-
Notifications
You must be signed in to change notification settings - Fork 178
/
sklearn_simple.py
42 lines (32 loc) · 1.39 KB
/
sklearn_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
"""
Optuna example that optimizes a classifier configuration for Iris dataset using sklearn.
In this example, we optimize a classifier configuration for Iris dataset. Classifiers are from
scikit-learn. We optimize both the choice of classifier (among SVC and RandomForest) and their
hyperparameters.
"""
import optuna
import sklearn.datasets
import sklearn.ensemble
import sklearn.model_selection
import sklearn.svm
# FYI: Objective functions can take additional arguments
# (https://optuna.readthedocs.io/en/stable/faq.html#objective-func-additional-args).
def objective(trial):
iris = sklearn.datasets.load_iris()
x, y = iris.data, iris.target
classifier_name = trial.suggest_categorical("classifier", ["SVC", "RandomForest"])
if classifier_name == "SVC":
svc_c = trial.suggest_float("svc_c", 1e-10, 1e10, log=True)
classifier_obj = sklearn.svm.SVC(C=svc_c, gamma="auto")
else:
rf_max_depth = trial.suggest_int("rf_max_depth", 2, 32, log=True)
classifier_obj = sklearn.ensemble.RandomForestClassifier(
max_depth=rf_max_depth, n_estimators=10
)
score = sklearn.model_selection.cross_val_score(classifier_obj, x, y, n_jobs=-1, cv=3)
accuracy = score.mean()
return accuracy
if __name__ == "__main__":
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=100)
print(study.best_trial)