-
Notifications
You must be signed in to change notification settings - Fork 177
/
keras_integration.py
122 lines (94 loc) · 4.08 KB
/
keras_integration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
Optuna example that demonstrates a pruner for Keras.
In this example, we optimize the validation accuracy of hand-written digit recognition using
Keras and MNIST, where the architecture of the neural network and the learning rate of optimizer
is optimized. Throughout the training of neural networks, a pruner observes intermediate
results and stops unpromising trials.
You can run this example as follows:
$ python keras_integration.py
For a similar Optuna example that demonstrates Keras without a pruner on a regression dataset,
see the following link:
https://github.com/optuna/optuna-examples/blob/main/mlflow/keras_mlflow.py
"""
import urllib
import optuna
from optuna.integration import KerasPruningCallback
from optuna.trial import TrialState
import keras
from keras.datasets import mnist
from keras.layers import Dense
from keras.layers import Dropout
from keras.models import Sequential
from keras.optimizers import RMSprop
from keras.utils import to_categorical
# TODO(crcrpar): Remove the below three lines once everything is ok.
# Register a global custom opener to avoid HTTP Error 403: Forbidden when downloading MNIST.
opener = urllib.request.build_opener()
opener.addheaders = [("User-agent", "Mozilla/5.0")]
urllib.request.install_opener(opener)
N_TRAIN_EXAMPLES = 3000
N_VALID_EXAMPLES = 1000
BATCHSIZE = 128
CLASSES = 10
EPOCHS = 20
def create_model(trial):
# We optimize the number of layers, hidden units and dropout in each layer and
# the learning rate of RMSProp optimizer.
# We define our MLP.
n_layers = trial.suggest_int("n_layers", 1, 3)
model = Sequential()
for i in range(n_layers):
num_hidden = trial.suggest_int("n_units_l{}".format(i), 4, 128, log=True)
model.add(Dense(num_hidden, activation="relu"))
dropout = trial.suggest_float("dropout_l{}".format(i), 0.2, 0.5)
model.add(Dropout(rate=dropout))
model.add(Dense(CLASSES, activation="softmax"))
# We compile our model with a sampled learning rate.
learning_rate = trial.suggest_float("learning_rate", 1e-5, 1e-1, log=True)
model.compile(
loss="categorical_crossentropy",
optimizer=RMSprop(learning_rate=learning_rate),
metrics=["accuracy"],
)
return model
def objective(trial):
# Clear clutter from previous session graphs.
keras.backend.clear_session()
# The data is split between train and validation sets.
(x_train, y_train), (x_valid, y_valid) = mnist.load_data()
x_train = x_train.reshape(60000, 784)[:N_TRAIN_EXAMPLES].astype("float32") / 255
x_valid = x_valid.reshape(10000, 784)[:N_VALID_EXAMPLES].astype("float32") / 255
# Convert class vectors to binary class matrices.
y_train = to_categorical(y_train[:N_TRAIN_EXAMPLES], CLASSES)
y_valid = to_categorical(y_valid[:N_VALID_EXAMPLES], CLASSES)
# Generate our trial model.
model = create_model(trial)
# Fit the model on the training data.
# The KerasPruningCallback checks for pruning condition every epoch.
model.fit(
x_train,
y_train,
batch_size=BATCHSIZE,
callbacks=[KerasPruningCallback(trial, "val_accuracy")],
epochs=EPOCHS,
validation_data=(x_valid, y_valid),
verbose=1,
)
# Evaluate the model accuracy on the validation set.
score = model.evaluate(x_valid, y_valid, verbose=0)
return score[1]
if __name__ == "__main__":
study = optuna.create_study(direction="maximize", pruner=optuna.pruners.MedianPruner())
study.optimize(objective, n_trials=100)
pruned_trials = study.get_trials(deepcopy=False, states=[TrialState.PRUNED])
complete_trials = study.get_trials(deepcopy=False, states=[TrialState.COMPLETE])
print("Study statistics: ")
print(" Number of finished trials: ", len(study.trials))
print(" Number of pruned trials: ", len(pruned_trials))
print(" Number of complete trials: ", len(complete_trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))