You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
INFO:anomalib.models.components.base.anomaly_module:Initializing Patchcore model.
INFO:timm.models._builder:Loading pretrained weights from Hugging Face hub (timm/wide_resnet50_2.racm_in1k)
INFO:timm.models._hub:[timm/wide_resnet50_2.racm_in1k] Safe alternative available for'pytorch_model.bin' (as 'model.safetensors'). Loading weights using safetensors.
INFO:timm.models._builder:Missing keys (fc.weight, fc.bias) discovered while loading pretrained weights. This is expected if model is being adapted.
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
You are using a CUDA device ('NVIDIA GeForce RTX 3080 Laptop GPU') that has Tensor Cores. To properly utilize them, you should set`torch.set_float32_matmul_precision('medium'|'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision
INFO:anomalib.data.image.mvtec:Found the dataset.
WARNING:anomalib.metrics.f1_score:F1Score class exists forbackwards compatibility. It will be removedin v1.1. Please use BinaryF1Score from torchmetrics instead
WARNING:anomalib.metrics.f1_score:F1Score class exists forbackwards compatibility. It will be removedin v1.1. Please use BinaryF1Score from torchmetrics instead
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
c:\OpenPy_Recipe\AI_Weights\Envs\anomalib_env\lib\site-packages\lightning\pytorch\core\optimizer.py:182: `LightningModule.configure_optimizers` returned `None`, this fit will run with no optimizer
| Name | Type | Params | Mode
---------------------------------------------------------------------------
0 | model | PatchcoreModel | 24.9 M | train
1 | _transform | Compose | 0 | train
2 | normalization_metrics | MetricCollection | 0 | train
3 | image_threshold | F1AdaptiveThreshold | 0 | train
4 | pixel_threshold | F1AdaptiveThreshold | 0 | train
5 | image_metrics | AnomalibMetricCollection | 0 | train
6 | pixel_metrics | AnomalibMetricCollection | 0 | train
---------------------------------------------------------------------------
24.9 M Trainable params
0 Non-trainable params
24.9 M Total params
99.450 Total estimated model params size (MB)
17 Modules in train mode
174 Modules ineval mode
c:\OpenPy_Recipe\AI_Weights\Envs\anomalib_env\lib\site-packages\lightning\pytorch\trainer\connectors\data_connector.py:419: Consider setting `persistent_workers=True`in'train_dataloader' to speed up the dataloader worker initialization.
c:\OpenPy_Recipe\AI_Weights\Envs\anomalib_env\lib\site-packages\lightning\pytorch\trainer\connectors\data_connector.py:419: Consider setting `persistent_workers=True`in'val_dataloader' to speed up the dataloader worker initialization.
Epoch 0: 0%|| 0/7 [00:00<?, ?it/s]c:\OpenPy_Recipe\AI_Weights\Envs\anomalib_env\lib\site-packages\lightning\pytorch\loops\optimization\automatic.py:132: `training_step` returned `None`. If this was on purpose, ignore this warning...
Epoch 0: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:02<00:00, 2.63it/s]INFO:anomalib.models.image.patchcore.lightning_model:Aggregating the embedding extracted from the training set. | 0/? [00:00<?, ?it/s]
INFO:anomalib.models.image.patchcore.lightning_model:Applying core-set subsampling to get the embedding.
Selecting Coreset Indices.: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16385/16385 [00:41<00:00, 393.28it/s]
Epoch 0: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [02:01<00:00, 0.06it/s, pixel_AUROC=0.686, pixel_F1Score=0.140]`Trainer.fit` stopped: `max_epochs=1` reached.
Epoch 0: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [02:02<00:00, 0.06it/s, pixel_AUROC=0.686, pixel_F1Score=0.140]
INFO:anomalib.callbacks.timer:Training took 202.21 seconds
INFO:anomalib.data.image.mvtec:Found the dataset.
WARNING:anomalib.metrics.f1_score:F1Score class exists forbackwards compatibility. It will be removedin v1.1. Please use BinaryF1Score from torchmetrics instead
WARNING:anomalib.metrics.f1_score:F1Score class exists forbackwards compatibility. It will be removedin v1.1. Please use BinaryF1Score from torchmetrics instead
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
c:\OpenPy_Recipe\AI_Weights\Envs\anomalib_env\lib\site-packages\lightning\pytorch\trainer\connectors\data_connector.py:419: Consider setting `persistent_workers=True`in'test_dataloader' to speed up the dataloader worker initialization.
Testing DataLoader 0: 0%|| 0/3 [00:00<?, ?it/s]
Code of Conduct
I agree to follow this project's Code of Conduct
The text was updated successfully, but these errors were encountered:
@VivizSun it is because of a deprecated function in Matplotlib. This should fix it. Alternatively you could use a Matplotlib version that is less than 3.10 #2471
Describe the bug
Thank you for your contributions.
I encountered a training error (as shown in the image below) while training.
Could you please advise me on how to resolve this issue?
Dataset
MVTec
Model
N/A
Steps to reproduce the behavior
from anomalib.data import MVTec
from anomalib.models import Patchcore
from anomalib.engine import Engine
def main():
datamodule = MVTec()
model = Patchcore()
engine = Engine()
if name == "main":
main()
OS information
OS information:
Python environment:
aiohappyeyeballs 2.4.4
aiohttp 3.11.10
aiosignal 1.3.2
anomalib 1.2.0
antlr4-python3-runtime 4.9.3
async-timeout 5.0.1
attrs 24.3.0
certifi 2024.12.14
charset-normalizer 3.4.0
colorama 0.4.6
contourpy 1.3.1
cycler 0.12.1
docstring_parser 0.16
dotenv 0.0.5
einops 0.8.0
filelock 3.16.1
fonttools 4.55.3
FrEIA 0.2
frozenlist 1.5.0
fsspec 2024.10.0
ftfy 6.3.1
huggingface-hub 0.27.0
idna 3.10
imageio 2.36.1
imgaug 0.4.0
importlib_resources 6.4.5
Jinja2 3.1.4
joblib 1.4.2
jsonargparse 4.35.0
kiwisolver 1.4.7
kornia 0.7.4
kornia_rs 0.1.7
lazy_loader 0.4
lightning 2.4.0
lightning-utilities 0.11.9
markdown-it-py 3.0.0
MarkupSafe 3.0.2
matplotlib 3.5.0
mdurl 0.1.2
mpmath 1.3.0
multidict 6.1.0
networkx 3.4.2
numpy 2.2.0
omegaconf 2.3.0
open_clip_torch 2.29.0
opencv-python 4.10.0.84
packaging 24.2
pandas 2.2.3
pillow 10.2.0
pip 24.3.1
propcache 0.2.1
Pygments 2.18.0
pyparsing 3.2.0
python-dateutil 2.9.0.post0
python-dotenv 1.0.1
pytorch-lightning 2.4.0
pytz 2024.2
PyYAML 6.0.2
regex 2024.11.6
requests 2.32.3
rich 13.9.4
rich-argparse 1.6.0
safetensors 0.4.5
scikit-image 0.25.0
scikit-learn 1.6.0
scipy 1.14.1
setuptools 58.1.0
setuptools-scm 8.1.0
shapely 2.0.6
six 1.17.0
sympy 1.13.1
threadpoolctl 3.5.0
tifffile 2024.12.12
timm 1.0.12
tomli 2.2.1
torch 2.5.1+cu124
torchaudio 2.5.1+cu124
torchmetrics 1.6.0
torchvision 0.20.1+cu124
tqdm 4.67.1
typeshed_client 2.7.0
typing_extensions 4.12.2
tzdata 2024.2
urllib3 2.2.3
wcwidth 0.2.13
yarl 1.18.3
Expected behavior
An error occurred during the training process.
Screenshots
No response
Pip/GitHub
GitHub
What version/branch did you use?
No response
Configuration YAML
NA
Logs
Code of Conduct
The text was updated successfully, but these errors were encountered: