCIiMhyyGRQeAXB1ubR/4mIyPKwgCAiIothJVei9ugVaFRTIDpVBo25EyIiIh08hYmIiIiIiAzGAoKIiIiIiAzGU5iIiMhiaArycO/fUxBvBXiMWwnIbct+EhERVSkWEEREZDkEUJiRiML/+z8REVkensJEREREREQG4xEIIiKq1q5evQqZAVPCurm5wdfXtwoyIiJ6urGAICKiaqkoKxUAMGrUKGg0ZU8Iq7K1w7Wr0SwiiIjKwAKCiIiqJU1+FgDANXQmrF18Sm1bkHIHKTuXITk5mQUEEVEZWEAQEVG1Jnf1gdwzyNxpEBFVGywgiIjIcsgefeBXWj/6PxERWR4WEEREZDGs5CrUeWMVGtUUiE6VoewrF4iIqKpxGlciIiIiIjIYCwgiIiIiIjIYT2EiIiKLoSnIw/3vZiLJGnAdsRyQ25o7JSIiegILCCIishzi0ZSqBQBchbmTISIifSz6FKbw8HDIZDKtn4YNG5o7LSIiIiKiZ5bFH4Fo0qQJ9u3bJz22sbH4lImIiIiIqi2L/zRuY2MDLy8vc6dBRERERER4CgqI69evw9vbGyqVCh06dMDSpUvh6+tbYvv8/Hzk5+dLjzMyMgAAWVlZSEtLMyoHjUaD7OxspKWlwcrK+LO+TBHHknLJzMzU+tecuVhKDFPFqW59a0m5sG/LF0OtViMgIACuTgooapR9UYKj06OLnr3s5VCoSm+f41oDTk/ELpIL3Pm/9bVrCMgUotT2pclzrQEveMHKSQGbMtqrnRSwCwiAWq3W+lthSdvZFGP3aRhz5ojDvq28ONznVl6MrKwso55nCjIhhMVeprZr1y5kZWWhQYMGePDgARYuXIh79+7h8uXLcHBw0Puc8PBwLFy4UGd5VFQU7OzsKjtlIiKqgLy8PAwZMgQAsGnTJqhUKjNnRERkmXJycjBs2DCkp6fD0dGxSl/boguIJ6WlpaFu3bpYvnw5wsLC9LbRdwTCx8cHV65cgbe3t1Gvq9FokJqaipo1a1a4Yq1oHEvKJTMzE+fOnUPr1q1LLOiqKhdLiWGqONWtby0pF/Zt+WJcvXoVw4cPh2ufOVC4+ZQZxzH5Mia+2Ajr/krCQ1Xpp5/m3DyN9CMbtWIXqfNw/uupsJEBLaauhEyhKrV9afJiTsM75TwSA3rBxrX09urkO0jZ+RkiIyO1JuuwpO1sirH7NIw5c8Rh31ZeHO5zKy/G/fv30aRJE7MUEBZ/CtPjnJ2dUb9+fdy4caPENkqlEkqlUme5vb09nJ2djXpdjUYDtVoNZ2fnCg+4isaxpFyKOTg4GN23psrFUmKYMg5QffrW0nIB2LeGxlAoFIiJiUFOuhpKW1mZcVzScwEA8VkFSCwqvX1WSjZSdGLbwnviOjSqKRCdKoOmQFZG+5LlpGTDKj4e91zVkKtKb5+frkZ8TAwUCoXWuLCk7VysImP3aRhz5ooDsG8rKw7AfW5lxCg+Td8cLHoa1ydlZWXh5s2bqFWrlrlTISIiIiJ6Jll0ATFnzhwcPnwYsbGxOH78OF599VVYW1tj6NCh5k6NiIiIiOiZZNGnMN29exdDhw5FSkoK3N3d8fzzz+PkyZNwd3c3d2pERFQJNAX5eBD1Dh7aAM6DPgLkvIiaiMjSWHQBsWnTJnOnQERU7cTFxSE5OVlrmRACeXl5uHfvHmSy/10vEB0dXbXJCQF1/A2oATg/PXN8EBE9Uyy6gCAiItOKi4tDg4aNkJebo7XcysoKwcHBOHv2LDQajZmyIyKipwELCCKiZ0hycjLycnPg2mc25I9NbWolA5w9beHVZDg0j33xnxtzBulHNpohUyIislQsIIiInkFyVx8ovYKkx1YQkNcUUEIGDf53ClNByh19TyciomeYRc/CREREREREloUFBBERERERGYynMBERkUWxsnWEDb/eIiKyWCwgiIiqgaSkJJ0pWPWp8mlZy8lKoULdGZFoVFMgOlWGqp4P6sn+KWl6WwDIz8+HUqksM6YQAgqFAh4eHibNlYjIXFhAEBE95e7cuYNJk6fg5InjnILVSEVZqYBMhhEjRmgtL3V6W5kVIMrubysrKzzXoSOiIjeibt26pkybiMgsWEAQET3lkpOTUaDOh2voTFi7+JTaltOy6qfJzwKEKPf0tk+216fo4R0UxP+J5ORkFhBEVC2wgCAiqibkrj6QewaV2sbSp2XVFOQjYfMCpNsADq+GA3JVlb5+eae3fbK9PgUyAPGVki4RkVmwgCAiIsshBPLuXEYeAAchymxORERVj/NcEBERERGRwVhAEBERERGRwXgKExERURW4evVqmdPsFnNzc4Ovr28lZ0RVJS4uDsnJyQa1NWba3yfjlzb9MMcWmQILCCIiokpUlJUKABg1apTB0+yqbO1w7Wo0P+hVA3FxcWjQsBHycnMMal/eaX/1xS9t+mGOLTIFFhBERESVSJOfBQAGTbMLPJrhKWXnMiQnJ/NDXjWQnJyMvNwcg6b8Bco/7a+++CVNP8yxRabCAoKIiCyKTK6slhfoGTLNLlVfhkz5Cxg/7e/j8UuafpjIVFhAEBGRxbBSqOA362c0qikQnSoD76tNRGR5quOXPEREREREVElYQBARERERkcF4ChPRY5KSkvROe1cSToenn74pC0uaVjA/Px9KpdKguEIIZGZmlmsbPRlfrVYDeDSlpkKh0Gpb2duzPFMtlqdfrl69atI8zUkUqhG/7UNkyQG7PvMAG8P6oDqKjo7WemzOsfs0Ks/UqaX1bUnY5xVX2dPbUuVhAUH0f+7cuYNJk6fg5InjnGqxAkqasrDEaQVlVoAwrL8fxWiDs2fPGLyNnowfEBCA5cuXY/jw4YiJidFqWpnbs7xTLZa/X4JNma7ZCI0GuTFnkAugbu9n8wqIoqxUQCbDiBEjtJaba+w+jco7dWppfVsS9nnFVPb0tlS5WEAQ/Z/k5GQUqPM51WIFlTRlob5pBXNjziD9yEaDpzfMv3UWyL1q8DbSF9/V6dG3i6595iAnXS21reztWZ6pFo3tF6oeNPlZgBA6299cY/dpVN6pU+2zbgAAnF4YAa8XXMpszz6vuMqe3pYqFwsIoidwqkXTeHLKQn3TChak3NHbtiRFD+8AuVcN3kb64itqCABFULj5QGlb9dMbGjLVorH9QtXLk9vf3GP3aWTo75B1/EMAgI2TF5S2LAiqUmVPb0uV46m4iHrlypXw8/ODSqVC+/bt8ddff5k7JSIiIiKiZ5LFFxA//vgjZs2ahQULFuDcuXNo0aIFQkJCkJiYaO7UiIiIiIieORZfQCxfvhzjx4/H2LFj0bhxY6xZswZ2dnZYv369uVMjIiIiInrmWPQ1EGq1GmfPnsW8efOkZVZWVujRowdOnDih9zn5+fnIz8+XHqenpwMATp8+jevXrxv0ujKZDEL874pGIQTUajUUCoXOVItPti1NaXEMycPScikoKEBOTg5OnjwJuVxu1lxM0S+xsbFwdXVFgfoBrNKKymxfqE6Eys8P58+fR2pqqklzKa1vS1JZ/VLe7RMbGws/Pz84qh/A5rF+lMkAO2slXNLzUfyy9laZcNDTtiSOVlnl2kb64jsUypGT4waH9GS4ZhVIbUvaniUxRb/o65OS8i5NefqlpNimyqUmspCTkwOn/AQU5eeWO5eiQjXu/N96l8wbkFkrSm1fGkvpF1OMW8A0Y7e84xawnH1LeXIpaT9UkvKMW0B/n5f0fsqbi0adCFdXV1y4cAFpaWllti/PvqWy93Pl+axQ2f1i6Z+hTJFLcT8YmrcpyYQ5XtVA9+/fR+3atXH8+HF06NBBWv7222/j8OHDOHXqlM5zwsPDsXDhwqpMk4iIiIjILG7evImAgIAqfU2LPgJhjHnz5mHWrFnS47S0NNStWxdxcXFwcnIyOm7btm1x+vTpCudnijiWkktGRgZ8fHxw584dODo6mjUXS4phijjVsW8tJRf2beXGMFX/Vrd+Yd9adi7s28qLw31u5cVIT0+Hr68vXFzKnnrY1Cy6gHBzc4O1tTUSEhK0lickJMDLy0vvc5RKpd67tzo5OVVo4FpbW1d44JsqjiXlAgCOjo4W8Z4sJYYp41SnvrW0XNi3lZcLUPH+rW79wr61/FwA9m1lxuE+t/JysbKq+kuaLfoiaoVCgeDgYOzfv19aptFosH//fq1TmqrC1KlTLSaOJeViKpbSL+zbyothqjjs28qLU9361lRxLCWGqVS3vjVlnIqypPdjSbmYSnXrF0vq2/Ky6GsggEfTuI4ePRrffPMN2rVrh88//xw//fQTrl69Ck9PzzKfn5GRAScnJ6Snp5vs2x96hH1bedi3lYd9W7nYv5WHfVt52LeVh31beczZtxZ9ChMADB48GElJSZg/fz7i4+PRsmVL7N6926DiAXh0StOCBQv0ntZEFcO+rTzs28rDvq1c7N/Kw76tPOzbysO+rTzm7FuLPwJBRERERESWw6KvgSAiIiIiIsvCAoKIiIiIiAzGAoKIiIiIiAzGAoKIiIiIiAz21BUQS5YsQceOHWFnZwdnZ2e9beLi4hAaGgo7Ozt4eHhg7ty5KCws1Gpz6NAhtG7dGkqlEkFBQdiwYYPW+sjISPj4+KBmzZpad7YGgNjYWNSvXx8ZGRmmfGsW5dChQ5DJZHp/iu+aGBsbq3f9yZMnpTh79+5F/fr14ejoiJEjR0KtVkvr0tPTUb9+fdy+fbvK358l8PPz0+m7jz76SKvNpUuX8MILL0ClUsHHxweffPKJ1nr2r67Y2FiEhYXB398ftra2CAwMxIIFC7T6hmO3YlauXAk/Pz+oVCq0b98ef/31l7Ru1qxZcHFxgY+PDyIjI7Wet3nzZvTt27eq07VIS5cuRdu2beHg4AAPDw/0798f165d02rTtWtXnTE6adIkaf3Dhw/Rt29f2Nvbo1WrVjh//rzW86dOnYply5ZVyfuxJOHh4Tr91rBhQ2l9Xl4epk6dCldXV9jb22PAgAFaN6xlv5ZM398tmUwm3c+AY9Zwf/75J/r27Qtvb2/IZDJs375da70QAvPnz0etWrVga2uLHj164Pr161ptHj58iOHDh8PR0RHOzs4ICwtDVlaWtD42NhadO3dGjRo10LlzZ8TGxmo9v0+fPtiyZYtxb0A8ZebPny+WL18uZs2aJZycnHTWFxYWiqZNm4oePXqI8+fPi99//124ubmJefPmSW1iYmKEnZ2dmDVrlvjnn3/EV199JaytrcXu3buFEEIkJSUJlUolNm3aJP766y/h7u4uduzYIT2/V69eYsuWLZX+Xs0pPz9fPHjwQOvnjTfeEP7+/kKj0QghhLh165YAIPbt26fVTq1WCyGEKCoqEm5ubmLZsmXi8uXLomHDhuKrr76SXmPSpEli2bJlZnl/lqBu3bpi0aJFWn2XlZUlrU9PTxeenp5i+PDh4vLly+KHH34Qtra24ptvvhFCsH9LsmvXLjFmzBixZ88ecfPmTfHLL78IDw8PMXv2bKkNx67xNm3aJBQKhVi/fr24cuWKGD9+vHB2dhYJCQni119/FZ6enuL06dMiKipKqFQqkZSUJIQQIi0tTdSrV0/cvn3bzO/AMoSEhIiIiAhx+fJlceHCBdG7d2/h6+urtQ/o0qWLGD9+vNYYTU9Pl9bPmjVLdOnSRVy7dk289dZbIjg4WFp34sQJERwcLAoLC6v0fVmCBQsWiCZNmmj1W/E4FOLR76+Pj4/Yv3+/OHPmjHjuuedEx44dpfXs15IlJiZq9evevXsFAHHw4EEhBMdsefz+++/ivffeE1u3bhUAxLZt27TWf/TRR8LJyUls375dXLx4UfTr10/4+/uL3Nxcqc3LL78sWrRoIU6ePCmOHDkigoKCxNChQ6X1r732mhgyZIj473//KwYNGiQGDBggrdu0aZPo27ev0fk/dQVEsYiICL0FxO+//y6srKxEfHy8tGz16tXC0dFR5OfnCyGEePvtt0WTJk20njd48GAREhIihBDi1KlTwtPTU1o3aNAg8cknnwghhIiKihL9+vUz9duxeGq1Wri7u4tFixZJy4o/hJ0/f17vcxISEgQAabC//fbbYsqUKUIIIY4dO/ZM7Sj0qVu3rlixYkWJ61etWiVq1qwpjVshhHjnnXdEgwYNhBDs3/L45JNPhL+/v/SYY9d47dq1E1OnTpUeFxUVCW9vb7F06VLx8ccfi8GDB0vrPDw8xF9//SWEEGLChAli+fLlVZ7v0yIxMVEAEIcPH5aWdenSRbz55pslPqdXr15i9erVQggh/vnnH2FnZyeEeLS/btGihTh9+nSl5mypFixYIFq0aKF3XVpampDL5WLz5s3SsujoaAFAnDhxQgjBfi2PN998UwQGBkpfLHLMGufJAkKj0QgvLy/x6aefSsvS0tKEUqkUP/zwgxDiUf8B0OqzXbt2CZlMJu7duyeEEKJRo0Zi165dQohHn48bN24shBAiNTVVBAUFibi4OKNzfupOYSrLiRMn0KxZM60bzYWEhCAjIwNXrlyR2vTo0UPreSEhIThx4gQAoF69esjJycH58+fx8OFDnD59Gs2bN0dqaio++OADfP3111X3hizEr7/+ipSUFIwdO1ZnXb9+/eDh4YHnn38ev/76q7Tc3d0dtWrVwh9//IGcnBwcOXIEzZs3R0FBASZPnoxvvvkG1tbWVfk2LM5HH30EV1dXtGrVCp9++qnWqXYnTpxA586doVAopGUhISG4du0aUlNT2b/lkJ6eDhcXF53lHLvlo1arcfbsWa39p5WVFXr06IETJ06gRYsWOHPmDFJTU3H27Fnk5uYiKCgIR48exblz5zBjxgwzZm/Z0tPTAUBnnEZGRsLNzQ1NmzbFvHnzkJOTI61r0aIFDhw4gMLCQuzZswfNmzcHAHzyySfo2rUr2rRpU3VvwMJcv34d3t7eCAgIwPDhwxEXFwcAOHv2LAoKCrTGcMOGDeHr6yt9BmC/GkatVmPjxo0YN24cZDKZtJxjtuJu3bqF+Ph4rXHq5OSE9u3bS+P0xIkTcHZ21uqzHj16wMrKCqdOnQLwqL/37dsHjUaDP/74Q+rvuXPnYurUqfDx8TE+SaNLDzMr6QjE+PHjRc+ePbWWZWdnCwDi999/F0IIUa9ePfHhhx9qtfntt98EAJGTkyOEEGLr1q2iadOmIjAwUCxYsEAIIcS4cePEihUrxOHDh0XLli1FkyZNtL7FqM569eolevXqpbUsKSlJLFu2TJw8eVL89ddf4p133hEymUz88ssvUpsjR46INm3aCD8/PzFlyhShVqvFokWLxJtvvikuX74sOnbsKOrXr691esizYtmyZeLgwYPi4sWLYvXq1cLZ2VnMnDlTWv/SSy+JCRMmaD3nypUrAoD4559/hBDsX0Ncv35dODo6irVr10rLOHaNc+/ePQFAHD9+XGv53LlzRbt27YQQj779DQwMFE2bNhVbt24V+fn5omnTpuLMmTPiq6++EvXr1xcdO3YUly9fNsdbsEhFRUUiNDRUdOrUSWv5N998I3bv3i0uXbokNm7cKGrXri1effVVaX1aWpoYOnSo8PX1FZ07dxZXrlwR//3vf0W9evVEcnKymDhxovD39xcDBw4UaWlpVf22zOb3338XP/30k7h48aLYvXu36NChg/D19RUZGRkiMjJSKBQKnee0bdtWvP3220II9quhfvzxR2FtbS192y0Ex6yx8MQRiGPHjgkA4v79+1rtBg4cKAYNGiSEEGLJkiWifv36OrHc3d3FqlWrhBBC3L17V4SGhgofHx8RGhoq7t69Kw4fPizatGkjUlJSxMCBA4W/v7+YOHGi1tkOBuVczvdYKd555x0BoNSf6OhoredUdgHxpEOHDok2bdqI7OxsUatWLXHo0CFx9epV4ejoKBISEirw7quWMX19584dYWVlJX7++ecy448cOVI8//zzJa6/du2aCAoKEpmZmaJVq1Ziw4YNIiEhQbi7u4uLFy9W+P2ZmzH9W2zdunXCxsZG5OXlCSEMKyCeVJ3715i+vXv3rggMDBRhYWFlxn/Wx64hDCkgnhQeHi7eeustcfHiReHp6SkSExPF+vXrRevWrasi5afCpEmTRN26dcWdO3dKbbd//34BQNy4caPENt26dRPbt28XX3zxhXjppZeEWq0Wo0ePFrNmzTJ12k+N1NRU4ejoKP79738bVEDow37V1bNnT9GnT59S23DMGqayCogn5eXliSZNmogzZ86ImTNninHjxgm1Wi1efPFF8eWXX5YrZxvjj12YzuzZszFmzJhS2wQEBBgUy8vLS2tGEADS7ApeXl7Sv4/PuFDcxtHREba2tjox8/PzMWXKFHz//fe4ceMGCgsL0aVLFwBA/fr1cerUqadmZhFj+joiIgKurq7o169fmfHbt2+PvXv3lrh+4sSJWLZsGTQaDc6fP4+BAwfCzs4OXbp0weHDh6XDa0+riozl9u3bo7CwELGxsWjQoEGJ4xT431h+UnXu3/L27f3799GtWzd07NgRa9euLTP+sz52DeHm5gZra2u941LfmLx69So2btyI8+fPY/369ejcuTPc3d0xaNAgjBs3DpmZmXBwcKiq9C3StGnTsHPnTvz555+oU6dOqW3bt28PALhx4wYCAwN11kdERMDZ2RmvvPIKXnvtNfTv3x9yuRwDBw7E/PnzKyX/p4GzszPq16+PGzdu4KWXXoJarUZaWprWTI4ljWGA/arP7du3sW/fPmzdurXUdhyzxikeiwkJCahVq5a0PCEhAS1btpTaJCYmaj2vsLAQDx8+LHEsf/jhh+jZsyeCg4Mxfvx4LF68GHK5HK+99hoOHDiA6dOnG5yjRRQQ7u7ucHd3N0msDh06YMmSJUhMTISHhweAR9MxOjo6onHjxlKb33//Xet5e/fuRYcOHfTGXLx4MV5++WW0bt0a58+f1zpPvaCgAEVFRSbJvSqUt6+FEIiIiMCoUaMgl8vLbH/hwgWtwf64devWwcXFBf369UNqaiqAR/1X/O/T1I8lqchYvnDhAqysrKRx26FDB7z33nsoKCiQ+n7v3r1o0KABatasqfP86t6/5enbe/fuoVu3bggODkZERASsrMq+3OtZH7uGUCgUCA4Oxv79+9G/f38AgEajwf79+zFt2jSttkIITJw4EcuXL4e9vT2Kioq0+gzAM9Nv+gghMH36dGzbtg2HDh2Cv79/mc+5cOECAOgdp0lJSVi0aBGOHj0KADr9/Sz3dVZWFm7evImRI0ciODgYcrkc+/fvx4ABAwAA165dQ1xcnN7PAOxX/SIiIuDh4YHQ0NBS23HMGsff3x9eXl7Yv3+/VDBkZGTg1KlTmDx5MoBHnxHS0tJw9uxZBAcHAwAOHDgAjUYjFW6Pi46ORlRUlLRNKtzf5TpeYQFu374tzp8/LxYuXCjs7e3F+fPnxfnz50VmZqYQ4n/TuPbs2VNcuHBB7N69W7i7u+udxnXu3LkiOjparFy5Umsa18dduXJF1KtXT5paLycnR7i6uop///vfYufOnUKpVIq7d+9WzZs3g3379pV42s2GDRtEVFSUiI6OFtHR0WLJkiXCyspKrF+/XqdtQkKC8PPz0zpXslGjRiI8PFwcP35c2NvbS7O1PAuOHz8uVqxYIS5cuCBu3rwpNm7cKNzd3cWoUaOkNmlpacLT01OMHDlSXL58WWzatEnY2dlJ07g+jv37P3fv3hVBQUGie/fu4u7du1rTCRbj2DXepk2bhFKpFBs2bBD//POPmDBhgnB2dtaa+U4IIdauXas1ZeCpU6eEo6OjOHHihJg/f740G8izavLkycLJyUkcOnRIa4wWn0Z748YNsWjRInHmzBlx69Yt8csvv4iAgADRuXNnvfGGDRumdT3Oxx9/LIKDg8U///wjevXqJc0i9iyYPXu2OHTokLh165Y4duyY6NGjh3BzcxOJiYlCiEenjPn6+ooDBw6IM2fOiA4dOogOHTrojcV+1VVUVCR8fX3FO++8o7WcY7Z8MjMzpc+wAMTy5cvF+fPnpamuP/roI+Hs7Cx++eUXcenSJfHKK6/onca1VatW4tSpU+Lo0aOiXr16WtO4FtNoNOL555/XuiXB5MmTRWhoqPjnn39Eq1atpNlGDfXUFRCjR4/We+5z8RzEQggRGxsrevXqJWxtbYWbm5uYPXu2KCgo0Ipz8OBB0bJlS6FQKERAQICIiIjQeS2NRiM6deqk1eFCCLFjxw7h6+srPD09xbffflsZb9NiDB06VGt+7Mdt2LBBNGrUSNjZ2QlHR0fRrl27Ei8qHzJkiM7FpqdOnRINGzYULi4uYuHChSbP3ZKdPXtWtG/fXjg5OQmVSiUaNWokPvzwQ+n6h2IXL14Uzz//vFAqlaJ27drio48+0huP/fs/ERERJV4jUYxjt2K++uor4evrKxQKhWjXrp04efKk1vr4+HhRt25draJLCCEWLlwoXFxcRMOGDcWpU6eqMmWLU9IYLf5bFBcXJzp37ixcXFyEUqkUQUFBYu7cuVpz6hfbvXu3aNeunSgqKpKWZWdni4EDBwoHBwfRvXv3p+pavYoaPHiwqFWrllAoFKJ27dpi8ODBWufg5+bmiilTpoiaNWsKOzs78eqrr2p9wVCM/arfnj17BABx7do1reUcs+Vz8OBBvfuA0aNHCyEefQb94IMPhKenp1AqlaJ79+46fZ6SkiKGDh0q7O3thaOjoxg7dqz0hfrj1qxZo/WFjhCPvhzr3r27cHBwEAMHDhTZ2dnlyl8mhBDlO2ZBRERERETPqmp3HwgiIiIiIqo8LCCIiIiIiMhgLCCIiIiIiMhgLCCIiIiIiMhgLCCIiIiIiMhgLCCIiIiIiMhgLCCIiIiIiMhgLCCIiIiIiMhgLCCIiMgihYeHQyaTQSaT4fPPP69QrK5du0qxLly4YJL8iIieVSwgiIieQidOnIC1tTVCQ0N11h06dAgymQxpaWk66/z8/LQ+jBd/qJbJZHByckKnTp1w4MABaf2YMWPQv39/rccymQyTJk3SiT116lTIZDKMGTNGa/mdO3cwbtw4eHt7Q6FQoG7dunjzzTeRkpJS5vts0qQJHjx4gAkTJkjLZs2aBRcXF/j4+CAyMlKr/ebNm9G3b1+dOFu3bsVff/1V5usREVHZWEAQET2F1q1bh+nTp+PPP//E/fv3KxQrIiICDx48wLFjx+Dm5oY+ffogJiamxPY+Pj7YtGkTcnNzpWV5eXmIioqCr6+vVtuYmBi0adMG169fxw8//IAbN25gzZo12L9/Pzp06ICHDx+WmpuNjQ28vLxgZ2cHANixYweioqLwxx9/4JNPPsEbb7yB5ORkAEB6ejree+89rFy5UieOi4sL3N3dDe4TIiIqGQsIIqKnTFZWFn788UdMnjwZoaGh2LBhQ4XiOTs7w8vLC02bNsXq1auRm5uLvXv3lti+devW8PHxwdatW6VlW7duha+vL1q1aqXVdurUqVAoFPjjjz/QpUsX+Pr6olevXti3bx/u3buH9957r1y5RkdHo2vXrmjTpg2GDh0KR0dH3Lp1CwDw9ttvY/LkyTpFDBERmRYLCCKip8xPP/2Ehg0bokGDBhgxYgTWr18PIYRJYtva2gIA1Gp1qe3GjRuHiIgI6fH69esxduxYrTYPHz7Enj17MGXKFCluMS8vLwwfPhw//vhjuXJv0aIFzpw5g9TUVJw9exa5ubkICgrC0aNHce7cOcyYMcPgWEREZBwWEERET5l169ZhxIgRAICXX34Z6enpOHz4cIXj5uTk4P3334e1tTW6dOlSatsRI0bg6NGjuH37Nm7fvo1jx45JORW7fv06hBBo1KiR3hiNGjVCamoqkpKSDM4xJCQEI0aMQNu2bTFmzBh89913qFGjBiZPnow1a9Zg9erVaNCgATp16oQrV64YHJeIiAxnY+4EiIjIcNeuXcNff/2Fbdu2AXh0jcDgwYOxbt06dO3a1aiYQ4cOhbW1NXJzc+Hu7o5169ahefPmpT7H3d1dOn1KCIHQ0FC4ubnpbWuqoyPFwsPDER4eLj1euHAhevToAblcjsWLF+Pvv//Gzp07MWrUKJw9e9akr01ERCwgiIieKuvWrUNhYSG8vb2lZUIIKJVKfP3113BycoKjoyOARxcVOzs7az0/LS0NTk5OWstWrFiBHj16wMnJqVwXGo8bNw7Tpk0DAL0XLgcFBUEmkyE6Ohqvvvqqzvro6GjUrFmzQhc3X716FRs3bsT58+exfv16dO7cGe7u7hg0aBDGjRuHzMxMODg4GB2fiIh08RQmIqKnRGFhIf7zn/9g2bJluHDhgvRz8eJFeHt744cffgAA1KtXD1ZWVjrfvsfExCA9PR3169fXWu7l5YWgoKByf5B/+eWXoVarUVBQgJCQEJ31rq6ueOmll7Bq1SqtGZsAID4+HpGRkRg8eDBkMlm5XreYEAITJ07E8uXLYW9vj6KiIhQUFACA9G9RUZFRsYmIqGQ8AkFE9JTYuXMnUlNTERYWpnMUYcCAAVi3bh0mTZoEBwcHvPHGG5g9ezZsbGzQrFkz3LlzB++88w6ee+45dOzY0ST5WFtbIzo6Wvq/Pl9//TU6duyIkJAQLF68GP7+/rhy5Qrmzp2L2rVrY8mSJUa//r///W+4u7tL933o1KkTwsPDcfLkSezatQuNGzfWOQJDREQVxyMQRERPiXXr1kmnGj1pwIABOHPmDC5dugQA+OKLLzB69Gi88847aNKkCcaMGYPmzZtjx44dRn/jr4+jo6N0ypQ+9erVw5kzZxAQEIBBgwYhMDAQEyZMQLdu3XDixAm4uLgY9boJCQlYsmQJvvzyS2lZu3btMHv2bISGhuKnn37SmiWKiIhMRyZMfXUbERGRCYSHh2P79u24cOGCSeLFxsbC398f58+fR8uWLU0Sk4joWcQjEEREZLH+/vtv2NvbY9WqVRWK06tXLzRp0sREWRERPdt4BIKIiCzSw4cP8fDhQwCPpo3Vd+qWoe7duyddyO3r6wuFQmGSHImInkUsIIiIiIiIyGA8hYmIiIiIiAzGAoKIiIiIiAzGAoKIiIiIiAzGAoKIiIiIiAzGAoKIiIiIiAzGAoKIiIiIiAzGAoKIiIiIiAzGAoKIiIiIiAz2/wGY5CTIss7bZwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "differences = modela - modelb\n", + "\n", + "fig, ax = plt.subplots(figsize=(9, 3))\n", + "ax.hist(differences, bins=np.linspace(-1, 1, 61), edgecolor=\"black\")\n", + "ax.axvline(differences.mean(), color=\"black\", linestyle=\"--\", label=\"Mean\")\n", + "\n", + "# configure the x-axis\n", + "ax.set_xlabel(\"AUPIMO [%]\")\n", + "ax.set_xlim(-1, 1)\n", + "ax.xaxis.set_major_locator(MaxNLocator(9))\n", + "ax.xaxis.set_minor_locator(MaxNLocator(41))\n", + "ax.xaxis.set_major_formatter(PercentFormatter(1))\n", + "\n", + "# configure the y-axis\n", + "ax.set_ylabel(\"Count\")\n", + "\n", + "# configure the grid, legend, etc\n", + "ax.grid(axis=\"both\", which=\"major\", linestyle=\"-\", alpha=1, linewidth=1.0)\n", + "ax.grid(axis=\"x\", which=\"minor\", linestyle=\"-\", alpha=0.3)\n", + "ax.legend(loc=\"upper right\")\n", + "ax.set_title(\"AUPIMO scores differences distribution (Model A - Model B)\")\n", + "\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It looks like there is a bias to the right indeed (so model A > model B). \n", + "\n", + "Is that statistically significant or just random?\n", + "\n", + "> **Dependent t-test for paired samples**\n", + "> \n", + "> - null hypothesis: `average(A) == average(B)` \n", + "> - alternative hypothesis: `average(A) != average(B)`\n", + "> \n", + "> See [`scipy.stats.ttest_rel`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html) and [\" Wikipedia's page on \"Student's t-test\"](https://en.wikipedia.org/wiki/Student's_t-test#Dependent_t-test_for_paired_samples).\n", + ">\n", + "> **Confidence Level**\n", + "> \n", + "> Instead of reporting the p-value, we'll report the \"confidence level\" [that the null hypothesis is false], which is `1 - pvalue`.\n", + "> \n", + "> *Higher* confidence level *more confident* that `average(A) > average(B)`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "test_result=TtestResult(statistic=2.8715471705520033, pvalue=0.004917091449731462, df=108)\n", + "confidence=99.5%\n" + ] + } + ], + "source": [ + "test_result = stats.ttest_rel(modela, modelb)\n", + "confidence = 1.0 - float(test_result.pvalue)\n", + "print(f\"{test_result=}\")\n", + "print(f\"{confidence=:.1%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, we're very confident that model A has a higher AUPIMO score than model B.\n", + "\n", + "Maybe is that due to some big differences in a few images?\n", + "\n", + "What if we don't count much for these big differences?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Non-parametric (rank comparison)\n", + "\n", + "In non-parametric comparison, bigger differences don't matter more than smaller differences. \n", + "\n", + "It's all about their relative position.\n", + "\n", + "Let's look at the analogous plots for this type of comparison." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABboAAAEsCAYAAAAFEQVZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2n0lEQVR4nOydd3hUxfrHv7tJNqSQhBAgdAKEIggXRBBQwUa1XxuiF0SsIFbsKJYr2PVarw0sIDbEBgoqIE1/CnJRQAQEaQEFJIGEtD3z+yNm2STb5iTn5M3Z7+d58mh2Z3bmM/POe2aHzVmXUkqBEEIIIYQQQgghhBBCCKmjuGu7A4QQQgghhBBCCCGEEEJIdeBBNyGEEEIIIYQQQgghhJA6DQ+6CSGEEEIIIYQQQgghhNRpeNBNCCGEEEIIIYQQQgghpE7Dg25CCCGEEEIIIYQQQgghdRoedBNCCCGEEEIIIYQQQgip0/CgmxBCCCGEEEIIIYQQQkidhgfdhBBCCCGEEEIIIYQQQuo0POgmhBBCCCGEEEIIIYQQUqfhQTchhBBCCCHE8bhcLowfP762u0EIIYQQQiyCB92EEEIIIaTWeP755+FyudCnT5+Az2/duhUulwuPPfZYwOcfe+wxuFwubN261ffYwIED4XK5fD/p6ek49thj8dprr8EwDF+50aNHIzk5ucLrldfNzs4O2N6CBQt8r/v+++9XeX7t2rW45JJL0Lx5c8THx6NZs2YYOXIk1q5dG24oCCGEEEIIIdWAB92EEEIIIaTWmDFjBtq0aYP/+7//w6ZNm2rsdVu0aIE333wTb775JiZNmoTS0lJcfvnluPPOO8PWrVevHjZt2oT/+7//C9jfevXqBaw3e/Zs9OzZE1999RUuu+wyPP/887j88suxcOFC9OzZEx9++GG1vQghhBBCCCGB4UE3IYQQQgipFbZs2YLly5fjiSeeQKNGjTBjxowae+3U1FRccskluOSSS3DjjTdi2bJlaNGiBZ599lmUlJSErNuuXTt07NgRb7/9doXHCwsL8eGHH2L48OFV6mzevBmXXnop2rZtizVr1uDBBx/E5ZdfjgceeABr1qxB27Ztcemll+K3336rMUerKCwsrPDJdzvJz8+vlXYJIYQQQkjdhwfdhBBCCCGkVpgxYwYaNGiA4cOH47zzzqvRg+7KJCYm4rjjjkN+fj7+/PPPsOVHjBiBd955p8KB7yeffIKCggJccMEFVco/+uijKCgowEsvvYRGjRpVeC4jIwP//e9/kZ+fj0ceeSRs28888wy6dOmCxMRENGjQAL169cLMmTMrlNm5cycuv/xyNGvWDPHx8cjKysI111yD4uJiX5nffvsN559/PtLT033+n332WYXXWbRoEVwuF2bNmoW7774bzZs3R2JiIvLy8gAA3333HYYMGYLU1FQkJiZiwIABWLZsWYXXOHjwIG644Qa0adMG8fHxaNy4MU477TSsWrUqpOfkyZPhcrmwbt06XHzxxWjQoAGOP/54AMCaNWswevRotG3bFvXq1UNmZibGjBmDffv2BXyNTZs2YfTo0UhLS0Nqaiouu+wyFBQUhB3rBx98EG63G88884zW+BNCCCGEEHnE1nYHCCGEEEJIdDJjxgyce+658Hg8GDFiBF544QV8//33OPbYYy1p77fffkNMTAzS0tLClr344osxefJkLFq0CCeffDIAYObMmTjllFPQuHHjKuU/+eQTtGnTBieccELA1zvxxBPRpk2bKgfNlXn55ZcxYcIEnHfeebj++utRWFiINWvW4LvvvsPFF18MANi1axd69+6NAwcO4Morr0SnTp2wc+dOvP/++ygoKIDH48GePXvQr18/FBQUYMKECWjYsCFef/11nHnmmXj//fdxzjnnVGj3gQcegMfjwS233IKioiJ4PB58/fXXGDp0KI455hjce++9cLvdmDZtGk4++WQsWbIEvXv3BgBcffXVeP/99zF+/HgcddRR2LdvH5YuXYr169ejZ8+eYcf6/PPPR3Z2Nh566CEopQCU3Qv9t99+w2WXXYbMzEysXbsWL730EtauXYtvv/0WLperwmtccMEFyMrKwpQpU7Bq1Sq88soraNy4MR5++OGg7d5999146KGH8N///hdXXHFFxONPCCGEEEJkwoNuQgghhBBiOytXrsQvv/zi+yTt8ccfjxYtWmDGjBk1ctDt9Xqxd+9eAMDevXvxwgsvYNWqVTjjjDOQmJgYtn52drbvk7wnn3wyDhw4gLlz5+Lll1+uUjY3Nxe7du3CWWedFfI1u3Xrho8//hgHDx5E/fr1A5b57LPP0KVLF7z33ntBX+eOO+7A7t278d1336FXr16+x++//37fQfHUqVOxZ88eLFmyxPcp6SuuuALdunXDTTfdhLPOOgtu95E/7iwsLMQPP/yAhIQEAIBSCldffTVOOukkzJs3z3ewfNVVV6FLly64++67MX/+fF+fr7jiCjz++OO+17v11ltDjoU/3bt3r/KJ6WuvvRY333xzhceOO+44jBgxAkuXLq3yDwo9evTAq6++6vt93759ePXVV4MedN9yyy148sknMW3aNIwaNcr3eCTjTwghhBBCZMJblxBCCCGEENuZMWMGmjRpgpNOOgkA4HK5cOGFF2LWrFnwer3Vfv1ffvkFjRo1QqNGjdC5c2c888wzGD58OF577bWIX+Piiy/G7NmzUVxcjPfffx8xMTFVPgkNlN26A0DQw+tyyp8vvy1IINLS0rBjxw58//33AZ83DANz5szBGWecUeGQu5zyA+m5c+eid+/evkNuAEhOTsaVV16JrVu3Yt26dRXqjRo1ynfIDQCrV6/Gxo0bcfHFF2Pfvn3Yu3cv9u7di/z8fJxyyin45ptvfLd1SUtLw3fffYddu3aF9A/G1VdfXeUx/74UFhZi7969OO644wAg4C1RKr/GCSecgH379lUZa6UUxo8fj6effhpvvfVWhUPucpdQ408IIYQQQuTCg25CCCGEEGIrXq8Xs2bNwkknnYQtW7Zg06ZN2LRpE/r06YM9e/bgq6++0n7NyreyaNOmDRYsWIAvv/wSS5cuxe7du/Hpp58iIyMj4te86KKLkJubi3nz5mHGjBk4/fTTAx5mlz9WfuAdjEgOxG+77TYkJyejd+/eyM7Oxrhx4yrcE/vPP/9EXl4eunbtGrKt33//HR07dqzyeOfOnX3P+5OVlVXh940bNwIoOwAv/weD8p9XXnkFRUVFyM3NBQA88sgj+Pnnn9GyZUv07t0bkydP1vrSzcptA8D+/ftx/fXXo0mTJkhISECjRo185crb9adVq1YVfm/QoAEA4K+//qrw+BtvvIHnnnsOzzzzDEaMGFHldcKNPyGEEEIIkQtvXUIIIYQQQmzl66+/Rk5ODmbNmoVZs2ZVeX7GjBkYNGgQAKBevXoAgMOHDwd8rfIvHCwvV05SUhJOPfXUavWzadOmGDhwIB5//HEsW7YMH3zwQcByqampaNq0KdasWRPy9dasWYPmzZsjJSUlaJnOnTtjw4YN+PTTT/H555/jgw8+wPPPP4977rkH9913X7V8QuH/CWoAvk9rP/roo/jHP/4RsE5ycjKAsvtjn3DCCfjwww8xf/58PProo3j44Ycxe/ZsDB06VLvt8tdcvnw5Jk6ciH/84x9ITk6GYRgYMmRIhS8ILScmJibga5ffyqWc/v37Y/Xq1Xj22WdxwQUXID09vcLztTX+hBBCCCGk+vCgmxBCCCGE2MqMGTPQuHFjPPfcc1Wemz17Nj788EO8+OKLvk/yJiYmYsOGDQFfa8OGDUhMTNT6pLYOF198McaOHYu0tDQMGzYsaLnTTz8dL7/8MpYuXVrhdiHlLFmyBFu3bsVVV10Vts2kpCRceOGFuPDCC1FcXIxzzz0X//73v3HHHXegUaNGSElJwc8//xzyNVq3bh1wzH755Rff86Fo164dACAlJSWifzBo2rQprr32Wlx77bX4448/0LNnT/z73/+O6KC7Mn/99Re++uor3Hfffbjnnnt8j5d/yrw6tG/fHo888ggGDhyIIUOG4KuvvqryCftQ41/5H1QIIYQQQogceOsSQgghhBBiG4cPH8bs2bNx+umn47zzzqvyM378eBw8eBAff/wxgLJP6g4aNAiffPIJtm3bVuG1tm3bhk8++QSDBg0K+one6nLeeefh3nvvxfPPPw+PxxO03MSJE5GQkICrrroK+/btq/Dc/v37cfXVVyMxMRETJ04M2V7luh6PB0cddRSUUigpKYHb7cbZZ5+NTz75BD/88EOV+uWfYB42bBj+7//+DytWrPA9l5+fj5deeglt2rTBUUcdFbIfxxxzDNq1a4fHHnsMhw4dqvL8n3/+CaDsNjSVbyXSuHFjNGvWDEVFRSHbCEb5XFb+NPZTTz1l6vUq061bN8ydOxfr16/HGWecUeGvBcKNPyGEEEIIkQs/0U0IIYQQQmzj448/xsGDB3HmmWcGfP64445Do0aNMGPGDFx44YUAgIceegjHHXccevbsiSuvvBJt2rTB1q1b8dJLL8HlcuGhhx6yrL+pqamYPHly2HLZ2dl4/fXXMXLkSBx99NG4/PLLkZWVha1bt+LVV1/F3r178fbbb/s+KR2MQYMGITMzE/3790eTJk2wfv16PPvssxg+fLjvk8cPPfQQ5s+fjwEDBuDKK69E586dkZOTg/feew9Lly5FWloabr/9drz99tsYOnQoJkyYgPT0dLz++uvYsmULPvjgA7jdoT/v4na78corr2Do0KHo0qULLrvsMjRv3hw7d+7EwoULkZKSgk8++QQHDx5EixYtcN5556F79+5ITk7Gl19+ie+//x6PP/54xOPsT0pKCk488UQ88sgjKCkpQfPmzTF//nxs2bLF1OsF4rjjjsNHH32EYcOG4bzzzsOcOXMQFxcX0fgTQgghhBCZ8KCbEEIIIYTYxowZM1CvXj2cdtppAZ93u90YPnw4ZsyYgX379qFhw4bo3LkzvvvuO0yePBmvvvoq9u/fj/T0dJx22mm499570alTJ5stAnP++eejU6dOmDJliu9wu2HDhjjppJNw5513hv0CSQC46qqrMGPGDDzxxBM4dOgQWrRogQkTJuDuu+/2lWnevDm+++47TJo0CTNmzEBeXh6aN2+OoUOHIjExEQDQpEkTLF++HLfddhueeeYZFBYWolu3bvjkk08wfPjwiHwGDhyIFStW4IEHHsCzzz6LQ4cOITMzE3369PHdgiUxMRHXXnst5s+fj9mzZ8MwDLRv3x7PP/88rrnmGhOjWMbMmTNx3XXX4bnnnoNSCoMGDcK8efPQrFkz069ZmZNPPhnvvvsu/vnPf+LSSy/FzJkzIxp/QgghhBAiE5eq/DeBhBBCCCGEEEIIIYQQQkgdgvfoJoQQQgghhBBCCCGEEFKn4UE3IYQQQgghhBBCCCGEkDoND7oJIYQQQgghhBBCCCGE1Gl40E0IIYQQQgghhBBCCCGkTsODbkIIIYQQQgghhBBCCCF1Gh50E0IIIYQQQgghhBBCCKnTxNZ2B+zGMAzs2rUL9evXh8vlqu3uEEIIIYQQQgghhBBCCAmAUgoHDx5Es2bN4HaH/sx21B1079q1Cy1btqztbhBCCCGEEEIIIYQQQgiJgO3bt6NFixYhy0TdQXf9+vUBlA1OSkpKxPVKSkowf/58DBo0CHFxcRHV8Xq92Lx5M9q1a4eYmJgaL29XG7ruUj1069gx52bqOMVd6lhJjHczdZzizninO+O95utEq7tT4t1MHae4M97pzngPDd0Z71a0YaaOU9yljpXEeDdTxynuTol3M3XMtGGGvLw8tGzZ0nemG4qoO+guv11JSkqK9kF3YmIiUlJStIIqOTkZKSkpEQeITnm72tB1l+qhW8eOOTdTxynuUsdKYrybqeMUd8Y73RnvNV8nWt2dEu9m6jjFnfFOd8Z7aOjOeLeiDTN1nOIudawkxruZOk5xd0q8m6ljpo3qEMktqPlllIQQQgghhBBCCCGEEELqNDzoJoQQQgghhBBCCCGEEFKn4UG3hbjdbmRnZ4f9RlCz5e1qQxepHnSX5S51rHSxaz6i1Z3xTner2tBFqgfdZblzrcuLE12ketBdlrvUsTJDtLpL9aC7LHepY6WL1P2JU9ydEu9m6th1rdJBTk8cSmlpqaXl7WpDF6kedLcWiR4Sve2q4xR3xrv1daxuQ2qc6CLVg+7WItUjWt0lepup45Q5N1PHKe5Sx8oM0eou1YPu1iLRQ6K3XXWc4u6UeDdTx65rVaTwoNtCDMPAli1bYBiGJeXtakMXqR50l+Uudax0sWs+otWd8U53q9rQRaoH3WW5c63LixNdpHrQXZa71LEyQ7S6S/Wguyx3qWOli9T9iVPcnRLvZurYda3SgQfdhBBCCCGEEEIIIYQQQuo0POgmhBBCCCGEEEIIIYQQUqfhQbfF6N6Q3cwN3O1oQxepHnS3FokeEr3tquMUd8a79XWsbkNqnOgi1YPu1iLVI1rdJXqbqeOUOTdTxynuUsfKDNHqLtWD7tYi0UOit111nOLulHg3U0fSF1ECQGxtd8DJxMTEoEOHDpaVt6sNXaR60F2Wu9Sx0sWu+YhWd8Y73a1qQxepHnSX5c61Li9OdJHqQXdZ7lLHygzR6i7Vg+6y3KWOlS5S9ydOcXdKvJupY9e1SodaPej+5ptv8Oijj2LlypXIycnBhx9+iLPPPjtknUWLFuGmm27C2rVr0bJlS9x9990YPXq0ZX0sKvVi2aa9WPzLHvxvoxur1HoM6NQE/dtnID42JmAdo7gY+cuXI3/ZMhTm7Ea9pplI6t8fSf36we3xBG3jm1//RM5fBWjaIBEndmgUsg3dOrp9MuNenTbs8NBt4+CSJcj86Sf8uWYN6p9wQsg2zPRLt46dbei4l6OUQn5+PpKSkuByuYKWs8PDzJrSdbfDw0wdO9Z6dcZXUl6Umt+l5jmz42vHHFq51suJNMeZqWN3PpGU5+zcA1l5XbdrrdtxXZfoXp04kbSPtSPeneReTqS51Mx13Wwb0q5tZtwlxq/Ua5vZ+NXZO0jcy5mpI3UPL/ncQdr7Nqesden7E0nxbpe7XbiUUqq2Gp83bx6WLVuGY445Bueee27Yg+4tW7aga9euuPrqqzF27Fh89dVXuOGGG/DZZ59h8ODBEbWZl5eH1NRU5ObmIiUlJWTZolIvXly0Gcs27YPLpXDor31IbtAQSrnQv31DXD2wXZUJNIqLse+ll5H/7beA243DhoEEtxswDCQddxwaXnlFhSCp3IYqKYIrLj5kG7p1dPtkxr0m2rDDQ6cN5XLhz4MH0ah+fbiUCtqGmX7p1rG7jUjd/fF6vdi4cSOys7MRExM8eVrtYWZN6brb4WFXnOiu9eqOr5S8KDW/S81z1R1fO+bQirXuTyQ5zkyd2sgnUvKc3Xsgq67rdq11O67rEt1rIk4k7GPtiHcnufsTSS41c12vbhtSrm1m3CXGr9RrW3XiN9K9g8S9nNQ4sSPe68rZhhXv25yy1uvK/kRCvNvlXl10znJr9UYqQ4cOxYMPPohzzjknovIvvvgisrKy8Pjjj6Nz584YP348zjvvPDz55JOW9G/Zpr1YtmkfMlProU3DJKR6gDYNk5CZWg/LNu/Dsk17q9TJX74c+d9+i7gmTeBp3RpIT4endWvENWmC/G+/Rf7y5UHbyMpIQsPEWGRlhG5Dt45un8y4V7cNOzzMtOFNSQnbhpl+6dapjTYicdfFDg8za0rX3Q4PM3XsWOs1Mb4S8qLU/C41z1VnfO2YQ6vWuh3UVj6RkOdqYw9kxXXdrrVux3Vdont140TKPtaOeHeSuy5mruvVaUPStc2Mu8T4lXptszt+pezlzNSRuoevC+cOUt63OWWt14X9iZR4t8vdTmTdMTwMK1aswKmnnlrhscGDB2PFihVB6xQVFSEvL6/CDwCUlJSE/Vn8yx64XAoJcW4YhgEAMAwDCXFuuKCw+Jc9VeocXLIEyuUCEhJgGAaUUmV1ExKgXC4cXLIkZBtKGWHb0K2j2ycz7jXRhh0eum2Ue4dqw0y/dOvURhuRuFf+8Xq9IZ+3w8PMmtJ1t8PDrjjRXes1Mb4S8qLU/C41z1V3fO2YQyvWum6Ok5oXpea52tgDWXFdt2ut23Fdl+heE3EiYR9rR7w7yV03l5q5rle3DSnXNjPuEuNX6rWtuvEbyd5B4l5OapzYEe915WzDivdtTlnrdWV/IiHe7XKviZ9IqdVbl/jjcrnC3rqkQ4cOuOyyy3DHHXf4Hps7dy6GDx+OgoICJCQkVKkzefJk3HfffVUenzlzJhITE0P2adqvbpR4gdQAf8WcWwzExQCXdTAqPJ45YwZcxSXwBvgofUxeHpQnDrtHjqxWG7p1dPvENvTasKOO1DZ0scPDjnXrpDjRHS+n5EWpHlLznB3jK3EO7cBJ+UTiWpfqEc1z6JQ4kZgXneSui9Q2nBInUmNR4l7ZDBLXrZk6TmmD+3F54xut+xO75tAO9+pSUFCAiy++OKJbl9Tql1HawR133IGbbrrJ93teXh5atmyJQYMGhR2cVWo9ftlzCC0bJsEwDOzcsQPNW7SA2+2Gd18+OjVJxrBhnSvU+XPNGhT9uhGeVq2qvF7x778jvkM2eg4bFrCNygRrQ7eObp/MuFe3DTs8dNswDAM7duxAi7+9g7Vhpl+6dexuI1J3XezwMLOmdN3t8DBTx461Xt3xjaRfduRFqfldap6rzvhG6m5HG3bkOV1qI59IyXN274Gsuq7btdbtuK5LdK9unEjZx9oR705y18XMdb06bVSmNq9tZtwlxq/Ua5vd8RtJG3bs5czUkbqHl37uYKYNq963OWWt14X9SSR17Ih3u9yrS/ndOSKhTt26JDMzE3v27Knw2J49e5CSkhLw09wAEB8fj5SUlAo/ABAXFxf2Z0CnJlDKhcMlBtzusqFyu904XGJAwYUBnZpUqVP/hBPgUgo4fBhutwulpSVwu13A4cNwKYX6J5wQoo0j5UO1oVtHt09m3Kvfhh0eum0c8Q7Vhpl+6daxv43I3P1/YmNjkZ+fj9jY2KBl7PAws6Z03e3wsCtOdNd69cdXRl6Umt+l5rnqja8dc2jNWtfNcVLzotQ8Z/8eyJrrul1r3Y7rukT36seJjH2sHfHuJHfdXGrmul69NuRc28y4S4xfqde26sRvpHsHiXs5qXFiR7zXjbMNa963OWWt1439iYx4t8u9Jn4ipU59ortv376YO3duhccWLFiAvn37WtJe//YZ+GlHLpZt3gcXFA4Vl/3rhIIL/ds1RP/2GVXqJPXrh8Kf1/79baUuHDYUlNsFGGXfBpvUr1/QNtwAjJJCuOPqwQCCtqFbR7dPZtyr24YdHrptKJcLMQcPovj3333f5huoDTP90q1jdxuRuvtjGAZ2796N+vXrB/1WcTs8zKwpXXc7PMzUsWOtV3d8peRFqfldap6rzvjaMYdWrXV/IslxZurURj6Rkufs3gNZdV23a63bcV2X6F7dOJGyj7Uj3p3k7k8kudTMdb06bUi6tplxlxi/Uq9t1YnfSPcOEvdyZupI3cNLP3eQ9L7NKWu9LuxPpMS7Xe52Uqv36D506BA2bdoEAOjRoweeeOIJnHTSSUhPT0erVq1wxx13YOfOnXjjjTcAAFu2bEHXrl0xbtw4jBkzBl9//TUmTJiAzz77DIMHD46ozby8PKSmpkZ0XxcAKCr1YtmmvVj8yx78b+Pv6J7dGgM6NUH/9hmIjw18sTKKi5G/fDkOLV2KA1u2IC0rC8nHH4+kfv3g9lS9iY2vjQ1/YEvOPmQ1bYgBHRuHbEO3jm6fzLhXqw07PDTbOLhkCbb/9BNaHn006p9wQsg2zPRLt46dbei4l+P1erFx40ZkZ2eH3MjZ4WFmTem62+Fhpo4da7064yspL0rN71LznOnxtWMOLVzr5USa48zUsTufSMpzdu6BrLyu27XW7biuS3SvVpwI2sfaEe9Oci8n0lxq5rpuug1h1zYz7hLjV+q1zWz86uwdJO7lzNSRuoeXfO4g7X2bU9a6+P2JoHi3y706aJ3lqlpk4cKFCkCVn1GjRimllBo1apQaMGBAlTr/+Mc/lMfjUW3btlXTpk3TajM3N1cBULm5uVr1iouL1Zw5c1RxcXHEdUpLS9X69etVaWmpJeXtakPXXaqHbh075txMHae4Sx0rifFupo5T3BnvdLeqjWiNd6Wi190p8W6mjlPcGe90jwTGO92takPiWPE9K+PdqjboLitOnLTWzaBzllurty4ZOHAgVIgPlE+fPj1gnR9//NHCXtUcLpcLSUlJcLlclpS3qw1dpHrQXZa71LHSxa75iFZ3xjvdrWpDF6kedJflzrUuL050kepBd1nuUsfKDNHqLtWD7rLcpY6VLlL3J05xd0q8m6lj17VKhzp1j+66htvtRsuWLS0rb1cbukj1oLssd6ljpYtd8xGt7ox3ulvVhi5SPeguy51rXV6c6CLVg+6y3KWOlRmi1V2qB91luUsdK12k7k+c4u6UeDdTx65rlQ7u2u6AkzEMA3v37oVhGJaUt6sNXaR60F2Wu9Sx0sWu+YhWd8Y73a1qQxepHnSX5c61Li9OdJHqQXdZ7lLHygzR6i7Vg+6y3KWOlS5S9ydOcXdKvJupY9e1SgcedFuIUgp79+4NeXuW6pS3qw1dpHrQXZa71LHSxa75iFZ3xjvdrWpDF6kedJflzrUuL050kepBd1nuUsfKDNHqLtWD7rLcpY6VLlL3J05xd0q8m6lj17VKBx50E0IIIYQQQgghhBBCCKnT8KCbEEIIIYQQQgghhBBCSJ2GB90W4nK5kJqaqvVtpTrl7WpDF6kedJflLnWsdLFrPqLVnfFOd6va0EWqB91luXOty4sTXaR60F2Wu9SxMkO0ukv1oLssd6ljpYvU/YlT3J0S72bq2HWt0iG2tjvgZNxuN5o2bWpZebva0EWqB91luUsdK13smo9odWe8092qNnSR6kF3We5c6/LiRBepHnSX5S51rMwQre5SPeguy13qWOkidX/iFHenxLuZOnZdq3TgJ7otxDAM5OTkaH1bqU55u9rQRaoH3WW5Sx0rXeyaj2h1Z7zT3ao2dJHqQXdZ7lzr8uJEF6kedJflLnWszBCt7lI96C7LXepY6SJ1f+IUd6fEu5k6dl2rdOBBt4UopZCbm6v1baU65e1qQxepHnSX5S51rHSxaz6i1Z3xTner2tBFqgfdZblzrcuLE12ketBdlrvUsTJDtLpL9aC7LHepY6WL1P2JU9ydEu9m6th1rdKBB92EEEIIIYQQQgghhBBC6jQ86CaEEEIIIYQQQgghhBBSp+FBt4W4XC5kZGRofVupTnm72tBFqgfdZblLHStd7JqPaHVnvNPdqjZ0kepBd1nuXOvy4kQXqR50l+UudazMEK3uUj3oLstd6ljpInV/4hR3p8S7mTp2Xat0iK3tDjgZt9uNjIwMy8rb1YYuUj3oLstd6ljpYtd8RKs7453uVrWhi1QPusty51qXFye6SPWguyx3qWNlhmh1l+pBd1nuUsdKF6n7E6e4OyXezdSx61qlAz/RbSGGYWD79u1a31aqU96uNnSR6kF3We5Sx0oXu+YjWt0Z73S3qg1dpHrQXZY717q8ONFFqgfdZblLHSszRKu7VA+6y3KXOla6SN2fOMXdKfFupo5d1yodeNBtIUop5Ofna31bqU55u9rQRaoH3WW5Sx0rXeyaj2h1Z7zT3ao2dJHqQXdZ7lzr8uJEF6kedJflLnWszBCt7lI96C7LXepY6SJ1f+IUd6fEu5k6dl2rdOBBNyGEEEIIIYQQQgghhJA6DQ+6CSGEEEIIIYQQQgghhNRpeNBtIW63G5mZmXC7Ixtm3fJ2taGLVA+6y3KXOla62DUf0erOeKe7VW3oItWD7rLcudblxYkuUj3oLstd6liZIVrdpXrQXZa71LHSRer+xCnuTol3M3XsulbpEFvbHXAyLpcLaWlplpW3qw1dpHrQXa+OLhI9JHrbVccp7ox36+voItFdoreZOk6ZczN1nOLOtR55ebva0EWqB9316ugi0cMObzPtOMVdqgfd9eroItFDordddZzi7pR4N1PHrmuVDnKO3B2IYRj47bfftL6tVKe8XW3oItWD7rLcpY6VLnbNR7S6M97pblUbukj1oLssd651eXGii1QPustylzpWZohWd6kedJflLnWsdJG6P3GKu1Pi3Uwdu65VOvCg20KUUiguLtb6tlKd8na1oYtUD7rLcpc6VrrYNR/R6s54p7tVbegi1YPusty51uXFiS5SPeguy13qWJkhWt2letBdlrvUsdJF6v7EKe5OiXczdey6VunAg25CCCGEEEIIIYQQQgghdRoedBNCCCGEEEIIIYQQQgip0/Cg20LcbjdatGih9W2lOuXtakMXqR50l+Uudax0sWs+otWd8U53q9rQRaoH3WW5c63LixNdpHrQXZa71LEyQ7S6S/Wguyx3qWOli9T9iVPcnRLvZurYda3SIba2O+BkXC4XkpOTLStvVxu6SPWguyx3qWOli13zEa3ujHe6W9WGLlI96C7LnWtdXpzoItWD7rLcpY6VGaLVXaoH3WW5Sx0rXaTuT5zi7pR4N1PHrmuVDnKO3B2I1+vFr7/+Cq/Xa0l5u9rQRaoH3WW5Sx0rXeyaj2h1Z7zT3ao2dJHqQXdZ7lzr8uJEF6kedJflLnWszBCt7lI96C7LXepY6SJ1f+IUd6fEu5k6dl2rdOBBt8UYhmFpebva0EWqB92tRaKHRG+76jjFnfFufR2r25AaJ7pI9aC7tUj1iFZ3id5m6jhlzs3UcYq71LEyQ7S6S/Wgu7VI9JDobVcdp7g7Jd7N1LHrWhUpPOgmhBBCCCGEEEIIIYQQUqfRPuh+++23gz43ceLEanWGEEIIIYQQQgghhBBCCNFF+6D7mmuuwbx586o8fuONN+Ktt96qkU45BbfbjaysLK1vK9Upb1cbukj1oLssd6ljpYtd8xGt7ox3ulvVhi5SPeguy51rXV6c6CLVg+6y3KWOlRmi1V2qB91luUsdK12k7k+c4u6UeDdTx65rlQ7aPZkxYwZGjBiBpUuX+h677rrr8O6772LhwoU12jknEBsba2l5u9rQRaoH3a1FoodEb7vqOMWd8W59HavbkBonukj1oLu1SPWIVneJ3mbqOGXOzdRxirvUsTJDtLpL9aC7tUj0kOhtVx2nuDsl3s3UsetaFSnaB93Dhw/H888/jzPPPBMrV67Etddei9mzZ2PhwoXo1KmTFX2ssxiGgY0bN0Z8Y3bd8na1oYtUD7rLcpc6VrrYNR/R6s54p7tVbegi1YPusty51uXFiS5SPeguy13qWJkhWt2letBdlrvUsdJF6v7EKe5OiXczdey6Vulg6tj94osvxoEDB9C/f380atQIixcvRvv27Wu6b4QQQgghhBBCCCGEEEJIWCI66L7pppsCPt6oUSP07NkTzz//vO+xJ554omZ6RgghhBBCCCGEEEIIIYREQEQH3T/++GPAx9u3b4+8vDzf8y6Xq+Z6RgghhBBCCCGEEEIIIYREQEQH3fySSXO43W5kZ2drfVupTnm72tBFqgfdZblLHStd7JqPaHVnvNPdqjZ0kepBd1nuXOvy4kQXqR50l+UudazMEK3uUj3oLstd6ljpInV/4hR3p8S7mTp2Xat0kNMTh1JaWmppebva0EWqB92tRaKHRG+76jjFnfFufR2r25AaJ7pI9aC7tUj1iFZ3id5m6jhlzs3UcYq71LEyQ7S6S/Wgu7VI9JDobVcdp7g7Jd7N1LHrWhUp2gfd+fn5mDRpEvr164f27dujbdu2FX7IEQzDwJYtW7S+rVSnvF1t6CLVg+6y3KWOlS52zUe0ujPe6W5VG7pI9aC7LHeudXlxootUD7rLcpc6VmaIVnepHnSX5S51rHSRuj9xirtT4t1MHbuuVTpEdOsSf8aOHYvFixfj0ksvRdOmTXlfbkIIIYQQQgghhBBCCCG1ivZB97x58/DZZ5+hf//+VvSHEEIIIYQQQgghhBBCCNFC+9YlDRo0QHp6uhV9cSS6N2Q3cwN3O9rQRaoH3a1FoodEb7vqOMWd8W59HavbkBonukj1oLu1SPWIVneJ3mbqOGXOzdRxirvUsTJDtLpL9aC7tUj0kOhtVx2nuDsl3s3UkfRFlADgUkopnQpvvfUWPvroI7z++utITEy0ql+WkZeXh9TUVOTm5iIlJSXieiUlJZg7dy6GDRuGuLg4C3soj2h1j1ZvgO50jy73aPUG6E736HKPVm+A7nSPLvdo9QboHo3u0eoN0J3u0eUerd7l6Jzlah+7P/744/jiiy/QpEkTHH300ejZs2eFH3IEpRQOHTqESP8tQbe8XW3oItWD7rLcpY6VLnbNR7S6M97pblUbukj1oLssd651eXGii1QPustylzpWZohWd6kedJflLnWsdJG6P3GKu1Pi3Uwdu65VOmgfdJ999tm4+eabccstt+C8887DWWedVeGHHMEwDOzYsUPr20p1ytvVhi5SPeguy13qWOli13xEqzvjne5WtaGLVA+6y3LnWpcXJ7pI9aC7LHepY2WGaHWX6kF3We5Sx0oXqfsTp7g7Jd7N1LHrWqWD9pdR3nvvvVb0gxBCCCGEEEIIIYQQQggxhaw7hhNCCCGEEEIIIYQQQgghmmh/otvr9eLJJ5/Eu+++i23btqG4uLjC8/v376+xztV1XC4XPB4PXC6XJeXtakMXqR50l+Uudax0sWs+otWd8U53q9rQRaoH3WW5c63LixNdpHrQXZa71LEyQ7S6S/Wguyx3qWOli9T9iVPcnRLvZurYda3SQfug+7777sMrr7yCm2++GXfffTfuuusubN26FXPmzME999xjRR/rLG63G23btrWsvF1t6CLVg+6y3KWOlS52zUe0ujPe6W5VG7pI9aC7LHeudXlxootUD7rLcpc6VmaIVnepHnSX5S51rHSRuj9xirtT4t1MHbuuVTpo37pkxowZePnll3HzzTcjNjYWI0aMwCuvvIJ77rkH3377rRV9rLMopXDgwAGtbyvVKW9XG7pI9aC7LHepY6WLXfMRre6Md7pb1YYuUj3oLsuda11enOgi1YPustyljpUZotVdqgfdZblLHStdpO5PnOLulHg3U8eua5UO2gfdu3fvxtFHHw0ASE5ORm5uLgDg9NNPx2effVazvavjGIaB3bt3a31bqU55u9rQRaoH3WW5Sx0rXeyaj2h1Z7zT3ao2dJHqQXdZ7lzr8uJEF6kedJflLnWszBCt7lI96C7LXepY6SJ1f+IUd6fEu5k6dl2rdNA+6G7RogVycnIAAO3atcP8+fMBAN9//z3i4+NrtneEEEIIIYQQQgghhBBCSBi0D7rPOeccfPXVVwCA6667DpMmTUJ2djb+9a9/YcyYMTXeQUIIIYQQQgghhBBCCCEkFNpfRjl16lTf/1944YVo3bo1li9fjuzsbJxxxhk12rm6jsvlQlJSkta3leqUt6sNXaR60F2Wu9Sx0sWu+YhWd8Y73a1qQxepHnSX5c61Li9OdJHqQXdZ7lLHygzR6i7Vg+6y3KWOlS5S9ydOcXdKvJupY9e1Sgftg+7KHHfccTjuuOMAAD/88AN69epV7U45BbfbjZYtW1pW3q42dJHqQXdZ7lLHShe75iNa3RnvdLeqDV2ketBdljvXurw40UWqB91luUsdKzNEq7tUD7rLcpc6VrpI3Z84xd0p8W6mjl3XKh20b11y6NAhHD58uMJjq1evxhlnnIE+ffrUWMecgGEY2Lt3r9ZN3HXK29WGLlI96C7LXepY6WLXfESrO+Od7la1oYtUD7rLcudalxcnukj1oLssd6ljZYZodZfqQXdZ7lLHShep+xOnuDsl3s3UsetapUPEB93bt29H3759kZqaitTUVNx0000oKCjAv/71L/Tp0wdJSUlYvny5lX2tcyilsHfvXiilLClvVxu6SPWguyx3qWOli13zEa3ujHe6W9WGLlI96C7LnWtdXpzoItWD7rLcpY6VGaLVXaoH3WW5Sx0rXaTuT5zi7pR4N1PHrmuVDhHfumTixIkoLCzE008/jdmzZ+Ppp5/GkiVL0KdPH2zevBktWrSwsp+EEEIIIYQQQgghhBBCSEAiPuj+5ptvMHv2bBx33HG44IILkJmZiZEjR+KGG26wsHuEEEIIIYQQQgghhBBCSGgivnXJnj17kJWVBQBo3LgxEhMTMXToUMs65gRcLhdSU1O1vq1Up7xdbegi1YPustyljpUuds1HtLoz3uluVRu6SPWguyx3rnV5caKLVA+6y3KXOlZmiFZ3qR50l+Uudax0kbo/cYq7U+LdTB27rlU6RPyJbqDs2zT9/9/j8dR4h5yE2+1G06ZNLStvVxu6SPWguyx3qWOli13zEa3ujHe6W9WGLlI96C7LnWtdXpzoItWD7rLcpY6VGaLVXaoH3WW5Sx0rXaTuT5zi7pR4N1PHrmuVDhF/olsphQ4dOiA9PR3p6ek4dOgQevTo4fu9/IccwTAM5OTkaH1bqU55u9rQRaoH3WW5Sx0rXeyaj2h1Z7zT3ao2dJHqQXdZ7lzr8uJEF6kedJflLnWszBCt7lI96C7LXepY6SJ1f+IUd6fEu5k6dl2rdIj4oHvatGl46qmn8OSTT+LJJ5/EtGnT8PTTT/t+L/8hR1BKITc3V+vbSnXK29WGLlI96C7LXepY6WLXfESrO+Od7la1oYtUD7rLcudalxcnukj1oLssd6ljZYZodZfqQXdZ7lLHShep+xOnuDsl3s3UsetapUPEty4ZNWqUlf0ghBBCCCGEEEIIIYQQQkyhdY9up+CKi0dBsRexxaVVnnO7XKgXF+P7veDvMiUlpSjylv0ep1why5bj9XpRWGKU1YlFhbKHi71QUAHLHy72IjkhdNlyDG/FPw8oLPHCCPEvKfExrojLJnqOhEeJUdE9VNmikiPeMTFVXz8hLsZ3o/qiUi+8hqowVv51ApUFELB8vdgYuN1lZYtLDZRW+tMJ/zpJ8e6QZYEjc+41FOL+fixY2XJi/YanxGugxBu8rCfGjdiYsj+qKDVU0PGqUtZrhBzfuBg34vzKFnuNoOPrX9ZrKBSVeiu4+895rNsNT2zVsuX4txEf5/KVNQyFwkpl/csXlxpIiIkJWdaHX7wqpXC4JHjZGLfLNx9KqSrr05/Ka7mye6iyBcWlQecjWI4INB+Vy1Ze9/51YmOABI+5fBJq3ZeUVBwjq/JJcWnw+AUqr/vQ8a6TT4LliEDxrpNPEuPdiAmTT8rLew2Fv8M9bI6I8ZtTnXziDZNPKueIUPEeKEcEG99gOSJQef+ygda92XxSVGog8e8BDpcj/K+f4cq6XS7E+f0NnE4+CRW/1ckn5es+0Pi64AqZI/xj3qPcFcoGWsv+bdSPMJ94vRXHsybzif+6L/aGjvfK+SRUvAda97r5JFD5+NiYkDkiWD4Jte693iN7onBlAcDl12b53iAYldd9pPnEa6iQ8R4oR0SST/zXvZl84h/v9VxuxMeGzhFm8gkqzWm4HGFHPjlc7EVxgOsbEDxHRJJPKq/PynX8r/e1lU9i/fKd//uHQOjkk8rrPtR86OSTYDkiXD4JtO794z3JHePbG+jkk3A5wo3Iy+rkk8o5ItJ8Ur7uA+3ngpUt967cRozbFTJH+NfxxCHyfFLi9eUTIPS6180nMRplK+STEPvxQDmi1Bt4jxIsRwSL91A5Qjef+M95alxcyLL+bfh/8jRcjvD45etwZf3XfUkN5pNAOSJYvAfLEYHmw//9Q6Ac4V8nweOqcB4RbN17vV6Umswngc4Y/KmwllXo86kq614znwSL32A5orr5pPJ5YaC1XD7nRSVexPnFe6h1rzTzSeV9hDtI/FZZ9xr5ROfcwL9sQXGIfVjlNpWkz5fbQF5eHro9tCTo8yd1bIRpl/X2/d550udBN7Z9stLxzlV9fb/3fGAB9ucXByzbrUUqPh5/vO/3/lO/xs4DhwOWzW6cjAU3DfD9ftoTi7Hxj0MByzZPS8BHY7shPT0dbrcbZz67FGt25AYsm57kwQ93nYL9+/cjPT0dI17+Dt9t2R+wbEJcDNY/MAQAUFJSgrMe/xzrDgS/083WqcN9/3/NWysx7+fdQcuuu3+wL3hvfvd/+GDVjqBlV959KhomxwMAJs35GW9++3vQsktuPQkt0xMBAA/NXY+XvvktaNn5N56IDk3qAwCeXPArnv5qY9CyH1zVB8dkZQAA/rt4M6bM+yVo2Zlje6NDmgvp6el467ttuOejtUHLvja6F07u1ASGYeD1bzbgvs+D9/e5i3tieLeyG/x/+r+dGP/26qBlHz2vG87v1RIA8PUvezBm+g9By95/Vhf8q28bAMCKzfsw4uVvg5a9Y2gnXDWgHQDgf9sP4KznlgUte/0p2bjxtA4AgF/3HMSgJ78JWvaKE7Jw1/CjAADb9xfghEcWBi17SZ9WuOGEpkhPT8dfBSU45sEvg5b9Z88WePS8o7F//37US05B18kLgpYddnQmnh95DICyeM+eND9o2bqYI5bdfrLv91A5okFiHCZ3P4xhw4YhLi4OF/53Rcgcsfa+Qb58cvnrP2Dhhj8DlgWO5AjDMHDF9O/w1a+BXxeonCNW44NVO4OWlZAjPhrXH91bpgGILEf0a98IAPDGiq0hc8Qr/zoG/2gci/T0dHywaicmvr8maNnyHGEYBt5dsRG3f7IpaFn/HDH/51248q0fg5aVkCOuPLEt7hzWGUBkOeLBc44GAOw7VBQyR5zToxkG1tuGYcOGoUS5cNQ9XwQtO+zoTDw7oocv3tveOS9oWf8cYRgGjrrnCxSWBt7gV8kR98/H/oKSgGUl5Ij0xDisumeQ7/dwOWLJ9b18+5PLpv1fyBzx20NDfeM7/u0fMfen8PsIwzAwYcb3+HTt3qBl/XPEXbPXYMb/bQ9aVkKOePuK49C3XUMA4XPEU+d0wJnHtoPb7cZ7P2wPmSP+c2E3qG2rMGzYMMxfvxfjZq4KWrY8RxiGgY+/34wbPvw1aFn/HLF805+4+JX/C1pWQo649LjWeODsrgDC54h/9myOxy/4B4CyN4ahcsTQrpl4YEhrX7y3uf2zoGVP6tgIr47q5Yv3LvfOj2gfYRgGej6wAAcOB36TKiJHJHmwatJpvt/D5Yjy9xoAwuaIH27p4xvfa2esDJkj/jfpZCz6cj6GDRuG2z9cF9F7DcMwcNu7K/He6j+ClvXPEf/+bB1eXrIlaFkJOaL8vQaAsDli6hntcUHfbLjdbny2Jidkjnjkn0fj5KxEpKenY9Gvf0b0XsMwDMxfvRVXv7s+aFn/HPHjtv045/kVQcvKyBEt8PgF3QFEliNeuOQY3++hcsTAjo3w2BltffEe7r3GW2N6Ye7cuRg2bBj6TF0U0XsNwzDQf+pXyMkLXLYu5gj/84hwOWLJhF5ontkIbrc77HnE93eeDFdxPtLT03Hvx+sieq9hGAbunb0ab/6QE7Ssf454Yv4G/Ofr4Ht3CTnC/zwiXI64d0hbjDqxI9xud9jziMlnHIXTO9ZHeno6vtvyV0TvNUpKSvDCu3PxxE/BP7frnyN+ycnFkKeXBi0rIUf4n0cAoXPEgA4ZeH1MH9/v4XLEc//M9uWTSM4jDMPA/v37cdYrayLaRxiGgVMfX4Tf9gUuW5M54veHT0dubi5SUlIC1i8nKj/R7TQyMjIiLut2u7XKm8EV+B/VogKXy42MjIZaddxuN5KTk7XacBIujYBxuVym4j3kpyaIaczkE7fbjfh4j0YNZyUUnfXrduvFe1kdN+rXD33hdzI6+UQXs/Gu1SfpF1DN/lm9PynLJ/W06jiJlNQUuN3W7QncbjdSUiPPJ07bn+hcf1wue+LdyvmWjtXvX9xuN+rVS4i4vJXXm9qgfv3I84nufhwoG9/U1NTIyzssn2htBWBPvLvdMeELOpSGGQ0jjne3242GJuI9ITF680lycrLG+OrnE12i+doJ6OcT3T2K2+1GTIysfBKVn+hOy2iMXbtykJJSv8rzwW9dUoIvvpiPwYMH+f5MINytSwzDwK5dOWjWrCliY2LC3rqkvHzzZs2QVC8uZNlylKGw/8/daN68Odxud9g/A6gX68bOnTvRvHlzFHtVRH8yUFJSgo8+nYvTBg2q8CcSgcoCwOGiEmzfuQvNmjUNmFQC3WrAf6z86wS7dUmg8uFuNeBfJ9ETF8GtS8rm/MzhQ1Hv74O5cLcuiXO7sDtnF5o3bw6vQkS3GjAMA79v24FGmZlBk7D/nxUVl5Ri6/adQcc30K1Lgo1v8FuXVI33cLcu8W/DExsb9lYD5eVbtWiOen/HT7hbl7igsHdPWby7XK6wty6Jc7uwc+dONGvWDEXe4LHuv5ZLSkrw4SdzK7gHKwsAhwqLA45toLLlOSLQfIS7dYl/nRh3TNhblwTLJ6FvXVLi+wRUXFycJfnEMAz89vt2ZDYNHL9AxXV/uLgE23fUTD4JfuuSqvGuk08SPHFhb11SXj6rVQvE/f0nbOFuNRDrAvbsztHPJ9t3oFGT4PnEf90fLizCJ3M/DxrvgXJEsPENliMClQ93qwGz+aRli2ZI8JR5hL91iRdfzf8cw4YNQ2xsbNhbl3hiXL54D/YJ7fKy5WvZMAxs2ro9aPxWJ5+Ur/tA4xv+1iVHYt4T5wn754T+bSTX84Qs61/nrz/3WLI/KV/3hmFgy7btaJIZWT45dLgIc+cFj/dA6143nwQqH+7WJcHySagcYRgG/tyzG61btoDb7Y7g1iVezP+iLN5d7piIbjWgm09KSr3Ysm1H0HgPlCMiySf+695MPvGP93rxnrC3GjCTT1xKYe8fR/bj4f402I58UnbrkuIq1zcgeI6IJJ9UXsuV64S71YAd+SQWBubNm4dhw4bBcLkjunVJJPnEf90XFpdi247g+3GdfBIsR4TLJ4FvXXIk3pPqxUd065LK+STcrQZiXMAff+9PDIWI88m27TuQESKf+K9lnXxy5NYlVfdzwcqWe1ce33C3GvCvExcbE3k+ad4MCfGR3WpAN5/EwPB9orskyG0cysv655PNW7ejaZDxDZQjvIY3YPwGyxHB4j1UjtDNJ/5znpqUELKsfxv7/9iNFi3K4j3c7UjiY1zYtavs/X2JoSK6dYlhGNi6bTsa11A+CXzrksDxHixHBJqPcLcu8a9TLy42oluXGIaBP3fvRutW+vlEwRXRrUtKSkrw6WdzcfJpwc+n/Nd9aakXv2nmk2DxGyxHVDefVD4vDHzrkrI5HzZkMJIT64Us60Mp7NPIJ/XiYmAYBnbu3In0RplwuQPnFP91r5tPzN66JC/vIJo2Srf2E91795b9majV//piBaqkCImemAoDGAzfYa9LIT6m7Pe4uMD1Kr+e1+uFUXwYCXExVf6Fw3+iK5evF+cOW9a/Tn5+vu8+U/6LI1z5cGX9iXOHdvfHE+sO6l2Z8oUfaqwql42kvCfWDQ8qjqN/Hbffgg1UFjgy5zERlPVvo3x842JifG/+QqGUQlFhQUTjBZT1J9Lxjf374hXJ+Ma4XRHHu3/Zciq2ccTbHaCsf/k4v/uyBivrX6d8fCtvfkKVB6quz1CEW+v+JMTFRDwf5X2IZD4qr/uayieh1n2Jq+IFx4p8opRCaVFk4wWUbcCsyCf+azlcvIfLJ5HkiPLy/nsF/wOiQJjOJ4cjzyexMe6I47183evmk3DlA617s/nE41fW5QqdT0pKVMRly9son49I84lSKuL4BfTySfm6N5NPKsZ8xecCrWX/NsKV9a+zw+L9iVIKJYWRj298bOTxXr6WdfNJdfcn/vkkVI7wer0oOlzgG99w+cQ/3mP93tiGQjefuF2IOH518om7mvmkQrz77SWDrXsz+aTyflxEPvHEINYVG1HM6+STyuszVJ3ayiclJUduAeX//iEUuvkkLiby/bhV+STQuvePd/91rpNPwuUI//iNjYmJOJ8UWpRPytd9JO/XdfJJoHUfrE7YfBJbcYxqMp+UlBw5RNTJJ17NfOL1RjYn5evTjnziP+fhyvq3UVBwJN7D5Qj/+dDJJ8UW55NI4r3CB1ZM5JNg+/FQOcLr9aKo0Fw+iYkJ//6+HLcr8vfrLhP5JJL49V/3NZlPgMBruXzO4+PCl/VvQyefAGXxm5+fj2bNIvuktm4+0TmH9C9bGuJctDJan+E/cOAAxo0bh4yMDDRp0gRNmjRBRkYGxo8fjwMHDui8FCGEEEIIIYQQQgghhBBSI0T8Ecf9+/ejb9++2LlzJ0aOHInOnctu1r5u3TpMnz4dX331FZYvX44GDRpE3Pg333yDRx99FCtXrkROTg4+/PBDnH322UHLL1q0CCeddFKVx3NycpCZmRlxu4SQmqOw4DBWzv4Cfy78Bt4/9uCXxk3Q6KQTccy5g1FP495khBAiETM5jnmREEKqjx25lPmaWAHjihBCao+ID7rvv/9+eDwebN68GU2aNKny3KBBg3D//ffjySefjLjx/Px8dO/eHWPGjMG5554bcb0NGzZUuCdL48aNI65rJ263G5kh7rtc3fJ2taGLVA+617x7YcFhLLj7UcSuXgmP241STzxif9+CvNc2Y8GqNTjtwYlBN3NSx0oXu+YjWt0lxXt12pAaJ2aQ6C4px0nPi2aQOocS3bnW5cWJLlI9os29Ork0UqTnazvm3K5+SXS3yqO6sVuX3e1uwwwSPSR621XHKe5OiXczdey6VukQcU/mzJmDxx57rMohNwBkZmbikUcewYcffqjV+NChQ/Hggw/inHPO0arXuHFjZGZm+n4kDag/LpcLaWlpEX+Lrm55u9rQRaoH3WvefeXsLxC7eiWK0zNQ0rQFVMNGKGnaAsUNGiL2fyuxcvYXNdqnaI13M3Wc4i4p3qvThtQ4MYNEd0k5TnpeNIPUOZTozrUuL050keoRbe7VyaWRIj1f2zHndvVLortVHtWN3brsbncbZpDoIdHbrjpOcXdKvJupY9e1SoeIP9Gdk5ODLl26BH2+a9eu2L17d410Khz/+Mc/UFRUhK5du2Ly5Mno379/0LJFRUUoKiry/Z6Xlweg7EtK/L+oJBzlZXXqGIaBbdu2oVWrVhEdxuuWt6sNXXepHrp17JhzM3Ukuf/59TeIc7uh6iUASqGkpKTsm48TEqFy9+PPr79ByYXDa83DKfFupo5T3CXFe3XakBonTnG3Kt7N5DjpeTFSd7v7xXinO69tNV+nLrtXJ5dyH8u1bkWfIq1Tnbgy0y++Z2W8W9Enu+o4xd0p8W6mjpk2zKDj7VLlX78ZhubNm+Odd97B8ccfH/D5JUuW4MILL8SuXbsibrxCR1yusPfo3rBhAxYtWoRevXqhqKgIr7zyCt58801899136NmzZ8A6kydPxn333Vfl8ZkzZyIxMdFUXwkhZRS+OBMxJSUoTE6p8ly9Q3nwxsWh3tUX10LPCCGk+pjJccyLhBBSfezIpczXxAoYV4QQUvMUFBTg4osvRm5uboVbWQci4k90Dx48GHfddRcWLFgAj8dT4bmioiJMmjQJQ4YMMdfjCOnYsSM6duzo+71fv37YvHkznnzySbz55psB69xxxx246aabfL/n5eWhZcuWGDRoUNjB8aekpAQLFizAaaedVvYvshHg9XqxefNmtGvXDjExMTVe3q42dN2leujWsWPOzdSR5P7ZR4sRt20LYpOTASgUF5fA44kD4ILn0AEUN22OYcOG1ZqHU+LdTB2nuEuK9+q0ITVOnOJuVbybyXHS82Kk7nb3i/FOd17bar5OXXavTi7lPpZrvTbjvTpxZaZffM/KeJeS383UcYq7U+LdTB0zbZih/O4ckaD1ZZS9evVCdnY2xo0bh06dOkEphfXr1+P5559HUVFR0MNmK+nduzeWLl0a9Pn4+HjEx8dXeTwuLi7i4DBbz+12IyYmBnFxcRFNuG55u9ooJ1J3qR5m3a2cczN1JLk3OvlE5L22Ga7DBVCJiYALgMsFV0EBXEqh0cknBq0vdazKkRTvZuo4xV1SvFenDalxUk5dd7cq3s3kOOl50R+u9Zpvg2tdXpyUE63xDtRN9+rk0nK4j+Var+k2IqlT3diVmN/N1OG1LTrivbp1nOLulHg3U6c6c6hDpM6AxkF3ixYtsGLFClx77bW44447UH7HE5fLhdNOOw3PPvssWrZsqd/barJ69Wo0bdrU9nYjwe12o0WLFhHfp0a3vF1t6CLVg+41737MuYOxYNUaeP63EirvL7jj4hFbUgSXYaC0+zE45tzBNdqnaI13M3Wc4i4p3qvThtQ4MYNEd0k5TnpeNIPUOZTozrUuL050keoRbe7VyaWRIj1f2zHndvVLortVHtWN3brsbncbZpDoIdHbrjpOcXdKvJupY9e1SoeID7oBICsrC/PmzcNff/2FjRs3AgDat2+P9PR0U40fOnQImzZt8v2+ZcsWrF69Gunp6WjVqhXuuOMO7Ny5E2+88QYA4KmnnkJWVha6dOmCwsJCvPLKK/j6668xf/58U+1bjcvlQnJysmXl7WpDF6kedK9593qJCTjtwYlYOfsL7F24BK6/9qGkaXNknHQCjjl3MOolJtRon6I13s3UcYq7pHivThtS48QMEt0l5TjpedEMUudQojvXurw40UWqR7S5VyeXRor0fG3HnJtpxynuVnlUN3brsrvdbZhBoodEb7vqOMXdKfFupo5d1yodTB25N2jQAL1790bv3r1NH3IDwA8//IAePXqgR48eAICbbroJPXr0wD333AMAyMnJwbZt23zli4uLcfPNN+Poo4/GgAED8L///Q9ffvklTjnlFNN9sBKv14tff/0VXq/XkvJ2taGLVA+6W+NeLzEB/S85G6e/9Ag6Tb0Tp7/0CPpfcnbYTZzUsdLFrvmIVndp8W62DalxYgaJ7tJynOS8aAapcyjRnWtdXpzoItUjGt3N5lIdJOdrO+bcrn5JdLfSozqxW9fd7WzDDBI9JHrbVccp7k6JdzN17LpW6RDxJ7rHjBkTUbnXXnst4sYHDhzouwVKIKZPn17h91tvvRW33nprxK8fjASXC8bhwzBiA+jHxMDtd09vo6Cg7L8lJXAVF8MoKIBRfm8YtxvuevWqlPX97vXCW1AAo6AArri4imUPHwYqufvKHz6MGL9/EQlU1vecYcAwjCO/FxYCfr9XIT7eVz5cWXdiou//XSUlFd1DlDWKio54B7hHjyshAS6Xq6xscTFQWlpxrPzqBCoLIGB5V716cP395xKquBjq77K+fvnVcSclhSwLHJlz5fUCf3sHK1uOio31ja8qKYEqKQla1uXxwPV3DHr/jq1A41W5rCotDT2+cXFwlfe3tBSquDj4+PqX9XqhiooquPvPuSs2Fq6/v4jWv6xvvPzHNz7+SFnDgCosrNLP8vKquARIiAlZ1lfH5ToyvkpBHT4ctCxiY4GYGBiGAaVUlfVZgUrrvspaD1HWKCgIPh9BckTA+ahcttK6r1AnNhbuhISgZSuUr5xPQqx7o1K8auWToiIgxMXNP0d4CwtDx3uldV9j+SRIjggY7zr5JDHR107QfFIe714vUF42TI5Qf8dvJGUr5JO/83XQ8a2UI0LFe6AcEXR8g+SIgPnav2yAdW82nxjFxYj5e22EyxH++4+w+SQmBvDL7zr5JFT8BsoREeeTv9d9wPlwuULmiAox7/FULBtg3fu3EVO/fsiy/nUq7E/C5AidfOK/7r1FRRHnE1VcHDreA6x77XwSKN7j40PmiKD5JMS6N7xeeP2eC5tP/h4D4MjeIBj+614rnwQZK1/ZADkionzit+5N5RP/eE9IgLu8bJB1byafGEDFeA+TIyLOJ5XWvVY+OXwYRrCYD5IjIsonldZ95ToV3hPo5JMQ6143nyi/93j+7x8CoZVPKqz7ktDxrpNPguSIsPkkwLr3j3eVlHTk/YNOPgmTI5TbfWR/UpP5pFKOiDif/L3uA75fD1LW5125jdjYkDmiQp34+MjzSVERYvzXRoh1r5VP3G7fvjKSshXyyeHDwecjQI4wgr0HDZIjgsV7qBwRMp8EWPf+c47U1JBlK7Th91y4HKE8niP5Olw+8Vv3NZpPAuSIoPEeJEcEzCf+ZwyB8on//iQhocJ5RLB1b3i98Po9p5VPApwxVBgHv7UMwwh5PlV53Wvnk2A5KEiOqHY+8XgCnkNWKF8+50VFvvOpYGV9zymllU/Kc4RhGDAOH/bFaBUqrXutfKJxDulf1gj1Xq0SER90T58+Ha1bt0aPHj1CHk7XBVZ26IicAQORE+C5pAEnotV//+v7/df+x/sCMhvAb5Pu8T2XeOyxaP3mG77fN51yKrx//VXlNTcBqNe1K7Lef8/32G/DT0fJrl0B+7etXTu0++xT3+9bzj8fxZs2Bywb26wZ8Pxzvt9/v+RSFP78c8CyMQ0aoN3SJb7ft19xJQq+/z5gWVdCAjr9uMr3e9O33sJvd08KWBYAOv+y3vf/u2+/A5g/H5uClO24aiVcfwfv7nvuRe6cOb7nKtfJXr4MsX//1cAfU6fir5lvV3jev3y7L7+Ep0XzsrJPPY39Qf7RZROAtp98jPjsbADA3v++hL3PPRewbDaAovbt4fn7rw72v/km/nj0sSBmQItprwENGgAA/nr3Xex54MHgZV98AfUHDiz7ZfE32PTMM0HLNn/qSaQMGQIAOPTVV8BNNwcd36YPPYS0c88pK7t0KXZcfY3vucp1mky6G+kjRwIACn5YiW2jRvmeqxzvjSfegoaXXw4AKFy3DlvPvyBg+5sAZIwbh0bXjQcAFG/ejN/OODOo297LRiPzttsAACW7crD51FODlk296CLgogsBAN6//sLGfv2Dlz37bDT5d9n4q8OHseHY3kHL1h88GC2efsr3e/akeyq4+1M5R2w+cQBw+HDA+QiXI/zrRJojNgHwtG+Hdp9GliO2NmuG7K+/8v0eKke4GzQAbr/N93u4HJH9w5HndkyYgPzF3wQsC1TMEXjqKWxaviJoWf8c8cfk+4CPPgoa76FyROU6oXJE5XiPNEdsAtDmvXeRcPTRAMLniMPTXkP9vn0BhM8RzZ5/DmjWDACQ+8mnyLnzzqBl/XMEvv0Wm/55XtCy/jmiYPnykPEeKkdUHt9wOcK/fKQ5YhOA9DFj0OTWiQDC54g/L7oIzSbfCyB8jqh/5plA/34A/s4RPY8JXnbwYDR94nHf76HKVs4RGDUam4Js2ivniC2DBgN//RUw3sPlCP86keSI8piPa9YM7SPMEVsaNECHFct9v4fLEXh7pu/3cDmiw9ojbe669TYc/OKLoGX9cwSefwGbFi4MWtY/R+x95FFkv/NO0HgPlSMqz0m4HOFfPtIcsQlAq9dfR1KfsutVuByBu+8COnUCED5HZD52pM2DX36JnTfcGLSsf47Ajz+GzCf+OeLwypXAZWOC5utQOaJynXA5wr98JDmiPN4bXDwCmX//5Wi4HPHHWWeh+cNTAYTPEcmDBgHXHtlvhcsRzZ9/3ve7/3uNylTOEbjyKmzKywtYNliOqHx9A8LnCP/xjTRHbELZe41Ic8TmSu81wuUI15wPff8fLke0/e5b3/9Xfq9RGf8cgddew6Z5nwct658j9v7naWDa9KDxHipHVK4TLkf4l48kR5TPuf97jXA5AhNv8eWTcDmiyYMPAl27AKj6XqNKWb8cgXXrQ+YT/xxRtG4dcNGIoOMbLEcEivdwOcK/jUhzxCaUvddoNnUKgPA5YvegQWj5n6d9v4fMESeeANx0k+/3cDmi2WuvHulXkPMIoGqOwPjrsOnPPwOWDZUjKs9JuBzhXz7SHLEJVc8jguWI8jn3f68RLkdg1pH3C+FyRNslR9oMdB7hj3+OwIwZ2DTno+Cv65cj9r38Utl+JkjZYDkiULyHyxH+bUSaIzah4nuNcDkC110HdO4MIHyOaHzXXcCxvQBUfa9RpaxfjojfuRO/9TkuaNkKOeK330Lmk1A5onKdcDnCv3ykOWITqp5HBCubDWD3/AVo/fJLvsdC5YiEY3sBd911pC2NHLH1zLNQGuTMsnKOwC0TsWn79oBldd5r6OwjQhHxQfc111yDt99+G1u2bMFll12GSy65pFq3LSGEEEIIIYQQQgghhBBCagKX0vh4dlFREWbPno3XXnsNy5cvx/Dhw3H55Zdj0KBBvj/5kk5eXh4y09KwKycHKX5/LucjyK1LSkpK8MX8+Rg8aBDiIrx1iVIKxcUl8Hjiyv70JsytS3zl4z0V/7QpxK1LFIDSmBh4PB64XK6wfwbgSkhAcXExPB5P2Z+FRPAnAyUlJZj30UcYfNppR9yDlAXKbktQfLiwzDtAXAS61UCFsfKrE+zWJYHKh7vVgH8dd0JC2FuXlM/5kDPOgOfvuQt36xJ4PCjxeuHxeMq8IrjVgFIKRfn5iHO5gq4j/z8rMkpKUHQoP/j4Brh1SdDxDXLrkkDxHu7WJRXGNy4u7K0GysvHJyb41ly4W5eomBiUAmXjC4S9dYkrLg7FxcVlDiFe13/dl5SUYN6cORXXepCyAODNzw84tgCC5oiA8xHm1iUV6rjdYW9dEjSfhMgRJSUl+HzRIgwbNgxxcXF6+aS4OKJblyilUHjwIDwxMcHjvdKfERcXHK6ZfBIkRwSMd518Uq9e2FuX+OK9fjLcEfwZMQAgLg4lhqGfTwoKEAcEH1+/dV98+DA+//TToPEeKEcEHd8gOSJgvg5zqwGz+cSTmICY8nwS5lYDpUph3pdfYtiwYYiNjQ176xKXx3Mk3sOUdfv1ofBAbtD4rfJnxDr55O91H3A+wty6pELMR3DrEv82YpKSQpb1r1MaG3tkfxLB7UgizSfl614phaJDhxDndkeUT4rz8/H53LnB4z3AutfNJwHjPcytS4LmkxA5QimFEgDxiYllYxEmn5S6XJg3f35ZvLtcEd1qQDefGKWlKDp4KHi+DpAjIsonfuveTD6pEO8R3LrETD5RbjdKXa4j8R7m1iUR5xO/da+bT4zDh1FSXFz1/QsQNEdElE8qrfvKdcLduiRoPgmRI3TzSWlsLObNm4dhw4YhRqmIbl0SUT7xW/dGURGKQu1PdPJJkBwRNp8EWPf+8e6J8NYlVfJJmFsNIDYWJUqV7U+83sjzyeHDiFMq+Pj6rWWtfPL3ug/4fj1I2XLvKvMR5lYDFerExUWeTxLqISbEuUGFOjr5xO2GNyYGc+fOLYv3UPvKyvkkNxeeuCD5JECOUIYReI8SJEcEi/dQOSJkPgmw7v3nPD7CW5copVASE4P4+Piy8Q1zOxLUq4eSkpKyfF1SEtGtSyJ6f6+TTwLkiKDxHiRHBMwnYW5dUmF/Eh8f0a1LlFIoUQrxSUn6+cQwIrp1SUlJCeZ++imGnHxy0POpCvnE60VR3kGtfBIsfoPliGrnk9jYsLcu8c350KGI9781aah84nKh1O2OOJ+469X7u1/FiPV6EfSU12/da+cTk7cuyTt4EA0yM5Gbm4uUlJTgHtD4RDcAxMfHY8SIERgxYgR+//13TJ8+Hddeey1KS0uxdu1acd+0GYzDSsGdkFBhAINRXsZdUgLl8cCdmAh3BIe9QNmEe+oZcAfYMPlPdKDy4cr614n1CxL/DW7Q8n8nqHBlK9SLiwvp7o87Ph6euLiA3lXKejyAxxNyrCqXLfcIVd7l8Ry5f1O5Q5A6gcoCR+a8wj30gpT1byO2/MLh9+YvHHEJCRGNF1CWiD0p9SMq74qN9R1+hRtfV0yM70/Bw8W7f9lygo6v212lrH95//s+BSvrX6c83l0uV8iyvvKxsRGVrVAvzFr3x52YGHZs/cuW9ytsvFda9zWWT0Kse3elzY1WPvG7MIfDk5QUcby7PR54YmNrPJ/4r+Ww8V4D+SRgvIfJERXiXSef1KunlU8ijffyda+bT8Lm6wDr3mw+8Y/3cOve5RfvOvkEqHq9D0Wk+br8dSPOJ36bS918EirmA617M/mkyv4kTI4wm0/iEhMjj3ePJ/J4/3st6+aTGt2fhFj3SinE+Y1vuBxRId7/3htEglY+iYmJfH+ik0/81r2ZfBIs3oOtezP5pEq8S8gnCQlwR5jjtfJJpXUfcn+ik09CrHvdfOIf7/7vH8Khm08i3Z9Ylk8CrHv/ePdf51r5JEyOqLA/0ckn8fHW5JO/130k79e18kmAdR80X2vkEyD0utfNJ/73V9fKJ/X18kkk8QugwmF6jeaTAOvef87DlfVvwz/ew+WICvlaJ5/ovL83kU8iinf/D6yYyCdB4z3Euq9WPglwxhAUtzvi9+sut1s7n0SUr/3WfU3mEyDwWvbNeaX4rsl8Uk7s34f0kX6gWSufaJxD+pd1h/oHqcr1Ii5ZueLfEkopUd+uKQnDMLBx48YKN3+vyfJ2taGLVA+6y3KXOla62DUf0erOeKe7VW3oItWD7rLcudblxYkuUj3oLstd6liZIVrdpXrQXZa71LHSRer+xCnuTol3M3XsulbpoHXQXVRUhLfffhunnXYaOnTogJ9++gnPPvsstm3bVmc+zU0IIYQQQgghhBBCCCHEWUR865Jrr70Ws2bNQsuWLTFmzBi8/fbbyMjIsLJvhBBCCCGEEEIIIYQQQkhYIj7ofvHFF9GqVSu0bdsWixcvxuLFiwOWmz17do11jhBCCCGEEEIIIYQQQggJR8QH3f/6178ivhE5KcPtdiM7O7vKl0/UVHm72tBFqgfdZblLHStd7JqPaHVnvNPdqjZ0kepBd1nuXOvy4kQXqR50l+UudazMEK3uUj3oLstd6ljpInV/4hR3p8S7mTp2Xat0iPige/r06RZ2w7mUlpbCE+E385opb1cbukj1oLssd6ljpYtd8xGt7ox3ulvVhi5SPeguy51rXV6c6CLVg+6y3KWOlRmi1V2qB91luUsdK12k7k+c4u6UeDdTx65rVaTIOXJ3IIZhYMuWLVrfVqpT3q42dJHqQXdZ7lLHShe75iNa3RnvdLeqDV2ketBdljvXurw40UWqB91luUsdKzNEq7tUD7rLcpc6VrpI3Z84xd0p8W6mjl3XKh0i/kT3ueeeG1E53qObEEIIIYQQQgghhBBCiJ1EfNCdmppqZT8IIYQQQgghhBBCCCGEEFNEfNA9bdo0K/vhWHRvyG7mBu52tKGLVA+6W4tED4nedtVxijvj3fo6VrchNU50kepBd2uR6hGt7hK9zdRxypybqeMUd6ljZYZodZfqQXdrkegh0duuOk5xd0q8m6kj6YsoAY2DbgDYunUrFixYgOLiYgwcOBBdunSxql+OICYmBh06dLCsvF1t6CLVg+6y3KWOlS52zUe0ujPe6W5VG7pI9aC7LHeudXlxootUD7rLcpc6VmaIVnepHnSX5S51rHSRuj9xirtT4t1MHbuuVTpEfOy+cOFCdOnSBVdddRWuu+469OjRA2+99ZaVfavzKKVw6NAhKKUsKW9XG7pI9aC7LHepY6WLXfMRre6Md7pb1YYuUj3oLsuda11enOgi1YPustyljpUZotVdqgfdZblLHStdpO5PnOLulHg3U8eua5UOER90T5o0Caeddhp27tyJffv24YorrsCtt95qZd/qPIZhYMeOHVrfVqpT3q42dJHqQXdZ7lLHShe75iNa3RnvdLeqDV2ketBdljvXurw40UWqB91luUsdKzNEq7tUD7rLcpc6VrpI3Z84xd0p8W6mjl3XKh0iPuj++eef8dBDD6Fp06Zo0KABHn30Ufzxxx/Yt2+flf0jhBBCCCGEEEIIIYQQQkIS8UF3Xl4eMjIyfL8nJiYiISEBubm5lnSMEEIIIYQQQgghhBBCCIkErS+j/OKLL5Camur73TAMfPXVV/j55599j5155pk117s6jsvlgsfjgcvlsqS8XW3oItWD7rLcpY6VLnbNR7S6M97pblUbukj1oLssd651eXGii1QPustylzpWZohWd6kedJflLnWsdJG6P3GKu1Pi3Uwdu65VOmgddI8aNarKY1dddZXv/10uF7xeb/V75RDcbjfatm1rWXm72tBFqgfdZblLHStd7JqPaHVnvNPdqjZ0kepBd1nuXOvy4kQXqR50l+UudazMEK3uUj3oLstd6ljpInV/4hR3p8S7mTp2Xat0iPjWJYZhhP3hIXdFlFI4cOCA1reV6pS3qw1dpHrQXZa71LHSxa75iFZ3xjvdrWpDF6kedJflzrUuL050kepBd1nuUsfKDNHqLtWD7rLcpY6VLlL3J05xd0q8m6lj17VKh4gPuok+hmFg9+7dWt9WqlPerjZ0kepBd1nuUsdKF7vmI1rdGe90t6oNXaR60F2WO9e6vDjRRaoH3WW5Sx0rM0Sru1QPustylzpWukjdnzjF3SnxbqaOXdcqHSK+dcl//vOfgI+npqaiQ4cO6Nu3b411ihBCCCGEEEIIIYQQQgiJlIgPup988smAjx84cAC5ubno168fPv74Y6Snp9dY5wghhBBCCCGEEEIIIYSQcER865ItW7YE/Pnrr7+wadMmGIaBu+++28q+1jlcLheSkpK0vq1Up7xdbegi1YPustyljpUuds1HtLoz3uluVRu6SPWguyx3rnV5caKLVA+6y3KXOlZmiFZ3qR50l+Uudax0kbo/cYq7U+LdTB27rlU6RPyJ7lC0bdsWU6dOxZgxY2ri5RyD2+1Gy5YtLStvVxu6SPWguyx3qWOli13zEa3ujHe6W9WGLlI96C7LnWtdXpzoItWD7rLcpY6VGaLVXaoH3WW5Sx0rXaTuT5zi7pR4N1PHrmuVDjX2ZZStWrXC7t27a+rlHIFhGNi7d6/WTdx1ytvVhi5SPeguy13qWOli13xEqzvjne5WtaGLVA+6y3LnWpcXJ7pI9aC7LHepY2WGaHWX6kF3We5Sx0oXqfsTp7g7Jd7N1LHrWqVDjR10//TTT2jdunVNvZwjUEph7969UEpZUt6uNnSR6kF3We5Sx0oXu+YjWt0Z73S3qg1dpHrQXZY717q8ONFFqgfdZblLHSszRKu7VA+6y3KXOla6SN2fOMXdKfFupo5d1yodIr51SV5eXsDHc3NzsXLlStx8880YNWpUjXWMEEIIIYQQQgghhBBCCImEiA+609LSgt5c3OVyYezYsbj99ttrrGOEEEIIIYQQQgghhBBCSCREfNC9cOHCgI+npKQgOzsbycnJNdYpp+ByuZCamqr1baU65e1qQxepHnSX5S51rHSxaz6i1Z3xTner2tBFqgfdZblzrcuLE12ketBdlrvUsTJDtLpL9aC7LHepY6WL1P2JU9ydEu9m6th1rdIh4oPuAQMGhC3z888/o2vXrtXqkJNwu91o2rSpZeXtakMXqR50l+Uudax0sWs+otWd8U53q9rQRaoH3WW5c63LixNdpHrQXZa71LEyQ7S6S/Wguyx3qWOli9T9iVPcnRLvZurYda3SodpfRnnw4EG89NJL6N27N7p3714TfXIMhmEgJydH69tKdcrb1YYuUj3oLstd6ljpYtd8RKs7453uVrWhi1QPusty51qXFye6SPWguyx3qWNlhmh1l+pBd1nuUsdKF6n7E6e4OyXezdSx61qlg+mD7m+++QajRo1C06ZN8dhjj+Hkk0/Gt99+W5N9q/MopZCbm6v1baU65e1qQxepHnSX5S51rHSxaz6i1Z3xTner2tBFqgfdZblzrcuLE12ketBdlrvUsTJDtLpL9aC7LHepY6WL1P2JU9ydEu9m6th1rdIh4luXAMDu3bsxffp0vPrqq8jLy8MFF1yAoqIizJkzB0cddZRVfSSEEEIIIYQQQgghhBBCghLxJ7rPOOMMdOzYEWvWrMFTTz2FXbt24ZlnnrGyb4QQQgghhBBCCCGEEEJIWCL+RPe8efMwYcIEXHPNNcjOzrayT47B5XIhIyND69tKdcrb1YYuUj3oLstd6ljpYtd8RKs7453uVrWhi1QPusty51qXFye6SPWguyx3qWNlhmh1l+pBd1nuUsdKF6n7E6e4OyXezdSx61qlQ8QH3UuXLsWrr76KY445Bp07d8all16Kiy66yMq+1XncbjcyMjIsK29XG7pI9aC7LHepY6WLXfMRre6Md7pb1YYuUj3oLsuda11enOgi1YPustyljpUZotVdqgfdZblLHStdpO5PnOLulHg3U8eua5UOEd+65LjjjsPLL7+MnJwcXHXVVZg1axaaNWsGwzCwYMECHDx40Mp+1kkMw8D27du1vq1Up7xdbegi1YPustyljpUuds1HtLoz3uluVRu6SPWguyx3rnV5caKLVA+6y3KXOlZmiFZ3qR50l+Uudax0kbo/cYq7U+LdTB27rlU6RHzQXU5SUhLGjBmDpUuX4qeffsLNN9+MqVOnonHjxjjzzDOt6GOdRSmF/Px8rW8r1SlvVxu6SPWguyx3qWOli13zEa3ujHe6W9WGLlI96C7LnWtdXpzoItWD7rLcpY6VGaLVXaoH3WW5Sx0rXaTuT5zi7pR4N1PHrmuVDtoH3f507NgRjzzyCHbs2IG33367pvpECCGEEEIIIYQQQgghhERMtQ66y4mJicHZZ5+Njz/+uCZejhBCCCGEEEIIIYQQQgiJmBo56CaBcbvdyMzMhNsd2TDrlrerDV2ketBdlrvUsdLFrvmIVnfGO92takMXqR50l+XOtS4vTnSR6kF3We5Sx8oM0eou1YPustyljpUuUvcnTnF3SrybqWPXtUqH2NrugJNxuVxIS0uzrLxdbegi1YPuenV0kegh0duuOk5xZ7xbX0cXie4Svc3Uccqcm6njFHeu9cjL29WGLlI96K5XRxeJHnZ4m2nHKe5SPeiuV0cXiR4Sve2q4xR3p8S7mTp2Xat0kHPk7kAMw8Bvv/2m9W2lOuXtakMXqR50l+Uudax0sWs+otWd8U53q9rQRaoH3WW5c63LixNdpHrQXZa71LEyQ7S6S/Wguyx3qWOli9T9iVPcnRLvZurYda3SgQfdFqKUQnFxsda3leqUt6sNXaR60F2Wu9Sx0sWu+YhWd8Y73a1qQxepHnSX5c61Li9OdJHqQXdZ7lLHygzR6i7Vg+6y3KWOlS5S9ydOcXdKvJupY9e1SgcedBNCCCGEEEIIIYQQQgip0/CgmxBCCCGEEEIIIYQQQkidhgfdFuJ2u9GiRQutbyvVKW9XG7pI9aC7LHepY6WLXfMRre6Md7pb1YYuUj3oLsuda11enOgi1YPustyljpUZotVdqgfdZblLHStdpO5PnOLulHg3U8eua5UOsbXdASfjcrmQnJxsWXm72tBFqgfdZblLHStd7JqPaHVnvNPdqjZ0kepBd1nuXOvy4kQXqR50l+UudazMEK3uUj3oLstd6ljpInV/4hR3p8S7mTp2Xat0kHPk7kC8Xi9+/fVXeL1eS8rb1YYuUj3oLstd6ljpYtd8RKs7453uVrWhi1QPusty51qXFye6SPWguyx3qWNlhmh1l+pBd1nuUsdKF6n7E6e4OyXezdSx61qlAw+6LcYwDEvL29WGLlI96G4tEj0kettVxynujHfr61jdhtQ40UWqB92tRapHtLpL9DZTxylzbqaOU9yljpUZotVdqgfdrUWih0Rvu+o4xd0p8W6mjl3XqkjhQTchhBBCCCGEEEIIIYSQOg0PugkhhBBCCCGEEEIIIYTUaXjQbSFutxtZWVla31aqU96uNnSR6kF3We5Sx0oXu+YjWt0Z73S3qg1dpHrQXZY717q8ONFFqgfdZblLHSszRKu7VA+6y3KXOla6SN2fOMXdKfFupo5d1yod5PTEocTGxlpa3q42dJHqQXdrkegh0duuOk5xZ7xbX8fqNqTGiS5SPehuLVI9otVdoreZOk6ZczN1nOIudazMEK3uUj3obi0SPSR621XHKe5OiXczdey6VkUKD7otxDAMbNy4MeIbs+uWt6sNXaR60F2Wu9Sx0sWu+YhWd8Y73a1qQxepHnSX5c61Li9OdJHqQXdZ7lLHygzR6i7Vg+6y3KWOlS5S9ydOcXdKvJupY9e1SgcedBNCCCGEEEIIIYQQQgip0/CgmxBCCCGEEEIIIYQQQkidhgfdhBBCCCGEEEIIIYQQQuo0POi2ELfbjezsbK1vK9Upb1cbukj1oLssd6ljpYtd8xGt7ox3ulvVhi5SPeguy51rXV6c6CLVg+6y3KWOlRmi1V2qB91luUsdK12k7k+c4u6UeDdTx65rlQ5yeuJQSktLLS1vVxu6SPWgu7VI9JDobVcdp7gz3q2vY3UbUuNEF6kedLcWqR7R6i7R20wdp8y5mTpOcZc6VmaIVnepHnS3FokeEr3tquMUd6fEu5k6dl2rIoUH3RZiGAa2bNmi9W2lOuXtakMXqR50l+Uudax0sWs+otWd8U53q9rQRaoH3WW5c63LixNdpHrQXZa71LEyQ7S6S/Wguyx3qWOli9T9iVPcnRLvZurYda3SgQfdhBBCCCGEEEIIIYQQQuo0POgmhBBCCCGEEEIIIYQQUqfhQbfF6N6Q3cwN3O1oQxepHnS3FokeEr3tquMUd8a79XWsbkNqnOgi1YPu1iLVI1rdJXqbqeOUOTdTxynuUsfKDNHqLtWD7tYi0UOit111nOLulHg3U0fSF1ECQGxtd8DJxMTEoEOHDpaVt6sNXaR60F2Wu9Sx0sWu+YhWd8Y73a1qQxepHnSX5c61Li9OdJHqQXdZ7lLHygzR6i7Vg+6y3KWOlS5S9ydOcXdKvJupY9e1SgdZx+4OQymFQ4cOQSllSXm72tBFqgfdZblLHStd7JqPaHVnvNPdqjZ0kepBd1nuXOvy4kQXqR50l+UudazMEK3uUj3oLstd6ljpInV/4hR3p8S7mTp2Xat0qNVPdE+ZMgWzZ8/GL7/8goSEBPTr1w8PP/wwOnbsGLLee++9h0mTJmHr1q3Izs7Gww8/jGHDhlnSR6O4GPnLl+PgkiXI/Okn/LlmDeqfcAKS+vWD2+MJWKeo1Itlm/Zi8YY/sCVnH7KaNsSAjo3Rv30G4mNjgrZxaOlSHNiyBWlZWUg+/viQbejW0e2TGffqtGGHh3Ybv+zB/za6sUqtx4BOTUK2YaZfunVsbUPDvRzDMLBjxw5kZ2cjJiZ4WTs8zKwpXXc7PMzUsWOtV2t8BeVFqfldap4zO752zKGVa93XVoQ5zkwd2/OJoDxn6x7Iwuu6XWvdjuu6RPfqxImkfawd8e4kd1/dCHOpmeu62TakXdvMuEuMX6nXNrPxq7N3kLiXM1NH6h5e9LmDsPdtTlnr0vcnkuLdLne7cKlaPHYfMmQILrroIhx77LEoLS3FnXfeiZ9//hnr1q1DUlJSwDrLly/HiSeeiClTpuD000/HzJkz8fDDD2PVqlXo2rVr2Dbz8vKQmpqK3NxcpKSkhCxrFBdj30svI//bb6FcLvx58CAa1a8Pl1JIOu44NLzyiioTWFTqxYuLNmPZpn1wuRRUSRFccfFQyoX+7Rvi6oHtKgSJfxtwu3HYMJDgdgOGEbQN3Tq6fTLjXt027PAw08ahv/YhuUHDkG2Y6ZdundpoIxJ3f7xeLzZu3BhyI2eHh5k1petuh4ddcaK71mtifCXkRan5XWqeq8742jGHVq11fyLJcWbq1FY+kZDnamMPZMV13a61bsd1XaJ7deNEyj7Wjnh3krs/keRSM9f16rQh6dpmxl1i/Eq9tlUnfiPdO0jcy0mNEzvivS6cbVj1vs0pa70u7E+kxLtd7tVF5yy3Vm9d8vnnn2P06NHo0qULunfvjunTp2Pbtm1YuXJl0DpPP/00hgwZgokTJ6Jz58544IEH0LNnTzz77LM13r/85cuR/+23iGvSBJ7WreFNSYGndWvENWmC/G+/Rf7y5VXqLNu0F8s27UNmaj1kZSShYWIssjKSkJlaD8s278OyTXtDtoH09LBt6NbR7ZMZ95poww4PnTbaNExCqgdo0zB0G2b6pVvH7jYiddfFDg8za0rX3Q4PM3XsWOvVHV8peVFqfpea56o7vnbMoRVr3Q5qI59IyXN274Gsuq7btdbtuK5LdK+JOJGwj7Uj3p3krouZ63p125BybTPjLjF+pV7baiN+JezlzNSRuoeXfu4g6X2bU9Z6XdmfSIh3u9ztRNQ9unNzcwEA6enpQcusWLECp556aoXHBg8ejBUrVgQsX1RUhLy8vAo/AFBSUhL25+CSJVAuF5CQAMMwAJT9+RESEqBcLhxcsqRKncW/7IHLpZAQ54YyFNwuF5RR9rsLCot/2ROyDZfLFbYN3Tq6fTLjXhNt2OGh04a/d6g2zPRLt47dbUTq7v9TWlqKmJgYlJaWBi1jh4eZNaXrboeHXXGiu9arO75S8qLU/C41z1V3fO2YQyvWum6Ok5oXpeY5u/dAVl3X7VrrdlzXJbrXRJxI2MfaEe9OctfNpWau69VtQ8q1zYy7xPiVem2rTvxGuneQuJeTGid2xHtdOduw4n2bU9Z6XdmfSIh3u9xr4idSavXWJf4YhoEzzzwTBw4cwNKlS4OW83g8eP311zFixAjfY88//zzuu+8+7Nmzp0r5yZMn47777qvy+MyZM5GYmBiyT5kzZsBVXAJvgI/Fx+TlQXnisHvkyAqPT/vVjRIvkBrgU/q5xUBcDHBZB6NabejW0e0T29Brw446UtvQxQ4PO9atk+JEd7yckhelekjNc3aMr8Q5tAMn5ROJa12qRzTPoVPiRGJedJK7LlLbcEqcSI1FiXtlM0hct2bqOKUN7sfljW+07k/smkM73KtLQUEBLr744ohuXVKrX0bpz7hx4/Dzzz+HPOQ2wx133IGbbrrJ93teXh5atmyJQYMGhR2cP9esQdGvG+Fp1QqGUfZFEi1atIDb7Ubx778jvkM2elb6EsxVaj1+2XMILRsmAVAoLi6BxxMHwAXvvnx0apKMYcM6B2yjcvlgbejW0e2TGffqtmGHh24bhmFg544daP63d7A2zPRLt47dbUTq7o9SCnl5eUhJSYHL5QpYxg4PM2tK190Oj+rOoVVrvbrjKyUvSs3vUvNcdcbXjjm0aq37E0mOM1OnNvKJlDxn9x7Iquu6XWvdjuu6RPfqxomUfawd8e4kd38iyaVmruvVaUPStc2Mu8T4lXptq078Rrp3kLiXM1NH6h5e+rmDpPdtTlnrdWF/IiXe7XKvLuV354gEEbcuGT9+PD799FMsXLgQLVq0CFk2MzOzyie39+zZg8zMzIDl4+PjkZKSUuEHAOLi4sL+1D/hBLiUAg4fhttdNlRutxs4fBgupVD/hBOq1BnQqQmUcuFwSdnH9wsLC+Fylf2u4MKATk2CtuFyuf8uH7oN3Tq6fTLjXt027PDQbcPfO1QbZvqlW8fuNiJ19/+JiYnB3r17ERMTE7SMHR5m1pSuux0edsWJ7lqv7vhKyYtS87vUPFed8bVjDq1a67o5TmpelJrn7N4DWXVdt2ut23Fdl+he3TiRso+1I96d5K6bS81c16vThqRrmxl3ifEr9dpWnfiNdO8gcS8nNU7siPe6cLZh1fs2p6z1urA/kRLvdrnXxE+k1OonupVSuO666/Dhhx9i0aJFyMrKClunb9+++Oqrr3DDDTf4HluwYAH69u1b4/1L6tcPhT+v9X3DaczBgyj+/XffN5wm9etXpU7/9hn4aUculm3eBzcAo6QUf5UUwADQv11D9G+fEbQNuF2AoVB84C/ACN6Gbh3dPplxr24bdnjotuGCwqFiwLsvHwquoG2Y6ZduHbvbiNRdFzs8zKwpXXc7PMzUsWOtV3d8peRFqfldap6rzvjaMYdWrXU7qI18IiXP2b0Hsuq6btdat+O6LtG9unEiZR9rR7w7yV0XM9f16rQh6dpmxl1i/Eq9ttkdv1L2cmbqSN3DSz93kPS+zSlrvS7sT6TEu13udlKr9+i+9tprMXPmTHz00Ufo2LGj7/HU1FQkJCQAAP71r3+hefPmmDJlCgBg+fLlGDBgAKZOnYrhw4dj1qxZeOihh7Bq1Sp07do1bJt5eXlITU2N6L4uAGAUFyN/+XIcXLIE23/6CS2PPhr1TzgBSf36we0JcAMbAEWlXizbtBeLN/yBLTn7kNW0IQZ0bIz+7TMQHxsTtI1DS5fiwJYtSMvKQvLxx4dsQ7eObp/MuFenDTs8tNv4ZQ/+t/F3dM9ujQGdmoRsw0y/dOvY2oaGezlerxcbN25EdnY2YmKCl7XDw8ya0nW3w8NMHTvWerXGV1BelJrfpeY5s+NrxxxaudbLiTTHmaljez4RlOds3QNZeF23a63bcV2X6F6dOJG0j7Uj3p3kXk6kudTMdd1sG9KubWbcJcav1Gub2fjV2TtI3MuZqSN1Dy/63EHY+zanrHXp+xNJ8W6Xe3XQOstVtQiAgD/Tpk3zlRkwYIAaNWpUhXrvvvuu6tChg/J4PKpLly7qs88+i7jN3NxcBUDl5uZq9bW4uFjNmTNHFRcXR1zH6/Wqbdu2Ka/Xa0l5u9rQdZfqoVvHjjk3U8cp7lLHSmK8m6njFHfGO92taiNa412p6HV3SrybqeMUd8Y73SOB8U53q9qQOFZ8z8p4t6oNusuKEyetdTPonOXW+q1LwrFo0aIqj51//vk4//zzLehRzeJ2u9GyZUvLytvVhi5SPeguy13qWOli13xEqzvjne5WtaGLVA+6y3LnWpcXJ7pI9aC7LHepY2WGaHWX6kF3We5Sx0oXqfsTp7g7Jd7N1LHrWqWDiC+jdCqGYWDv3r0wDMOS8na1oYtUD7rLcpc6VrrYNR/R6s54p7tVbegi1YPusty51uXFiS5SPeguy13qWJkhWt2letBdlrvUsdJF6v7EKe5OiXczdey6VunAg24LUUph7969EX1y3Ux5u9rQRaoH3WW5Sx0rXeyaj2h1Z7zT3ao2dJHqQXdZ7lzr8uJEF6kedJflLnWszBCt7lI96C7LXepY6SJ1f+IUd6fEu5k6dl2rdOBBNyGEEEIIIYQQQgghhJA6DQ+6CSGEEEIIIYQQQgghhNRpeNBtIS6XC6mpqXC5XJaUt6sNXaR60F2Wu9Sx0sWu+YhWd8Y73a1qQxepHnSX5c61Li9OdJHqQXdZ7lLHygzR6i7Vg+6y3KWOlS5S9ydOcXdKvJupY9e1SofY2u6Ak3G73WjatKll5e1qQxepHnSX5S51rHSxaz6i1Z3xTner2tBFqgfdZblzrcuLE12ketBdlrvUsTJDtLpL9aC7LHepY6WL1P2JU9ydEu9m6th1rdKBn+i2EMMwkJOTo/VtpTrl7WpDF6kedJflLnWsdLFrPqLVnfFOd6va0EWqB91luXOty4sTXaR60F2Wu9SxMkO0ukv1oLssd6ljpYvU/YlT3J0S72bq2HWt0oEH3RailEJubq7Wt5XqlLerDV2ketBdlrvUsdLFrvmIVnfGO92takMXqR50l+XOtS4vTnSR6kF3We5Sx8oM0eou1YPustyljpUuUvcnTnF3SrybqWPXtUoHHnQTQgghhBBCCCGEEEIIqdNE3T26y/+VIS8vT6teSUkJCgoKkJeXh7i4uIjqeL1eHDp0CHl5eYiJianx8na1oesu1UO3jh1zbqaOU9yljpXEeDdTxynujHe6M95rvk60ujsl3s3UcYo7453ujPfQ0J3xbkUbZuo4xV3qWEmMdzN1nOLulHg3U8dMG2YoP8ON5JPjUXfQffDgQQBAy5Yta7knhBBCCCGEEEIIIYQQQsJx8OBBpKamhizjUpJupGIDhmFg165dqF+/PlwuV8T18vLy0LJlS2zfvh0pKSkR1zv22GPx/fffW1bejjbMuEv00K1j15ybqeMUd4ljJTXezdRxijvjne5WlI/WeAei191J8a5bx0nujHe6h4PxTnfGe+33y442GO/y4t1MHae4OyXezdQx04YuSikcPHgQzZo1g9sd+i7cUfeJbrfbjRYtWpiun5KSohVUMTExlpa3qw1Az12qh5k6Vs+5mTpOcZc6VoC8eDdTxynujHe6W9UGEL3xDkSvuxPi3WwdJ7gz3ukeKYx3ulvRhsSxAvielfFuTRt0lxUngHPWuhnCfZK7HH4ZpcWMGzfO0vJ2taGLVA+6W4tED4nedtVxijvj3fo6VrchNU50kepBd2uR6hGt7hK9zdRxypybqeMUd6ljZYZodZfqQXdrkegh0duuOk5xd0q8m6lj17UqUqLu1iVmycvLQ2pqKnJzc235lwpJRKt7tHoDdKd7dLlHqzdAd7pHl3u0egN0p3t0uUerN0D3aHSPVm+A7nSPLvdo9TYDP9EdIfHx8bj33nsRHx9f212xnWh1j1ZvgO50jy73aPUG6E736HKPVm+A7nSPLvdo9QboHo3u0eoN0J3u0eUerd5m4Ce6CSGEEEIIIYQQQgghhNRp+IluQgghhBBCCCGEEEIIIXUaHnQTQgghhBBCCCGEEEIIqdPwoJsQQgghhBBCCCGEEEJInYYH3YQQQgghhBBCCCGEEELqNDzojoDnnnsObdq0Qb169dCnTx/83//9X213yXImT54Ml8tV4adTp0613S1L+Oabb3DGGWegWbNmcLlcmDNnToXnlVK455570LRpUyQkJODUU0/Fxo0ba6ezNUw499GjR1eJgyFDhtROZ2uQKVOm4Nhjj0X9+vXRuHFjnH322diwYUOFMoWFhRg3bhwaNmyI5ORk/POf/8SePXtqqcc1RyTuAwcOrDLvV199dS31uOZ44YUX0K1bN6SkpCAlJQV9+/bFvHnzfM87dc7DeTt1vgMxdepUuFwu3HDDDb7HnDrvlQnk7tS5D7eHceqch/N26nyXs3PnTlxyySVo2LAhEhIScPTRR+OHH37wPe/k/Vw4d6fu59q0aVPFy+VyYdy4cQCcu9bDeTt5rXu9XkyaNAlZWVlISEhAu3bt8MADD0Ap5Svj1LUeibtT1/rBgwdxww03oHXr1khISEC/fv3w/fff+5536pwD4d2dMuc1cSazf/9+jBw5EikpKUhLS8Pll1+OQ4cO2WhhjppwD3RdmDp1qo0WsuBBdxjeeecd3HTTTbj33nuxatUqdO/eHYMHD8Yff/xR212znC5duiAnJ8f3s3Tp0trukiXk5+eje/fueO655wI+/8gjj+A///kPXnzxRXz33XdISkrC4MGDUVhYaHNPa55w7gAwZMiQCnHw9ttv29hDa1i8eDHGjRuHb7/9FgsWLEBJSQkGDRqE/Px8X5kbb7wRn3zyCd577z0sXrwYu3btwrnnnluLva4ZInEHgCuuuKLCvD/yyCO11OOao0WLFpg6dSpWrlyJH374ASeffDLOOussrF27FoBz5zycN+DM+a7M999/j//+97/o1q1bhcedOu/+BHMHnDv3ofYwTp7zcHs3p873X3/9hf79+yMuLg7z5s3DunXr8Pjjj6NBgwa+Mk7dz0XiDjhzP/f9999XcFqwYAEA4Pzzzwfg3LUezhtw7lp/+OGH8cILL+DZZ5/F+vXr8fDDD+ORRx7BM8884yvj1LUeiTvgzLU+duxYLFiwAG+++SZ++uknDBo0CKeeeip27twJwLlzDoR3B5wx5zVxJjNy5EisXbsWCxYswKeffopvvvkGV155pV0Kpqmp86j777+/Qhxcd911dnRfJoqEpHfv3mrcuHG+371er2rWrJmaMmVKLfbKeu69917VvXv32u6G7QBQH374oe93wzBUZmamevTRR32PHThwQMXHx6u33367FnpoHZXdlVJq1KhR6qyzzqqV/tjJH3/8oQCoxYsXK6XK5jguLk699957vjLr169XANSKFStqq5uWUNldKaUGDBigrr/++trrlI00aNBAvfLKK1E150od8VYqOub74MGDKjs7Wy1YsKCCbzTMezB3pZw796H2ME6e83B7N6fOt1JK3Xbbber4448P+ryT93Ph3JWKnv3c9ddfr9q1a6cMw3D0Wq+Mv7dSzl7rw4cPV2PGjKnw2LnnnqtGjhyplHL2Wg/nrpQz13pBQYGKiYlRn376aYXHe/bsqe666y5Hz3k4d6WcOedmzmTWrVunAKjvv//eV2bevHnK5XKpnTt32tb36mL2PKp169bqySeftLGnsuEnukNQXFyMlStX4tRTT/U95na7ceqpp2LFihW12DN72LhxI5o1a4a2bdti5MiR2LZtW213yXa2bNmC3bt3V4iB1NRU9OnTJypiAAAWLVqExo0bo2PHjrjmmmuwb9++2u5SjZObmwsASE9PBwCsXLkSJSUlFea9U6dOaNWqlePmvbJ7OTNmzEBGRga6du2KO+64AwUFBbXRPcvwer2YNWsW8vPz0bdv36iZ88re5Th9vseNG4fhw4dXmF8gOtZ6MPdynDr3wfYwTp/zcHs3p873xx9/jF69euH8889H48aN0aNHD7z88su+5528nwvnXo7T93PFxcV46623MGbMGLhcLsev9XIqe5fj1LXer18/fPXVV/j1118BAP/73/+wdOlSDB06FICz13o493KcttZLS0vh9XpRr169Co8nJCRg6dKljp7zcO7lOG3OKxPJHK9YsQJpaWno1auXr8ypp54Kt9uN7777zvY+1xQ68T116lQ0bNgQPXr0wKOPPorS0lK7uyuG2NrugGT27t0Lr9eLJk2aVHi8SZMm+OWXX2qpV/bQp08fTJ8+HR07dkROTg7uu+8+nHDCCfj5559Rv3792u6ebezevRsAAsZA+XNOZsiQITj33HORlZWFzZs3484778TQoUOxYsUKxMTE1Hb3agTDMHDDDTegf//+6Nq1K4Cyefd4PEhLS6tQ1mnzHsgdAC6++GK0bt0azZo1w5o1a3Dbbbdhw4YNmD17di32tmb46aef0LdvXxQWFiI5ORkffvghjjrqKKxevdrRcx7MG3D2fAPArFmzsGrVqgr3MyzH6Ws9lDvg3LkPtYdx8pyH27s5db4B4LfffsMLL7yAm266CXfeeSe+//57TJgwAR6PB6NGjXL0fi6cOxAd+7k5c+bgwIEDGD16NADn5/dyKnsDzs3tAHD77bcjLy8PnTp1QkxMDLxeL/79739j5MiRAJz93i2cO+DMtV6/fn307dsXDzzwADp37owmTZrg7bffxooVK9C+fXtHz3k4d8CZc16ZSOZ49+7daNy4cYXnY2NjkZ6eXqfjINL4njBhAnr27In09HQsX74cd9xxB3JycvDEE0/Y2l8p8KCbBMT/X4a7deuGPn36oHXr1nj33Xdx+eWX12LPiJ1cdNFFvv8/+uij0a1bN7Rr1w6LFi3CKaecUos9qznGjRuHn3/+2bH3oA9FMHf/e5kdffTRaNq0KU455RRs3rwZ7dq1s7ubNUrHjh2xevVq5Obm4v3338eoUaOwePHi2u6W5QTzPuqooxw939u3b8f111+PBQsWVPk0jNOJxN2pcx9qD5OQkFCLPbOWcHs3p843UPYPt7169cJDDz0EAOjRowd+/vlnvPjii77DXqcSiXs07OdeffVVDB06FM2aNavtrthKIG8nr/V3330XM2bMwMyZM9GlSxesXr0aN9xwA5o1a+b4tR6Ju1PX+ptvvokxY8agefPmiImJQc+ePTFixAisXLmytrtmOeHcnTrnRI+bbrrJ9//dunWDx+PBVVddhSlTpiA+Pr4We1Y78NYlIcjIyEBMTEyVb+fes2cPMjMza6lXtUNaWho6dOiATZs21XZXbKV8nhkDZbRt2xYZGRmOiYPx48fj008/xcKFC9GiRQvf45mZmSguLsaBAwcqlHfSvAdzD0SfPn0AwBHz7vF40L59exxzzDGYMmUKunfvjqefftrxcx7MOxBOmu+VK1fijz/+QM+ePREbG4vY2FgsXrwY//nPfxAbG4smTZo4dt7DuXu93ip1nDT3/vjvYZy+1v0Jt3dz0nw3bdrU91cq5XTu3Nl36xYn7+fCuQfCafu533//HV9++SXGjh3reywa1nog70A4aa1PnDgRt99+Oy666CIcffTRuPTSS3HjjTdiypQpAJy91sO5B8Ipa71du3ZYvHgxDh06hO3bt+P//u//UFJSgrZt2zp6zoHQ7oFwypz7E8kcZ2Zm4o8//qjwfGlpKfbv31+n48BsfPfp0welpaXYunWrld0TCw+6Q+DxeHDMMcfgq6++8j1mGAa++uqrCvc2jQYOHTqEzZs3o2nTprXdFVvJyspCZmZmhRjIy8vDd999F3UxAAA7duzAvn376nwcKKUwfvx4fPjhh/j666+RlZVV4fljjjkGcXFxFeZ9w4YN2LZtW52f93DugVi9ejUA1Pl5D4RhGCgqKnL0nAei3DsQTprvU045BT/99BNWr17t++nVqxdGjhzp+3+nzns490B/zuqkuffHfw8TTWs93N7NSfPdv39/bNiwocJjv/76K1q3bg3A2fu5cO6BcMp+rpxp06ahcePGGD58uO+xaFjrgbwD4aS1XlBQALe74hFGTEwMDMMA4Oy1Hs49EE5b60lJSWjatCn++usvfPHFFzjrrLMcPef+BHIPhNPmHIhsXfft2xcHDhyo8Cn/r7/+GoZh+P6xry5iNr5Xr14Nt9td5XYuUUNtfxumdGbNmqXi4+PV9OnT1bp169SVV16p0tLS1O7du2u7a5Zy8803q0WLFqktW7aoZcuWqVNPPVVlZGSoP/74o7a7VuMcPHhQ/fjjj+rHH39UANQTTzyhfvzxR/X7778rpZSaOnWqSktLUx999JFas2aNOuuss1RWVpY6fPhwLfe8+oRyP3jwoLrlllvUihUr1JYtW9SXX36pevbsqbKzs1VhYWFtd71aXHPNNSo1NVUtWrRI5eTk+H4KCgp8Za6++mrVqlUr9fXXX6sffvhB9e3bV/Xt27cWe10zhHPftGmTuv/++9UPP/ygtmzZoj766CPVtm1bdeKJJ9Zyz6vP7bffrhYvXqy2bNmi1qxZo26//XblcrnU/PnzlVLOnfNQ3k6e72AMGDBAXX/99b7fnTrvgfB3d/Lch9vDOHXOQ3k7eb6VUur//u//VGxsrPr3v/+tNm7cqGbMmKESExPVW2+95Svj1P1cOHcn7+eUUsrr9apWrVqp2267rcpzTl3rSgX3dvpaHzVqlGrevLn69NNP1ZYtW9Ts2bNVRkaGuvXWW31lnLrWw7k7ea1//vnnat68eeq3335T8+fPV927d1d9+vRRxcXFSinnzrlSod2dNOc1cSYzZMgQ1aNHD/Xdd9+ppUuXquzsbDVixIjaUoqY6rovX75cPfnkk2r16tVq8+bN6q233lKNGjVS//rXv2pTq1bhQXcEPPPMM6pVq1bK4/Go3r17q2+//ba2u2Q5F154oWratKnyeDyqefPm6sILL1SbNm2q7W5ZwsKFCxWAKj+jRo1SSillGIaaNGmSatKkiYqPj1ennHKK2rBhQ+12uoYI5V5QUKAGDRqkGjVqpOLi4lTr1q3VFVdc4Yh/5AnkDEBNmzbNV+bw4cPq2muvVQ0aNFCJiYnqnHPOUTk5ObXX6RoinPu2bdvUiSeeqNLT01V8fLxq3769mjhxosrNza3djtcAY8aMUa1bt1Yej0c1atRInXLKKb5DbqWcO+ehvJ0838GofNDt1HkPhL+7k+c+3B7GqXMeytvJ813OJ598orp27ari4+NVp06d1EsvvVTheSfv50K5O3k/p5RSX3zxhQIQcC6dutaVCu7t9LWel5enrr/+etWqVStVr1491bZtW3XXXXepoqIiXxmnrvVw7k5e6++8845q27at8ng8KjMzU40bN04dOHDA97xT51yp0O5OmvOaOJPZt2+fGjFihEpOTlYpKSnqsssuUwcPHqwFGz2q675y5UrVp08flZqaqurVq6c6d+6sHnrooTr3jx01iUsppaz8xDghhBBCCCGEEEIIIYQQYiW8RzchhBBCCCGEEEIIIYSQOg0PugkhhBBCCCGEEEIIIYTUaXjQTQghhBBCCCGEEEIIIaROw4NuQgghhBBCCCGEEEIIIXUaHnQTQgghhBBCCCGEEEIIqdPwoJsQQgghhBBCCCGEEEJInYYH3YQQQgghhBBCCCGEEELqNDzoJoQQQgghpI7hcrkwZ84c0/UXLVoEl8uFAwcOVKsfo0ePxtlnn12t1yCEEEIIIaQm4EE3IYQQQgghlfjzzz9xzTXXoFWrVoiPj0dmZiYGDx6MZcuW1XbXaoR+/fohJycHqamptd0VQgghhBBCaoTY2u4AIYQQQggh0vjnP/+J4uJivP7662jbti327NmDr776Cvv27avtrtUIHo8HmZmZtd0NQgghhBBCagx+opsQQgghhBA/Dhw4gCVLluDhhx/GSSedhNatW6N379644447cOaZZ/rKPfHEEzj66KORlJSEli1b4tprr8WhQ4d8z0+fPh1paWn49NNP0bFjRyQmJuK8885DQUEBXn/9dbRp0wYNGjTAhAkT4PV6ffXatGmDBx54ACNGjEBSUhKaN2+O5557LmSft2/fjgsuuABpaWlIT0/HWWedha1btwYtX/nWJeV9/eKLL9C5c2ckJydjyJAhyMnJ8dXxer246aabkJaWhoYNG+LWW2+FUqrC6xqGgSlTpiArKwsJCQno3r073n//fQCAUgqnnnoqBg8e7Ku3f/9+tGjRAvfcc0/oSSGEEEIIISQMPOgmhBBCCCHEj+TkZCQnJ2POnDkoKioKWs7tduM///kP1q5di9dffx1ff/01br311gplCgoK8J///AezZs3C559/jkWLFuGcc87B3LlzMXfuXLz55pv473//6zsMLufRRx9F9+7d8eOPP+L222/H9ddfjwULFgTsR0lJCQYPHoz69etjyZIlWLZsme+guri4OGLvgoICPPbYY3jzzTfxzTffYNu2bbjlllt8zz/++OOYPn06XnvtNSxduhT79+/Hhx9+WOE1pkyZgjfeeAMvvvgi1q5dixtvvBGXXHIJFi9eDJfLhddffx3ff/89/vOf/wAArr76ajRv3pwH3YQQQgghpNq4VOWPYRAAZZ9YKSkpqe1uEEIIIabweDxwu/nv2YSY5YMPPsAVV1yBw4cPo2fPnhgwYAAuuugidOvWLWid999/H1dffTX27t0LoOxT0pdddhk2bdqEdu3aASg72H3zzTexZ88eJCcnAwCGDBmCNm3a4MUXXwRQ9onuzp07Y968eb7Xvuiii5CXl4e5c+cCKPsyyg8//BBnn3023nrrLTz44INYv349XC4XAKC4uBhpaWmYM2cOBg0aVKWvixYtwkknnYS//voLaWlpAfv6/PPP4/7778fu3bsBAM2aNcONN96IiRMnAgBKS0uRlZWFY445xvePAunp6fjyyy/Rt29fX1tjx45FQUEBZs6cCQB477338K9//Qs33HADnnnmGfz444/Izs7WnSJCCCGEEEIqwHt0V0Iphd27d1f7G+gJIYSQ2sTtdiMrKwsej6e2u0JIneSf//wnhg8fjiVLluDbb7/FvHnz8Mgjj+CVV17B6NGjAQBffvklpkyZgl9++QV5eXkoLS1FYWEhCgoKkJiYCABITEz0HRwDQJMmTdCmTRvfIXf5Y3/88UeF9v0Pist/f+qppwL29X//+x82bdqE+vXrV3i8sLAQmzdvjti5cl+bNm3q61dubi5ycnLQp08f3/OxsbHo1auX7zYkmzZtQkFBAU477bQKr1tcXIwePXr4fj///PPx4YcfYurUqXjhhRd4yE0IIYQQQmoEHnRXovyQu3HjxkhMTPR9KoYQQgipKxiGgV27diEnJwetWrXitYwQk9SrVw+nnXYaTjvtNEyaNAljx47Fvffei9GjR2Pr1q04/fTTcc011+Df//430tPTsXTpUlx++eUoLi72HXTHxcVVeE2XyxXwMcMwTPfz0KFDOOaYYzBjxowqzzVq1Cji1wnUL50//iy/P/lnn32G5s2bV3guPj7e9/8FBQVYuXIlYmJisHHjxohfnxBCCCGEkFDwoNsPr9frO+Ru2LBhbXeHEEIIMU2jRo2wa9culJaWVjm8IoSY46ijjsKcOXMAACtXroRhGHj88cd9twl69913a6ytb7/9tsrvnTt3Dli2Z8+eeOedd9C4cWOkpKTUWB/8SU1NRdOmTfHdd9/hxBNPBFB265KVK1eiZ8+eAMrGJz4+Htu2bcOAAQOCvtbNN98Mt9uNefPmYdiwYRg+fDhOPvlkS/pNCCGEEEKiBx50+1F+T+7yT+AQQgghdZXyW5Z4vV4edBOiyb59+3D++edjzJgx6NatG+rXr48ffvgBjzzyCM466ywAQPv27VFSUoJnnnkGZ5xxBpYtW+a7x3ZNsGzZMjzyyCM4++yzsWDBArz33nv47LPPApYdOXIkHn30UZx11lm4//770aJFC/z++++YPXs2br31VrRo0aJG+nT99ddj6tSpyM7ORqdOnfDEE09UuN1f/fr1ccstt+DGG2+EYRg4/vjjkZubi2XLliElJQWjRo3CZ599htdeew0rVqxAz549MXHiRIwaNQpr1qxBgwYNaqSfhBBCCCEkOuG3VAWAf+JNCCGkrsNrGSHmSU5ORp8+ffDkk0/ixBNPRNeuXTFp0iRcccUVePbZZwEA3bt3xxNPPIGHH34YXbt2xYwZMzBlypQa68PNN9+MH374AT169MCDDz6IJ554AoMHDw5YNjExEd988w1atWqFc889F507d8bll1+OwsLCGv2E980334xLL70Uo0aNQt++fVG/fn2cc845Fco88MADmDRpEqZMmYLOnTtjyJAh+Oyzz5CVlYU///wTl19+OSZPnuz7FPh9992HJk2a4Oqrr66xfhJCCCGEkOjEpXRuvOdwCgsLsWXLFmRlZaFevXq13R1CCCHENLymEVJ3adOmDW644QbccMMNtd0VQgghhBBC6gz8RDeJmEWLFsHlclX4E9VwtGnTBk899ZRlfSIkGuFaJIQQQgghhBBCCKkID7odwujRo+FyuQL+2ee4cePgcrkwevRo+zsWITt27IDH40HXrl1ruyuiqevzHA3U1TmaPHkyXC6X7yc1NRUnnHACFi9eXNtdE0ldnWdCCCGEEEIIIcSp8KDbQbRs2RKzZs3C4cOHfY8VFhZi5syZaNWqVS32LDzTp0/HBRdcgLy8PHz33Xe13R3R1OV5jhbq6hx16dIFOTk5yMnJwYoVK5CdnY3TTz8dubm5td01kdTVeSaEyGfr1q28bQkhhBBCCCGa8KDbAopKvfj6lz247+O1GDdjFe77eC2+/mUPikq9lrbbs2dPtGzZErNnz/Y9Nnv2bLRq1Qo9evSo2MeiIkyYMAGNGzdGvXr1cPzxx+P777+vUGbu3Lno0KEDEhIScNJJJ2Hr1q1V2ly6dClOOOEEJCQkoGXLlpgwYQLy8/O1+q2UwrRp03DppZfi4osvxquvvqpVP9qIdJ4Nw8CUKVOQlZWFhIQEdO/eHe+//77vea/Xi8svv9z3fMeOHfH0009XaGv06NE4++yz8dhjj6Fp06Zo2LAhxo0bh5KSEutFawCjuBgHFy3C7n8/hB033Ijd/34IBxctglFcbGm7dXUtxsbGIjMzE5mZmTjqqKNw//3349ChQ/j111+1Xida4FokhBBCCCGEEELkwIPuGqao1IsXF23Gi4t+w/rdB1FY4sX63Qfx4qLf8OKizZYfdo8ZMwbTpk3z/f7aa6/hsssuq1Lu1ltvxQcffIDXX38dq1atQvv27TF48GDs378fALB9+3ace+65OOOMM7B69WqMHTsWt99+e4XX2Lx5M4YMGYJ//vOfWLNmDd555x0sXboU48eP1+rzwoULUVBQgFNPPRWXXHIJZs2apX1AV1MUFJcG/Sks8dZ4WbNEMs9TpkzBG2+8gRdffBFr167FjTfeiEsuucR3KwrDMNCiRQu89957WLduHe655x7ceeedePfddyu8zsKFC7F582YsXLgQr7/+OqZPn47p06eb7rtdGMXF2PfSy9j3yqso2rABqrAQRRs2YN8rr2LfSy9bfthdF9eiP0VFRZg2bRrS0tLQsWNH069jFqOgIPhPUVHkZQsLIyprFq5FQgghhBBCCCFEBi6llKrtTkihsLAQW7ZsQVZWFurVq2fqNb7+ZQ9eXPQbMlPrISk+1vd4flEpducV4uoBbXFypyY11WUfo0ePxoEDB/Dyyy+jZcuW2LBhAwCgU6dO2L59O8aOHYu0tDRMnz4d+fn5aNCgAaZPn46LL74YAFBSUoI2bdrghhtuwMSJE3HnnXfio48+wtq1a31t3H777Xj44Yfx119/IS0tDWPHjkVMTAz++9//+sosXboUAwYMQH5+PurVq+d7zVB/fjty5Eg0btwYTz75JADgH//4B2644YZaub9tm9s/C/rcSR0bYdplvX2/d570OQ6XBP6Hiz5Z6Xjnqr6+33s+sAD786serG6dOlyrf5HO83//+1+kp6fjyy+/RN++R/oxduxYFBQUYObMmQFff/z48di9e7fv06ajR4/GokWLsHnzZsTExAAALrjgArjdbsyaNUur73ZzcNEi7HvlVcQ1aQJ3UpLvcSM/HyV79qDh2MtRf+DAGm+3rq7FyZMn44EHHkBCQgIAoKCgAPXr18c777yDIUOG1Pg4hWN9p85Bn0sacCJa+bn+0qMnlN/tQ/xJPPZYtH7zDd/vv/btB+9ff1Up1/mX9Vr9qwtrsSauaYQQQgghhBBCSF0hNnwRosOSX/fC7XZVOOQGgKT4WLhdZc9bcdBdTqNGjTB8+HBMnz4dSikMHz4cGRkZFcps3rwZJSUl6N+/v++xuLg49O7dG+vXlx32rF+/Hn369KlQz/+QBgD+97//Yc2aNZgxY4bvMaUUDMPAli1b0Llz8IOqcg4cOIDZs2dj6dKlvscuueQSvPrqq/witxCEm+dNmzahoKAAp512WoV6xcXFFW6p8Nxzz+G1117Dtm3bcPjwYRQXF+Mf//hHhTpdunTxHawBQNOmTfHTTz9ZI1aD5C9bDpfbXeGQGwDcSUlwud3IX7bckoPucuraWgSAjh074uOPPwYAHDx4EO+88w7OP/98LFy4EL169YpcPorgWiSEEEIIIYQQQmTAg+4a5o+DRUjyxAR8LskTiz8OFgV8riYZM2aM75YFzz33nGXtHDp0CFdddRUmTJhQ5blIv4ht5syZKCwsrHCQV35A9+uvv6JDhw411t9IWHf/4KDPuV2uCr+vnHRqxGWX3nZS9ToWgFDzfOjQIQDAZ599hubNm1d4Lj4+HgAwa9Ys3HLLLXj88cfRt29f1K9fH48++miVLwONi4ur8LvL5YJhGDXqYgWlf/4Jd2JiwOfciYko/fNPy/tQl9YiAHg8HrRv3973e48ePTBnzhw89dRTeOutt2qkr5HScdXK4E/GVMyxHZYtDVIQgLviHbraf/VldboVEK5FQgghhBBCCCGk9uFBdw3TuH481u8+GPC5/OJStEoPfPBWkwwZMgTFxcVwuVwYPLjqwW27du3g8XiwbNkytG7dGkDZ7RK+//57320NOnfu7PtkZznffvtthd979uyJdevWVTgY0+XVV1/FzTffXOXT29deey1ee+01TJ061fRrmyHRE/mSsKpspISa56OOOgrx8fHYtm0bBgwYELD+smXL0K9fP1x77bW+xzZv3lzj/awtYhs1QtHft5OojFFQgPiWLS3vQ11ai8GIiYnB4SC3BbGSYP9IYWfZSOFaJIQQQgghhBBCah8edNcwJ3TIwNpdecgvKq1yj25DlT1vNTExMb7bHsTEVP10eVJSEq655hpMnDgR6enpaNWqFR555BEUFBTg8ssvBwBcffXVePzxxzFx4kSMHTsWK1eurPKlZ7fddhuOO+44jB8/HmPHjkVSUhLWrVuHBQsW4Nlnnw3bz9WrV2PVqlWYMWMGOnXqVOG5ESNG4P7778eDDz6I2FiGaSBCzXP9+vVxyy234MYbb4RhGDj++OORm5uLZcuWISUlBaNGjUJ2djbeeOMNfPHFF8jKysKbb76J77//HllZWbWhU+Mk9e+HwvXrYeTnV7lHtzIMJPXvZ3kf6spaLKe0tBS7d+8GcOTWJevWrcNtt91mcgSiA65FQgghhBBCCCGk9uEJYg3Tv30GftqRi2Wb98HtKrtdSX5x2SF3/3YN0b+99QfdAJCSkhLy+alTp8IwDFx66aU4ePAgevXqhS+++AINGjQAUHa7gw8++AA33ngjnnnmGfTu3RsPPfQQxowZ43uNbt26YfHixbjrrrtwwgknQCmFdu3a4cILL4yoj6+++iqOOuqoKofcAHDOOedg/PjxmDt3Ls4880wN8+gi1Dw/8MADaNSoEaZMmYLffvsNaWlp6NmzJ+68804AwFVXXYUff/wRF154IVwuF0aMGIFrr70W8+bNs6v7lpLUrx8Kf16L/G+/LbtXd2IijIKCskPu445DUj/rD7qBurEWy1m7di2aNm0KAEhMTES7du3wwgsv4F//+pemdfTBtUgIIYQQQgghhNQuLqWUqu1OSKGwsBBbtmxBVlYW6tWrZ/p1ikq9WLZpL5b8uhd/HCxC4/rxOKFDBvq3z0B8bOD7dxNCah6juBj5y5cjf9lylP75J2IbNUJS/35I6tcPbo+ntrtHiKXU1DWNEEIIIaS2GD16NNq3b4+77767VtofOnQoRo8erf0BEn+2bt2K9u3bo7S0tNr9adOmDd566y0cf/zx1X4tO0hOTsavv/6KZs2amX6N6dOn46233sKXX9b8d+2QIwwcOBBjx47FJZdcYmu7kydPxo4dO/DKK6/Y2q7TWbRoEcaOHYtNmzbVdldsxx2+CNElPjYGJ3dqgnvP7ILnRvbEvWd2wcmdmvCQmxCbcXs8qD9wIDLvuhMtnnoSmXfdifoDB/KQmxBCCCGEkBqkTZs2SExMRHJyMpo1a4YJEybA6/XWdrcCMnnyZHTp0gVut7vKLQErM2/ePO1D7tGjR+PBBx+sRg/tY9GiRVrf87NhwwacccYZaNSoETIyMnDuuedi165dQcsfOnRI+5C7TZs2WLo0xJfN1xF042DdunUYNGgQGjRogDZt2oQsu3XrVrhcLiQnJ/t+ZsyYUc0e24PL5cKOHTtquxuOY+DAgXjrrbdquxsi4EE3IYQQQgghhBBCqsX8+fNx6NAhLFmyBB988AFeffXV2u5SQNq3b48nnniiznwqWhK5ubk499xz8euvv2Lnzp1o0aIFRo8eXdvdqjVq8h9z4uLicNFFF+Hpp5+OqHxMTAwOHTrk+xk5cmSN9YVUpCb+GqMutOkUeNBNCCGEEEIIIYSQGqFdu3bo378/Vq9e7XvsuuuuQ7NmzZCWloZBgwZh27ZtvudcLhdeeOEFZGVlISMjA1OmTAn4unv27EG3bt3w/PPPAwD+/e9/o2nTpkhJScHRRx+NdevWRdS/Sy65BIMHD0ZiYmLYsv6fkvz222/Ro0cPpKSkoHnz5njyySerlH/99dcxY8YMPPDAA0hOTsbVV1/te+7ll19G06ZNkZmZiddff933+OHDhzF+/Hg0a9YMLVq0wNSpU0P2afny5ejQoQMaNmyIW265BYZh+J577rnnkJ2djYyMDIwaNQr5+fkAgF9//RXHH388UlJS0KRJE0ycOBFerxdDhw7Fb7/95vtUcDh69+6Nyy67DA0aNEB8fDzGjx+PFStWBC3v/+nd1157Da1bt0b9+vXRsWNHLFq0qEr5sWPHYtu2bRg0aFCFTykbhoFrrrkGKSkpOOqoo7Bq1SpfnW3btmH48OFo2LAhOnfujM8//zxgX+666y7fd+Ts2rULLpcLb7zxBoCyf6Tp378/gLLb/40bNw6ZmZlo1aoV7r//ft8YT548GSNGjMA///lPJCcn4+uvvw7oFSoOgpGdnY0xY8agQ4cOYcvqMHLkSLz00ksAymLH5XLhm2++AQC89NJLFQ7IN27ciF69eiElJQUXXnghioqKfM+9//776NKlC9LT03HmmWfijz/+AHDkrwLuv/9+pKeno02bNvjiiy8C9mXQoEEAgI4dOyI5ORlLliwBULYGzj//fNSvXx99+vTBli1bfHV++uknnHjiiWjQoAGOOeYY/PDDDwFf+88//8TQoUORlpaGjIwMjBgxwvfc119/7fPKzs72tbt9+3YMGzYMDRo0wFFHHYWPPvrIV2fgwIGYNGkSevXqhaSkJJSUlGDx4sU45phjkJaWhoEDB2Lz5s2+/o8YMQLp6elIT0/HCSecELCPf/31F4YMGYKMjAw0atQIV155pW+My8fx3nvvRUZGBu69996Ic8MDDzyAJUuWYOzYsUhOTsZDDz3key7YvOzfvx8XX3wxGjdujLZt21bISf4YhoEJEyYgIyMDaWlpOPbYY7F3714AwEMPPYTWrVsjJSUFffv2xZo1a3z12rRpg0cffRSdO3dG/fr1cc8992DDhg3o1asXUlNTq6yJYLnLFIr4OHz4sFq3bp06fPhwbXeFEEIIqRa8phFCCCHELlq3bq2WLFmilFJqw4YNKjMzUz322GO+599++2114MABVVBQoC677DJ11lln+Z4DoM477zx18OBB9dNPP6n4+Hi1adMmpZRSo0aNUg888IDasWOH6ty5s3r55ZeVUkqtX79etWjRQuXk5CjDMNT69etVTk6OUkqpKVOmqOHDh4ft8+DBg9W0adNClhkwYIB68803lVJK9enTR7311ltKKaX279+vVq1aFbBOeZ/L2bJliwKgJkyYoIqKitQXX3yhkpKSVF5enlJKqWuvvVaNGDFCHTx4UO3cuVMdddRR6pNPPgn42q1bt1b/+Mc/VE5Ojq/sK6+8opRS6t1331Vdu3ZVW7duVQUFBWrEiBHq5ptvVkopdeGFF6qHHnpIGYahDh06pL777jullFILFy5U7dq1CztWwXj55ZdVnz59gj4PQG3fvl0dOnRI1a9fX/36669KKaW2bt2qfvvtt6CO5bGklFLTpk1TsbGxaubMmaq0tFTddddd6sQTT1RKKeX1elW3bt3U008/rUpKStTy5ctVRkaG2r17d5XXnTdvnjr++OOVUkrNmjVLZWVlqSuuuEIppdTdd9+tbrvtNqWUUnfeeacaMGCA2r9/v/r9999Vdna2L07uvfdeFR8fr7744gvl9XpDelWOg0hZsWKFat26dcgy5THVtGlT1apVK3X99der/Pz8gGVfeOEFdckllyillJo6darKyspS//7/9u49KMrq/wP4e1kusuAuKHeEHQQMUPNucftCkoqXMkRBCfCSAnkJQVAjCBV0HEcBdUKcHEczB8fRMAitqSS1Gq+Vt7wWsClbAXlZkGV35fP7g+EZVnY34Psrv9Tn9dfz7HPOec7l4Yif83B2wwYiIoqPj6edO3cSUfuz7ufnRzU1NXT//n0KCAigPXv2EBHR2bNnyd3dnS5fvkwajYYyMzMpOjqaiNqfIbFYTJs2bSKtVku7du0iT09Po3XveCY65ObmkrW1NZ04cYK0Wi0lJCRQYmIiERGpVCpyc3Ojw4cPk06no7KyMvLw8DD4/5vVq1fTm2++SVqtltRqNX3zzTdERPTTTz9R//79qaKignQ6HdXW1tLt27eJiCg4OJgyMjJIrVZTVVUV2draCtfCwsLI29ubbt++TS0tLaRQKMjBwYFOnTpFOp2Otm/fTmPHjhX6+JVXXqHHjx+TVqulU6dOGWx7Q0MDlZeXk1qtprq6Oho1ahQVFhbq9eO6detIo9HQ48ePezQ3dJ6rujMuU6dOpZUrV5Jarabr16+Tq6srXbp0qUu5x48fpzFjxtDDhw9Jp9PRxYsXSaVSERHRkSNH6PfffyeNRkM5OTk0YsQIIZ9cLqewsDBqbGyk69evk5WVFU2cOJEUCgUplUpydnamEydOEJHpuas3ONDdCQcFGGOM/VPwv2mMMcYY+7vI5XKytbUlGxsbAkAzZ840+jvIjRs3aODAgcI5ALpw4YJwPm7cOCorKyOi9mDhokWLyNfXl/bt2yekuX37Njk6OgrBsd7oaaA7JCSE1q5dS42NjSbzGAt0NzQ0CJ85OjrS999/T21tbWRtbU337t0Tru3YsYPmzZtnsGy5XK5X5/fff58mTpwotOfAgQPCtStXrggB0/j4eEpOTqa6ujq98v6bQHfHGHz55ZdG03QOdEulUiorKyO1Wm2yXEOB7mHDhgnn165dI5lMRkTtQWFfX1+9/NHR0QbH9eHDhySRSKilpYWWLl1KxcXF5O/vT0Tt49wRQBw8eLAQgCMiKikpoUmTJhFRe1C245iITLbrrwx0q1QqunjxIul0OqqpqaGwsDBatmyZwbRXr14VApzTpk2j4uJiioyMJKL2vr5y5QoRtfdB58WpzMxMSk1NJSKi5ORkIThORPTo0SMyNzcnrVZLVVVVJJVK6cmTJ0RE1NzcTADo/v37ButjKNA9ffp04byyslIImJaWlgrPd4cxY8ZQVVVVl3Kzs7Pptdde67KAkp+fT3FxcV3SKxQKsrKyosePHwufzZkzhzZu3Cj0R8cxUfsCWsfCSAcHBweqrq6m3bt3U1BQEF29etVgm40pKSnRWzCQSCTCfNbTucFQoNvYuCiVSpJIJKTRaIT0K1eupNzc3C7lfvHFFzRkyBA6e/YstbW1GW1LS0sLiUQiIQgul8vpyJEjwvXx48fT1q1bhfOYmBghyG9q7uoN3rrEgM5/+sMYY4z1RUT0rKvAGGOMsX+R48ePQ6VS4ejRo7hw4QKampqEaxs2bICPjw+kUinGjx+PxsZGvbzOzs7CsUQi0cv78ccfQyKR6H0ppI+PD7Zu3YqsrCw4Oztj0aJFePTo0V/YOmD37t24du0afHx8EBISYnLLjqeJxWIMHDhQOO9oY319PVpaWhAQEAA7OzvY2dkhKysLv/32m9GyPDw89I6VSiWA9i08kpOThXJCQkJQX18PANi8eTM0Gg1GjhyJUaNGoaKioqfN11NXV4dJkyYhLy8PEyZM+NP0NjY2KC0txfbt2+Hs7IzZs2eb/BLLpxl7PhQKBaqrq4U229nZ4dNPPxX6pDOpVIrnnnsO586dw9dff42oqCihLefPnxe2Lqmrq4Onp6eQTy6X69V10KBB/2/t6i1bW1uMHj0aYrEYcrkcmzZtwkcffWQwbUBAAJqamlBTU4NLly5hwYIFuHLlCmpra6FSqTB06FAhral+3rBhg9DHHh4eMDc3x6+//goAcHR0hJmZmZAPgN7P8J8xdd+TJ0/qje/169cN9nFmZiY8PT0RFhYGPz8/4TsC7t69Cy8vry7p6+rq4OjoCGtra+EzU2OtUCiwf/9+vbo0Nzfj3r17SEhIQEREBKKioiCXy41uv6RSqZCYmIhBgwZBKpUiPT1dby50cXGBubk5APRqbniasXFRKBRQq9VwdHQUyt61a5cwnp1FREQgJSUFSUlJcHV1RUZGBrRaLYD27ZiGDh0KmUwGFxcXEJFee5ycnIRja2vrLuedx9nY3NUb5r3O+Q9kaWkJMzMz4YG3tLSESCR61tVijDHGeoSIUF9fD5FIBAsLi2ddHcYYY4z9S4hEIsyYMQPl5eXIz89HUVERTp48ieLiYlRVVcHX1xe3bt2Cn59ft8tcvnw5bt68idjYWBw+fFgIBCUkJCAhIQENDQ2YM2cOCgoKsHbt2r+oZe37Ch86dAg6nQ4lJSWYO3cuampquqTrSQzBwcEBVlZW+PnnnzFgwIBu5fnll1/0jl1dXQEA7u7uyM/Px8yZM7vkcXV1xZ49e0BEKC8vR0xMDO7fv9+reEdDQwNefvllJCUlITk5udv5pk6diqlTp6KpqQkpKSnIysrC3r17u6TrSZ3c3d3h7++vtzewKaGhoaioqEBLSwtcXFwQEhKCoqIiDB48GPb29gAANzc3KBQKeHt7A2gPwrm5uRmtn7F2/Z2xJDMzM6MvuYhEIoSEhGDnzp3w8/NDv379EBAQgPfeew9BQUHdqqe7uzvy8vKQnp7e5dqdO3f+6/qbuu/kyZNRXl7+p2mlUim2bduGbdu24cyZM5gwYQJeeukleHh4GNy/383NDfX19VCr1ejXrx+A9rEePny4kKZz37i7u2Px4sXYvn27wfuvX78e69evx40bNxAeHo7AwECEh4frpSkoKEB9fT1++OEHODg4YNeuXSgtLTV4v57ODT39ubG1te32HJCWloa0tDRhT/Nhw4YhPDwcK1aswMmTJzF69Gi0trbCxsamVy9bmZq7eoMD3Z2YmZnBy8sLSqXyb1mFY4wxxv4qIpEIgwYNglgsftZVYYwxxti/TEZGBsaNG4fs7GyoVCpYWFjAwcEBzc3NyM/P71FZIpEIe/fuRXR0NObPn4/9+/fj1q1bUCqVCAoKgkQigZWVVbd/59FqtXjy5Ana2tqg1WqhVquFl95MOXDgACIjIzFw4ED079/f6P2cnJwMBsANMTMzw7x587By5UoUFhZCKpXi5s2bUKlUGD9+vME8O3bswJQpU9DW1oaioiKsWLECALBw4UJs3LgRI0aMgLe3N5RKJS5duoTIyEgcPnwYQUFBwheCikQiiEQiODk5ob6+Hs3NzbCxsQEA7N27F2vXrjXYhkePHmHy5MmYPn061qxZ0602Au1fJHr+/HlERETAysoKEokET548MZi2o/9CQkL+tNwXXngBbW1t2LlzJ9544w0AwNmzZyGXy/Xeyu4QGhqKhQsXYtasWQCA//znP1iyZAni4+OFNLGxscjLy8PIkSPR1NSEgoICrF69usftMvQchIeHIzw83OCCDBGhtbUVGo0GRAS1Wg0zMzNYWlp2SXvu3DnY29vDx8cHSqUSb7/9Nl599VWj/RQaGor169cjIyNDaPfmzZuRnZ1tNE9nCxYsQHx8PCIiIjBixAj88ccfOH36NGbMmNGt/J119Evnt6WN6XjOjh49iunTpwtfCBkYGAiZTKaXtrKyEv7+/vDy8oJMJoNIJIJYLMbcuXMxcuRIHDt2DJGRkbh37x40Gg28vb0xevRo5ObmIi8vD2fOnEFFRQXWrVtnsC5xcXEICgrC7NmzERwcjObmZnz22WeYNWsWqqqq4OTkBH9/f0ilUpibmxucH1QqFSQSCWQyGWpra1FcXCwssDytp3NDT+Ydd3d3BAYGIjs7G++88w4sLS1x+fJlYRGkswsXLoCIMGrUKPTv3x8WFhYQi8VoamqCmZkZHB0dodPpkJub2617G2Jq7uoNDnQ/xdLSEp6entDpdEYnXsYYY+x/XccvIYwxxhhjfzd/f3+EhYVh27ZtyM3NRXBwMORyORwcHLBq1Sp8+OGHPSrP3Nwchw4dwrRp07B06VKkpKQgMzMTN27cgJWVFSZNmoS0tDQAwMaNG3H69GkcP37cYFmLFy/Gvn37AACff/45kpKSUFVV1eXty6cdO3YMqampaG1txZAhQ/DBBx8YTNcRSLWzs0NcXBxWrVplstzCwkJkZWVh+PDhUKlU8PX1NbkYEBMTg9DQUDQ2NiIxMRELFiwAAMydOxcPHjzAtGnTUFdXBxcXF6SkpCAyMhLnzp3D8uXLoVKp4OnpidLSUlhZWcHf3x8zZsyAh4cH2tra8ODBA9y9e1fYxuNpZWVl+O6773Dz5k0UFxcLn//ZNhVtbW3YvHkz4uLiIBaLERQUhN27dxtMu3r1arz11ltYtmyZ3j0MMTc3R2VlJVJTU/Huu++CiDB27FiUlJQYTB8aGgqVSiUE0Z8+B4CcnBykp6fDz88PFhYWWLRoEebNm9fjdj39HBQXF5vs29raWr0tNqytrREWFoavvvoKADB06FBkZWXh9ddfx507d5CVlYX6+nrY29sjKirK6HYZxtqdk5PTrcUEAAgKCsKWLVuQmJiI6upqDBgwADExMb0KdL/77ruIjo5Ga2srPvnkE5NpZTIZKisrkZaWhoULF8LCwgLBwcEIDAzskvbWrVtYsmQJGhsb4eTkhKKiIsjlcgDAkSNHkJmZidjYWOGvG7y9vXHw4EEkJSXByckJrq6u2LdvH3x9fQ3WxcvLCwcPHhTmHRsbG0yYMAGzZs2CUqlEUlISlEolZDIZUlJSEBoa2qWM1NRUxMbGwt7eHn5+foiKihLG15CezA3Lly/H/PnzsWXLFqxZswYvvviiyb49cOAA0tPTMXjwYGg0GgwbNgyFhYVd0j18+BArVqxAdXU1bGxsEBMTIzzvycnJeP7552FjY4OcnByDizLdYWruUigUCAgIwI8//mhw8coQEfEmnowxxhhjjDHGGGP/elOmTEFBQQH8/f2fdVX+UZRKJaKjo/Htt98+66ow9o/GgW7GGGOMMcYYY4wxxhhjfZrpTagYY4wxxhhjjDHGGGOMsf9xHOhmjDHGGGOMMcYYY4wx1qdxoJsxxhhjjDHGGGOMMcZYn8aBbsYYY4wxxhhjjDHGGGN9Gge6GWOMMcYYY4wxxhhjjPVpHOhmjDHGGGOMMcYYY4wx1qdxoJsxxhhjjDHGGGOMMcZYn8aBbsYYY4wxxhhjjDHGGGN9Gge6GWOMMcYYY4wxxhhjjPVpHOhmjDHGGGOMMcYYY4wx1qdxoJsxxhhjjDHGGGOMMcZYn/Z/nz9xvelqlskAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# the `-` sign is to sort in descending order because higher AUPIMO is better\n", + "# the rank values are 1 or 2 because there are only two models\n", + "# where 1 is the best and 2 is the worst\n", + "# when the scores are the same, 1.5 is assigned to both models\n", + "ranks = stats.rankdata(-np.stack([modela, modelb], axis=1), method=\"average\", axis=1)\n", + "ranksa, ranksb = ranks[:, 0], ranks[:, 1]\n", + "\n", + "num_samples = ranks.shape[0]\n", + "indexes = np.arange(num_samples)\n", + "\n", + "fig, ax = plt.subplots(figsize=(18, 2.5))\n", + "\n", + "# plot sample index vs score and their mean\n", + "ax.scatter(indexes, ranksa, s=30, color=\"tab:blue\", marker=\"o\", label=\"Model A\", zorder=3, alpha=0.6)\n", + "ax.axhline(ranksa.mean(), color=\"tab:blue\", linestyle=\"--\", label=\"Mean\", zorder=3)\n", + "ax.scatter(indexes, ranksb, s=30, color=\"tab:red\", marker=\"o\", label=\"Model B\", zorder=3, alpha=0.6)\n", + "ax.axhline(ranksb.mean(), color=\"tab:red\", linestyle=\"--\", label=\"Mean\", zorder=3)\n", + "\n", + "# configure the x-axis\n", + "ax.set_xlabel(\"Sample index\")\n", + "ax.set_xlim(0 - (eps := 0.01 * num_samples), num_samples + eps)\n", + "ax.xaxis.set_major_locator(IndexLocator(5, 0))\n", + "ax.xaxis.set_minor_locator(IndexLocator(1, 0))\n", + "\n", + "# configure the y-axis\n", + "ax.set_ylabel(\"AUPIMO Rank\")\n", + "ax.set_ylim(1 - 0.1, 2 + 0.1)\n", + "ax.yaxis.set_major_locator(FixedLocator([1, 1.5, 2]))\n", + "ax.invert_yaxis()\n", + "\n", + "# configure the grid, legend, etc\n", + "ax.grid(axis=\"both\", which=\"major\", linestyle=\"-\")\n", + "ax.grid(axis=\"x\", which=\"minor\", linestyle=\"--\", alpha=0.5)\n", + "ax.legend(ncol=4, loc=\"upper left\", bbox_to_anchor=(0, -0.15))\n", + "ax.set_title(\"AUPIMO scores ranks\")\n", + "\n", + "fig.text(\n", + " 0.9,\n", + " -0.1,\n", + " \"Ranks: 1 is the best, 2 is the worst, 1.5 when the scores are the same.\",\n", + " ha=\"right\",\n", + " va=\"top\",\n", + " fontsize=\"small\",\n", + ")\n", + "\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, blue seems to have a slight advantage, but -- again -- is it significant enough to be sure that model A is better than model B?\n", + "\n", + "Remember that AUPIMO is a recall metric, so it is basically a ratio of the area of anomalies. \n", + "\n", + "Is it relevant if model A has 1% more recall than model B in a given image?\n", + "\n", + "> You can check that out in [`701b_aupimo_advanced_i.ipybn`](./701b_aupimo_advanced_i.ipynb).\n", + "\n", + "We'll --arbitrarily -- assume that only differences above 5% are relevant." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABboAAAEsCAYAAAAFEQVZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0cElEQVR4nOydd3hUVfrHvzNppJBACBA6AUIRlQVRBFSwUIS1t0V0QcSKa8e2Fiwr2Ne1d1xFsQE2WEWko6goP5QOBhEIKCBJSEgymTm/PzDDTDLlnpu5N2/ufD/Pw6OZOWfO+ZzznveeOZnccSmlFAghhBBCCCGEEEIIIYSQBoq7vjtACCGEEEIIIYQQQgghhNQFHnQTQgghhBBCCCGEEEIIadDwoJsQQgghhBBCCCGEEEJIg4YH3YQQQgghhBBCCCGEEEIaNDzoJoQQQgghhBBCCCGEENKg4UE3IYQQQgghhBBCCCGEkAYND7oJIYQQQgghhBBCCCGENGh40E0IIYQQQgghhBBCCCGkQcODbkIIIYQQQgghhBBCCCENGh50E0IIIYQQQhyPy+XCNddcU9/dIIQQQgghFsGDbkIIIYQQUm88++yzcLlc6NevX8jnt2zZApfLhUcffTTk848++ihcLhe2bNnif2zw4MFwuVz+f9nZ2Tj66KPx6quvwufz+cuNHTsWGRkZQa9XXTc/Pz9ke3PnzvW/7vvvv1/r+dWrV+Oiiy5CmzZtkJKSgtatW2P06NFYvXp1tKEghBBCCCGE1AEedBNCCCGEkHpj2rRp6NixI7755hts2rQpZq/btm1bvPHGG3jjjTdw1113oaqqCpdeeinuuOOOqHUbNWqETZs24ZtvvgnZ30aNGoWsN2PGDPTp0wfz5s3DJZdcgmeffRaXXnop5s+fjz59+mDmzJl19iKEEEIIIYSEhgfdhBBCCCGkXigoKMCyZcvw+OOPo3nz5pg2bVrMXjsrKwsXXXQRLrroItxwww1YunQp2rZti6effhoejydi3c6dO6Nbt254++23gx4vLy/HzJkzMXLkyFp1Nm/ejIsvvhidOnXCqlWr8MADD+DSSy/F/fffj1WrVqFTp064+OKL8fPPP8fM0SrKy8uDPvluJ6WlpfXSLiGEEEIIafjwoJsQQgghhNQL06ZNQ9OmTTFy5Eice+65MT3orklaWhqOPfZYlJaW4vfff49aftSoUXjnnXeCDnw//vhjlJWV4fzzz69V/pFHHkFZWRlefPFFNG/ePOi5nJwcvPDCCygtLcXDDz8cte2nnnoKPXv2RFpaGpo2bYq+ffvirbfeCiqzfft2XHrppWjdujVSUlKQl5eHq666CpWVlf4yP//8M8477zxkZ2f7/T/99NOg11mwYAFcLhemT5+OO++8E23atEFaWhqKi4sBAMuXL8fw4cORlZWFtLQ0DBo0CEuXLg16jZKSElx//fXo2LEjUlJS0KJFCwwZMgTff/99RM9JkybB5XJhzZo1uPDCC9G0aVMcd9xxAIBVq1Zh7Nix6NSpExo1aoTc3FyMGzcOe/bsCfkamzZtwtixY9GkSRNkZWXhkksuQVlZWdSxfuCBB+B2u/HUU09pjT8hhBBCCJFHYn13gBBCCCGExCfTpk3D2WefjeTkZIwaNQrPPfccvv32Wxx99NGWtPfzzz8jISEBTZo0iVr2wgsvxKRJk7BgwQKcdNJJAIC33noLJ598Mlq0aFGr/Mcff4yOHTvi+OOPD/l6J5xwAjp27FjroLkmL730Eq699lqce+65uO6661BeXo5Vq1Zh+fLluPDCCwEAO3bswDHHHIN9+/bh8ssvR/fu3bF9+3a8//77KCsrQ3JyMnbt2oUBAwagrKwM1157LZo1a4bXX38dp59+Ot5//32cddZZQe3ef//9SE5Oxs0334yKigokJyfjyy+/xKmnnoqjjjoK99xzD9xuN1577TWcdNJJWLx4MY455hgAwJVXXon3338f11xzDQ477DDs2bMHS5Yswdq1a9GnT5+oY33eeechPz8fDz74IJRSAA7eC/3nn3/GJZdcgtzcXKxevRovvvgiVq9eja+//houlyvoNc4//3zk5eVh8uTJ+P777/Hyyy+jRYsWeOihh8K2e+edd+LBBx/ECy+8gMsuu8zw+BNCCCGEEJnwoJsQQgghhNjOihUrsG7dOv8naY877ji0bdsW06ZNi8lBt9frxe7duwEAu3fvxnPPPYfvv/8ep512GtLS0qLWz8/P93+S96STTsK+ffswe/ZsvPTSS7XKFhUVYceOHTjjjDMivuaRRx6Jjz76CCUlJWjcuHHIMp9++il69uyJ9957L+zr3H777di5cyeWL1+Ovn37+h+/7777/AfFU6ZMwa5du7B48WL/p6Qvu+wyHHnkkbjxxhtxxhlnwO0+9Med5eXl+O6775CamgoAUErhyiuvxIknnog5c+b4D5avuOIK9OzZE3feeSc+//xzf58vu+wyPPbYY/7Xu+WWWyKORSC9evWq9Ynpq6++GjfddFPQY8ceeyxGjRqFJUuW1PqFQu/evfHKK6/4f96zZw9eeeWVsAfdN998M5544gm89tprGDNmjP9xI+NPCCGEEEJkwluXEEIIIYQQ25k2bRpatmyJE088EQDgcrlwwQUXYPr06fB6vXV+/XXr1qF58+Zo3rw5evTogaeeegojR47Eq6++avg1LrzwQsyYMQOVlZV4//33kZCQUOuT0MDBW3cACHt4XU3189W3BQlFkyZNsG3bNnz77bchn/f5fJg1axZOO+20oEPuaqoPpGfPno1jjjnGf8gNABkZGbj88suxZcsWrFmzJqjemDFj/IfcALBy5Ups3LgRF154Ifbs2YPdu3dj9+7dKC0txcknn4xFixb5b+vSpEkTLF++HDt27IjoH44rr7yy1mOBfSkvL8fu3btx7LHHAkDIW6LUfI3jjz8ee/bsqTXWSilcc801ePLJJ/Hmm28GHXJXu0Qaf0IIIYQQIhcedBNCCCGEEFvxer2YPn06TjzxRBQUFGDTpk3YtGkT+vXrh127dmHevHnar1nzVhYdO3bE3Llz8cUXX2DJkiXYuXMnPvnkE+Tk5Bh+zb/97W8oKirCnDlzMG3aNPz1r38NeZhd/Vj1gXc4jByI33rrrcjIyMAxxxyD/Px8TJgwIeie2L///juKi4tx+OGHR2zrl19+Qbdu3Wo93qNHD//zgeTl5QX9vHHjRgAHD8Crf2FQ/e/ll19GRUUFioqKAAAPP/wwfvrpJ7Rr1w7HHHMMJk2apPWlmzXbBoC9e/fiuuuuQ8uWLZGamormzZv7y1W3G0j79u2Dfm7atCkA4I8//gh6/L///S+eeeYZPPXUUxg1alSt14k2/oQQQgghRC68dQkhhBBCCLGVL7/8EoWFhZg+fTqmT59e6/lp06Zh6NChAIBGjRoBAA4cOBDytaq/cLC6XDXp6ek45ZRT6tTPVq1aYfDgwXjsscewdOlSfPDBByHLZWVloVWrVli1alXE11u1ahXatGmDzMzMsGV69OiB9evX45NPPsH//vc/fPDBB3j22Wdx99134957762TTyQCP0ENwP9p7UceeQR/+ctfQtbJyMgAcPD+2McffzxmzpyJzz//HI888ggeeughzJgxA6eeeqp229WvuWzZMkycOBF/+ctfkJGRAZ/Ph+HDhwd9QWg1CQkJIV+7+lYu1QwcOBArV67E008/jfPPPx/Z2dlBz9fX+BNCCCGEkLrDg25CCCGEEGIr06ZNQ4sWLfDMM8/Uem7GjBmYOXMmnn/+ef8nedPS0rB+/fqQr7V+/XqkpaVpfVJbhwsvvBDjx49HkyZNMGLEiLDl/vrXv+Kll17CkiVLgm4XUs3ixYuxZcsWXHHFFVHbTE9PxwUXXIALLrgAlZWVOPvss/Gvf/0Lt99+O5o3b47MzEz89NNPEV+jQ4cOIcds3bp1/ucj0blzZwBAZmamoV8YtGrVCldffTWuvvpq/Pbbb+jTpw/+9a9/GTrorskff/yBefPm4d5778Xdd9/tf7z6U+Z1oUuXLnj44YcxePBgDB8+HPPmzav1CftI41/zFyqEEEIIIUQOvHUJIYQQQgixjQMHDmDGjBn461//inPPPbfWv2uuuQYlJSX46KOPABz8pO7QoUPx8ccfY+vWrUGvtXXrVnz88ccYOnRo2E/01pVzzz0X99xzD5599lkkJyeHLTdx4kSkpqbiiiuuwJ49e4Ke27t3L6688kqkpaVh4sSJEdurWTc5ORmHHXYYlFLweDxwu90488wz8fHHH+O7776rVb/6E8wjRozAN998g6+++sr/XGlpKV588UV07NgRhx12WMR+HHXUUejcuTMeffRR7N+/v9bzv//+O4CDt6GpeSuRFi1aoHXr1qioqIjYRjiq57Lmp7H//e9/m3q9mhx55JGYPXs21q5di9NOOy3orwWijT8hhBBCCJELP9FNCCGEEEJs46OPPkJJSQlOP/30kM8fe+yxaN68OaZNm4YLLrgAAPDggw/i2GOPRZ8+fXD55ZejY8eO2LJlC1588UW4XC48+OCDlvU3KysLkyZNilouPz8fr7/+OkaPHo0jjjgCl156KfLy8rBlyxa88sor2L17N95++23/J6XDMXToUOTm5mLgwIFo2bIl1q5di6effhojR470f/L4wQcfxOeff45Bgwbh8ssvR48ePVBYWIj33nsPS5YsQZMmTXDbbbfh7bffxqmnnoprr70W2dnZeP3111FQUIAPPvgAbnfkz7u43W68/PLLOPXUU9GzZ09ccsklaNOmDbZv34758+cjMzMTH3/8MUpKStC2bVuce+656NWrFzIyMvDFF1/g22+/xWOPPWZ4nAPJzMzECSecgIcffhgejwdt2rTB559/joKCAlOvF4pjjz0WH374IUaMGIFzzz0Xs2bNQlJSkqHxJ4QQQgghMuFBNyGEEEIIsY1p06ahUaNGGDJkSMjn3W43Ro4ciWnTpmHPnj1o1qwZevTogeXLl2PSpEl45ZVXsHfvXmRnZ2PIkCG455570L17d5stQnPeeeehe/fumDx5sv9wu1mzZjjxxBNxxx13RP0CSQC44oorMG3aNDz++OPYv38/2rZti2uvvRZ33nmnv0ybNm2wfPly3HXXXZg2bRqKi4vRpk0bnHrqqUhLSwMAtGzZEsuWLcOtt96Kp556CuXl5TjyyCPx8ccfY+TIkYZ8Bg8ejK+++gr3338/nn76aezfvx+5ubno16+f/xYsaWlpuPrqq/H5559jxowZ8Pl86NKlC5599llcddVVJkbxIG+99Rb+8Y9/4JlnnoFSCkOHDsWcOXPQunVr069Zk5NOOgnvvvsuzjnnHFx88cV46623DI0/IYQQQgiRiUvV/JtAQgghhBBCCCGEEEIIIaQBwXt0E0IIIYQQQgghhBBCCGnQ8KCbEEIIIYQQQgghhBBCSIOGB92EEEIIIYQQQgghhBBCGjQ86CaEEEIIIYQQQgghhBDSoOFBNyGEEEIIIYQQQgghhJAGDQ+6CSGEEEIIIYQQQgghhDRoEuu7A3bj8/mwY8cONG7cGC6Xq767QwghhBBCCCGEEEIIISQESimUlJSgdevWcLsjf2Y77g66d+zYgXbt2tV3NwghhBBCCCGEEEIIIYQY4Ndff0Xbtm0jlom7g+7GjRsDODg4mZmZhut5PB58/vnnGDp0KJKSkgzV8Xq92Lx5Mzp37oyEhISYl7erDV13qR66deyYczN1nOIudawkxruZOk5xZ7zTnfEe+zrx6u6UeDdTxynujHe6M94jQ3fGuxVtmKnjFHepYyUx3s3UcYq7U+LdTB0zbZihuLgY7dq185/pRiLuDrqrb1eSmZmpfdCdlpaGzMxMraDKyMhAZmam4QDRKW9XG7ruUj1069gx52bqOMVd6lhJjHczdZzizninO+M99nXi1d0p8W6mjlPcGe90Z7xHhu6MdyvaMFPHKe5Sx0pivJup4xR3p8S7mTpm2qgLRm5BzS+jJIQQQgghhBBCCCGEENKg4UE3IYQQQgghhBBCCCGEkAYND7otxO12Iz8/P+o3gpotb1cbukj1oLssd6ljpYtd8xGv7ox3ulvVhi5SPeguy51rXV6c6CLVg+6y3KWOlRni1V2qB91luUsdK12k7k+c4u6UeDdTx65rlQ5yeuJQqqqqLC1vVxu6SPWgu7VI9JDobVcdp7gz3q2vY3UbUuNEF6kedLcWqR7x6i7R20wdp8y5mTpOcZc6VmaIV3epHnS3FokeEr3tquMUd6fEu5k6dl2rjMKDbgvx+XwoKCiAz+ezpLxdbegi1YPustyljpUuds1HvLoz3uluVRu6SPWguyx3rnV5caKLVA+6y3KXOlZmiFd3qR50l+Uudax0kbo/cYq7U+LdTB27rlU68KCbEEIIIYQQQgghhBBCSIOGB92EEEIIIYQQQgghhBBCGjQ86LYY3Ruym7mBux1t6CLVg+7WItFDordddZzizni3vo7VbUiNE12ketDdWqR6xKu7RG8zdZwy52bqOMVd6liZIV7dpXrQ3Vokekj0tquOU9ydEu9m6kj6IkoASKzvDjiZhIQEdO3a1bLydrWhi1QPustylzpWutg1H/Hqzninu1Vt6CLVg+6y3LnW5cWJLlI96C7LXepYmSFe3aV60F2Wu9Sx0kXq/sQp7k6JdzN17LpW6VCvB92LFi3CI488ghUrVqCwsBAzZ87EmWeeGbHOggULcOONN2L16tVo164d7rzzTowdO9ayPlZUebF0024sXLcL/7fRje/VWgzq3hIDu+QgJTEhYl2lFEpLS5Geng6XyxW1LZ3y1f1atOF3FP5RhlZN03BC1+ZR+2WmDV13XW8zdewYKzNIc69LHV0kedgx577KSpQuW4bSpUtRXrgTjVrlIn3gQKQPGAB3cnLM6lRj1N1MG7prvS7jK2mt25Hf7RorO2Le7Pjq9MmOa1v1GilZvBi5P/6I31etQuPjj4+6Dpnf5eRr3Tpm5lw3l9q11nX7ZTbedftlprxOnbrEiZX7WDtyVl3qGKUuewcrrwnV6MaJtOu6nWOlg1Ou67rYEe9mPCTu5czUkbrWJc+htL2c1Pd6ZpG2P6lLv3SR+v7Faur1oLu0tBS9evXCuHHjcPbZZ0ctX1BQgJEjR+LKK6/EtGnTMG/ePIwfPx6tWrXCsGHDYt6/iiovnl+wGUs37YHLpeDxAut27cfanaX4cVsRrhzcOWLw+nw+bNu2Dfn5+UhIiH5xMlq+Zr+UpwL7yquwZkdJ1H6ZbUPHXdfbTB07xsoMktzrWkcXKR52zLmvshJ7XnwJpV9/DbjdOODzAcXFKF+7DuU/rUazyy+rtVE2U0fX3Uwbumu9ruMrZa3bkd/tGis7Yr6u42ukT3Zc2wLXiHK54Kr0oGLDRlSu3xB1HTK/y8jXunXMzLluLrVrrev2qy7xrtMvs+WN1olFnFixj7UjZ9W1jqHXjcHewYprgq671Ou63WNlFKdc13WxI97NeEjcy5mpI3WtS59DSXs5qe/16oKk/Uld+6WL1PcvVlOvN1I59dRT8cADD+Css84yVP75559HXl4eHnvsMfTo0QPXXHMNzj33XDzxxBOW9G/ppt1YumkPcrMaoWOzdGQlAx2bpSM3qxGWbt6DpZt2W9KuTr/yctLRLC0ReTmx7ZdUd13sGCsiCzvmvHTZMpR+/TWSWrZEcocOQHY2kjt0QFLLlij9+muULlsWkzp29Et3rUtdU7r9siPH2TVWdl8TdMfXaJ/qY+16MzNjvg6JceyIEzNzrptL7Vrruv1ySrzXNU4aeo63mrruHay6Jugidc4ljpVd/ZK4RuyIdzNIbUNi/JpZ61LHVyJO8bADjpVcGtQ9ur/66iuccsopQY8NGzYM119/fdg6FRUVqKio8P9cXFwMAPB4PPB4PBHbW7huF1wuhdQkN3w+H4CDv61ITXLDBYWF63bh+M7ZYet7vV54vV54PB5//UgYLV+zX0r5DPfLbBs67rreZurYMVbV8REtTuriYaaOHW3Y4W6VR13mHDDmXrJ4MZTLBaSm/tmGgs/ngys1FcrlQsnixWg0cGCd6+i6m2lDd63XdXylrHU78rtdY2VHnqvr+Brpkx3XtpprBDg4724D69Ap+R3Qz/GS8rVuHTNzrptL7Vrruv2qS7zr9MtseaN1YhEn1e5W7pWtyFl1rWPVnsaOa4Kuu9Trut1jFW/XdV13O+LdjIfEvZyZOlLXuvQ5lLSXk/peL5CGvI+tS7+cdD5lBh1vl1JKWdYTDVwuV9R7dHft2hWXXHIJbr/9dv9js2fPxsiRI1FWVobU1NRadSZNmoR777231uNvvfUW0tLSIvbptQ1ueLxAVoi/6iyqBJISgEu6WjeR9dkvqe66OMWDGMeOOc+dNg2uSg+8mZm1nksoLoZKTsLO0aPrXMeOfumOl9Q1JdHDrrGS6GKmT1LXLrEOO+LEjnxt11rX7ZdT4l1qPpF6PdTFKXsHqW1IHCu7+iVxjdgR72aQ2obE+JUaixLj3QxO8bADjpW9lJWV4cILL0RRUREyQ+TwQBrUJ7rNcPvtt+PGG2/0/1xcXIx27dph6NChUQfne7UW63btR7tm6fD5fNi+bRvatG0Lt9sN755SdG+ZgREjelitELFfNYlVv6S661KXsfJ4PJg7dy6GDBmCpKQkq7sqiobsXtf1YcT991WrULFhI5Lbt6/1XOUvvyClaz76jBhR5zq6mGlDd63bkX/MoNsvO3KcXWNlR56ry/ga7ZMd4xW4Rny+g/eTa/vnvMdqHTYEpOR4O+LEzJzr5lK71rpuv5wS73WNk4ae4+uCVXsaO64Jukidc7vHKt6u64FIiXczSNzLmakjda1Ln0MzWLWXc8q1zQ6cMucNheq7cxihQR105+bmYteuXUGP7dq1C5mZmSE/zQ0AKSkpSElJqfV4UlJS1OAY1L0l1u4sxQHPwT8/AAC3240DHh8UXBjUvWXE11BKoaioCFlZWYa/rdRI+cB+packoLKyEsnJySit8Ebtl5k2dN11vc3UsWOsqjESK2Y9zNSxo41qrHS3yiMWcw5Edm98/PGoXL8BOHAA7vQ0fxu+0jK4lELj44+vVddMHV13M23orvW6jq+UtW5HfrdrrOzIc3UZX6N9suPaFrRG/tw3uN1u4MCBqOvQafkdMJ7jJeVr3Tpm5lw3l9q11nX7VZd41+mX2fJG69Q1Tqzax9qRs+pap5pY72nsuCbouku9rts9VtXEy3Vd192OeDfjIXEvZ6aO1LUufQ4l7eWkvtcLRUPcx9a1X4AzzqfMoHO436AOuvv374/Zs2cHPTZ37lz079/fkvYGdsnBj9uKsHTzHrigsL/y4G9mFFwY2LkZBnbJiVjf5/Nh586daNy4seFvKzVSPrBfbgA+TzncSY3gA6L2y0wbuu663mbq2DFWZpDkXtc6ukjxsGPO0wcMQPlPq//8xnYXDvgUlNsF+BTSjz0W6QMGxKSOrruZNnTXel3HV8patyO/2zVWdsR8XcbXaJ/suLYFrhHlciGhpASVv/wCl4q+DpnfZeRr3Tpm5lw3l9q11nX7VZd41+mX2fJG69Q1Tqzax9qRs+paxwh13TtYdU3QdZd6Xbd7rIzilOu6LnbEuxkPiXs5M3WkrnXpcyhpLyf1vV5dkLQ/qWu/dJH6/sVq6vWge//+/di0aZP/54KCAqxcuRLZ2dlo3749br/9dmzfvh3//e9/AQBXXnklnn76adxyyy0YN24cvvzyS7z77rv49NNPLelfSmICrhzcGUe0zcLCdbvwf8V70L1lBgZ1b4mBXXKQklg/kxjUr/W/oaCwAnm5GRjUrUXM+iXVXRc7xorIwo45dycno9nll6HR4T2xf8kSHCgoQEpeHjKOOw7pAwbAnVz7Rl1m6tjRL921LnVN6fbLjhxn11jZfk3QHV+DfbJ77ZYsXgz1449I6ZqPxscfH7N1SIxjR5yYmXPdXGrXWtftl1Pivc5x0sBzvNXUee9g0TVBF6lzLnGs7OqXxDViR7ybQWobEuPXzFqXOr4ScYqHHXCsBKPqkfnz5ysAtf6NGTNGKaXUmDFj1KBBg2rV+ctf/qKSk5NVp06d1GuvvabVZlFRkQKgioqKtOpVVlaqWbNmqcrKSsN1qqqq1Nq1a1VVVZUl5e1qQ9ddqoduHTvm3Ewdp7hLHSuJ8W6mjlPcGe90t6qNeI13peLX3SnxbqaOU9wZ73Q3AuOd7la1IXGs+J6V8W5VG3SXFSdOWutm0DnLrddPdA8ePBhKqbDPT506NWSdH374wcJexQ6Xy4X09HTD96nRLW9XG7pI9aC7LHepY6WLXfMRr+6Md7pb1YYuUj3oLsuda11enOgi1YPustyljpUZ4tVdqgfdZblLHStdpO5PnOLulHg3U8eua5UODeoe3Q0Nt9uNdu3aWVberjZ0kepBd1nuUsdKF7vmI17dGe90t6oNXaR60F2WO9e6vDjRRaoH3WW5Sx0rM8Sru1QPustylzpWukjdnzjF3SnxbqaOXdcqHdz13QEn4/P5sHv3bvh8PkvK29WGLlI96C7LXepY6WLXfMSrO+Od7la1oYtUD7rLcudalxcnukj1oLssd6ljZYZ4dZfqQXdZ7lLHShep+xOnuDsl3s3UsetapQMPui1EKYXdu3dHvD1LXcrb1YYuUj3oLstd6ljpYtd8xKs7453uVrWhi1QPusty51qXFye6SPWguyx3qWNlhnh1l+pBd1nuUsdKF6n7E6e4OyXezdSx61qlAw+6CSGEEEIIIYQQQgghhDRoeNBNCCGEEEIIIYQQQgghpEHDg24LcblcyMrK0vq2Up3ydrWhi1QPustylzpWutg1H/Hqzninu1Vt6CLVg+6y3LnW5cWJLlI96C7LXepYmSFe3aV60F2Wu9Sx0kXq/sQp7k6JdzN17LpW6ZBY3x1wMm63G61atbKsvF1t6CLVg+6y3KWOlS52zUe8ujPe6W5VG7pI9aC7LHeudXlxootUD7rLcpc6VmaIV3epHnSX5S51rHSRuj9xirtT4t1MHbuuVTrwE90W4vP5UFhYqPVtpTrl7WpDF6kedJflLnWsdLFrPuLVnfFOd6va0EWqB91luXOty4sTXaR60F2Wu9SxMkO8ukv1oLssd6ljpYvU/YlT3J0S72bq2HWt0oEH3RailEJRUZHWt5XqlLerDV2ketBdlrvUsdLFrvmIV3fGO92takMXqR50l+XOtS4vTnSR6kF3We5Sx8oM8eou1YPustyljpUuUvcnTnF3SrybqWPXtUoHHnQTQgghhBBCCCGEEEIIadDwoJsQQgghhBBCCCGEEEJIg4YH3RbicrmQk5Oj9W2lOuXtakMXqR50l+Uudax0sWs+4tWd8U53q9rQRaoH3WW5c63LixNdpHrQXZa71LEyQ7y6S/Wguyx3qWOli9T9iVPcnRLvZurYda3SIbG+O+Bk3G43cnJyLCtvVxu6SPWguyx3qWOli13zEa/ujHe6W9WGLlI96C7LnWtdXpzoItWD7rLcpY6VGeLVXaoH3WW5Sx0rXaTuT5zi7pR4N1PHrmuVDvxEt4X4fD78+uuvWt9WqlPerjZ0kepBd1nuUsdKF7vmI17dGe90t6oNXaR60F2WO9e6vDjRRaoH3WW5Sx0rM8Sru1QPustylzpWukjdnzjF3SnxbqaOXdcqHXjQbSFKKZSWlmp9W6lOebva0EWqB91luUsdK13smo94dWe8092qNnSR6kF3We5c6/LiRBepHnSX5S51rMwQr+5SPeguy13qWOkidX/iFHenxLuZOnZdq3TgQTchhBBCCCGEEEIIIYSQBg0PugkhhBBCCCGEEEIIIYQ0aHjQbSFutxu5ublwu40Ns255u9rQRaoH3WW5Sx0rXeyaj3h1Z7zT3ao2dJHqQXdZ7lzr8uJEF6kedJflLnWszBCv7lI96C7LXepY6SJ1f+IUd6fEu5k6dl2rdEis7w44GZfLhSZNmlhW3q42dJHqQXe9OrpI9JDobVcdp7gz3q2vo4tEd4neZuo4Zc7N1HGKO9e68fJ2taGLVA+669XRRaKHHd5m2nGKu1QPuuvV0UWih0Rvu+o4xd0p8W6mjl3XKh3kHLk7EJ/Ph59//lnr20p1ytvVhi5SPeguy13qWOli13zEqzvjne5WtaGLVA+6y3LnWpcXJ7pI9aC7LHepY2WGeHWX6kF3We5Sx0oXqfsTp7g7Jd7N1LHrWqUDD7otRCmFyspKrW8r1SlvVxu6SPWguyx3qWOli13zEa/ujHe6W9WGLlI96C7LnWtdXpzoItWD7rLcpY6VGeLVXaoH3WW5Sx0rXaTuT5zi7pR4N1PHrmuVDjzoJoQQQgghhBBCCCGEENKg4UE3IYQQQgghhBBCCCGEkAYND7otxO12o23btlrfVqpT3q42dJHqQXdZ7lLHShe75iNe3RnvdLeqDV2ketBdljvXurw40UWqB91luUsdKzPEq7tUD7rLcpc6VrpI3Z84xd0p8W6mjl3XKh0S67sDTsblciEjI8Oy8na1oYtUD7rLcpc6VrrYNR/x6s54p7tVbegi1YPusty51uXFiS5SPeguy13qWJkhXt2letBdlrvUsdJF6v7EKe5OiXczdey6Vukg58jdgXi9XmzYsAFer9eS8na1oYtUD7rLcpc6VrrYNR/x6s54p7tVbegi1YPusty51uXFiS5SPeguy13qWJkhXt2letBdlrvUsdJF6v7EKe5OiXczdey6VunAg26L8fl8lpa3qw1dpHrQ3Vokekj0tquOU9wZ79bXsboNqXGii1QPuluLVI94dZfobaaOU+bcTB2nuEsdKzPEq7tUD7pbi0QPid521XGKu1Pi3Uwdu65VRuFBNyGEEEIIIYQQQgghhJAGjfZB99tvvx32uYkTJ9apM4QQQgghhBBCCCGEEEKILtoH3VdddRXmzJlT6/EbbrgBb775Zkw65RTcbjfy8vK0vq1Up7xdbegi1YPustyljpUuds1HvLoz3uluVRu6SPWguyx3rnV5caKLVA+6y3KXOlZmiFd3qR50l+Uudax0kbo/cYq7U+LdTB27rlU6aPdk2rRpGDVqFJYsWeJ/7B//+AfeffddzJ8/P6adcwKJiYmWlrerDV2ketDdWiR6SPS2q45T3Bnv1texug2pcaKLVA+6W4tUj3h1l+htpo5T5txMHae4Sx0rM8Sru1QPuluLRA+J3nbVcYq7U+LdTB27rlVG0T7oHjlyJJ599lmcfvrpWLFiBa6++mrMmDED8+fPR/fu3a3oY4PF5/Nh48aNhm/MrlverjZ0kepBd1nuUsdKF7vmI17dGe90t6oNXaR60F2WO9e6vDjRRaoH3WW5Sx0rM8Sru1QPustylzpWukjdnzjF3SnxbqaOXdcqHUwdu1944YXYt28fBg4ciObNm2PhwoXo0qVLrPtGCCGEEEIIIYQQQgghhETF0EH3jTfeGPLx5s2bo0+fPnj22Wf9jz3++OOx6RkhhBBCCCGEEEIIIYQQYgBDB90//PBDyMe7dOmC4uJi//Mulyt2PSOEEEIIIYQQQgghhBBCDGDooJtfMmkOt9uN/Px8rW8r1SlvVxu6SPWguyx3qWOli13zEa/ujHe6W9WGLlI96C7LnWtdXpzoItWD7rLcpY6VGeLVXaoH3WW5Sx0rXaTuT5zi7pR4N1PHrmuVDnJ64lCqqqosLW9XG7pI9aC7tUj0kOhtVx2nuDPera9jdRtS40QXqR50txapHvHqLtHbTB2nzLmZOk5xlzpWZohXd6kedLcWiR4Sve2q4xR3p8S7mTp2XauMon3QXVpairvuugsDBgxAly5d0KlTp6B/5BA+nw8FBQVa31aqU96uNnSR6kF3We5Sx0oXu+YjXt0Z73S3qg1dpHrQXZY717q8ONFFqgfdZblLHSszxKu7VA+6y3KXOla6SN2fOMXdKfFupo5d1yodDN26JJDx48dj4cKFuPjii9GqVSvel5sQQgghhBBCCCGEEEJIvaJ90D1nzhx8+umnGDhwoBX9IYQQQgghhBBCCCGEEEK00L51SdOmTZGdnW1FXxyJ7g3ZzdzA3Y42dJHqQXdrkegh0duuOk5xZ7xbX8fqNqTGiS5SPehuLVI94tVdoreZOk6ZczN1nOIudazMEK/uUj3obi0SPSR621XHKe5OiXczdSR9ESUAuJRSSqfCm2++iQ8//BCvv/460tLSrOqXZRQXFyMrKwtFRUXIzMw0XM/j8WD27NkYMWIEkpKSLOyhPOLVPV69AbrTPb7c49UboDvd48s9Xr0ButM9vtzj1Rugezy6x6s3QHe6x5d7vHpXo3OWq33s/thjj+Gzzz5Dy5YtccQRR6BPnz5B/8ghlFLYv38/jP4uQbe8XW3oItWD7rLcpY6VLnbNR7y6M97pblUbukj1oLssd651eXGii1QPustylzpWZohXd6kedJflLnWsdJG6P3GKu1Pi3Uwdu65VOmgfdJ955pm46aabcPPNN+Pcc8/FGWecEfSPHMLn82Hbtm1a31aqU96uNnSR6kF3We5Sx0oXu+YjXt0Z73S3qg1dpHrQXZY717q8ONFFqgfdZblLHSszxKu7VA+6y3KXOla6SN2fOMXdKfFupo5d1yodtL+M8p577rGiH4QQQgghhBBCCCGEEEKIKWTdMZwQQgghhBBCCCGEEEII0UT7E91erxdPPPEE3n33XWzduhWVlZVBz+/duzdmnWvouFwuJCcnw+VyWVLerjZ0kepBd1nuUsdKF7vmI17dGe90t6oNXaR60F2WO9e6vDjRRaoH3WW5Sx0rM8Sru1QPustylzpWukjdnzjF3SnxbqaOXdcqHbQPuu+99168/PLLuOmmm3DnnXfin//8J7Zs2YJZs2bh7rvvtqKPDRa3241OnTpZVt6uNnSR6kF3We5Sx0oXu+YjXt0Z73S3qg1dpHrQXZY717q8ONFFqgfdZblLHSszxKu7VA+6y3KXOla6SN2fOMXdKfFupo5d1yodtG9dMm3aNLz00ku46aabkJiYiFGjRuHll1/G3Xffja+//tqKPjZYlFLYt2+f1reV6pS3qw1dpHrQXZa71LHSxa75iFd3xjvdrWpDF6kedJflzrUuL050kepBd1nuUsfKDPHqLtWD7rLcpY6VLlL3J05xd0q8m6lj17VKB+2D7p07d+KII44AAGRkZKCoqAgA8Ne//hWffvppbHvXwPH5fNi5c6fWt5XqlLerDV2ketBdlrvUsdLFrvmIV3fGO92takMXqR50l+XOtS4vTnSR6kF3We5Sx8oM8eou1YPustyljpUuUvcnTnF3SrybqWPXtUoH7VuXtG3bFoWFhWjfvj06d+6Mzz//HH369MG3336LlJQUK/oYc1xJKSir9CKxsqrWc26XC42SEvw/l/1ZxuOpQoX34M9JyhWxbDVerxflHt/BOokIKnug0gsFFbL8gUovMlIjl63G5w0OpnKPF74Iv0lJSXAZLpuWfCg8PL5g90hlKzyHvBMSar9+alKC//49FVVeeH0qaKwC64QqCyBk+UaJCXC7D5atrPKhqsZCC6yTnuKOWBY4NOden0LSn4+FK1tNYsDweLw+eLzhyyYnuJGYcPB3TVU+FXa8apX1+iKOb1KCG0kBZSu9vrDjG1jW61OoqPIGuQfOeaLbjeTE2mWrCWwjJcnlL+vzKZTXKBtYvrLKh9SEhIhl/QTEq1IKBzzhyya4Xf75UErVWp+B1FzLNd0jlS2rrAo7H+FyRKj5qFm25roPrJOYAKQmm8snkda9xxM8Rlblk8qq8PEL1Fz3keNdJ5+EyxGh4l0nn6SluJEQJZ9Ul/f6FP4M96g5IiFgTnXyiTdKPqmZIyLFe6gcEW58w+WIUOUDy4Za92bzSUWVD2l/DnC0HBF4/YxW1u1yISngowE6+SRS/NYln1Sv+1Dj64IrYo4IjPlk5Q4qG2otB7bR2GA+8XqDxzOW+SRw3Vd6I8d7zXwSKd5DrXvdfBKqfEpiQsQcES6fRFr3Xu+hPVG0sgDgCmizem8Qjprr3mg+8fpUxHgPlSOM5JPAdW8mnwTGeyOXGymJkXOEmXyCGnMaLUfYkU8OVHpRGeL6BoTPEUbySc31WbNO4PW+vvJJYkC+C3z/EAqdfFJz3UeaD518Ei5HRMsnodZ9YLynuxP8ewOdfBItR7hhvKxOPqmZI4zmk+p1H2o/F65stXfNNhLcrog5IrBOchKM5xOP159PgMjrXjefJGiUDconEfbjoXJElTf0HiVcjggX75FyhG4+CZzzrKSkiGUD2wj85Gm0HJEckK+jlQ1c954Y5pNQOSJcvIfLEaHmI/D9Q6gcEVgnNdkVdB4Rbt17vV5Umcwnoc4YAglayyry+VStda+ZT8LFb7gcUdd8UvO8MNRarp7zCo8XSQHxHmndK818UnMf4Q4Tv7XWvUY+0Tk3CCxbVhlhH1YD7YPus846C/PmzUO/fv3wj3/8AxdddBFeeeUVbN26FTfccIPuy9UL7W/8AMc+uizkcyd2a47XLjnG//NR938REJCJuOWbL/3P9cvLxjtX9Pf/fNxD87G3NPjLOQ9SgCPbZuGja47zP3LK4wuxfd+BkH3Ib/E75t44yP/z6U8vwcbf9ocs26ZJI7xyZhv/z+e/8BVWbSsKWTY7PRnf3nGS/+cxr36D5QWhvzw0NSkBa+8f7v/51fVu3Lz8y5BlAWDLlJH+/7/p/VWY89MuAAUhy665b5g/eO+Y8RM++H5bwLPBdVbceQqaZRz8BcoDn6zFG1//UuPVDpVffMuJaJedBgB49PP1eHHRz2F6W4DPbzgBXVs2BgA8M38Tnpy3MUzZRHTuXYyj8nIAAK8tLcDkOevClAWmXXo0mv35/29/sxV3f7g6bNlXx/bFSd1bAgC+3FyCx//7Rdiyz1zYByOPbAUA+HzNb/jH9AKEG99Hzj0S5/VtBwBYtPF3jJv6XcCzwXXuO6Mn/t6/IwDgm4K9GPVS4O2HguP99lO744pBnQEAP20vwhnPLA3T2wJcd3I+bhjSFQCw6ff9GPrEorBu449TuPOvPQEA2/cdwPEPzw9b9qJ+7XFRj4NJfW9pJY56IPyYndOnLR4+53AAwAGPF0fcG77siCNy8ezoo/w/3/JNsHsgNXPEMQ/O/zNH1J6P6DniUB3jOaIA+S0yNHJEIZbedrL/50g5omlaEib1OvRztBzx06Qh/p+venMF5q//PWRZIDhHPLz4Nyx5M3T8AsE54s5ZP2HGDzsQLt4j54jgOpFzRPCcG88RBfhwwkD0atcEgJEckYOB+S0ARM8RL1/cB23/3BPM+mE7Jr6/KmzZwByxdGspRkbIJ4E5YvGmPRHjPXKOCB7f6DniUHnjOaIAl5/QCXeM6AHASI7w4oGzDv7VWbQccVbv1hjc6OD/H/B4cdjdn4UtO+KIXDz1t7/4f45UtmaOuOCdLaioCh2/NXPEoEcWYm+ZB6HiPXqOOFTHWI44OO9tmqRi6W2H9gYR9xFp2/D93UP9P0fLETNHd/T/HC1HbP7XoT3Hje+uxOwfd4YtG5gj/rPsd3zxRrjrfXCOmDxnPaZFiPfIOSJ4TqLniEPljeeIArx92bHo3/ngTiJajrj35Fx073bw/6PliP9ccKT//z9bvQsT3vo+bNnAHPHd9rKI+SQwR3y7ZS9GTwu/P4mcI4LrRM8Rh8obyxEH5/3iYzvg/jMP7g2i5Yize1fg8Qt6A4ieI049vCWu65vh/zlajnj574f2HMHvNYKpmSPGvP8LiipCj2/4HFE75qPniENtGM8RBchOT8b3dx3aG0TOEVuD3mtEyxH/G9vZ///RcsT/3XWov7XfawQTmCNe/HY3PomQTwJzxGNzN+DlJVsQLt4j54jgOtFzxKHyxnLEwTkPfK8RLUfcMbilP59EyxEPnXM4eh1UC/FeI5jAHPHTrvKI+SQwR6zeUYyzIuST8DmidrxHzxGH2jCeIwpwTp+2eOz8gxvn6DmiDM9d1Nf/c6Syg7s2x20DMv0/R8sRb4479LrhzyNq54jLZ/6K30pDj2/kHBFcJ3qOOFTeeI4oqHUeET5HHJzzwPca0XLErNF5/v+PliO+CTg/CX0ecYjAHDH1+z34IEI+CcwRzy3cjP98GT7ew+eI2vEePUccasN4jigIeq8RLUfcOLA5evyZT6LliEmn9cCxfx6g1H6vEUxgjvi1FOh1f/jzqZo54swI+SRyjgiuEz1HHCpvPEcU1DqPCF82EZ/u+z+8Pq6f/5HIOaIp7h2U7f9ZJ0cMe3Ixtu8rD1m2Zo649pNt2Lov9PhqvdfQ2EdEQvuge8qUKf7/v+CCC9ChQwcsW7YM+fn5OO2007Q7QOqKC+np6VrfiKpT3myf4hUz4+tyubT+GkLQl9nGBN1YlBfv0rH2W5zNxHtiovFLj9PmTsvH5Pg2aiB/XdXQMBvvzopgPazO1y6XC4lJ2ltZx9CoUSNLc6TL5UKjRo20yjsJPR/r9+Mul8t5m0ANrN7PuVwuJCUmRS8YUN5JNEpJMR6/mvEOHByv1FTj+cR5F0+d/Z898V79aeJ4JE0nX0N/PlwuV9Anbo214hxSNPKJ7vXTDE7L13qYy9fp6ekwGpculwtul/ZdsS3FpWJ4x/DvvvsOffv2jV6wHikuLkaTnBbYsaMQmZmNaz0f/tYlHnz22ecYNmyoP2lFu3VJpNeNdDuSaH9yHKms2T8DiFTW4/Hgw09mY8jQoWETts7rhrsdSV3LRrvVgG7Z6jk/feSpaJSSbOh1o/05YSDR/lQoXFmdPxHU/XPCQ7cuqR3v0W5dEki0PyM2Wzban/+YLRu4Pj0eD2Z+PDvIPVxZQG/dS88RHo8HC774HCNGjEBSUpIl+cRIWbtzRKh418kn0W5LEK6shBxxoLwCH8/+X9h4D5cjQtHQcoTP68W8z/+HESNGIDEx0XCOAKxb93bliMCYT05KtnwfEeuyZnPE/gMVmD0nfLzHeh9RjYQc4fJ58flnB+Pd5U6wfB8RivrKEYHx3igl2fJ9BCAnR1R6Kmtd3wB57zViXTYRPsyZMwcjRoyAz+UW+16jmljmiMB4T2+UIva9RijqmiNC7efClQ2HHe81gNiu+wT4MHv2bIwYMQKeMLdxCPW6Dek8IlzZwDnPSk81/LoN5TyimtC3Lgkd79Lea1iRIzweDz75dDZOGhL+fErCe41Y54jqOR8xfBgy0hpFLKvzuuHKSssRxcUlaNU8G0VFRcjMzAxXHYCJT3Tv378fCQkJSE09lEhWrlyJu+66C7Nnz651DzWJKE8F0pITggYwHP7DXpdCSsLBn5PCfHqo5uv5fD7s3bsX2dnZcLuDf8MRONGhykcrG1hn9+7d/jYCAzNc+eo2opUNJMkd2T2Q5AQX9u79I6R3TaoXfqSxqlnWSPnkRDeSa3zXanAdV8SywKE5TzBQNrCN3bv3IDs7OyhpR8Ln86Hoj8jugbhdQFnxPkPlE/+8IBkZ3wS3y3C8B5YN9AjVhjtE2Zrlo5UNrBMY79HWcGAbRtZ7NdHWeiCNEt1Rx7aa6j4YmY+a6z5W+STSuve4gi84VuQTn8+H/UXG8gMAJLldKNkX+3wSuJajxXss8kl1+UbZ2aj+7Xi0HBEY7zr5ZJ9GPklMcBuO9+p1r5tPopUPte5jkU9crsj5xONRhsvWbMNoPvH5fIbzNaCXT6rXvZl8Ehzzwc+FWstm8okd+xOfz2c4PwBASqLxeK9ey7r5JJb7k0jrvmY70XJEYLwnBrxZjYRuPnFBGY53nXzirmM+CYr3gL1kuHVvJp/YsT/RzSepyQlIdCUainmdfFJzfUaqU1/5xOPx+P8/8P1DJHTzSaIbKN5nbD6syieh1n1gvAeuc518Ei1HBM6HTj75w+D1DdDLJ9Xr3sj7dZ18Emrdh6ujk0+A2ucGNevo5BOP59Ahok4+KS02Hu+pyQmG4hc4tJbtyCeBcx6tbGAbe/bs8bcRLUcEltfJJ8X7NPbjJvKJkXgPXPdm8km4OpHWfV3ySYKBeK/G7TL+fh0m8omR+A1c97HMJ0DotVw95yk14juW+aR2v6LHvG4+0TmHDCxbFeFctCaGP1/+66+/on///sjKykJWVhZuvPFGlJWV4e9//zv69euH9PR0LFsW+r7X8YpSCrt374bRD83rlrerDV2ketBdlrvUsdLFrvmIV3fGO92takMXqR50l+XOtS4vTnSR6kF3We5Sx8oM8eou1YPustyljpUuUvcnTnF3SrybqWPXtUoHwx9xnDhxIsrLy/Hkk09ixowZePLJJ7F48WL069cPmzdvRtu2ba3sJyGEEEIIIYQQQgghhBASEsMH3YsWLcKMGTNw7LHH4vzzz0dubi5Gjx6N66+/3sLuEUIIIYQQQgghhBBCCCGRMXzrkl27diEvLw8A0KJFC6SlpeHUU0+1rGNOwOVyISsrS+sb2HXK29WGLlI96C7LXepY6WLXfMSrO+Od7la1oYtUD7rLcudalxcnukj1oLssd6ljZYZ4dZfqQXdZ7lLHShep+xOnuDsl3s3UsetapYPWl1EGfyGUG8nJyTHvkJNwu91o1aqVZeXtakMXqR50l+Uudax0sWs+4tWd8U53q9rQRaoH3WW5c63LixNdpHrQXZa71LEyQ7y6S/Wguyx3qWOli9T9iVPcnRLvZurYda3SwfAnupVS6Nq1K7Kzs5GdnY39+/ejd+/e/p+r/5FD+Hw+FBYWwufzRS9sorxdbegi1YPustyljpUuds1HvLoz3uluVRu6SPWguyx3rnV5caKLVA+6y3KXOlZmiFd3qR50l+Uudax0kbo/cYq7U+LdTB27rlU6GD7ofu211/Dvf/8bTzzxBJ544gm89tprePLJJ/0/V/8jh1BKoaioSOvbSnXK29WGLlI96C7LXepY6WLXfMSrO+Od7la1oYtUD7rLcudalxcnukj1oLssd6ljZYZ4dZfqQXdZ7lLHShep+xOnuDsl3s3UsetapYPhW5eMGTPGyn4QQgghhBBCCCGEEEIIIaYw/IluQgghhBBCCCGEEEIIIUQiPOi2EJfLhZycHK1vK9Upb1cbukj1oLssd6ljpYtd8xGv7ox3ulvVhi5SPeguy51rXV6c6CLVg+6y3KWOlRni1V2qB91luUsdK12k7k+c4u6UeDdTx65rlQ6Gb11C9HG73cjJybGsvF1t6CLVg+6y3KWOlS52zUe8ujPe6W5VG7pI9aC7LHeudXlxootUD7rLcpc6VmaIV3epHnSX5S51rHSRuj9xirtT4t1MHbuuVTrwE90W4vP58Ouvv2p9W6lOebva0EWqB91luUsdK13smo94dWe8092qNnSR6kF3We5c6/LiRBepHnSX5S51rMwQr+5SPeguy13qWOkidX/iFHenxLuZOnZdq3QwfdC9e/du7N69O5Z9cRxKKZSWlmp9W6lOebva0EWqB91luUsdK13smo94dWe8092qNnSR6kF3We5c6/LiRBepHnSX5S51rMwQr+5SPeguy13qWOkidX/iFHenxLuZOnZdq3TQOujet28fJkyYgJycHLRs2RItW7ZETk4OrrnmGuzbt8+iLhJCCCGEEEIIIYQQQggh4TF8j+69e/eif//+2L59O0aPHo0ePXoAANasWYOpU6di3rx5WLZsGZo2bWq48UWLFuGRRx7BihUrUFhYiJkzZ+LMM88MW37BggU48cQTaz1eWFiI3Nxcw+1aTXnZAayY8Rl+n78I3t92YV2Llmh+4gk46uxhaJSWWufydvTJrjZEj9WXi1BRuB2ffrgQzU+KrYdd7qbbsNDdDg8zmHG3Azvc7UDiWjeD1Fxqug1h8a6L1PmQmhd1511qvnYKUsdKavxajVPySVAd5ngRbdhBPM+5RHfu5fSQuA6l5h879nJ2uEh1lzjvTjqfsguXMvj58uuvvx7z5s3DF198gZYtWwY9t3PnTgwdOhQnn3wynnjiCcONz5kzB0uXLsVRRx2Fs88+2/BB9/r165GZmel/vEWLFnC7jX04vbi4GFlZWSgqKgp6jWh4PB7Mnj0bI0aMQFJSUthy5WUHMPfOR5C4cgWU242q5BQkVlbA5fOh6i9HYcgDE4MmXbd8TZRSKCoqQlZWVthvOa1rG0bczbQhfax8bjcOwIVUKLhj6GGXe13asMrdDg/dOTfrrttGXftllXsgRvOc1R52rHUz3nbHoqQ8Z8bFbHkzHvF2batrHSPzLjVf16WObo4z04aktR6IpH2sxGub1P24HWtd16OudexYI5Ku63WpY8c+1sp+6dZxSrw7cS9npo6kta7br4ZwTbBqL6frYaYdqe4S3+s56Xyqruic5Rq+dcmsWbPw6KOP1jrkBoDc3Fw8/PDDmDlzplZHTz31VDzwwAM466yztOq1aNECubm5/n9GD7ntYMWMz5C4cgUqs3PgadUWqllzeFq1RWXTZkj8vxVYMeOzOpWvicvlQpMmTSIuprq2YYW3mTq2j1VuG5RnZMKT2yamHna516kNi9zt8AjEyJybdddto879ssi9LljlYcdaN4PtsSgoz5lxMVvelEecXdvqXMfAvEvN13Wto4tV8e6UPNcQ4sQKbzP9krrWdT3qWseuNWIE6TnLjn2slf3SreOUeHfiXs5MHUlrXbdfDeKaYNFeTtfDTDtS3SW+13PS+ZSdGD4hLiwsRM+ePcM+f/jhh2Pnzp0x6VQ0/vKXv6BVq1YYMmQIli5dGrFsRUUFiouLg/4BB3/7p/vPSL3fv1wEn9sN1SgVSilUVlZCKQWVmgblcuH3LxfVqXzNfxUVFdi4cSMqKipi1icz7mbaED9WOPjHDgqx9bDLvU5tWORuh4funJt1122jzv2yyF13rdvhYcdaN+NteywKynN1GV+r1kg8X9vqXMfAvEvN13Wto7sHtCrenZLnGkKcGHGXuh+3Y63XdXylrhEp13XbxyrOrusS492Jeznb4teitS5+DgXt5eyYQ6nuEt/rOel8Khb/jGL4Ht05OTnYsmUL2rZtG/L5goICZGdnG27YDK1atcLzzz+Pvn37oqKiAi+//DIGDx6M5cuXo0+fPiHrTJ48Gffee2+txz///HOkpaVp92Hu3LkRn68o3I4quFC+f/+hxyoqAACN4Ia3cDtmz55tunw41qxZE7M+hSOSu5k2GspYle4vjamHXe6xaCPW7nZ4hCLSnJt1120jVv2KtXsoouU53TYkrvVQxDq/m+mT1Dyn20YsykerE8/XtljViTTvUvN1LOro5jgzbUhY66GQsI+VeG2Tuh+3Y63resSqjh1rRMJ1PRZ17NjHWtEv3TpOiXcn7+XM1JGw1nX71ZCuCbHey+l6mGlHqrvE93pOOp+qK2VlZYbLGj7oHjZsGP75z39i7ty5SE5ODnquoqICd911F4YPH268lybo1q0bunXr5v95wIAB2Lx5M5544gm88cYbIevcfvvtuPHGG/0/FxcXo127dhg6dKj2Pbrnzp2LIUOGRLz/06cfLkTS1gIkZmQAUKis9CA5OQmAC8n796GyVRuMGDHCdPmaeL1ebN68GZ07d0ZCQkJM+mTG3Uwb0sdKQaF0fynSM9LhiqGHXe51acMqdzs8dOfcrLtuG3Xtl1XugRjNc1Z72LHWzXjbHYuS8pwZF7PlzXjE27WtrnWMzLvUfF2XOro5zkwbktZ6IJL2sRKvbVL343asdV2PutaxY41Iuq7XpY4d+1gr+6Vbxynx7sS9nJk6kta6br8awjXBqr2croeZdqS6S3yv56TzqbpSfXcOIxg+6L7vvvvQt29f5OfnY8KECejevTuUUli7di2effZZVFRUhD1stpJjjjkGS5YsCft8SkoKUlJSaj2elJRkOBnq1Gt+0gkofnUzXAfKoNLSABcAlwuusjK4lELzk04Iqq9bviZutxsJCQlISkoKu6Dq2oYRdzNtSB8rpB78xL8LLrgOxM7DLve6tGGVux0eunNu1l23jbr2yyr3UBjNj1Z52LHWzXjbHYuS8pwZF7PlzXjE27WtrnWMzLvUfF3XOoDeHtCqeHdKnmsIcWLEXep+3I61rutR1zp2rRFAxnW9LnXs2Mda2S/dOk6Jdyfu5czUkbTWdfvVEK4JVu3ldD3MtCPVXeJ7PSedT9UVndczfNDdtm1bfPXVV7j66qtx++23Q6mD94dxuVwYMmQInn76abRr106/t3Vk5cqVaNWqle3thuOos4dh7verkPx/K6CK/4A7KQWJnj+/fbTXUTjq7GF1Kl8Tt9uNtm3bRvxCzrq2YYW3mTq2j1XRXjSCG8n798GlVMw87HKvUxsWudvhEYiROTfrrttGnftlkXtdsMrDjrVuBttjUVCeM+Nitrwpjzi7ttW5joF5l5qv61pHF6vi3Sl5riHEiRXeZvolda3retS1jl1rxAjSc5Yd+1gr+6Vbxynx7sS9nJk6kta6br8axDXBor2croeZdqS6S3yv56TzKTtxqeoTaw3++OMPbNy4EQDQpUsX0/fm3r9/PzZt2gQA6N27Nx5//HGceOKJyM7ORvv27XH77bdj+/bt+O9//wsA+Pe//428vDz07NkT5eXlePnll/HUU0/h888/x8knn2yozeLiYmRlZaGoqEj71iWzZ8/GiBEjov4mobzsAFbM+Ay75y+G6489UE2bIefE43HU2cPQKC21zuXNUJc2jLqbaUPyWP3+5SJUFG5HSqs2aH7SCTH1sMvdbBtWutvhYQYz7nZgh3s1OnlOF4lrvRor87sZ4jnedYnna1td6hidd6n52ixW5jgzOCXPSY8TK9e6LlLXulTMzom067odxPOcS3TnXk4PO9a6XX2yug079nJ2uEh1lzjvTjqfqgtaZ7mqHpk/f74CUOvfmDFjlFJKjRkzRg0aNMhf/qGHHlKdO3dWjRo1UtnZ2Wrw4MHqyy+/1GqzqKhIAVBFRUVa9SorK9WsWbNUZWWl4TpVVVVq/fr1qqqqypLydrWh6y7VQ7eOHXNupo5T3KWOlcR4N1PHKe6Md7pb1Ua8xrtS8evulHg3U8cp7ox3uhuB8U53q9qQOFZ8z8p4t6oNusuKEyetdTPonOUavnXJuHHjDJV79dVXjb4kBg8e7L8FSiimTp0a9PMtt9yCW265xfDrS8Dn81la3q42dJHqQXdrkegh0duuOk5xZ7xbX8fqNqTGiS5SPehuLVI94tVdoreZOk6ZczN1nOIudazMEK/uUj3obi0SPSR621XHKe5OiXczdey6VhnF8EH31KlT0aFDB/Tu3Tvi4TQhhBBCCCGEEEIIIYQQYieGD7qvuuoqvP322ygoKMAll1yCiy66yPS9uQkhhBBCCCGEEEIIIYSQWGH4a3afeeYZFBYW4pZbbsHHH3+Mdu3a4fzzz8dnn33GT3iHwe12Iy8vT+ubiXXK29WGLlI96C7LXepY6WLXfMSrO+Od7la1oYtUD7rLcudalxcnukj1oLssd6ljZYZ4dZfqQXdZ7lLHShep+xOnuDsl3s3UsetapYNWT1JSUjBq1CjMnTsXa9asQc+ePXH11VejY8eO2L9/v1V9bNAkJhr+0Lyp8na1oYtUD7pbi0QPid521XGKO+Pd+jpWtyE1TnSR6kF3a5HqEa/uEr3N1HHKnJup4xR3qWNlhnh1l+pBd2uR6CHR2646TnF3SrybqWPXtcoopo/c3W43XC4XlFLwer2x7JNj8Pl82Lhxo+Ebs+uWt6sNXaR60F2Wu9Sx0sWu+YhXd8Y73a1qQxepHnSX5c61Li9OdJHqQXdZ7lLHygzx6i7Vg+6y3KWOlS5S9ydOcXdKvJupY9e1Sgetg+6Kigq8/fbbGDJkCLp27Yoff/wRTz/9NLZu3YqMjAyr+kgIIYQQQgghhBBCCCGEhMXw58uvvvpqTJ8+He3atcO4cePw9ttvIycnx8q+EUIIIYQQQgghhBBCCCFRMXzQ/fzzz6N9+/bo1KkTFi5ciIULF4YsN2PGjJh1jhBCCCGEEEIIIYQQQgiJhuGD7r///e9wuVxW9sVxuN1u5Ofna31bqU55u9rQRaoH3WW5Sx0rXeyaj3h1Z7zT3ao2dJHqQXdZ7lzr8uJEF6kedJflLnWszBCv7lI96C7LXepY6SJ1f+IUd6fEu5k6dl2rdDB80D116lQLu+FcqqqqkJycbFl5u9rQRaoH3WW5Sx0rXeyaj3h1Z7zT3ao2dJHqQXdZ7lzr8uJEF6kedJflLnWszBCv7lI96C7LXepY6SJ1f+IUd6fEu5k6dl2rjCLnyN2B+Hw+FBQUaH1bqU55u9rQRaoH3WW5Sx0rXeyaj3h1Z7zT3ao2dJHqQXdZ7lzr8uJEF6kedJflLnWszBCv7lI96C7LXepY6SJ1f+IUd6fEu5k6dl2rdDD8ie6zzz7bUDneo5sQQgghhBBCCCGEEEKInRg+6M7KyrKyH4QQQgghhBBCCCGEEEKIKQwfdL/22mtW9sNWUl0u+A4cgC8xhH5CAtwpKf4ffWVlB//r8cBVWQlfWRl8SUkHn3S74W7UqFZZ/89er7+OKykpuOyBA4BSocsfOICEjIyIZf3P+XxBN333lZcDkf5kICXFXz5aWXdamv//XR5PsHuEsr6KikPeCQm1yrpSU/1fbOqrrASqqoLHKqBOqLIAQpZ3NWoE159uqrIS6s+y/n4F1HGnp0csCxyac+X1An96hytbjUpM9I+v8nigPJ6wZV3JyXD9GYMuny/seNUsq6qqIo9vUhJc1f2tqoKqrAw/voFlvV6oioog98A5dyUmwvXnfZcCy/rHK3B8U1IOlfX5oMrLa/Wzuryq9ACpCRHL+uu4XIfGVymoAwfClkVi4sH17HZDKVVrfQZRY93XWusRyvrKysLPR5gcEXI+apatse6D6iQmwp2aGrZsUPma+STCuvfViFetfFJRAXi9YYsG5ZOqqsjxXmPdxyyfhMkRIeNdJ5+kpfnbCZtPquPd6wWqy0bJEerP+DVSNiif/BnvYce3Ro6IFO+hckTY8Q2TI0Lm68CyIda92Xziq6xEwp9rI1qOUAFrJmo+SUgAAvK7mXwScj5C5AjD+eTPdR9yPlyuiDkiKOaTk4PLhlj3gW0kNG4csWxgnaD9SZQcoZNPAte9y+s1nE9UQD4JGe8h1r12PgkV7ykpEXNE2HwSYd37vF64AmM4Wj4J+EL56r1BOALXvVY+CTNW/rIhcoShfBKw7k3lk8B4T02Fu7psmHVvJp/4gOB4j5IjDOeTGuteK58cOBB0DQ2K+TA5wlA+qbHua9YJek+gk08irHvdfKIC3uMFvn8IhVY+CVr3nsjxrpNPwuSIqPkkxLoPjHeVnn7o/YNOPomSI5TbfWh/Est8UiNHGM4nf677kO/Xw5T1e9dsIzExYo4IqpOSYjyfVFQgIXBtRFj3WvnE7fbvK42UDconf76/DzkfIXKEL9x70DA5Ily8R8oREfNJiHUfOOcI+GBmtHziCrgmRssRKjn5UL6Olk8C1n1M80mIHBE23sPkiJD5JPCMIVQ+CdyfpKYGnUeEW/c+rxeugDnVyichzhiCxiFgLePP85Nw51M11712PgmXg8LkiDrnk+TkkOeQQeWr57yiwn8+Fa6s/zmltPJJdY5wu93wHTjgj9Fa1Fj3WvlE4xwysKwv0nu1mk0qFeYENQRbtmzB3LlzUVlZicGDB6Nnz56GG5JCcXExth/TL+zz6YNOQPsXXvD/vK53n7Ab27Sjj0aHN/7r/3lD/wHw/vFHyLKNDj8cee+/5/9500knw7NjR8iyyV06o/Mnn/h/3vzXv6Jy0+aQZZNat0aXL+f5fy449zyU//RTyLIJTZui61fL/D//cvHfUfbttyHLulJT0f2H7wEAHo8HK887Dxnr1ocsCwA91q31//+2665HyWefhS3b7fsV/uDdcdvtKJo1K2zZ/GVLkZidDQDYed99+OOtt8OW7fzFF0hu2wYAsOvhR7D31VfDlu308UdIyc8HAPz+1NPY/cwzYcu2ffstNO7dGwCw55VX8Nsjj4Yt2/7115He7xgAwN5p07Dr/gfCv+7zz6Hx4MEAgH0zZqLwjjvClm3z7yeQOXw4AKD4f//D9utvCFu21YMPosnZZwEAShYswLYrrwpbtuVddyJ79GgAQOnyb7B1zJiwZVtMvBnNLr0UAHDgxx+x5bzzw5bNmTABzf9xDQCgYuNG/Hza6WHLZo8bh5a3TAQAVG7bjs2nnBK2bNMLRyH37rsBAFV792LjgIFhy2adeSZaT5kM4GBCX9/nqLBlGw8bhrZP/hvAwXjfdMSRYcs6OUe4mzbFuttuxYgRI5CUlGQ4RwDA1iuuQOnCRSHLAs7OER3fexepRxwBoOHliH3z5qFwwjVhyzo5RzQ+/XSsGDgAI0aMQILHYzhHAMDa7j3ClnVyjjC7jwBk5Igd90xC0TvvhC3r5ByR++ijWOStwogRI3Bg3jzuI2DdPgJgjqimvnJEp+Vf438LFmDEiBH4/a67uY8A32s4OUe0fvUVzJ49GyNGjEDBCYOYI8D3Gk7PER6PB/NeeAEdng4/Zk7OEWnHH48OL73o/zme9hGHrV+HoqIiZGZmhqxfjeEvo5w/fz569uyJK664Av/4xz/Qu3dvvPnmm0arEx0M/+rhYNH9+/fD6O8rlFJa5c1h5WvLRkF/fJVSqKgI/ynmUOWdhc5YSYx32Vi60k2Mr1IKVRE+CVGrvJmOCUZpJngz41se4a8inI6VS91svFvaKeFYna+VUvBUhf8Us9MpLy+39Pqmm0+08lsDQM9GL37Nxns872es3s8ppeCJ8FcRIWpY1pf6QCefmH2/c0Dj03jOi3Vr93/avVEKPseNsXH2l5Zavz/xhP8Uc63yDssnFRUa+xOb4j1e0T0vBAJiXqO8pC+iBDQ+0X3cccchJycHzz33HBo1aoQ777wTM2fOxI4wJ/xSKS4uRm6TJthRWIjMgD+X8xPm1iUejwefff45hg0diiSDty7xer3YtHkzunTujAQDty7xl+/SBUkGb13i9fmweds25OfnIyEhIeqfAaiUFGzcuBH5+flweTyG/mTA4/FgzocfYtiQIYfcw5QFAE9ZGTZt2HDQ2+CtBoLGysCtS0KVj3argcA6iQZuXVI958NPOw3Jf85dtFuX+BITsennn5Gfnw+3z2foVgNerxcb1q5Flw4dQo5XYFkAqKqowMa1a8OPb4hbl4Qd3zC3LgkV79FuXRI0vgZuNVBdPr9bdySmNopY1l/H5cLmX345OL5ud9Rbl6iEBGzcuBFdunSBO8KfTAWue4/HgzmzZgWv9TBlAcBTUhJybAGEzREh5yPKrUuC6hi4dUnYfBIhR3g8Hv8noJKSkvTySVWVoVuXeL1ebFi9Gl3y8sLHe8C69xw4gE3r18cmn4TJESHjXSefGLh1iT/eDzsMidVrI8qtBnwJCdhUUKCfT9atQ5f27cOPb8C6rzxwAP/75JOw8R4qR4Qd3zA5ImS+jnKrAbP5pEu3bkgyeKuBKqUw54svMGLECCQmJka9dYlKTDwU7xH+rDIwR3i9Xmz48cew8Vtz3Wvlkz/Xfcj5iHLrkqCYN3DrksA2kgzeusTr9WLz9u2H9ifRbjWgkU+q173X68WGNWvQpWNHQ/mksrQU/5s9O3y8h1j3uvkkZLxHuXVJ2HwSIUd4vV5s2roVXbt3R0JCQtR8UuVyYc7nnx+Md5fL0K0GdPNJVWUlNq5ZEz5fh8gRhvJJwLo3k0+C4t3ArUvM5BMvgM1btx6K9yi3LjGcTwLWvW4+8R04AE9lZe33L0DYHGEon9RY9zXrRLt1Sdh8EiFH6OaTqsREzJkz5+Bf7Chl6NYlhvJJwLqvOlCOjevXhY93nXwSJkdEzSch1n1gvCcbvHVJrXwS5VYDPrcbm7ZsObg/USp2+SRgLWvlkz/Xfcj362HK+r1rzkeUWw0E1TFw6xJ/+a5dkWTw1iVa+cTthjchwf+J7oRIv6ypmU9++gldOnUKPR8hcoS3qir0HiVMjggX75FyRMR8EmLdB855isFbl3i9Xmzatg1du3Y9OL5RbkfiS07Gpk2bDuZrr9fQrUtink9C5Iiw8R4mR4TMJ1FuXRK0PzF46xKv14tNv/yCrj166OcTwNCtSzweD2Z/8gmGn3RS2POpoHzi8WDj6tVa+SRc/IbLEXXOJwZuXeKf81NPRUrg+/tI+UQpbP71V8P5xN2oEbxeLzZu3IjObdsiwcCtS7TziclblxSXlKBpbq6hT3Qbvkf3Tz/9hGXLlqFVq1YAgEceeQQvvPAC9uzZg2bNmhl9GREcUAru1NSgAQxHdRm3x3Pw/kxpaXAbOOwF/ry3WKNGB+vUmPDAia5VvsZzocoG1gkqG7DBDYU3oHy0skHtJCVFdA/qQ0pKWO9aZZOTgeTkiGNVsywQeWyBP5N29f2bqh0C6gTeayhUWeDQnAfdQy9M2cA2/GUD3vxFw5WYaGi8qssaHV9XYiJciYmGxteVkACXwXgPLFtN0PgGjpnbXatsYHlXclLUsoF1/GVdrohlgUPx7nK5DK13fztR1nog7rQ04/H+Zx8MxXuNdR+zfBJh3btrbG608knAhTkarurxNRDv7uRkS/JJ4FqOGu/R8omBHOGP9zC/aAqF6Xzy5xsDo/nEaLxXr3vdfBI1X4dY92bziTtg7KPlCFdAvOvkE6D29T4SRuO3+nUNx3v1AZyJfBIp5kOt+8A2opUNrBNUNkqOMJ1PqvcnRuI9Odl4vP+5lnXzSZ33JwZzhPJ6tfJJULz/uTcwglY+SUgwvj/RyScB695MPgkX7+HWvZl8UiveJeST1FS4DeZ4rXxSY91H3J/o5JMI6143nwTGe+D7h2jo5ZMk4/FuVT4Jse4D4z1wnWvlkyg5Imh/IiGf/Lnujbxf18onIdZ9uDpR80mNmI207rXzSWC86+STlBStfGIkfoFD6z7m+STEug+c82hlg9oIuEd3tBwROB+S8omheK/5PRqa+STs/iTCuldeb3Du0cknIc4YwuJ2G36/7nK7tfOJoXwdsO5jmU+A0GvZP+cW5pOgsqmphuIX0MwnGueQgWXdGn8VbvjWJcXFxcjJyfH/nJaWhtTUVBQVFRlujBBCCCGEEEIIIYQQQgiJNYY/0Q0An332GbIC/yTE58O8efPwU8CNxE8/PfxN3uMNl8uF5OTkoN8YxrK8XW3oItWD7rLcpY6VLnbNR7y6M97pblUbukj1oLssd651eXGii1QPustylzpWZohXd6kedJflLnWsdJG6P3GKu1Pi3Uwdu65VOmgddI8J8Q2oV1xxhf//XS5X0J/ixTtutxudOnWyrLxdbegi1YPustyljpUuds1HvLoz3uluVRu6SPWguyx3rnV5caKLVA+6y3KXOlZmiFd3qR50l+Uudax0kbo/cYq7U+LdTB27rlU6GL51ic/ni/qPh9zBKKWwb98+rW/01SlvVxu6SPWguyx3qWOli13zEa/ujHe6W9WGLlI96C7LnWtdXpzoItWD7rLcpY6VGeLVXaoH3WW5Sx0rXaTuT5zi7pR4N1PHrmuVDoYPuok+Pp8PO3fuhC/CN4rWpbxdbegi1YPustyljpUuds1HvLoz3uluVRu6SPWguyx3rnV5caKLVA+6y3KXOlZmiFd3qR50l+Uudax0kbo/cYq7U+LdTB27rlU6GL51yX/+85+Qj2dlZaFr167o379/zDpFCCGEEEIIIYQQQgghhBjF8EH3E088EfLxffv2oaioCAMGDMBHH32E7OzsmHWOEEIIIYQQQgghhBBCCImG4VuXFBQUhPz3xx9/YNOmTfD5fLjzzjut7GuDw+VyIT09XevbSnXK29WGLlI96C7LXepY6WLXfMSrO+Od7la1oYtUD7rLcudalxcnukj1oLssd6ljZYZ4dZfqQXdZ7lLHShep+xOnuDsl3s3UsetapYPhT3RHolOnTpgyZQrGjRsXi5dzDG63G+3atbOsvF1t6CLVg+6y3KWOlS52zUe8ujPe6W5VG7pI9aC7LHeudXlxootUD7rLcpc6VmaIV3epHnSX5S51rHSRuj9xirtT4t1MHbuuVTrE7Mso27dvj507d8bq5RyBz+fD7t27tW7irlPerjZ0kepBd1nuUsdKF7vmI17dGe90t6oNXaR60F2WO9e6vDjRRaoH3WW5Sx0rM8Sru1QPustylzpWukjdnzjF3SnxbqaOXdcqHWJ20P3jjz+iQ4cOsXo5R6CUwu7du6GUsqS8XW3oItWD7rLcpY6VLnbNR7y6M97pblUbukj1oLssd651eXGii1QPustylzpWZohXd6kedJflLnWsdJG6P3GKu1Pi3Uwdu65VOhi+dUlxcXHIx4uKirBixQrcdNNNGDNmTMw6RgghhBBCCCGEEEIIIYQYwfBBd5MmTcLeXNzlcmH8+PG47bbbYtYxQgghhBBCCCGEEEIIIcQIhg+658+fH/LxzMxM5OfnIyMjI2adcgoulwtZWVla31aqU96uNnSR6kF3We5Sx0oXu+YjXt0Z73S3qg1dpHrQXZY717q8ONFFqgfdZblLHSszxKu7VA+6y3KXOla6SN2fOMXdKfFupo5d1yodDB90Dxo0KGqZn376CYcffnidOuQk3G43WrVqZVl5u9rQRaoH3WW5Sx0rXeyaj3h1Z7zT3ao2dJHqQXdZ7lzr8uJEF6kedJflLnWszBCv7lI96C7LXepY6SJ1f+IUd6fEu5k6dl2rdKjzl1GWlJTgxRdfxDHHHINevXrFok+OwefzobCwUOvbSnXK29WGLlI96C7LXepY6WLXfMSrO+Od7la1oYtUD7rLcudalxcnukj1oLssd6ljZYZ4dZfqQXdZ7lLHShep+xOnuDsl3s3UsetapYPpg+5FixZhzJgxaNWqFR599FGcdNJJ+Prrr2PZtwaPUgpFRUVa31aqU96uNnSR6kF3We5Sx0oXu+YjXt0Z73S3qg1dpHrQXZY717q8ONFFqgfdZblLHSszxKu7VA+6y3KXOla6SN2fOMXdKfFupo5d1yodDN+6BAB27tyJqVOn4pVXXkFxcTHOP/98VFRUYNasWTjssMOs6iMhhBBCCCGEEEIIIYQQEhbDn+g+7bTT0K1bN6xatQr//ve/sWPHDjz11FNW9o0QQgghhBBCCCGEEEIIiYrhT3TPmTMH1157La666irk5+db2SfH4HK5kJOTo/VtpTrl7WpDF6kedJflLnWsdLFrPuLVnfFOd6va0EWqB91luXOty4sTXaR60F2Wu9SxMkO8ukv1oLssd6ljpYvU/YlT3J0S72bq2HWt0sHwQfeSJUvwyiuv4KijjkKPHj1w8cUX429/+5uVfWvwuN1u5OTkWFberjZ0kepBd1nuUsdKF7vmI17dGe90t6oNXaR60F2WO9e6vDjRRaoH3WW5Sx0rM8Sru1QPustylzpWukjdnzjF3SnxbqaOXdcqHQzfuuTYY4/FSy+9hMLCQlxxxRWYPn06WrduDZ/Ph7lz56KkpMTKfjZIfD4ffv31V61vK9Upb1cbukj1oLssd6ljpYtd8xGv7ox3ulvVhi5SPeguy51rXV6c6CLVg+6y3KWOlRni1V2qB91luUsdK12k7k+c4u6UeDdTx65rlQ6GD7qrSU9Px7hx47BkyRL8+OOPuOmmmzBlyhS0aNECp59+uhV9bLAopVBaWqr1baU65e1qQxepHnSX5S51rHSxaz7i1Z3xTner2tBFqgfdZblzrcuLE12ketBdlrvUsTJDvLpL9aC7LHepY6WL1P2JU9ydEu9m6th1rdJB+6A7kG7duuHhhx/Gtm3b8Pbbb8eqT4QQQgghhBBCCCGEEEKIYep00F1NQkICzjzzTHz00UexeDlCCCGEEEIIIYQQQgghxDAxOegmoXG73cjNzYXbbWyYdcvb1YYuUj3oLstd6ljpYtd8xKs7453uVrWhi1QPusty51qXFye6SPWguyx3qWNlhnh1l+pBd1nuUsdKF6n7E6e4OyXezdSx61qlQ2J9d8DJuFwuNGnSxLLydrWhi1QPuuvV0UWih0Rvu+o4xZ3xbn0dXSS6S/Q2U8cpc26mjlPcudaNl7erDV2ketBdr44uEj3s8DbTjlPcpXrQXa+OLhI9JHrbVccp7k6JdzN17LpW6SDnyN2B+Hw+/Pzzz1rfVqpT3q42dJHqQXdZ7lLHShe75iNe3RnvdLeqDV2ketBdljvXurw40UWqB91luUsdKzPEq7tUD7rLcpc6VrpI3Z84xd0p8W6mjl3XKh140G0hSilUVlZqfVupTnm72tBFqgfdZblLHStd7JqPeHVnvNPdqjZ0kepBd1nuXOvy4kQXqR50l+UudazMEK/uUj3oLstd6ljpInV/4hR3p8S7mTp2Xat04EE3IYQQQgghhBBCCCGEkAYND7oJIYQQQgghhBBCCCGENGh40G0hbrcbbdu21fq2Up3ydrWhi1QPustylzpWutg1H/Hqzninu1Vt6CLVg+6y3LnW5cWJLlI96C7LXepYmSFe3aV60F2Wu9Sx0kXq/sQp7k6JdzN17LpW6ZBY3x1wMi6XCxkZGZaVt6sNXaR60F2Wu9Sx0sWu+YhXd8Y73a1qQxepHnSX5c61Li9OdJHqQXdZ7lLHygzx6i7Vg+6y3KWOlS5S9ydOcXdKvJupY9e1Sgc5R+4OxOv1YsOGDfB6vZaUt6sNXaR60F2Wu9Sx0sWu+YhXd8Y73a1qQxepHnSX5c61Li9OdJHqQXdZ7lLHygzx6i7Vg+6y3KWOlS5S9ydOcXdKvJupY9e1SgcedFuMz+eztLxdbegi1YPu1iLRQ6K3XXWc4s54t76O1W1IjRNdpHrQ3VqkesSru0RvM3WcMudm6jjFXepYmSFe3aV60N1aJHpI9LarjlPcnRLvZurYda0yCg+6CSGEEEIIIYQQQgghhDRoeNBNCCGEEEIIIYQQQgghpEHDg24LcbvdyMvL0/q2Up3ydrWhi1QPustylzpWutg1H/Hqzninu1Vt6CLVg+6y3LnW5cWJLlI96C7LXepYmSFe3aV60F2Wu9Sx0kXq/sQp7k6JdzN17LpW6SCnJw4lMTHR0vJ2taGLVA+6W4tED4nedtVxijvj3fo6VrchNU50kepBd2uR6hGv7hK9zdRxypybqeMUd6ljZYZ4dZfqQXdrkegh0duuOk5xd0q8m6lj17XKKDzothCfz4eNGzcavjG7bnm72tBFqgfdZblLHStd7JqPeHVnvNPdqjZ0kepBd1nuXOvy4kQXqR50l+UudazMEK/uUj3oLstd6ljpInV/4hR3p8S7mTp2Xat04EE3IYQQQgghhBBCCCGEkAYND7oJIYQQQgghhBBCCCGENGh40E0IIYQQQgghhBBCCCGkQcODbgtxu93Iz8/X+rZSnfJ2taGLVA+6y3KXOla62DUf8erOeKe7VW3oItWD7rLcudblxYkuUj3oLstd6liZIV7dpXrQXZa71LHSRer+xCnuTol3M3XsulbpIKcnDqWqqsrS8na1oYtUD7pbi0QPid521XGKO+Pd+jpWtyE1TnSR6kF3a5HqEa/uEr3N1HHKnJup4xR3qWNlhnh1l+pBd2uR6CHR2646TnF3SrybqWPXtcooPOi2EJ/Ph4KCAq1vK9Upb1cbukj1oLssd6ljpYtd8xGv7ox3ulvVhi5SPeguy51rXV6c6CLVg+6y3KWOlRni1V2qB91luUsdK12k7k+c4u6UeDdTx65rlQ486CaEEEIIIYQQQgghhBDSoOFBNyGEEEIIIYQQQgghhJAGDQ+6LUb3huxmbuBuRxu6SPWgu7VI9JDobVcdp7gz3q2vY3UbUuNEF6kedLcWqR7x6i7R20wdp8y5mTpOcZc6VmaIV3epHnS3FokeEr3tquMUd6fEu5k6kr6IEgAS67sDTiYhIQFdu3a1rLxdbegi1YPustyljpUuds1HvLoz3uluVRu6SPWguyx3rnV5caKLVA+6y3KXOlZmiFd3qR50l+Uudax0kbo/cYq7U+LdTB27rlU6yDp2dxhKKezfvx9KKUvK29WGLlI96C7LXepY6WLXfMSrO+Od7la1oYtUD7rLcudalxcnukj1oLssd6ljZYZ4dZfqQXdZ7lLHShep+xOnuDsl3s3UsetapUO9fqJ78uTJmDFjBtatW4fU1FQMGDAADz30ELp16xax3nvvvYe77roLW7ZsQX5+Ph566CGMGDHCkj76KitRumwZShYvRu6PP+L3VavQ+PjjkT5gANzJyZHr+nzYtm0b8vPzkZCQEL0tjfLV/dq/ZAn2FRSgSV4eMo47Lmq/zLSh667rbaaOHWNlBmnudamjiyQPO+a8osqLpZt2Y+H631BQuAd5rZphULcWGNglBymJoftmpo7fyaC7mTZ013pdxlfSWrcjv9s1VnbEvNnx1emTHdc2/xpZtwv/t9GN79VaDOreMuo6ZH6Xk69165iZc91catda1+2X2XjX7ZeZ8jp16hInVu5j7chZdaljlLrsHay8JvjrasaJtOu6nWOlg1Ou67rYEe9mPCTu5czUkbrWJc+htL2c1Pd6ZpG2P6lLv3SR+v7Faur1oHvhwoWYMGECjj76aFRVVeGOO+7A0KFDsWbNGqSnp4ess2zZMowaNQqTJ0/GX//6V7z11ls488wz8f333+Pwww+Paf98lZXY8+JLKP36ayiXC65KDyo2bETl+g0o/2k1ml1+WcwPSnX7Bbcb8PlQsWEjKtatj1m/pLrrYsdYEVnYMecVVV48v2Azlm7aA5dLQVUprNtZgrWF+/HjtiJcObhzrY2ymTp29Et3rUtdU7r9siPH2TVWdl8TdMfXaJ/qY+16vMC6XfuxdmdpzNYhMY4dcWJmznVzqV1rXbdfTon3usZJQ8/xVlPXvYNV1wRdpM65xLGyq18S14gd8W4GqW1IjF8za13q+ErEKR52wLGSS73euuR///sfxo4di549e6JXr16YOnUqtm7dihUrVoSt8+STT2L48OGYOHEievTogfvvvx99+vTB008/HfP+lS5bhtKvv0ZSy5ZI7tAB3sxMJHfogKSWLVH69dcoXbYs5m2a6Reys2PeL6nuutgxVkQWdsz50k27sXTTHuRmNUJeTjqapSUiLycduVmNsHTzHizdtDsmdezol+5al7qmdPtlR46za6zq45qgO75G+mT32u3YLB1ZyUDHZrFdh8Q4dsSJmTnXzaV2rXXdfjkl3mMRJw05x1tNLPYOVlwTdJE65xLHyq5+SVwjdsS7GaS2ITF+zax1qeMrEad42AHHSi6ivoyyqKgIAJCdnR22zFdffYUbb7wx6LFhw4Zh1qxZIctXVFSgoqLC/3NxcTEAwOPxwOPxROxPyeLFUC4XkJoKn88H4ODH8t2pqVAuF0oWL0ajgQPD1vf5fEhISEBVVZW/fiSMlq/ZL5fLdfC/Bvpltg0dd11vM3XsGKvq+IgWJ3XxMFPHjjbscLfKoy5zDhhzX7huF1wuhdQkN5RPwe1yQfkO/uyCwsJ1u3B85+w619F1N9OG7lqv6/hKWet25He7xsqOPFfX8TXSJzuubYFrJHDejaxDp+R3QD/HS8rXunXMzLluLrVrrev2qy7xrtMvs+WN1olFnFS3Fct9rB05q651rNrT2HFN0HWXel23e6zi7bqu625HvJvxkLiXM1NH6lqXPoeS9nJS3+sF0pD3sXXpl5POp8yg4+1SQu4Y7vP5cPrpp2Pfvn1YsmRJ2HLJycl4/fXXMWrUKP9jzz77LO69917s2rWrVvlJkybh3nvvrfX4W2+9hbS0tIh9yp02Da5KD7yZmbWeSyguhkpOws7RoyO+hhXY0S+p7ro4xYMYx445f22DGx4vkBXiL5GKKoGkBOCSrr4617GjX7rjJXVNSfSwa6wkupjpk9S1S6zDjjixI1/btdZ1++WUeJeaT6ReD3Vxyt5BahsSx8qufklcI3bEuxmktiExfqXGosR4N4NTPOyAY2UvZWVluPDCC1FUVITMEGMeiJhPdE+YMAE//fRTxENuM9x+++1BnwAvLi5Gu3btMHTo0KiD8/uqVajYsBHJ7dvD5zt4g/W2bdvC7Xaj8pdfkNI1H30ifAmmUgrFxcXIzMyEy+WK2lej5QP7BShUVnqQnJwEwBW1X2ba0HXX9TZTx46x8ng8mDt3LoYMGYKkpCRLPMzUsaMNO9yt8qjLnAPG3L9Xa7Fu1360a5Zeqw3vnlJ0b5mBESN61LmOrruZNnTXel3HV8patyO/2zVWduS5uoyv0T7ZcW0LXCM+nw/bt21Dmz/nPdo6dEp+B/RzvKR8rVvHzJzr5lK71rpuv+oS7zr9MlveaJ26xolV+1g7clZd61i1p7HjmqDrLvW6bvdYxdt1Xdfdjng34yFxL2emjtS1Ln0OJe3lpL7XC6Qh72Pr0i8nnU+ZofruHEYQcdB9zTXX4JNPPsGiRYvQtm3biGVzc3NrfXJ7165dyM3NDVk+JSUFKSkptR5PSkqKGhyNjz8eles3AAcOwJ2aCgBwu93AgQNwKYXGxx8f8TW8Xi92796Npk2bGvr2UaPlA/vlSktDeXk5UlJSoMrKovbLTBu67rreZurYMVbVGIkVsx5m6tjRRjVWulvlEYs5ByK7D+reEmt3luKAx4e0ZPefbSSjrNIHBRcGdW9Zq66ZOrruZtrQXet1HV8pa92O/G7XWNmR5+oyvkb7ZMe1LXCNpCYd/JoSt9uNA57o69Bp+R0wnuMl5WvdOmbmXDeX2rXWdftVl3jX6ZfZ8kbr1DVOrNrH2pGz6lqnmljvaey4Jui6S72u2z1W1cTLdV3X3Y54N+MhcS9npo7UtS59DiXt5aS+1wtFQ9zH1rVfgDPOp8xg1Bmo54NupRT+8Y9/YObMmViwYAHy8vKi1unfvz/mzZuH66+/3v/Y3Llz0b9//5j3L33AAJT/tNr/jb4JJSWo/OUXuJRC+rHHIn3AgJi3qdsvuF2AT6Fy3x+AL3b9kuquix1jRWRhx5wP7JKDH7cVYenmPXAD8Hmq8IenDD4AAzs3w8AuOTGpY0e/dNe61DWl2y87cpxdY2X3NUF3fI32ye6164LC/krAu6cUCq6YrUNiHDvixMyc6+ZSu9a6br+cEu91jZOGnuOtpq57B6uuCbpInXOJY2VXvySuETvi3QxS25AYv2bWutTxlYhTPOyAYyWXej3onjBhAt566y18+OGHaNy4MXbu3AkAyMrKQuqfv537+9//jjZt2mDy5MkAgOuuuw6DBg3CY489hpEjR2L69On47rvv8OKLL8a8f+7kZDS7/DI0OrznwRvN//gjUrrmo/HxxyN9wAC4k0Pc3MsGAvu1f8kSHCgoQEpeHjKOOy5m/ZLqrosdY0VkYcecpyQm4MrBnXFE2ywsXP8bCgorkJebgUHdWmBglxykJNb+TaaZOnb0S3etS11Tuv2yI8fZNVZ2XxN0x9don2xfu+t24f+K96B7ywwM6t4yZuuQGMeOODEz57q51K61rtsvp8R7XeOkoed4q6nr3sGqa4IuUudc4ljZ1S+Ja8SOeDeD1DYkxq+ZtS51fCXiFA874FgJRtUjAEL+e+211/xlBg0apMaMGRNU791331Vdu3ZVycnJqmfPnurTTz813GZRUZECoIqKirT6WllZqWbNmqUqKysN1/F6vWrr1q3K6/VaUt6uNnTdpXro1rFjzs3UcYq71LGSGO9m6jjFnfFOd6vaiNd4Vyp+3Z0S72bqOMWd8U53IzDe6W5VGxLHiu9ZGe9WtUF3WXHipLVuBp2z3Hq/dUk0FixYUOux8847D+edd54FPYotbrcb7dq1s6y8XW3oItWD7rLcpY6VLnbNR7y6M97pblUbukj1oLssd651eXGii1QPustylzpWZohXd6kedJflLnWsdJG6P3GKu1Pi3Uwdu65VOrjruwNOxufzYffu3fD5fJaUt6sNXaR60F2Wu9Sx0sWu+YhXd8Y73a1qQxepHnSX5c61Li9OdJHqQXdZ7lLHygzx6i7Vg+6y3KWOlS5S9ydOcXdKvJupY9e1SgcedFuIUgq7d+829Ml1M+XtakMXqR50l+Uudax0sWs+4tWd8U53q9rQRaoH3WW5c63LixNdpHrQXZa71LEyQ7y6S/Wguyx3qWOli9T9iVPcnRLvZurYda3SgQfdhBBCCCGEEEIIIYQQQho0POgmhBBCCCGEEEIIIYQQ0qDhQbeFuFwuZGVlweVyWVLerjZ0kepBd1nuUsdKF7vmI17dGe90t6oNXaR60F2WO9e6vDjRRaoH3WW5Sx0rM8Sru1QPustylzpWukjdnzjF3SnxbqaOXdcqHRLruwNOxu12o1WrVpaVt6sNXaR60F2Wu9Sx0sWu+YhXd8Y73a1qQxepHnSX5c61Li9OdJHqQXdZ7lLHygzx6i7Vg+6y3KWOlS5S9ydOcXdKvJupY9e1Sgd+ottCfD4fCgsLtb6tVKe8XW3oItWD7rLcpY6VLnbNR7y6M97pblUbukj1oLssd651eXGii1QPustylzpWZohXd6kedJflLnWsdJG6P3GKu1Pi3Uwdu65VOvCg20KUUigqKtL6tlKd8na1oYtUD7rLcpc6VrrYNR/x6s54p7tVbegi1YPusty51uXFiS5SPeguy13qWJkhXt2letBdlrvUsdJF6v7EKe5OiXczdey6VunAg25CCCGEEEIIIYQQQgghDZq4u0d39W8ZiouLtep5PB6UlZWhuLgYSUlJhup4vV7s378fxcXFSEhIiHl5u9rQdZfqoVvHjjk3U8cp7lLHSmK8m6njFHfGO90Z77GvE6/uTol3M3Wc4s54pzvjPTJ0Z7xb0YaZOk5xlzpWEuPdTB2nuDsl3s3UMdOGGarPcI18cjzuDrpLSkoAAO3atavnnhBCCCGEEEIIIYQQQgiJRklJCbKysiKWcSlJN1KxAZ/Phx07dqBx48ZwuVyG6xUXF6Ndu3b49ddfkZmZabje0UcfjW+//day8na0YcZdooduHbvm3Ewdp7hLHCup8W6mjlPcGe90t6J8vMY7EL/uTop33TpOcme80z0ajHe6M97rv192tMF4lxfvZuo4xd0p8W6mjpk2dFFKoaSkBK1bt4bbHfku3HH3iW632422bduarp+ZmakVVAkJCZaWt6sNQM9dqoeZOlbPuZk6TnGXOlaAvHg3U8cp7ox3ulvVBhC/8Q7Er7sT4t1sHSe4M97pbhTGO92taEPiWAF8z8p4t6YNusuKE8A5a90M0T7JXQ2/jNJiJkyYYGl5u9rQRaoH3a1FoodEb7vqOMWd8W59HavbkBonukj1oLu1SPWIV3eJ3mbqOGXOzdRxirvUsTJDvLpL9aC7tUj0kOhtVx2nuDsl3s3UsetaZZS4u3WJWYqLi5GVlYWioiJbflMhiXh1j1dvgO50jy/3ePUG6E73+HKPV2+A7nSPL/d49QboHo/u8eoN0J3u8eUer95m4Ce6DZKSkoJ77rkHKSkp9d0V24lX93j1BuhO9/hyj1dvgO50jy/3ePUG6E73+HKPV2+A7vHoHq/eAN3pHl/u8eptBn6imxBCCCGEEEIIIYQQQkiDhp/oJoQQQgghhBBCCCGEENKg4UE3IYQQQgghhBBCCCGEkAYND7oJIYQQQgghhBBCCCGENGh40E0IIYQQQgghhBBCCCGkQcODbgM888wz6NixIxo1aoR+/frhm2++qe8uWc6kSZPgcrmC/nXv3r2+u2UJixYtwmmnnYbWrVvD5XJh1qxZQc8rpXD33XejVatWSE1NxSmnnIKNGzfWT2djTDT3sWPH1oqD4cOH109nY8jkyZNx9NFHo3HjxmjRogXOPPNMrF+/PqhMeXk5JkyYgGbNmiEjIwPnnHMOdu3aVU89jh1G3AcPHlxr3q+88sp66nHseO6553DkkUciMzMTmZmZ6N+/P+bMmeN/3qlzHs3bqfMdiilTpsDlcuH666/3P+bUea9JKHenzn20PYxT5zyat1Pnu5rt27fjoosuQrNmzZCamoojjjgC3333nf95J+/nork7dT/XsWPHWl4ulwsTJkwA4Ny1Hs3byWvd6/XirrvuQl5eHlJTU9G5c2fcf//9UEr5yzh1rRtxd+paLykpwfXXX48OHTogNTUVAwYMwLfffut/3qlzDkR3d8qcx+JMZu/evRg9ejQyMzPRpEkTXHrppdi/f7+NFuaIhXuo68KUKVNstJAFD7qj8M477+DGG2/EPffcg++//x69evXCsGHD8Ntvv9V31yynZ8+eKCws9P9bsmRJfXfJEkpLS9GrVy8888wzIZ9/+OGH8Z///AfPP/88li9fjvT0dAwbNgzl5eU29zT2RHMHgOHDhwfFwdtvv21jD61h4cKFmDBhAr7++mvMnTsXHo8HQ4cORWlpqb/MDTfcgI8//hjvvfceFi5ciB07duDss8+ux17HBiPuAHDZZZcFzfvDDz9cTz2OHW3btsWUKVOwYsUKfPfddzjppJNwxhlnYPXq1QCcO+fRvAFnzndNvv32W7zwwgs48sgjgx536rwHEs4dcO7cR9rDOHnOo+3dnDrff/zxBwYOHIikpCTMmTMHa9aswWOPPYamTZv6yzh1P2fEHXDmfu7bb78Ncpo7dy4A4LzzzgPg3LUezRtw7lp/6KGH8Nxzz+Hpp5/G2rVr8dBDD+Hhhx/GU0895S/j1LVuxB1w5lofP3485s6dizfeeAM//vgjhg4dilNOOQXbt28H4Nw5B6K7A86Y81icyYwePRqrV6/G3Llz8cknn2DRokW4/PLL7VIwTazOo+67776gOPjHP/5hR/dlokhEjjnmGDVhwgT/z16vV7Vu3VpNnjy5HntlPffcc4/q1atXfXfDdgComTNn+n/2+XwqNzdXPfLII/7H9u3bp1JSUtTbb79dDz20jpruSik1ZswYdcYZZ9RLf+zkt99+UwDUwoULlVIH5zgpKUm99957/jJr165VANRXX31VX920hJruSik1aNAgdd1119Vfp2ykadOm6uWXX46rOVfqkLdS8THfJSUlKj8/X82dOzfINx7mPZy7Us6d+0h7GCfPebS9m1PnWymlbr31VnXccceFfd7J+7lo7krFz37uuuuuU507d1Y+n8/Ra70mgd5KOXutjxw5Uo0bNy7osbPPPluNHj1aKeXstR7NXSlnrvWysjKVkJCgPvnkk6DH+/Tpo/75z386es6juSvlzDk3cyazZs0aBUB9++23/jJz5sxRLpdLbd++3ba+1xWz51EdOnRQTzzxhI09lQ0/0R2ByspKrFixAqeccor/MbfbjVNOOQVfffVVPfbMHjZu3IjWrVujU6dOGD16NLZu3VrfXbKdgoIC7Ny5MygGsrKy0K9fv7iIAQBYsGABWrRogW7duuGqq67Cnj176rtLMaeoqAgAkJ2dDQBYsWIFPB5P0Lx3794d7du3d9y813SvZtq0acjJycHhhx+O22+/HWVlZfXRPcvwer2YPn06SktL0b9//7iZ85re1Th9vidMmICRI0cGzS8QH2s9nHs1Tp37cHsYp895tL2bU+f7o48+Qt++fXHeeeehRYsW6N27N1566SX/807ez0Vzr8bp+7nKykq8+eabGDduHFwul+PXejU1vatx6lofMGAA5s2bhw0bNgAA/u///g9LlizBqaeeCsDZaz2aezVOW+tVVVXwer1o1KhR0OOpqalYsmSJo+c8mns1TpvzmhiZ46+++gpNmjRB3759/WVOOeUUuN1uLF++3PY+xwqd+J4yZQqaNWuG3r1745FHHkFVVZXd3RVDYn13QDK7d++G1+tFy5Ytgx5v2bIl1q1bV0+9sod+/fph6tSp6NatGwoLC3Hvvffi+OOPx08//YTGjRvXd/dsY+fOnQAQMgaqn3Myw4cPx9lnn428vDxs3rwZd9xxB0499VR89dVXSEhIqO/uxQSfz4frr78eAwcOxOGHHw7g4LwnJyejSZMmQWWdNu+h3AHgwgsvRIcOHdC6dWusWrUKt956K9avX48ZM2bUY29jw48//oj+/fujvLwcGRkZmDlzJg477DCsXLnS0XMezhtw9nwDwPTp0/H9998H3c+wGqev9UjugHPnPtIexslzHm3v5tT5BoCff/4Zzz33HG688Ubccccd+Pbbb3HttdciOTkZY8aMcfR+Lpo7EB/7uVmzZmHfvn0YO3YsAOfn92pqegPOze0AcNttt6G4uBjdu3dHQkICvF4v/vWvf2H06NEAnP3eLZo74My13rhxY/Tv3x/3338/evTogZYtW+Ltt9/GV199hS5dujh6zqO5A86c85oYmeOdO3eiRYsWQc8nJiYiOzu7QceB0fi+9tpr0adPH2RnZ2PZsmW4/fbbUVhYiMcff9zW/kqBB90kJIG/GT7yyCPRr18/dOjQAe+++y4uvfTSeuwZsZO//e1v/v8/4ogjcOSRR6Jz585YsGABTj755HrsWeyYMGECfvrpJ8fegz4S4dwD72V2xBFHoFWrVjj55JOxefNmdO7c2e5uxpRu3bph5cqVKCoqwvvvv48xY8Zg4cKF9d0tywnnfdhhhzl6vn/99Vdcd911mDt3bq1PwzgdI+5OnftIe5jU1NR67Jm1RNu7OXW+gYO/uO3bty8efPBBAEDv3r3x008/4fnnn/cf9joVI+7xsJ975ZVXcOqpp6J169b13RVbCeXt5LX+7rvvYtq0aXjrrbfQs2dPrFy5Etdffz1at27t+LVuxN2pa/2NN97AuHHj0KZNGyQkJKBPnz4YNWoUVqxYUd9ds5xo7k6dc6LHjTfe6P//I488EsnJybjiiiswefJkpKSk1GPP6gfeuiQCOTk5SEhIqPXt3Lt27UJubm499ap+aNKkCbp27YpNmzbVd1dspXqeGQMH6dSpE3JychwTB9dccw0++eQTzJ8/H23btvU/npubi8rKSuzbty+ovJPmPZx7KPr16wcAjpj35ORkdOnSBUcddRQmT56MXr164cknn3T8nIfzDoWT5nvFihX47bff0KdPHyQmJiIxMRELFy7Ef/7zHyQmJqJly5aOnfdo7l6vt1YdJ819IIF7GKev9UCi7d2cNN+tWrXy/5VKNT169PDfusXJ+7lo7qFw2n7ul19+wRdffIHx48f7H4uHtR7KOxROWusTJ07Ebbfdhr/97W844ogjcPHFF+OGG27A5MmTATh7rUdzD4VT1nrnzp2xcOFC7N+/H7/++iu++eYbeDwedOrUydFzDkR2D4VT5jwQI3Ocm5uL3377Lej5qqoq7N27t0HHgdn47tevH6qqqrBlyxYruycWHnRHIDk5GUcddRTmzZvnf8zn82HevHlB9zaNB/bv34/NmzejVatW9d0VW8nLy0Nubm5QDBQXF2P58uVxFwMAsG3bNuzZs6fBx4FSCtdccw1mzpyJL7/8Enl5eUHPH3XUUUhKSgqa9/Xr12Pr1q0Nft6juYdi5cqVANDg5z0UPp8PFRUVjp7zUFR7h8JJ833yySfjxx9/xMqVK/3/+vbti9GjR/v/36nzHs091J+zOmnuAwncw8TTWo+2d3PSfA8cOBDr168PemzDhg3o0KEDAGfv56K5h8Ip+7lqXnvtNbRo0QIjR470PxYPaz2UdyictNbLysrgdgcfYSQkJMDn8wFw9lqP5h4Kp6319PR0tGrVCn/88Qc+++wznHHGGY6e80BCuYfCaXMOGFvX/fv3x759+4I+5f/ll1/C5/P5f9nXEDEb3ytXroTb7a51O5e4ob6/DVM606dPVykpKWrq1KlqzZo16vLLL1dNmjRRO3furO+uWcpNN92kFixYoAoKCtTSpUvVKaeconJyctRvv/1W312LOSUlJeqHH35QP/zwgwKgHn/8cfXDDz+oX375RSml1JQpU1STJk3Uhx9+qFatWqXOOOMMlZeXpw4cOFDPPa87kdxLSkrUzTffrL766itVUFCgvvjiC9WnTx+Vn5+vysvL67vrdeKqq65SWVlZasGCBaqwsND/r6yszF/myiuvVO3bt1dffvml+u6771T//v1V//7967HXsSGa+6ZNm9R9992nvvvuO1VQUKA+/PBD1alTJ3XCCSfUc8/rzm233aYWLlyoCgoK1KpVq9Rtt92mXC6X+vzzz5VSzp3zSN5Onu9wDBo0SF133XX+n50676EIdHfy3Efbwzh1ziN5O3m+lVLqm2++UYmJiepf//qX2rhxo5o2bZpKS0tTb775pr+MU/dz0dydvJ9TSimv16vat2+vbr311lrPOXWtKxXe2+lrfcyYMapNmzbqk08+UQUFBWrGjBkqJydH3XLLLf4yTl3r0dydvNb/97//qTlz5qiff/5Zff7556pXr16qX79+qrKyUinl3DlXKrK7k+Y8Fmcyw4cPV71791bLly9XS5YsUfn5+WrUqFH1pWSYurovW7ZMPfHEE2rlypVq8+bN6s0331TNmzdXf//73+tTq17hQbcBnnrqKdW+fXuVnJysjjnmGPX111/Xd5cs54ILLlCtWrVSycnJqk2bNuqCCy5QmzZtqu9uWcL8+fMVgFr/xowZo5RSyufzqbvuuku1bNlSpaSkqJNPPlmtX7++fjsdIyK5l5WVqaFDh6rmzZurpKQk1aFDB3XZZZc54pc8oZwBqNdee81f5sCBA+rqq69WTZs2VWlpaeqss85ShYWF9dfpGBHNfevWreqEE05Q2dnZKiUlRXXp0kVNnDhRFRUV1W/HY8C4ceNUhw4dVHJysmrevLk6+eST/YfcSjl3ziN5O3m+w1HzoNup8x6KQHcnz320PYxT5zySt5Pnu5qPP/5YHX744SolJUV1795dvfjii0HPO3k/F8ndyfs5pZT67LPPFICQc+nUta5UeG+nr/Xi4mJ13XXXqfbt26tGjRqpTp06qX/+85+qoqLCX8apaz2au5PX+jvvvKM6deqkkpOTVW5urpowYYLat2+f/3mnzrlSkd2dNOexOJPZs2ePGjVqlMrIyFCZmZnqkksuUSUlJfVgo0dd3VesWKH69eunsrKyVKNGjVSPHj3Ugw8+2OB+2RFLXEopZeUnxgkhhBBCCCGEEEIIIYQQK+E9ugkhhBBCCCGEEEIIIYQ0aHjQTQghhBBCCCGEEEIIIaRBw4NuQgghhBBCCCGEEEIIIQ0aHnQTQgghhBBCCCGEEEIIadDwoJsQQgghhBBCCCGEEEJIg4YH3YQQQgghhBBCCCGEEEIaNDzoJoQQQgghhBBCCCGEENKg4UE3IYQQQgghDQyXy4VZs2aZrr9gwQK4XC7s27evTv0YO3YszjzzzDq9BiGEEEIIIbGAB92EEEIIIYTU4Pfff8dVV12F9u3bIyUlBbm5uRg2bBiWLl1a312LCQMGDEBhYSGysrLquyuEEEIIIYTEhMT67gAhhBBCCCHSOOecc1BZWYnXX38dnTp1wq5duzBv3jzs2bOnvrsWE5KTk5Gbm1vf3SCEEEIIISRm8BPdhBBCCCGEBLBv3z4sXrwYDz30EE488UR06NABxxxzDG6//Xacfvrp/nKPP/44jjjiCKSnp6Ndu3a4+uqrsX//fv/zU6dORZMmTfDJJ5+gW7duSEtLw7nnnouysjK8/vrr6NixI5o2bYprr70WXq/XX69jx464//77MWrUKKSnp6NNmzZ45plnIvb5119/xfnnn48mTZogOzsbZ5xxBrZs2RK2fM1bl1T39bPPPkOPHj2QkZGB4cOHo7Cw0F/H6/XixhtvRJMmTdCsWTPccsstUEoFva7P58PkyZORl5eH1NRU9OrVC++//z4AQCmFU045BcOGDfPX27t3L9q2bYu777478qQQQgghhBASBR50E0IIIYQQEkBGRgYyMjIwa9YsVFRUhC3ndrvxn//8B6tXr8brr7+OL7/8ErfccktQmbKyMvznP//B9OnT8b///Q8LFizAWWedhdmzZ2P27Nl444038MILL/gPg6t55JFH0KtXL/zwww+47bbbcN1112Hu3Lkh++HxeDBs2DA0btwYixcvxtKlS/0H1ZWVlYa9y8rK8Oijj+KNN97AokWLsHXrVtx8883+5x977DFMnToVr776KpYsWYK9e/di5syZQa8xefJk/Pe//8Xzzz+P1atX44YbbsBFF12EhQsXwuVy4fXXX8e3336L//znPwCAK6+8Em3atOFBNyGEEEIIqTMuVfNjGATAwU+seDye+u4GIYQQYork5GS43fx9NiFm+eCDD3DZZZfhwIED6NOnDwYNGoS//e1vOPLII8PWef/993HllVdi9+7dAA5+SvqSSy7Bpk2b0LlzZwAHD3bfeOMN7Nq1CxkZGQCA4cOHo2PHjnj++ecBHPxEd48ePTBnzhz/a//tb39DcXExZs+eDeDgl1HOnDkTZ555Jt5880088MADWLt2LVwuFwCgsrISTZo0waxZszB06NBafV2wYAFOPPFE/PHHH2jSpEnIvj777LO47777sHPnTgBA69atccMNN2DixIkAgKqqKuTl5eGoo47y/1IgOzsbX3zxBfr37+9va/z48SgrK8Nbb70FAHjvvffw97//Hddffz2eeuop/PDDD8jPz9edIkIIIYQQQoLgPbproJTCzp076/wN9IQQQkh94na7kZeXh+Tk5PruCiENknPOOQcjR47E4sWL8fXXX2POnDl4+OGH8fLLL2Ps2LEAgC+++AKTJ0/GunXrUFxcjKqqKpSXl6OsrAxpaWkAgLS0NP/BMQC0bNkSHTt29B9yVz/222+/BbUfeFBc/fO///3vkH39v//7P2zatAmNGzcOery8vBybN2827Fyzr61atfL3q6ioCIWFhejXr5//+cTERPTt29d/G5JNmzahrKwMQ4YMCXrdyspK9O7d2//zeeedh5kzZ2LKlCl47rnneMhNCCGEEEJiAg+6a1B9yN2iRQukpaX5PxVDCCGENBR8Ph927NiBwsJCtG/fntcyQkzSqFEjDBkyBEOGDMFdd92F8ePH45577sHYsWOxZcsW/PWvf8VVV12Ff/3rX8jOzsaSJUtw6aWXorKy0n/QnZSUFPSaLpcr5GM+n890P/fv34+jjjoK06ZNq/Vc8+bNDb9OqH7p/PFn9f3JP/30U7Rp0ybouZSUFP//l5WVYcWKFUhISMDGjRsNvz4hhBBCCCGR4EF3AF6v13/I3axZs/ruDiGEEGKa5s2bY8eOHaiqqqp1eEUIMcdhhx2GWbNmAQBWrFgBn8+Hxx57zH+boHfffTdmbX399de1fu7Ro0fIsn369ME777yDFi1aIDMzM2Z9CCQrKwutWrXC8uXLccIJJwA4eOuSFStWoE+fPgAOjk9KSgq2bt2KQYMGhX2tm266CW63G3PmzMGIESMwcuRInHTSSZb0mxBCCCGExA886A6g+p7c1Z/AIYQQQhoq1bcs8Xq9POgmRJM9e/bgvPPOw7hx43DkkUeicePG+O677/Dwww/jjDPOAAB06dIFHo8HTz31FE477TQsXbrUf4/tWLB06VI8/PDDOPPMMzF37ly89957+PTTT0OWHT16NB555BGcccYZuO+++9C2bVv88ssvmDFjBm655Ra0bds2Jn267rrrMGXKFOTn56N79+54/PHHg27317hxY9x888244YYb4PP5cNxxx6GoqAhLly5FZmYmxowZg08//RSvvvoqvvrqK/Tp0wcTJ07EmDFjsGrVKjRt2jQm/SSEEEIIIfEJv6UqBPwTb0IIIQ0dXssIMU9GRgb69euHJ554AieccAIOP/xw3HXXXbjsssvw9NNPAwB69eqFxx9/HA899BAOP/xwTJs2DZMnT45ZH2666SZ899136N27Nx544AE8/vjjGDZsWMiyaWlpWLRoEdq3b4+zzz4bPXr0wKWXXory8vKYfsL7pptuwsUXX4wxY8agf//+aNy4Mc4666ygMvfffz/uuusuTJ48GT169MDw4cPx6aefIi8vD7///jsuvfRSTJo0yf8p8HvvvRctW7bElVdeGbN+EkIIIYSQ+MSldG6853DKy8tRUFCAvLw8NGrUqL67QwghhJiG1zRCGi4dO3bE9ddfj+uvv76+u0IIIYQQQkiDgZ/oJoZZsGABXC5X0J+oRqNjx47497//bVmfCIlHuBYJIYQQQgghhBBCguFBt0MYO3YsXC5XyD/7nDBhAlwuF8aOHWt/xwyybds2JCcn4/DDD6/vroimoc9zPNBQ52jSpElwuVz+f1lZWTj++OOxcOHC+u6aSBrqPBNCCCGEEEIIIU6FB90Ool27dpg+fToOHDjgf6y8vBxvvfUW2rdvX489i87UqVNx/vnno7i4GMuXL6/v7oimIc9zvNBQ56hnz54oLCxEYWEhvvrqK+Tn5+Ovf/0rioqK6rtrImmo80wIkc+WLVt42xJCCCGEEEI04UG3BVRUefHlul2496PVmDDte9z70Wp8uW4XKqq8lrbbp08ftGvXDjNmzPA/NmPGDLRv3x69e/cO7mNFBa699lq0aNECjRo1wnHHHYdvv/02qMzs2bPRtWtXpKam4sQTT8SWLVtqtblkyRIcf/zxSE1NRbt27XDttdeitLRUq99KKbz22mu4+OKLceGFF+KVV17Rqh9vGJ1nn8+HyZMnIy8vD6mpqejVqxfef/99//NerxeXXnqp//lu3brhySefDGpr7NixOPPMM/Hoo4+iVatWaNasGSZMmACPx2O9aAzwVVaiZMEC7PzXg9h2/Q3Y+a8HUbJgAXyVlZa221DXYmJiInJzc5Gbm4vDDjsM9913H/bv348NGzZovU68wLVICCGEEEIIIYTIgQfdMaaiyovnF2zG8wt+xtqdJSj3eLF2ZwmeX/Aznl+w2fLD7nHjxuG1117z//zqq6/ikksuqVXulltuwQcffIDXX38d33//Pbp06YJhw4Zh7969AIBff/0VZ599Nk477TSsXLkS48ePx2233Rb0Gps3b8bw4cNxzjnnYNWqVXjnnXewZMkSXHPNNVp9nj9/PsrKynDKKafgoosuwvTp07UP6GJFWWVV2H/lHm/My5rFyDxPnjwZ//3vf/H8889j9erVuOGGG3DRRRf5b0Xh8/nQtm1bvPfee1izZg3uvvtu3HHHHXj33XeDXmf+/PnYvHkz5s+fj9dffx1Tp07F1KlTTffdLnyVldjz4kvY8/IrqFi/Hqq8HBXr12PPy69gz4svWX7Y3RDXYiAVFRV47bXX0KRJE3Tr1s3065jFV1YW/l9FhfGy5eWGypqFa5EQQgghhBBCCJGBSyml6rsTUigvL0dBQQHy8vLQqFEjU6/x5bpdeH7Bz8jNaoT0lET/46UVVdhZXI4rB3XCSd1bxqrLfsaOHYt9+/bhpZdeQrt27bB+/XoAQPfu3fHrr79i/PjxaNKkCaZOnYrS0lI0bdoUU6dOxYUXXggA8Hg86NixI66//npMnDgRd9xxBz788EOsXr3a38Ztt92Ghx56CH/88QeaNGmC8ePHIyEhAS+88IK/zJIlSzBo0CCUlpaiUaNG/teM9Oe3o0ePRosWLfDEE08AAP7yl7/g+uuvr5f723a87dOwz53YrTleu+QY/8897vofDnhC/+KiX1423rmiv//nPvfPxd7S2gerW6aM1Oqf0Xl+4YUXkJ2djS+++AL9+x/qx/jx41FWVoa33nor5Otfc8012Llzp//TpmPHjsWCBQuwefNmJCQkAADOP/98uN1uTJ8+XavvdlOyYAH2vPwKklq2hDs93f+4r7QUnl270Gz8pWg8eHDM222oa3HSpEm4//77kZqaCgAoKytD48aN8c4772D48OExH6dorO3eI+xz6YNOQPsA13W9+0AF3D4kkLSjj0aHN/7r/3lD/wHw/vFHrXI91q3V6l9DWIuxuKYRQgghhBBCCCENhcToRYgOizfshtvtCjrkBoD0lES4XQeft+Kgu5rmzZtj5MiRmDp1KpRSGDlyJHJycoLKbN68GR6PBwMHDvQ/lpSUhGOOOQZr1x487Fm7di369esXVC/wkAYA/u///g+rVq3CtGnT/I8ppeDz+VBQUIAePcIfVFWzb98+zJgxA0uWLPE/dtFFF+GVV17hF7lFINo8b9q0CWVlZRgyZEhQvcrKyqBbKjzzzDN49dVXsXXrVhw4cACVlZX4y1/+ElSnZ8+e/oM1AGjVqhV+/PFHa8RiSOnSZXC53UGH3ADgTk+Hy+1G6dJllhx0V9PQ1iIAdOvWDR999BEAoKSkBO+88w7OO+88zJ8/H3379jUuH0dwLRJCCCGEEEIIITLgQXeM+a2kAunJCSGfS09OxG8lFSGfiyXjxo3z37LgmWeesayd/fv344orrsC1115b6zmjX8T21ltvoby8POggr/qAbsOGDejatWvM+muENfcNC/uc2+UK+nnFXacYLrvk1hPr1rEQRJrn/fv3AwA+/fRTtGnTJui5lJQUAMD06dNx880347HHHkP//v3RuHFjPPLII7W+DDQpKSnoZ5fLBZ/PF1MXK6j6/Xe409JCPudOS0PV779b3oeGtBYBIDk5GV26dPH/3Lt3b8yaNQv//ve/8eabb8akr0bp9v2K8E8mBOfYrkuXhCkIwB18h64u876oS7dCwrVICCGEEEIIIYTUPzzojjEtGqdg7c6SkM+VVlahfXbog7dYMnz4cFRWVsLlcmHYsNoHt507d0ZycjKWLl2KDh06ADh4u4Rvv/3Wf1uDHj16+D/ZWc3XX38d9HOfPn2wZs2aoIMxXV555RXcdNNNtT69ffXVV+PVV1/FlClTTL+2GdKSjS8Jq8oaJdI8H3bYYUhJScHWrVsxaNCgkPWXLl2KAQMG4Oqrr/Y/tnnz5pj3s75IbN4cFX/eTqImvrIypLRrZ3kfGtJaDEdCQgIOhLktiJWE+yWFnWWNwrVICCGEEEIIIYTUPzzojjHHd83B6h3FKK2oqnWPbp86+LzVJCQk+G97kJBQ+9Pl6enpuOqqqzBx4kRkZ2ejffv2ePjhh1FWVoZLL70UAHDllVfisccew8SJEzF+/HisWLGi1pee3XrrrTj22GNxzTXXYPz48UhPT8eaNWswd+5cPP3001H7uXLlSnz//feYNm0aunfvHvTcqFGjcN999+GBBx5AYiLDNBSR5rlx48a4+eabccMNN8Dn8+G4445DUVERli5diszMTIwZMwb5+fn473//i88++wx5eXl444038O233yIvL68+dGJO+sABKF+7Fr7S0lr36FY+H9IHDrC8Dw1lLVZTVVWFnTt3Ajh065I1a9bg1ltvNTkC8QHXIiGEEEIIIYQQUv/wBDHGDOySgx+3FWHp5j1wuw7erqS08uAh98DOzTCwi/UH3QCQmZkZ8fkpU6bA5/Ph4osvRklJCfr27YvPPvsMTZs2BXDwdgcffPABbrjhBjz11FM45phj8OCDD2LcuHH+1zjyyCOxcOFC/POf/8Txxx8PpRQ6d+6MCy64wFAfX3nlFRx22GG1DrkB4KyzzsI111yD2bNn4/TTT9cwjy8izfP999+P5s2bY/Lkyfj555/RpEkT9OnTB3fccQcA4IorrsAPP/yACy64AC6XC6NGjcLVV1+NOXPm2NV9S0kfMADlP61G6ddfH7xXd1oafGVlBw+5jz0W6QOsP+gGGsZarGb16tVo1aoVACAtLQ2dO3fGc889h7///e+a1vEH1yIhhBBCCCGEEFK/uJRSqr47IYXy8nIUFBQgLy8PjRo1Mv06FVVeLN20G4s37MZvJRVo0TgFx3fNwcAuOUhJDH3/bkJI7PFVVqJ02TKULl2Gqt9/R2Lz5kgfOADpAwbAnZxc390jxFJidU0jhBBCCKkvxo4diy5duuDOO++sl/ZPPfVUjB07VvsDJIFs2bIFXbp0QVVVVZ3707FjR7z55ps47rjj6vxadpCRkYENGzagdevWpl9j6tSpePPNN/HFF7H/rh1yiMGDB2P8+PG46KKLbG130qRJ2LZtG15++WVb23U6CxYswPjx47Fp06b67ortuKMXIbqkJCbgpO4tcc/pPfHM6D645/SeOKl7Sx5yE2Iz7uRkNB48GLn/vANt//0Ecv95BxoPHsxDbkIIIYQQQmJIx44dkZaWhoyMDLRu3RrXXnstvF5vfXcrJJMmTULPnj3hdrtr3RKwJnPmzNE+5B47diweeOCBOvTQPhYsWKD1PT/r16/HaaedhubNmyMnJwdnn302duzYEbb8/v37tQ+5O3bsiCVLInzZfANBNw7WrFmDoUOHomnTpujYsWPEslu2bIHL5UJGRob/37Rp0+rYY3twuVzYtm1bfXfDcQwePBhvvvlmfXdDBDzoJoQQQgghhBBCSJ34/PPPsX//fixevBgffPABXnnllfruUki6dOmCxx9/vMF8KloSRUVFOPvss7FhwwZs374dbdu2xdixY+u7W/VGLH+Zk5SUhL/97W948sknDZVPSEjA/v37/f9Gjx4ds76QYGLx1xgNoU2nwINuQgghhBBCCCGExITOnTtj4MCBWLlypf+xf/zjH2jdujWaNGmCoUOHYuvWrf7nXC4XnnvuOeTl5SEnJweTJ08O+bq7du3CkUceiWeffRYA8K9//QutWrVCZmYmjjjiCKxZs8ZQ/y666CIMGzYMaWlpUcsGfkry66+/Ru/evZGZmYk2bdrgiSeeqFX+9ddfx7Rp03D//fcjIyMDV155pf+5l156Ca1atUJubi5ef/11/+MHDhzANddcg9atW6Nt27aYMmVKxD4tW7YMXbt2RbNmzXDzzTfD5/P5n3vmmWeQn5+PnJwcjBkzBqWlpQCADRs24LjjjkNmZiZatmyJiRMnwuv14tRTT8XPP//s/1RwNI455hhccsklaNq0KVJSUnDNNdfgq6++Cls+8NO7r776Kjp06IDGjRujW7duWLBgQa3y48ePx9atWzF06NCgTyn7fD5cddVVyMzMxGGHHYbvv//eX2fr1q0YOXIkmjVrhh49euB///tfyL7885//9H9Hzo4dO+ByufDf//4XwMFf0gwcOBDAwdv/TZgwAbm5uWjfvj3uu+8+/xhPmjQJo0aNwjnnnIOMjAx8+eWXIb0ixUE48vPzMW7cOHTt2jVqWR1Gjx6NF198EcDB2HG5XFi0aBEA4MUXXww6IN+4cSP69u2LzMxMXHDBBaioqPA/9/7776Nnz57Izs7G6aefjt9++w3Aob8KuO+++5CdnY2OHTvis88+C9mXoUOHAgC6deuGjIwMLF68GMDBNXDeeeehcePG6NevHwoKCvx1fvzxR5xwwglo2rQpjjrqKHz33XchX/v333/HqaeeiiZNmiAnJwejRo3yP/fll1/6vfLz8/3t/vrrrxgxYgSaNm2Kww47DB9++KG/zuDBg3HXXXehb9++SE9Ph8fjwcKFC3HUUUehSZMmGDx4MDZv3uzv/6hRo5CdnY3s7Gwcf/zxIfv4xx9/YPjw4cjJyUHz5s1x+eWX+8e4ehzvuece5OTk4J577jGcG+6//34sXrwY48ePR0ZGBh588EH/c+HmZe/evbjwwgvRokULdOrUKSgnBeLz+XDttdciJycHTZo0wdFHH43du3cDAB588EF06NABmZmZ6N+/P1atWuWv17FjRzzyyCPo0aMHGjdujLvvvhvr169H3759kZWVVWtNhMtdplDEz4EDB9SaNWvUgQMH6rsrhBBCSJ3gNY0QQgghdtGhQwe1ePFipZRS69evV7m5uerRRx/1P//222+rffv2qbKyMnXJJZeoM844w/8cAHXuueeqkpIS9eOPP6qUlBS1adMmpZRSY8aMUffff7/atm2b6tGjh3rppZeUUkqtXbtWtW3bVhUWFiqfz6fWrl2rCgsLlVJKTZ48WY0cOTJqn4cNG6Zee+21iGUGDRqk3njjDaWUUv369VNvvvmmUkqpvXv3qu+//z5kneo+V1NQUKAAqGuvvVZVVFSozz77TKWnp6vi4mKllFJXX321GjVqlCopKVHbt29Xhx12mPr4449DvnaHDh3UX/7yF1VYWOgv+/LLLyullHr33XfV4YcfrrZs2aLKysrUqFGj1E033aSUUuqCCy5QDz74oPL5fGr//v1q+fLlSiml5s+frzp37hx1rMLx0ksvqX79+oV9HoD69ddf1f79+1Xjxo3Vhg0blFJKbdmyRf38889hHatjSSmlXnvtNZWYmKjeeustVVVVpf75z3+qE044QSmllNfrVUceeaR68sknlcfjUcuWLVM5OTlq586dtV53zpw56rjjjlNKKTV9+nSVl5enLrvsMqWUUnfeeae69dZblVJK3XHHHWrQoEFq79696pdfflH5+fn+OLnnnntUSkqK+uyzz5TX643oVTMOjPLVV1+pDh06RCxTHVOtWrVS7du3V9ddd50qLS0NWfa5555TF110kVJKqSlTpqi8vDz1r3/9Syml1EUXXaSee+45pdTBWO/evbvasmWL+uOPP9Rhhx2mXn31VaWUUsuXL1dt2rRRq1atUpWVlWrixInqnHPOUUodjKGEhAQ1ZcoU5fF41AsvvKDat28ftu/VMVHNPffco1JTU9WXX36pPB6Puvjii9Xf//53pZRSJSUlqnXr1ur9999XVVVVaubMmapdu3Yh39/ceuut6qqrrlIej0eVl5erpUuXKqWU2rx5s2rcuLH6+OOPVVVVlfrll1/Uxo0blVJKDRw4UN18882qvLxczZ8/X2VkZPifGzRokOrcubPauHGjOnDggNq6davKyclRixYtUlVVVeo///mP6tu3r3+MTzvtNFVWVqY8Ho9atGhRSPfdu3erjz76SJWXl6sdO3ao3r17qyeeeCJoHO+9915VWVmpysrKtHJDYK4yMi8jRoxQN910kyovL1dr165VrVq1Uv/3f/9X63XnzJmjjjrqKFVUVKSqqqrUihUrVElJiVJKqQ8++ED99ttvqrKyUt11112qV69e/nodOnRQgwYNUnv27FFr165VKSkpasiQIWrr1q2qsLBQtWzZUn355ZdKqci5yww86A6AhwKEEEKcAq9phBBCCLGLDh06qIyMDJWenq4AqLPPPjvsHmTdunWqWbNm/p8BqO+++87/89FHH61mzpyplDp4WDh+/HiVn5+vXn/9dX+ZjRs3qubNm/sPx8yge9B93HHHqUmTJqk9e/ZErBPuoHv37t3+x5o3b65++OEH5fP5VGpqqtq+fbv/uaeeekqNGTMm5Gt36NAhqM8vvfSSGjJkiN9n2rRp/ud+/PFH/4HpRRddpK644gq1Y8eOoNery0F39RzMmzcvbJnAg+7MzEw1c+ZMVV5eHvF1Qx10H3744f6fV69erbKyspRSBw+F8/Pzg+qfc845Iee1qKhIpaX9f3t3HxRV1ccB/LsvgC66CworyMsOb8aiplJZrBAkjaIwEaGg5HsKjEoIihqhmKDTOIpgE+KM02Dm4DhahqE1NUOOTaNoTaaVOE4IKVuzmuZCvHOePxjusLK7As9TPtT389fd5XfOPefcyxnmdy7nqkRLS4tYs2aNKC0tFXq9XgjRc517E4j+/v5SAk4IIcrKysSsWbOEED1J2d5jIYTdfv2ViW6z2Sy++eYb0dnZKW7evCkiIyPF2rVrrcZevXpVSnDGxsaK0tJSERMTI4ToGesrV64IIXrGoO/iVE5OjsjMzBRCCJGWliYlx4UQ4sGDB0KpVIqOjg5RXV0t1Gq16OrqEkII0dzcLACIe/fuWW2PtUR3XFyc9LmqqkpKmFZUVEj3d6+nnnpKVFdX96s3Ly9PvPzyy/0WUAoLC0VKSkq/+IaGBuHk5CT+/PNP6bsFCxaInTt3SuPReyxEzwJa78JILzc3N1FXVycOHjwoDAaDuHr1qtU+21JWVmaxYKBSqaT5bLBzg7VEt63rYjQahUqlEu3t7VL8+vXrRX5+fr96v/jiCzFhwgRx4cIF0d3dbbMvLS0tQiaTSUlwnU4nTpw4If18+vTpYs+ePdLnpKQkKclvb+4aCm5dYkXff/0hIiIajoQQj7sJRERE9C9y5swZmM1mnDx5EpcuXUJTU5P0sx07diAwMBBqtRrTp0/H3bt3LcqOGzdOOlapVBZlP/74Y6hUKouXQgYGBmLPnj3Izc3FuHHjsHLlSjx48OAv7B1w8OBB/PDDDwgMDER4eLjdLTseplAoMHbsWOlzbx9NJhNaWloQEhICFxcXuLi4IDc3F7/99pvNunx8fCyOjUYjgJ4tPNLS0qR6wsPDYTKZAAC7du1Ce3s7pk6dimnTpuHUqVOD7b6FxsZGzJo1CwUFBZg5c+Yj452dnVFRUYF9+/Zh3LhxmD9/vt2XWD7M1v3R0NCAuro6qc8uLi749NNPpTHpS61W44knnkBNTQ2++uorJCQkSH25ePGitHVJY2MjfH19pXI6nc6ird7e3v+zfg3VqFGjEBoaCoVCAZ1Oh7fffhsffvih1diQkBA0NTXh5s2buHz5MpYvX44rV66gvr4eZrMZEydOlGLtjfOOHTukMfbx8YFSqcSvv/4KAHB3d4dcLpfKAbD4HX4Ue+c9e/asxfX96aefrI5xTk4OfH19ERkZieDgYOkdAbdu3YKfn1+/+MbGRri7u2PkyJHSd/audUNDAw4fPmzRlubmZty+fRuLFy9GdHQ0EhISoNPpbG6/ZDabsWTJEnh7e0OtViM7O9tiLvTw8IBSqQSAIc0ND7N1XRoaGtDa2gp3d3ep7gMHDkjXs6/o6Gikp6cjNTUVnp6e2LBhAzo6OgD0bMc0ceJEaDQaeHh4QAhh0R+tVisdjxw5st/nvtfZ1tw1FMohl/wHcnR0hFwul254R0dHyGSyx90sIiKiQRFCwGQyQSaTwcHB4XE3h4iIiP4lZDIZ4uPjUVlZicLCQhQXF+Ps2bMoLS1FdXU1goKCcP36dQQHBw+4zoyMDNTW1iI5ORnHjx+XEkGLFy/G4sWLcefOHSxYsABFRUXYtm3bX9Sznn2Fjx07hs7OTpSVlWHhwoW4efNmv7jB5BDc3Nzg5OSEn3/+GWPGjBlQmV9++cXi2NPTEwDg5eWFwsJCvPLKK/3KeHp64r333oMQApWVlUhKSsK9e/eGlO+4c+cOXnzxRaSmpiItLW3A5ebOnYu5c+eiqakJ6enpyM3NRXl5eb+4wbTJy8sLer3eYm9geyIiInDq1Cm0tLTAw8MD4eHhKC4uhr+/P1xdXQEA48ePR0NDAwICAgD0JOHGjx9vs322+vV35pLkcrnNh1xkMhnCw8Oxf/9+BAcHY8SIEQgJCcG7774Lg8EwoHZ6eXmhoKAA2dnZ/X5248aN/7r99s47e/ZsVFZWPjJWrVajpKQEJSUlOH/+PGbOnIkXXngBPj4+VvfvHz9+PEwmE1pbWzFixAgAPdd68uTJUkzfsfHy8sKqVauwb98+q+ffvn07tm/fjmvXriEqKgphYWGIioqyiCkqKoLJZMJ3330HNzc3HDhwABUVFVbPN9i5YbC/N6NGjRrwHJCVlYWsrCxpT/NJkyYhKioK69atw9mzZxEaGoq2tjY4OzsP6WEre3PXUDDR3YdcLoefnx+MRuPfsgpHRET0V5HJZPD29oZCoXjcTSEiIqJ/mQ0bNuCZZ55BXl4ezGYzHBwc4ObmhubmZhQWFg6qLplMhvLyciQmJmLZsmU4fPgwrl+/DqPRCIPBAJVKBScnpwH/zdPR0YGuri50d3ejo6MDra2t0kNv9hw5cgQxMTEYO3YsRo8ebfN8Wq3WagLcGrlcjqVLl2L9+vXYu3cv1Go1amtrYTabMX36dKtl3nnnHcyZMwfd3d0oLi7GunXrAAArVqzAzp07MWXKFAQEBMBoNOLy5cuIiYnB8ePHYTAYpBeCymQyyGQyaLVamEwmNDc3w9nZGQBQXl6Obdu2We3DgwcPMHv2bMTFxWHz5s0D6iPQ8yLRixcvIjo6Gk5OTlCpVOjq6rIa2zt+4eHhj6z32WefRXd3N/bv34/XXnsNAHDhwgXodDqLp7J7RUREYMWKFZg3bx4A4Pnnn8fq1auxaNEiKSY5ORkFBQWYOnUqmpqaUFRUhE2bNg26X9bug6ioKERFRVldkBFCoK2tDe3t7RBCoLW1FXK5HI6Ojv1ia2pq4OrqisDAQBiNRrzxxht46aWXbI5TREQEtm/fjg0bNkj93rVrF/Ly8myW6Wv58uVYtGgRoqOjMWXKFPz+++84d+4c4uPjB1S+r95x6fu0tC2999nJkycRFxcnvRAyLCwMGo3GIraqqgp6vR5+fn7QaDSQyWRQKBRYuHAhpk6ditOnTyMmJga3b99Ge3s7AgICEBoaivz8fBQUFOD8+fM4deoU3nrrLattSUlJgcFgwPz58zFjxgw0Nzfjs88+w7x581BdXQ2tVgu9Xg+1Wg2lUml1fjCbzVCpVNBoNKivr0dpaam0wPKwwc4Ng5l3vLy8EBYWhry8PLz55ptwdHTE999/Ly2C9HXp0iUIITBt2jSMHj0aDg4OUCgUaGpqglwuh7u7Ozo7O5Gfnz+gc1tjb+4aCia6H+Lo6AhfX190dnbanHiJiIj+3/X+EUJERET0d9Pr9YiMjERJSQny8/MxY8YM6HQ6uLm5YePGjfjggw8GVZ9SqcSxY8cQGxuLNWvWID09HTk5Obh27RqcnJwwa9YsZGVlAQB27tyJc+fO4cyZM1brWrVqFQ4dOgQA+Pzzz5Gamorq6up+T18+7PTp08jMzERbWxsmTJiA999/32pcbyLVxcUFKSkp2Lhxo9169+7di9zcXEyePBlmsxlBQUF2FwOSkpIQERGBu3fvYsmSJVi+fDkAYOHChbh//z5iY2PR2NgIDw8PpKenIyYmBjU1NcjIyIDZbIavry8qKirg5OQEvV6P+Ph4+Pj4oLu7G/fv38etW7ekbTwe9tFHH+Hbb79FbW0tSktLpe8ftU1Fd3c3du3ahZSUFCgUChgMBhw8eNBq7KZNm/D6669j7dq1FuewRqlUoqqqCpmZmdi6dSuEEHj66adRVlZmNT4iIgJms1lKoj/8GQC2bNmC7OxsBAcHw8HBAStXrsTSpUsH3a+H74PS0lK7Y1tfX2+xxcbIkSMRGRmJL7/8EgAwceJE5Obm4tVXX8WNGzeQm5sLk8kEV1dXJCQk2Nwuw1a/t2zZMqDFBAAwGAzYvXs3lixZgrq6OowZMwZJSUlDSnRv3boViYmJaGtrwyeffGI3VqPRoKqqCllZWVixYgUcHBwwY8YMhIWF9Yu9fv06Vq9ejbt370Kr1aK4uBg6nQ4AcOLECeTk5CA5OVn674aAgAAcPXoUqamp0Gq18PT0xKFDhxAUFGS1LX5+fjh69Kg07zg7O2PmzJmYN28ejEYjUlNTYTQaodFokJ6ejoiIiH51ZGZmIjk5Ga6urggODkZCQoJ0fa0ZzNyQkZGBZcuWYffu3di8eTOee+45u2N75MgRZGdnw9/fH+3t7Zg0aRL27t3bL+6PP/7AunXrUFdXB2dnZyQlJUn3e1paGp588kk4Oztjy5YtVhdlBsLe3NXQ0ICQkBD8+OOPVhevrJEJbuJJRERERERERPSvN2fOHBQVFUGv1z/upvyjGI1GJCYm4uuvv37cTSH6R2Oim4iIiIiIiIiIiIiGNfubUBERERERERERERER/Z9jopuIiIiIiIiIiIiIhjUmuomIiIiIiIiIiIhoWGOim4iIiIiIiIiIiIiGNSa6iYiIiIiIiIiIiGhYY6KbiIiIiIiIiIiIiIY1JrqJiIiIiIiIiIiIaFhjopuIiIiIiIiIiIiIhjUmuomIiIiIiIiIiIhoWGOim4iIiIiIiIiIiIiGNSa6iYiIiIiIiIiIiGhY+w/q7UuwJ5aijwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "MIN_ABS_DIFF = 0.05\n", + "scores = np.stack([modela, modelb], axis=1)\n", + "ranks = stats.rankdata(-scores, method=\"average\", axis=1)\n", + "abs_diff = np.abs(np.diff(scores, axis=1)).flatten()\n", + "ranks[abs_diff < MIN_ABS_DIFF, :] = 1.5\n", + "ranksa, ranksb = ranks[:, 0], ranks[:, 1]\n", + "\n", + "num_samples = ranks.shape[0]\n", + "indexes = np.arange(num_samples)\n", + "\n", + "fig, ax = plt.subplots(figsize=(18, 2.5))\n", + "\n", + "# plot sample index vs score and their mean\n", + "ax.scatter(indexes, ranksa, s=30, color=\"tab:blue\", marker=\"o\", label=\"Model A\", zorder=3, alpha=0.6)\n", + "ax.axhline(ranksa.mean(), color=\"tab:blue\", linestyle=\"--\", label=\"Mean\", zorder=3)\n", + "ax.scatter(indexes, ranksb, s=30, color=\"tab:red\", marker=\"o\", label=\"Model B\", zorder=3, alpha=0.6)\n", + "ax.axhline(ranksb.mean(), color=\"tab:red\", linestyle=\"--\", label=\"Mean\", zorder=3)\n", + "\n", + "# configure the x-axis\n", + "ax.set_xlabel(\"Sample index\")\n", + "ax.set_xlim(0 - (eps := 0.01 * num_samples), num_samples + eps)\n", + "ax.xaxis.set_major_locator(IndexLocator(5, 0))\n", + "ax.xaxis.set_minor_locator(IndexLocator(1, 0))\n", + "\n", + "# configure the y-axis\n", + "ax.set_ylabel(\"AUPIMO Rank\")\n", + "ax.set_ylim(1 - 0.1, 2 + 0.1)\n", + "ax.yaxis.set_major_locator(FixedLocator([1, 1.5, 2]))\n", + "ax.invert_yaxis()\n", + "\n", + "# configure the grid, legend, etc\n", + "ax.grid(axis=\"both\", which=\"major\", linestyle=\"-\")\n", + "ax.grid(axis=\"x\", which=\"minor\", linestyle=\"--\", alpha=0.5)\n", + "ax.legend(ncol=4, loc=\"upper left\", bbox_to_anchor=(0, -0.15))\n", + "ax.set_title(\"AUPIMO scores ranks\")\n", + "\n", + "fig.text(\n", + " 0.9,\n", + " -0.1,\n", + " \"Ranks: 1 is the best, 2 is the worst, 1.5 when the scores are the same.\",\n", + " ha=\"right\",\n", + " va=\"top\",\n", + " fontsize=\"small\",\n", + ")\n", + "\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The advantage of A over B is clearer now.\n", + "\n", + "Most of cases where B was better were within the difference margin of 5%.\n", + "\n", + "The average ranks also got more distant.\n", + "\n", + "Could it be by chance or can we be confident that model A is better than model B?\n", + "\n", + "> **Wilcoxon signed rank test**\n", + "> \n", + "> - null hypothesis: `average(rankA) == average(rankB)` \n", + "> - alternative hypothesis: `average(rankA) != average(rankB)`\n", + "> \n", + "> See [`scipy.stats.wilcoxon`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html#scipy.stats.wilcoxon) and [\"Wilcoxon signed-rank test\" in Wikipedia](https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test).\n", + ">\n", + "> Confidence Level (reminder): *higher* confidence level *more confident* that `average(rankA) > average(rankB)`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "test_result=WilcoxonResult(statistic=1823.0, pvalue=0.0002876893285960681)\n", + "confidence=100.0%\n" + ] + } + ], + "source": [ + "MIN_ABS_DIFF = 0.05\n", + "differences = modela - modelb\n", + "differences[abs_diff < MIN_ABS_DIFF] = 0.0\n", + "test_result = stats.wilcoxon(differences, zero_method=\"zsplit\")\n", + "confidence = 1.0 - float(test_result.pvalue)\n", + "print(f\"{test_result=}\")\n", + "print(f\"{confidence=:.1%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We got such a high confidence that we can say for sure that these differences are not due to chance.\n", + "\n", + "So we can say that model A is _consistently_ better than model B -- even though some counter examples exist as we saw in the image by image comparison." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Cite Us\n", + "\n", + "AUPIMO was developed during [Google Summer of Code 2023 (GSoC 2023)](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd) with the `anomalib` team from Intel's OpenVINO Toolkit.\n", + "\n", + "arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", + "\n", + "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", + "\n", + "```bibtex\n", + "@misc{bertoldo2024aupimo,\n", + " author={Joao P. C. Bertoldo and Dick Ameln and Ashwin Vaidya and Samet Akçay},\n", + " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", + " year={2024},\n", + " url={https://arxiv.org/abs/2401.01984}, \n", + "}\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Utils\n", + "\n", + "Some utility functions to expand what this notebook shows." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Save AUPIMO scores\n", + "\n", + "At the begin of the notebook we defined a function `load_aupimo_result_from_json_dict()` that deserializes `AUPIMOResult` objects.\n", + "\n", + "Let's define the opposite operator so you can save and publish your AUPIMO scores." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "payload.keys()=dict_keys(['fpr_lower_bound', 'fpr_upper_bound', 'num_thresholds', 'thresh_lower_bound', 'thresh_upper_bound', 'aupimos'])\n" + ] + } + ], + "source": [ + "def save_aupimo_result_to_json_dict(\n", + " aupimo_result: AUPIMOResult,\n", + " paths: list[str | Path] | None = None,\n", + ") -> dict[str, str | float | int | list[str]]:\n", + " \"\"\"Convert the AUPIMOResult dataclass to a JSON payload.\"\"\"\n", + " payload = {\n", + " \"fpr_lower_bound\": aupimo_result.fpr_lower_bound,\n", + " \"fpr_upper_bound\": aupimo_result.fpr_upper_bound,\n", + " \"num_thresholds\": aupimo_result.num_thresholds,\n", + " \"thresh_lower_bound\": aupimo_result.thresh_lower_bound,\n", + " \"thresh_upper_bound\": aupimo_result.thresh_upper_bound,\n", + " \"aupimos\": aupimo_result.aupimos.tolist(),\n", + " }\n", + " if paths is not None:\n", + " if len(paths) != aupimo_result.aupimos.shape[0]:\n", + " msg = (\n", + " \"Invalid paths. It must have the same length as the AUPIMO scores. \"\n", + " f\"Got {len(paths)} paths and {aupimo_result.aupimos.shape[0]} scores.\"\n", + " )\n", + " raise ValueError(msg)\n", + " # make sure the paths are strings, not pathlib.Path objects\n", + " payload[\"paths\"] = [str(p) for p in paths]\n", + " return payload\n", + "\n", + "\n", + "payload = save_aupimo_result_to_json_dict(aupimo_result_model_a)\n", + "print(f\"{payload.keys()=}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "payload.keys()=dict_keys(['fpr_lower_bound', 'fpr_upper_bound', 'num_thresholds', 'thresh_lower_bound', 'thresh_upper_bound', 'aupimos'])\n" + ] + } + ], + "source": [ + "payload = save_aupimo_result_to_json_dict(aupimo_result_model_a)\n", + "print(f\"{payload.keys()=}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "payload.keys()=dict_keys(['fpr_lower_bound', 'fpr_upper_bound', 'num_thresholds', 'thresh_lower_bound', 'thresh_upper_bound', 'aupimos', 'paths'])\n" + ] + } + ], + "source": [ + "# you can optionally save the paths to the images\n", + "# where the AUPIMO scores were computed from\n", + "payload = save_aupimo_result_to_json_dict(aupimo_result_model_a, paths)\n", + "print(f\"{payload.keys()=}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "8,0K\t/tmp/tmpsuauy_de/aupimo_result.json\n" + ] + } + ], + "source": [ + "# let's check that it can be saved to a file and loaded back\n", + "\n", + "from tempfile import TemporaryDirectory\n", + "\n", + "with TemporaryDirectory() as tmpdir:\n", + " cache_dir = Path(tmpdir)\n", + "\n", + " with (cache_dir / \"aupimo_result.json\").open(\"w\") as file:\n", + " json.dump(payload, file)\n", + "\n", + " !du -sh {cache_dir / \"aupimo_result.json\"}\n", + "\n", + " with (cache_dir / \"aupimo_result.json\").open(\"r\") as file:\n", + " payload_reloaded = json.load(file)\n", + "\n", + "aupimo_result_reloaded = load_aupimo_result_from_json_dict(payload_reloaded)\n", + "assert torch.allclose(aupimo_result_model_a.aupimos, aupimo_result_reloaded.aupimos, equal_nan=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pairwise statistical tests (multiple models)\n", + "\n", + "What if you have multiple models to compare?\n", + "\n", + "Here we define a functions that will return all the pairwise comparisons between the models." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "import itertools\n", + "from typing import Any, Literal\n", + "\n", + "import numpy as np\n", + "from numpy import ndarray\n", + "from scipy import stats\n", + "from torch import Tensor\n", + "\n", + "\n", + "def _validate_models(models: dict[str, Tensor | ndarray]) -> dict[str, ndarray]:\n", + " \"\"\"Make sure the input `models` is valid and convert all the dict's values to `ndarray`.\n", + "\n", + " Args:\n", + " models (dict[str, Tensor | ndarray]): {\"model name\": sequence of shape (num_images,)}.\n", + " Validations:\n", + " - keys are strings (model names)\n", + " - there are at least two models\n", + " - values are sequences of floats in [0, 1] or `nan`\n", + " - all sequences have the same shape\n", + " - all `nan` values are at the positions\n", + " Returns:\n", + " dict[str, ndarray]: {\"model name\": array (num_images,)}.\n", + " \"\"\"\n", + " if not isinstance(models, dict):\n", + " msg = f\"Expected argument `models` to be a dict, but got {type(models)}.\"\n", + " raise TypeError(msg)\n", + "\n", + " if len(models) < 2:\n", + " msg = \"Expected argument `models` to have at least one key, but got none.\"\n", + " raise ValueError(msg)\n", + "\n", + " ref_num_samples = None\n", + " ref_nans = None\n", + " for key in models:\n", + " if not isinstance(key, str):\n", + " msg = f\"Expected argument `models` to have all keys of type str. Found {type(key)}.\"\n", + " raise TypeError(msg)\n", + "\n", + " value = models[key]\n", + "\n", + " if not isinstance(value, Tensor | ndarray):\n", + " msg = (\n", + " \"Expected argument `models` to have all values of type Tensor or ndarray. \"\n", + " f\"Found {type(value)} on {key=}.\"\n", + " )\n", + " raise TypeError(msg)\n", + "\n", + " if isinstance(value, Tensor):\n", + " models[key] = value = value.numpy()\n", + "\n", + " if not np.issubdtype(value.dtype, np.floating):\n", + " msg = f\"Expected argument `models` to have all values of floating type. Found {value.dtype} on {key=}.\"\n", + " raise ValueError(msg)\n", + "\n", + " if value.ndim != 1:\n", + " msg = f\"Expected argument `models` to have all values of 1D arrays. Found {value.ndim} on {key=}.\"\n", + " raise ValueError(msg)\n", + "\n", + " if ref_num_samples is None:\n", + " ref_num_samples = num_samples = value.shape[0]\n", + " ref_nans = nans = np.isnan(value)\n", + "\n", + " if num_samples != ref_num_samples:\n", + " msg = \"Argument `models` has inconsistent number of samples.\"\n", + " raise ValueError(msg)\n", + "\n", + " if (nans != ref_nans).any():\n", + " msg = \"Argument `models` has inconsistent `nan` values (in different positions).\"\n", + " raise ValueError(msg)\n", + "\n", + " if (value[~nans] < 0).any() or (value[~nans] > 1).any():\n", + " msg = (\n", + " \"Expected argument `models` to have all sequences of floats \\\\in [0, 1]. \"\n", + " f\"Key {key} has values outside this range.\"\n", + " )\n", + " raise ValueError(msg)\n", + "\n", + " return models\n", + "\n", + "\n", + "def test_pairwise(\n", + " models: dict[str, Tensor | ndarray],\n", + " *,\n", + " test: Literal[\"ttest_rel\", \"wilcoxon\"],\n", + " min_abs_diff: float | None = None,\n", + ") -> list[dict[str, Any]]:\n", + " \"\"\"Compare all pairs of models using statistical tests.\n", + "\n", + " Scores are assumed to be *higher is better*.\n", + "\n", + " General hypothesis in the tests:\n", + " - Null hypothesis: two models are equivalent on average.\n", + " - Alternative hypothesis: one model is better than the other (two-sided test).\n", + "\n", + " Args:\n", + " models (dict[str, Tensor | ndarray]): {\"model name\": sequence of shape (num_images,)}.\n", + " test (Literal[\"ttest_rel\", \"wilcoxon\"]): The statistical test to use.\n", + " - \"ttest_rel\": Paired Student's t-test (parametric).\n", + " - \"wilcoxon\": Wilcoxon signed-rank test (non-parametric).\n", + " min_abs_diff (float | None): Minimum absolute difference to consider in the Wilcoxon test. If `None`, all\n", + " differences are considered. Default is `None`. Ignored in the t-test.\n", + " \"\"\"\n", + " models = _validate_models(models)\n", + " if test not in {\"ttest_rel\", \"wilcoxon\"}:\n", + " msg = f\"Expected argument `test` to be 'ttest_rel' or 'wilcoxon', but got '{test}'.\"\n", + " raise ValueError(msg)\n", + " # remove nan values\n", + " models = {k: v[~np.isnan(v)] for k, v in models.items()}\n", + " models_names = sorted(models.keys())\n", + " num_models = len(models)\n", + " comparisons = list(itertools.combinations(range(num_models), 2))\n", + "\n", + " # for each comparison, compute the test and confidence (1 - p-value)\n", + " test_results = []\n", + " for modela_idx, modelb_idx in comparisons: # indices of the sorted model names\n", + " modela = models_names[modela_idx]\n", + " modelb = models_names[modelb_idx]\n", + " modela_scores = models[modela]\n", + " modelb_scores = models[modelb]\n", + " if test == \"ttest_rel\":\n", + " test_result = stats.ttest_rel(modela_scores, modelb_scores, alternative=\"two-sided\")\n", + " else: # test == \"wilcoxon\"\n", + " differences = modela_scores - modelb_scores\n", + " if min_abs_diff is not None:\n", + " differences[np.abs(differences) < min_abs_diff] = 0.0\n", + " # extreme case\n", + " if (differences == 0).all():\n", + " test_result = stats._morestats.WilcoxonResult(np.nan, 1.0) # noqa: SLF001\n", + " else:\n", + " test_result = stats.wilcoxon(differences, zero_method=\"zsplit\", alternative=\"two-sided\")\n", + " test_results.append({\n", + " \"modela\": modela,\n", + " \"modelb\": modelb,\n", + " \"confidence\": 1 - test_result.pvalue,\n", + " \"pvalue\": test_result.pvalue,\n", + " \"statistic\": test_result.statistic,\n", + " })\n", + "\n", + " return test_results" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's first test it with the same two models we used before." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
modelamodelbconfidencepvaluestatistic
0AB0.9950.0052.872
\n", + "
" + ], + "text/plain": [ + " modela modelb confidence pvalue statistic\n", + "0 A B 0.995 0.005 2.872" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# parametric test\n", + "pd.DataFrame.from_records(test_pairwise({\"A\": modela, \"B\": modelb}, test=\"ttest_rel\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
modelamodelbconfidencepvaluestatistic
0AB0.9980.0021965.500
\n", + "
" + ], + "text/plain": [ + " modela modelb confidence pvalue statistic\n", + "0 A B 0.998 0.002 1965.500" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# non-parametric test\n", + "pd.DataFrame.from_records(test_pairwise({\"A\": modela, \"B\": modelb}, test=\"wilcoxon\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
modelamodelbconfidencepvaluestatistic
0AB1.0000.0001823.000
\n", + "
" + ], + "text/plain": [ + " modela modelb confidence pvalue statistic\n", + "0 A B 1.000 0.000 1823.000" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# non-parametric test with a minimum absolute difference\n", + "pd.DataFrame.from_records(test_pairwise({\"A\": modela, \"B\": modelb}, test=\"wilcoxon\", min_abs_diff=0.05))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's get the best models from the benchmark in our paper and compare them two by two.\n", + "\n", + "We'll look at the dataset `cashew` from `VisA`.\n", + "\n", + "> More details in the paper (see the last cell)." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 modelamodelbconfidencepvaluestatistic
0efficientad_wr101_s_extpatchcore_wr1010.9994020.0005981580.000000
1efficientad_wr101_s_extrd++_wr50_ext0.7736590.2263412193.500000
2efficientad_wr101_s_extsimplenet_wr50_ext1.0000000.000000690.500000
3efficientad_wr101_s_extuflow_ext0.9994470.0005531550.500000
4patchcore_wr101rd++_wr50_ext0.9999800.0000201333.000000
5patchcore_wr101simplenet_wr50_ext1.0000000.000000351.500000
6patchcore_wr101uflow_ext0.7318750.2681252213.000000
7rd++_wr50_extsimplenet_wr50_ext1.0000000.000000967.000000
8rd++_wr50_extuflow_ext0.9999450.0000551383.000000
9simplenet_wr50_extuflow_ext1.0000000.000000318.500000
\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "models = {\n", + " model_name: get_benchmark_aupimo_scores(model_name, \"visa/cashew\", verbose=False)[1].aupimos.numpy()\n", + " for model_name in [\n", + " \"efficientad_wr101_s_ext\",\n", + " \"patchcore_wr101\",\n", + " \"rd++_wr50_ext\",\n", + " \"simplenet_wr50_ext\",\n", + " \"uflow_ext\",\n", + " ]\n", + "}\n", + "models = test_pairwise(models, test=\"wilcoxon\", min_abs_diff=0.1)\n", + "pd.DataFrame.from_records(models).style.background_gradient(cmap=\"jet\", vmin=0, vmax=1, subset=[\"confidence\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Compare to the benchmark (coming up)\n", + "\n", + "Compare your freshly trained models to the benchmark datasets in our paper." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO(jpcbertoldo): implement utility function to load and compare to the results from the benchmark # noqa: TD003" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Cite Us\n", + "\n", + "AUPIMO was developed during [Google Summer of Code 2023 (GSoC 2023)](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd) with the `anomalib` team from Intel's OpenVINO Toolkit.\n", + "\n", + "arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", + "\n", + "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", + "\n", + "```bibtex\n", + "@misc{bertoldo2024aupimo,\n", + " author={Joao P. C. Bertoldo and Dick Ameln and Ashwin Vaidya and Samet Akçay},\n", + " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", + " year={2024},\n", + " url={https://arxiv.org/abs/2401.01984}, \n", + "}\n", + "```" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "anomalib-dev", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/README.md b/notebooks/README.md index 15935b93cf..de33e5b7e9 100644 --- a/notebooks/README.md +++ b/notebooks/README.md @@ -60,3 +60,4 @@ To install Python, Git and other required tools, [OpenVINO Notebooks](https://gi | AUPIMO representative samples and visualization | [701b_aupimo_advanced_i](/notebooks/700_metrics/701b_aupimo_advanced_i.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/openvinotoolkit/anomalib/blob/main/notebooks/700_metrics/701b_aupimo_advanced_i.ipynb) | | PIMO curve and integration bounds | [701c_aupimo_advanced_ii](/notebooks/700_metrics/701c_aupimo_advanced_ii.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/openvinotoolkit/anomalib/blob/main/notebooks/700_metrics/701c_aupimo_advanced_ii.ipynb) | | (AU)PIMO of a random model | [701d_aupimo_advanced_iii](/notebooks/700_metrics/701d_aupimo_advanced_iii.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/openvinotoolkit/anomalib/blob/main/notebooks/700_metrics/701d_aupimo_advanced_iii.ipynb) | +| AUPIMO load/save, statistical comparison | [701e_aupimo_advanced_iv](/notebooks/700_metrics/701e_aupimo_advanced_iv.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/openvinotoolkit/anomalib/blob/main/notebooks/700_metrics/701e_aupimo_advanced_iv.ipynb) | diff --git a/src/anomalib/metrics/pimo/dataclasses.py b/src/anomalib/metrics/pimo/dataclasses.py index 0c5aeb025d..3eaa04cd12 100644 --- a/src/anomalib/metrics/pimo/dataclasses.py +++ b/src/anomalib/metrics/pimo/dataclasses.py @@ -120,7 +120,7 @@ class AUPIMOResult: # metadata fpr_lower_bound: float fpr_upper_bound: float - num_thresholds: int + num_thresholds: int | None # data thresh_lower_bound: float = field(repr=False) @@ -169,7 +169,8 @@ def __post_init__(self) -> None: try: _validate.is_rate_range((self.fpr_lower_bound, self.fpr_upper_bound)) # TODO(jpcbertoldo): warn when it's too low (use parameters from the numpy code) # noqa: TD003 - _validate.is_num_thresholds_gte2(self.num_thresholds) + if self.num_thresholds is not None: + _validate.is_num_thresholds_gte2(self.num_thresholds) _validate.is_rates(self.aupimos, nan_allowed=True) # validate is_aupimos _validate.validate_threshold_bounds((self.thresh_lower_bound, self.thresh_upper_bound)) @@ -194,7 +195,6 @@ def from_pimo_result( num_thresholds_auc: number of thresholds used to effectively compute AUPIMO; NOT the number of thresholds used to compute the PIMO curve! aupimos: AUPIMO scores - paths: paths to the source images to which the AUPIMO scores correspond. """ if pimo_result.per_image_tprs.shape[0] != aupimos.shape[0]: msg = (