-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
51 lines (46 loc) · 1.59 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from setuptools import setup, find_packages
# NOTE: disease is intended to be replaced here at some point in the future with a build script that will
# dynamically create and move code into a subfolder within optima/ for a specific disease area.
disease = 'tb'
with open("optima_%s/_version.py"%disease, "r") as f:
version_file = {}
exec(f.read(), version_file)
version = version_file["__version__"]
try:
from pypandoc import convert
except ImportError:
import io
def convert(filename, fmt):
with io.open(filename, encoding='utf-8') as fd:
return fd.read()
CLASSIFIERS = [
'Environment :: Console',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: GPLv3',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Topic :: Software Development :: Libraries :: Python Modules',
'Development Status :: 3 - Alpha',
'Programming Language :: Python :: 2.7',
]
setup(
name='optima_tb',
version=version,
author='David Kedziora, Sarah Jarvis, Azfar Hussain',
author_email='[email protected]',
description='Software package for modeling H2H infectious disease epidemics',
#long_description=convert('README.md', 'md'),
url='http://github.com/optimamodel/tb-ucl',
keywords=['optima','disease'],
platforms=['OS Independent'],
classifiers=CLASSIFIERS,
packages=find_packages(),
include_package_data=True,
install_requires=[
'matplotlib>=1.4.2',
'numpy>=1.10.1',
],
)