Skip to content

Latest commit

 

History

History
62 lines (41 loc) · 2.52 KB

File metadata and controls

62 lines (41 loc) · 2.52 KB

face-detection-0204

Use Case and High-Level Description

Face detector based on MobileNetV2 as a backbone with a multiple SSD head for indoor and outdoor scenes shot by a front-facing camera. During the training of this model, training images were resized to 448x448.

Example

Specification

Metric Value
AP (WIDER) 92.89%
GFlops 2.406
MParams 1.851
Source framework PyTorch*

Average Precision (AP) is defined as an area under the precision/recall curve. All numbers were evaluated by taking into account only faces bigger than 64 x 64 pixels.

Inputs

Image, name: image, shape: 1, 3, 448, 448 in the format B, C, H, W, where:

  • B - batch size
  • C - number of channels
  • H - image height
  • W - image width

Expected color order: BGR.

Outputs

The net outputs blob with shape: 1, 1, 200, 7 in the format 1, 1, N, 7, where N is the number of detected bounding boxes. Each detection has the format [image_id, label, conf, x_min, y_min, x_max, y_max], where:

  • image_id - ID of the image in the batch
  • label - predicted class ID (0 - face)
  • conf - confidence for the predicted class
  • (x_min, y_min) - coordinates of the top left bounding box corner
  • (x_max, y_max) - coordinates of the bottom right bounding box corner

Training Pipeline

The OpenVINO Training Extensions provide a training pipeline, allowing to fine-tune the model on custom dataset.

Demo usage

The model can be used in the following demos provided by the Open Model Zoo to show its capabilities:

Legal Information

[*] Other names and brands may be claimed as the property of others.