Dream Architecture is presented in the following image:
Name | Requirements | Description |
---|---|---|
Rule Based Selector | Algorithm that selects list of skills to generate candidate responses to the current context based on topics, entities, emotions, toxicity, dialogue acts and dialogue history | |
Response Selector | 50 MB RAM | Algorithm that selects a final responses among the given list of candidate responses |
Name | Requirements | Description |
---|---|---|
Sentiment Classification | 2 GB RAM, 2 GB GPU | classifies sentiment to positive, negative and neutral classes |
Toxic Classification | 3 GB RAM, 2 GB GPU | classifies toxicity: identity_attack, insult, obscene, severe_toxicity, sexual_explicit, threat, toxicity |
Sentence Ranker | 2.5 GB RAM, 1.8 GB GPU | for a pair of sentences predicts a floating point value. For multilingual version, return cosine similarity between embeddings from multilingual sentence BERT |
Name | Requirements | Description |
---|---|---|
GPT-2 Multilingual | 5 GB RAM, 6.5 GB GPU | GPT2-based generative model. For Multilingual distribution we propose mgpt by Sberbank from HugginFace |
Kuratov Y. et al. DREAM technical report for the Alexa Prize 2019 //Alexa Prize Proceedings. – 2020.
Baymurzina D. et al. DREAM Technical Report for the Alexa Prize 4 //Alexa Prize Proceedings. – 2021.
DeepPavlov Dream is licensed under Apache 2.0.
Program-y (see dream/skills/dff_program_y_skill
, dream/skills/dff_program_y_wide_skill
, dream/skills/dff_program_y_dangerous_skill
)
is licensed under Apache 2.0.
Eliza (see dream/skills/eliza
) is licensed under MIT License.
For making certification xlsx
- file with bot responses, you can use xlsx_responder.py
script by executing
docker-compose -f docker-compose.yml -f dev.yml exec -T -u $(id -u) agent python3 \
utils/xlsx_responder.py --url http://0.0.0.0:4242 \
--input 'tests/dream/test_questions.xlsx' \
--output 'tests/dream/output/test_questions_output.xlsx'\
--cache tests/dream/output/test_questions_output_$(date --iso-8601=seconds).json
Make sure all services are deployed. --input
- xlsx
file with certification questions, --output
- xlsx
file with bot responses, --cache
- json
, that contains a detailed markup and is used for a cache.