From 132bce108847d8093ceab74474de8ff78def794e Mon Sep 17 00:00:00 2001
From: Nurgalym2001 <89890787+Nurgalym2001@users.noreply.github.com>
Date: Fri, 8 Mar 2024 18:02:53 +0600
Subject: [PATCH 01/11] Delete chapter1/spam-fighting-blacklist.ipynb
---
chapter1/spam-fighting-blacklist.ipynb | 1259 ------------------------
1 file changed, 1259 deletions(-)
delete mode 100644 chapter1/spam-fighting-blacklist.ipynb
diff --git a/chapter1/spam-fighting-blacklist.ipynb b/chapter1/spam-fighting-blacklist.ipynb
deleted file mode 100644
index 4ac0df3..0000000
--- a/chapter1/spam-fighting-blacklist.ipynb
+++ /dev/null
@@ -1,1259 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "import pickle\n",
- "import email_read_util"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Download 2007 TREC Public Spam Corpus\n",
- "1. Read the \"Agreement for use\"\n",
- " https://plg.uwaterloo.ca/~gvcormac/treccorpus07/\n",
- "\n",
- "2. Download 255 MB Corpus (trec07p.tgz) and untar into the 'chapter1/datasets' directory\n",
- "\n",
- "3. Check that the below paths for 'DATA_DIR' and 'LABELS_FILE' exist"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "DATA_DIR = 'datasets/trec07p/data/'\n",
- "LABELS_FILE = 'datasets/trec07p/full/index'\n",
- "TRAINING_SET_RATIO = 0.7"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "labels = {}\n",
- "spam_words = set()\n",
- "ham_words = set()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Read the labels\n",
- "with open(LABELS_FILE) as f:\n",
- " for line in f:\n",
- " line = line.strip()\n",
- " label, key = line.split()\n",
- " labels[key.split('/')[-1]] = 1 if label.lower() == 'ham' else 0"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Split corpus into train and test sets\n",
- "filelist = os.listdir(DATA_DIR)\n",
- "X_train = filelist[:int(len(filelist)*TRAINING_SET_RATIO)]\n",
- "X_test = filelist[int(len(filelist)*TRAINING_SET_RATIO):]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Blacklist of 97939 tokens successfully built/loaded\n"
- ]
- }
- ],
- "source": [
- "if not os.path.exists('blacklist.pkl'):\n",
- " for filename in X_train:\n",
- " path = os.path.join(DATA_DIR, filename)\n",
- " if filename in labels:\n",
- " label = labels[filename]\n",
- " stems = email_read_util.load(path)\n",
- " if not stems:\n",
- " continue\n",
- " if label == 1:\n",
- " ham_words.update(stems)\n",
- " elif label == 0:\n",
- " spam_words.update(stems)\n",
- " else:\n",
- " continue\n",
- " blacklist = spam_words - ham_words\n",
- " pickle.dump(blacklist, open('blacklist.pkl', 'wb'))\n",
- "else:\n",
- " blacklist = pickle.load(open('blacklist.pkl', 'rb') )\n",
- "\n",
- "print('Blacklist of {} tokens successfully built/loaded'.format(len(blacklist)))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'pectora',\n",
- " 'sleet',\n",
- " 'soma',\n",
- " 'sorb',\n",
- " 'raglan',\n",
- " 'pluma',\n",
- " 'thrower',\n",
- " 'ducal',\n",
- " 'vatman',\n",
- " 'biaxial',\n",
- " 'choral',\n",
- " 'muzz',\n",
- " 'merk',\n",
- " 'degum',\n",
- " 'lino',\n",
- " 'punctual',\n",
- " 'zig',\n",
- " 'whopper',\n",
- " 'saunter',\n",
- " 'commot',\n",
- " 'pian',\n",
- " 'enchant',\n",
- " 'starlit',\n",
- " 'handmaid',\n",
- " 'matchbook',\n",
- " 'chil',\n",
- " 'prote',\n",
- " 'cush',\n",
- " 'feme',\n",
- " 'cerulean',\n",
- " 'flamenco',\n",
- " 'fie',\n",
- " 'adroit',\n",
- " 'calor',\n",
- " 'electrician',\n",
- " 'batik',\n",
- " 'depositor',\n",
- " 'ammonia',\n",
- " 'dor',\n",
- " 'humph',\n",
- " 'throb',\n",
- " 'osteosarcoma',\n",
- " 'phylum',\n",
- " 'staphylococci',\n",
- " 'redub',\n",
- " 'romaunt',\n",
- " 'castrum',\n",
- " 'billyboy',\n",
- " 'snug',\n",
- " 'phosphor',\n",
- " 'caroli',\n",
- " 'sweatband',\n",
- " 'sequent',\n",
- " 'flutter',\n",
- " 'abac',\n",
- " 'subjunct',\n",
- " 'matriarch',\n",
- " 'trisect',\n",
- " 'hazelwood',\n",
- " 'crept',\n",
- " 'sienna',\n",
- " 'camelopard',\n",
- " 'austral',\n",
- " 'amaranth',\n",
- " 'embank',\n",
- " 'briar',\n",
- " 'fishtail',\n",
- " 'shou',\n",
- " 'chessboard',\n",
- " 'reman',\n",
- " 'ponent',\n",
- " 'coxa',\n",
- " 'ornithologist',\n",
- " 'colter',\n",
- " 'ammono',\n",
- " 'bajada',\n",
- " 'heterotopia',\n",
- " 'cand',\n",
- " 'rainless',\n",
- " 'nar',\n",
- " 'polka',\n",
- " 'burrow',\n",
- " 'augend',\n",
- " 'irrupt',\n",
- " 'quarrel',\n",
- " 'nothing',\n",
- " 'goldfish',\n",
- " 'fibrin',\n",
- " 'anvil',\n",
- " 'bree',\n",
- " 'malm',\n",
- " 'coloss',\n",
- " 'tenderloin',\n",
- " 'siskin',\n",
- " 'precinct',\n",
- " 'sider',\n",
- " 'centrum',\n",
- " 'rhymer',\n",
- " 'artificial',\n",
- " 'brackish',\n",
- " 'schooner',\n",
- " 'quickset',\n",
- " 'repugn',\n",
- " 'ironwork',\n",
- " 'chare',\n",
- " 'sparerib',\n",
- " 'thee',\n",
- " 'citril',\n",
- " 'stade',\n",
- " 'facer',\n",
- " 'escolar',\n",
- " 'cyp',\n",
- " 'orograph',\n",
- " 'fennel',\n",
- " 'saltbush',\n",
- " 'cantar',\n",
- " 'bedpost',\n",
- " 'conic',\n",
- " 'unal',\n",
- " 'retrogress',\n",
- " 'baw',\n",
- " 'yuca',\n",
- " 'humanist',\n",
- " 'lour',\n",
- " 'jacinth',\n",
- " 'jud',\n",
- " 'pergola',\n",
- " 'simular',\n",
- " 'passeriform',\n",
- " 'protean',\n",
- " 'cashier',\n",
- " 'mejorana',\n",
- " 'affront',\n",
- " 'dragoon',\n",
- " 'expansion',\n",
- " 'moksha',\n",
- " 'smolt',\n",
- " 'poter',\n",
- " 'baboon',\n",
- " 'pater',\n",
- " 'elegiac',\n",
- " 'mellow',\n",
- " 'gopher',\n",
- " 'hiation',\n",
- " 'boomerang',\n",
- " 'birk',\n",
- " 'conclusion',\n",
- " 'credenza',\n",
- " 'gat',\n",
- " 'maud',\n",
- " 'fana',\n",
- " 'nativist',\n",
- " 'astern',\n",
- " 'karma',\n",
- " 'garlic',\n",
- " 'cinerea',\n",
- " 'individualist',\n",
- " 'saddler',\n",
- " 'nonet',\n",
- " 'tomahawk',\n",
- " 'petulant',\n",
- " 'slut',\n",
- " 'bronchi',\n",
- " 'precess',\n",
- " 'lank',\n",
- " 'raffia',\n",
- " 'anonymous',\n",
- " 'toother',\n",
- " 'condominium',\n",
- " 'beechwood',\n",
- " 'mermaid',\n",
- " 'macer',\n",
- " 'abut',\n",
- " 'hereabout',\n",
- " 'autobahn',\n",
- " 'wort',\n",
- " 'bolling',\n",
- " 'kelt',\n",
- " 'eland',\n",
- " 'excreta',\n",
- " 'appet',\n",
- " 'cowbird',\n",
- " 'shama',\n",
- " 'spart',\n",
- " 'ordinar',\n",
- " 'envier',\n",
- " 'neurotoxin',\n",
- " 'terzo',\n",
- " 'Og',\n",
- " 'dawnlight',\n",
- " 'proo',\n",
- " 'yowl',\n",
- " 'perciform',\n",
- " 'glee',\n",
- " 'avera',\n",
- " 'concoct',\n",
- " 'amomum',\n",
- " 'dimorph',\n",
- " 'barium',\n",
- " 'shrew',\n",
- " 'propagandist',\n",
- " 'nog',\n",
- " 'fot',\n",
- " 'empt',\n",
- " 'pome',\n",
- " 'wack',\n",
- " 'companionship',\n",
- " 'anadrom',\n",
- " 'sportswear',\n",
- " 'whir',\n",
- " 'cava',\n",
- " 'untrain',\n",
- " 'leaflet',\n",
- " 'chapeau',\n",
- " 'ashen',\n",
- " 'quod',\n",
- " 'intercolumn',\n",
- " 'mokum',\n",
- " 'lungi',\n",
- " 'bacteriostat',\n",
- " 'mestizo',\n",
- " 'ostrich',\n",
- " 'munj',\n",
- " 'scupper',\n",
- " 'liman',\n",
- " 'awlwort',\n",
- " 'kersey',\n",
- " 'pussycat',\n",
- " 'horticulturist',\n",
- " 'stallion',\n",
- " 'brakeman',\n",
- " 'lectual',\n",
- " 'sarsaparilla',\n",
- " 'sitch',\n",
- " 'rind',\n",
- " 'precook',\n",
- " 'positron',\n",
- " 'cantor',\n",
- " 'stanch',\n",
- " 'dhai',\n",
- " 'creed',\n",
- " 'wight',\n",
- " 'zeal',\n",
- " 'circumpolar',\n",
- " 'carbonyl',\n",
- " 'alfresco',\n",
- " 'chaffinch',\n",
- " 'sawdust',\n",
- " 'reobtain',\n",
- " 'looker',\n",
- " 'lifeguard',\n",
- " 'unimodular',\n",
- " 'raceway',\n",
- " 'keratin',\n",
- " 'drool',\n",
- " 'guan',\n",
- " 'becoward',\n",
- " 'beheld',\n",
- " 'abbey',\n",
- " 'cordillera',\n",
- " 'threefold',\n",
- " 'eyelet',\n",
- " 'sordid',\n",
- " 'toeboard',\n",
- " 'smite',\n",
- " 'colder',\n",
- " 'unreal',\n",
- " 'knockdown',\n",
- " 'pagoda',\n",
- " 'flane',\n",
- " 'consonant',\n",
- " 'alchemist',\n",
- " 'rutherford',\n",
- " 'harn',\n",
- " 'furioso',\n",
- " 'dha',\n",
- " 'upo',\n",
- " 'nard',\n",
- " 'nightlong',\n",
- " 'concerto',\n",
- " 'bebar',\n",
- " 'apraxia',\n",
- " 'naiad',\n",
- " 'yachtsman',\n",
- " 'estrogen',\n",
- " 'bastion',\n",
- " 'pouch',\n",
- " 'unio',\n",
- " 'speck',\n",
- " 'saya',\n",
- " 'disinfect',\n",
- " 'teapot',\n",
- " 'creak',\n",
- " 'titi',\n",
- " 'godhead',\n",
- " 'discolor',\n",
- " 'lepidopterist',\n",
- " 'scalpel',\n",
- " 'herewith',\n",
- " 'topper',\n",
- " 'royalist',\n",
- " 'codicil',\n",
- " 'comedown',\n",
- " 'raindrop',\n",
- " 'waar',\n",
- " 'shrivel',\n",
- " 'pock',\n",
- " 'kicker',\n",
- " 'nasi',\n",
- " 'scram',\n",
- " 'tacker',\n",
- " 'apaid',\n",
- " 'cenotaph',\n",
- " 'utch',\n",
- " 'ersatz',\n",
- " 'capuchin',\n",
- " 'quinto',\n",
- " 'barracuda',\n",
- " 'fairyland',\n",
- " 'samson',\n",
- " 'leafless',\n",
- " 'humic',\n",
- " 'marmot',\n",
- " 'brander',\n",
- " 'hatchet',\n",
- " 'tabla',\n",
- " 'toat',\n",
- " 'saccharum',\n",
- " 'yeoman',\n",
- " 'henceforth',\n",
- " 'rondeau',\n",
- " 'mink',\n",
- " 'fingertip',\n",
- " 'tracer',\n",
- " 'quadrivium',\n",
- " 'capybara',\n",
- " 'corbeau',\n",
- " 'mildew',\n",
- " 'fowl',\n",
- " 'soothsay',\n",
- " 'talker',\n",
- " 'tung',\n",
- " 'whirlwind',\n",
- " 'individual',\n",
- " 'maxilla',\n",
- " 'proximo',\n",
- " 'pert',\n",
- " 'brough',\n",
- " 'taxonomist',\n",
- " 'husbandman',\n",
- " 'tempora',\n",
- " 'patrician',\n",
- " 'doff',\n",
- " 'coot',\n",
- " 'dactyl',\n",
- " 'relevant',\n",
- " 'nese',\n",
- " 'megohm',\n",
- " 'sentient',\n",
- " 'limequat',\n",
- " 'branchlet',\n",
- " 'electro',\n",
- " 'damiana',\n",
- " 'sequin',\n",
- " 'bluer',\n",
- " 'malar',\n",
- " 'anta',\n",
- " 'axon',\n",
- " 'dodo',\n",
- " 'shopworn',\n",
- " 'lintel',\n",
- " 'redevelop',\n",
- " 'hoi',\n",
- " 'parson',\n",
- " 'tyke',\n",
- " 'psalm',\n",
- " 'skittish',\n",
- " 'satanist',\n",
- " 'paler',\n",
- " 'desi',\n",
- " 'mola',\n",
- " 'vicar',\n",
- " 'chital',\n",
- " 'kachin',\n",
- " 'hoatzin',\n",
- " 'serum',\n",
- " 'ilex',\n",
- " 'mallard',\n",
- " 'vinifera',\n",
- " 'holler',\n",
- " 'swordfish',\n",
- " 'dimmer',\n",
- " 'adulter',\n",
- " 'tari',\n",
- " 'battel',\n",
- " 'aquavit',\n",
- " 'housecoat',\n",
- " 'decagon',\n",
- " 'vallum',\n",
- " 'armadillo',\n",
- " 'putter',\n",
- " 'tode',\n",
- " 'ephyra',\n",
- " 'spinneret',\n",
- " 'minnow',\n",
- " 'longhair',\n",
- " 'glover',\n",
- " 'sensational',\n",
- " 'natal',\n",
- " 'carbo',\n",
- " 'florid',\n",
- " 'skiff',\n",
- " 'crust',\n",
- " 'ballast',\n",
- " 'rebook',\n",
- " 'bonair',\n",
- " 'chorda',\n",
- " 'comfrey',\n",
- " 'crouton',\n",
- " 'bulkhead',\n",
- " 'moorland',\n",
- " 'stam',\n",
- " 'goi',\n",
- " 'muskeg',\n",
- " 'stench',\n",
- " 'manipular',\n",
- " 'loca',\n",
- " 'corymb',\n",
- " 'downbear',\n",
- " 'bisson',\n",
- " 'chorist',\n",
- " 'octillion',\n",
- " 'smacker',\n",
- " 'egghead',\n",
- " 'vermilion',\n",
- " 'strew',\n",
- " 'persimmon',\n",
- " 'teamwork',\n",
- " 'ascan',\n",
- " 'darter',\n",
- " 'pugilist',\n",
- " 'sweatshop',\n",
- " 'deign',\n",
- " 'stardom',\n",
- " 'coelacanth',\n",
- " 'motorway',\n",
- " 'rata',\n",
- " 'fatherless',\n",
- " 'woodpeck',\n",
- " 'triton',\n",
- " 'repin',\n",
- " 'ament',\n",
- " 'melon',\n",
- " 'zeppelin',\n",
- " 'chard',\n",
- " 'courtier',\n",
- " 'bayamo',\n",
- " 'hangman',\n",
- " 'zag',\n",
- " 'gamecock',\n",
- " 'incognito',\n",
- " 'geneticist',\n",
- " 'oblong',\n",
- " 'thill',\n",
- " 'cyme',\n",
- " 'tua',\n",
- " 'astral',\n",
- " 'prater',\n",
- " 'coauthor',\n",
- " 'yeat',\n",
- " 'raptor',\n",
- " 'dvaita',\n",
- " 'monotheist',\n",
- " 'twite',\n",
- " 'boarder',\n",
- " 'spittoon',\n",
- " 'tweet',\n",
- " 'snifter',\n",
- " 'saccharin',\n",
- " 'trichi',\n",
- " 'testudo',\n",
- " 'daredevil',\n",
- " 'prig',\n",
- " 'headstrong',\n",
- " 'waer',\n",
- " 'rhine',\n",
- " 'kapp',\n",
- " 'grosbeak',\n",
- " 'lum',\n",
- " 'chromo',\n",
- " 'yarrow',\n",
- " 'melodia',\n",
- " 'plainer',\n",
- " 'maggot',\n",
- " 'whereupon',\n",
- " 'kora',\n",
- " 'voivodeship',\n",
- " 'twilight',\n",
- " 'cornea',\n",
- " 'halbert',\n",
- " 'cassinoid',\n",
- " 'manship',\n",
- " 'redcoat',\n",
- " 'hither',\n",
- " 'axial',\n",
- " 'apartheid',\n",
- " 'satchel',\n",
- " 'shim',\n",
- " 'affection',\n",
- " 'wetter',\n",
- " 'pelt',\n",
- " 'tarsi',\n",
- " 'ringlead',\n",
- " 'hypanthium',\n",
- " 'arpent',\n",
- " 'pizzeria',\n",
- " 'gulp',\n",
- " 'empower',\n",
- " 'dool',\n",
- " 'abrupt',\n",
- " 'fiberboard',\n",
- " 'metaphysician',\n",
- " 'nobleman',\n",
- " 'copperhead',\n",
- " 'fontanel',\n",
- " 'nonsectarian',\n",
- " 'mew',\n",
- " 'turbid',\n",
- " 'repen',\n",
- " 'windshield',\n",
- " 'prehuman',\n",
- " 'washbowl',\n",
- " 'auk',\n",
- " 'phono',\n",
- " 'brewster',\n",
- " 'sura',\n",
- " 'survivalist',\n",
- " 'downturn',\n",
- " 'slag',\n",
- " 'nana',\n",
- " 'lora',\n",
- " 'cupola',\n",
- " 'libido',\n",
- " 'henna',\n",
- " 'shredder',\n",
- " 'escheat',\n",
- " 'renal',\n",
- " 'ethel',\n",
- " 'corrigendum',\n",
- " 'muslin',\n",
- " 'reservoir',\n",
- " 'calid',\n",
- " 'tute',\n",
- " 'turndown',\n",
- " 'valerian',\n",
- " 'bigmouth',\n",
- " 'buxom',\n",
- " 'pilar',\n",
- " 'illegal',\n",
- " 'taha',\n",
- " 'terron',\n",
- " 'adolescent',\n",
- " 'pacifist',\n",
- " 'footpad',\n",
- " 'bandstand',\n",
- " 'tired',\n",
- " 'matsu',\n",
- " 'rooker',\n",
- " 'daphnoid',\n",
- " 'acta',\n",
- " 'plover',\n",
- " 'gerfalcon',\n",
- " 'arca',\n",
- " 'stratagem',\n",
- " 'dentata',\n",
- " 'rougher',\n",
- " 'sixer',\n",
- " 'droplet',\n",
- " 'dauber',\n",
- " 'archway',\n",
- " 'workbook',\n",
- " 'cider',\n",
- " 'folia',\n",
- " 'cerium',\n",
- " 'quintic',\n",
- " 'mandala',\n",
- " 'kola',\n",
- " 'missel',\n",
- " 'daresay',\n",
- " 'clitter',\n",
- " 'yokel',\n",
- " 'inheritor',\n",
- " 'sticktight',\n",
- " 'bassist',\n",
- " 'otolith',\n",
- " 'navel',\n",
- " 'bailiwick',\n",
- " 'bight',\n",
- " 'simper',\n",
- " 'chevron',\n",
- " 'mosey',\n",
- " 'uncontrol',\n",
- " 'bairn',\n",
- " 'adieu',\n",
- " 'expressway',\n",
- " 'deme',\n",
- " 'principiant',\n",
- " 'cay',\n",
- " 'multicolor',\n",
- " 'larviform',\n",
- " 'multiplet',\n",
- " 'latchkey',\n",
- " 'fob',\n",
- " 'flaccid',\n",
- " 'marler',\n",
- " 'whitehead',\n",
- " 'scrubland',\n",
- " 'endear',\n",
- " 'waterman',\n",
- " 'hansel',\n",
- " 'fireman',\n",
- " 'planter',\n",
- " 'clove',\n",
- " 'howe',\n",
- " 'charac',\n",
- " 'skulk',\n",
- " 'thacker',\n",
- " 'jann',\n",
- " 'flattish',\n",
- " 'proconsul',\n",
- " 'groper',\n",
- " 'huff',\n",
- " 'cataract',\n",
- " 'whitebark',\n",
- " 'scat',\n",
- " 'treeless',\n",
- " 'proa',\n",
- " 'debar',\n",
- " 'boun',\n",
- " 'bowsprit',\n",
- " 'stagecoach',\n",
- " 'croucher',\n",
- " 'revivalist',\n",
- " 'unsought',\n",
- " 'churr',\n",
- " 'seamanship',\n",
- " 'spay',\n",
- " 'piciform',\n",
- " 'bogard',\n",
- " 'oriel',\n",
- " 'telford',\n",
- " 'microfilm',\n",
- " 'ruru',\n",
- " 'druggist',\n",
- " 'nomad',\n",
- " 'thyroid',\n",
- " 'assistor',\n",
- " 'uitspan',\n",
- " 'wren',\n",
- " 'equestrian',\n",
- " 'dildo',\n",
- " 'overstock',\n",
- " 'hush',\n",
- " 'spooler',\n",
- " 'rehash',\n",
- " 'crayfish',\n",
- " 'scriber',\n",
- " 'mapach',\n",
- " 'ptarmigan',\n",
- " 'sudd',\n",
- " 'daffodil',\n",
- " 'stude',\n",
- " 'tice',\n",
- " 'glycerin',\n",
- " 'fragrant',\n",
- " 'occultist',\n",
- " 'musicianship',\n",
- " 'brill',\n",
- " 'laird',\n",
- " 'kickshaw',\n",
- " 'mukti',\n",
- " 'rancher',\n",
- " 'blanch',\n",
- " 'snowbound',\n",
- " 'carnal',\n",
- " 'covey',\n",
- " 'brushwood',\n",
- " 'bamboo',\n",
- " 'fizz',\n",
- " 'pecker',\n",
- " 'spellbind',\n",
- " 'brickel',\n",
- " 'capulet',\n",
- " 'viga',\n",
- " 'paprika',\n",
- " 'hemlock',\n",
- " 'bettor',\n",
- " 'dere',\n",
- " 'ataman',\n",
- " 'dult',\n",
- " 'flannel',\n",
- " 'rowan',\n",
- " 'brownish',\n",
- " 'beldam',\n",
- " 'entropion',\n",
- " 'beld',\n",
- " 'houseboat',\n",
- " 'draper',\n",
- " 'eyelash',\n",
- " 'norther',\n",
- " 'knob',\n",
- " 'knop',\n",
- " 'savoy',\n",
- " 'betoken',\n",
- " 'attern',\n",
- " 'crowder',\n",
- " 'cuarenta',\n",
- " 'crucifix',\n",
- " 'alderman',\n",
- " 'woodbin',\n",
- " 'labrusca',\n",
- " 'butyl',\n",
- " 'stion',\n",
- " 'extravascular',\n",
- " 'binder',\n",
- " 'exoskeleton',\n",
- " 'declaim',\n",
- " 'tweed',\n",
- " 'rusk',\n",
- " 'peregrin',\n",
- " 'exigent',\n",
- " 'biochemist',\n",
- " 'taum',\n",
- " 'plateau',\n",
- " 'grassland',\n",
- " 'oaken',\n",
- " 'dockyard',\n",
- " 'rattail',\n",
- " 'splendor',\n",
- " 'grout',\n",
- " 'stree',\n",
- " 'causey',\n",
- " 'register',\n",
- " 'bott',\n",
- " 'glottal',\n",
- " 'cockerel',\n",
- " 'japonica',\n",
- " 'cravat',\n",
- " 'chider',\n",
- " 'uncut',\n",
- " 'shyness',\n",
- " 'drier',\n",
- " 'lemur',\n",
- " 'fandom',\n",
- " 'reefer',\n",
- " 'souther',\n",
- " 'microlepidoptera',\n",
- " 'melodrama',\n",
- " 'avast',\n",
- " 'sailboat',\n",
- " 'memento',\n",
- " 'educationalist',\n",
- " 'helminth',\n",
- " 'dorsal',\n",
- " 'gane',\n",
- " 'raja',\n",
- " 'coper',\n",
- " 'dodecahedron',\n",
- " 'heptagon',\n",
- " 'linwood',\n",
- " 'akimbo',\n",
- " 'anteroom',\n",
- " 'sutra',\n",
- " 'talisman',\n",
- " 'nihilist',\n",
- " 'eclat',\n",
- " 'skyway',\n",
- " 'reservist',\n",
- " 'hawthorn',\n",
- " 'simpleton',\n",
- " 'agog',\n",
- " 'orgasm',\n",
- " 'transaction',\n",
- " 'tern',\n",
- " 'caudal',\n",
- " 'grazer',\n",
- " 'ako',\n",
- " 'hereof',\n",
- " 'impost',\n",
- " 'grossen',\n",
- " 'cratch',\n",
- " 'verbena',\n",
- " 'encamp',\n",
- " 'beggar',\n",
- " 'burgh',\n",
- " 'ascidian',\n",
- " 'vagrant',\n",
- " 'milord',\n",
- " 'overzeal',\n",
- " 'barit',\n",
- " 'grue',\n",
- " 'snorkel',\n",
- " 'carillon',\n",
- " 'beseech',\n",
- " 'burgher',\n",
- " 'peal',\n",
- " 'struthioniform',\n",
- " 'kitcat',\n",
- " 'xylitol',\n",
- " 'jarl',\n",
- " 'runt',\n",
- " 'agal',\n",
- " 'teet',\n",
- " 'moveless',\n",
- " 'vermeil',\n",
- " 'lifeless',\n",
- " 'sacrament',\n",
- " 'legate',\n",
- " 'trillium',\n",
- " 'tramway',\n",
- " 'starlight',\n",
- " 'trinitarian',\n",
- " 'peignoir',\n",
- " 'diamagnet',\n",
- " 'plump',\n",
- " 'pupal',\n",
- " 'salicyl',\n",
- " 'hander',\n",
- " 'wadi',\n",
- " 'sweatproof',\n",
- " 'tamarind',\n",
- " 'multiplex',\n",
- " 'pand',\n",
- " 'parakeet',\n",
- " 'hawfinch',\n",
- " 'hydro',\n",
- " 'levant',\n",
- " 'knave',\n",
- " 'tinct',\n",
- " 'matricula',\n",
- " 'wrongdoer',\n",
- " 'mister',\n",
- " 'lifehold',\n",
- " 'nook',\n",
- " 'topmost',\n",
- " 'adjunct',\n",
- " 'injector',\n",
- " 'trill',\n",
- " 'rond',\n",
- " 'thorax',\n",
- " 'bota',\n",
- " 'kinnikinnick',\n",
- " 'northeastward',\n",
- " 'macaroni',\n",
- " 'blackguard',\n",
- " 'brougham',\n",
- " 'tripper',\n",
- " 'supraocular',\n",
- " 'shag',\n",
- " 'earthwork',\n",
- " 'pall',\n",
- " 'feu',\n",
- " 'overfish',\n",
- " 'pinkish',\n",
- " 'sextet',\n",
- " 'paroxysm',\n",
- " 'balderdash',\n",
- " 'heyday',\n",
- " 'broomcorn',\n",
- " 'vanadium',\n",
- " 'mikado',\n",
- " 'lien',\n",
- " 'nightdress',\n",
- " 'kali',\n",
- " 'anuran',\n",
- " 'posey',\n",
- " 'byway',\n",
- " 'carrion',\n",
- " 'daybreak',\n",
- " 'derat',\n",
- " 'arcadian',\n",
- " 'crowbait',\n",
- " 'breadroot',\n",
- " 'nebular',\n",
- " 'blain',\n",
- " 'aneurin',\n",
- " 'depthless',\n",
- " 'Ko',\n",
- " 'fourfold',\n",
- " 'bodkin',\n",
- " 'wallboard',\n",
- " 'basilica',\n",
- " 'steamer',\n",
- " 'airman',\n",
- " 'arhat',\n",
- " 'pernyi',\n",
- " 'scend',\n",
- " 'macrolepidoptera',\n",
- " 'subphylum',\n",
- " 'sixteenth',\n",
- " 'ungloss',\n",
- " 'wem',\n",
- " 'greyhound',\n",
- " 'mysid',\n",
- " 'federalist',\n",
- " 'atlas',\n",
- " 'whither',\n",
- " 'hilt',\n",
- " 'vestal',\n",
- " 'dern',\n",
- " 'pollard',\n",
- " 'westernmost',\n",
- " 'themsel',\n",
- " 'almagest',\n",
- " 'tical',\n",
- " 'camber',\n",
- " 'tripod',\n",
- " 'woodruff',\n",
- " 'formic',\n",
- " 'striction',\n",
- " 'diarrhea',\n",
- " 'retrench',\n",
- " 'yar',\n",
- " 'ponto',\n",
- " 'tup',\n",
- " 'caracol',\n",
- " 'smew',\n",
- " 'casein',\n",
- " 'scallop',\n",
- " 'atman',\n",
- " 'reek',\n",
- " 'bade',\n",
- " 'recti',\n",
- " 'subshrub',\n",
- " 'pur',\n",
- " 'burro',\n",
- " 'freehold',\n",
- " 'carpel',\n",
- " 'statant',\n",
- " 'caesura',\n",
- " 'chanson',\n",
- " 'docent',\n",
- " 'succumb',\n",
- " 'sika',\n",
- " 'motherless',\n",
- " 'southernmost',\n",
- " 'mout',\n",
- " 'ingredient',\n",
- " 'custard',\n",
- " 'tubman',\n",
- " 'crossbreed',\n",
- " 'urea',\n",
- " 'airstrip',\n",
- " 'campground',\n",
- " 'productid',\n",
- " 'olden',\n",
- " 'oclock',\n",
- " 'aluminium',\n",
- " 'augen',\n",
- " 'medievalist',\n",
- " 'neolith',\n",
- " 'waif',\n",
- " 'chartist',\n",
- " 'debutant',\n",
- " 'zapatero',\n",
- " 'majo',\n",
- " 'clincher',\n",
- " 'amour',\n",
- " 'shack',\n",
- " 'retrain',\n",
- " 'caraway',\n",
- " 'thine',\n",
- " 'regrow',\n",
- " 'pumpkin',\n",
- " 'redd',\n",
- " 'charger',\n",
- " 'abigail',\n",
- " 'deerskin',\n",
- " 'nychthemeron',\n",
- " 'holl',\n",
- " 'aught',\n",
- " 'scrambler',\n",
- " 'cebid',\n",
- " 'shanna',\n",
- " 'kiosk',\n",
- " 'unidirect',\n",
- " 'tantra',\n",
- " 'ental',\n",
- " 'assumer',\n",
- " 'deforest',\n",
- " 'ecru',\n",
- " 'rame',\n",
- " 'pagan',\n",
- " 'tablespoon',\n",
- " 'tickler',\n",
- " 'gambol',\n",
- " 'moist',\n",
- " 'limitless',\n",
- " 'hexaploid',\n",
- " 'cero',\n",
- " ...}"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from nltk.corpus import words\n",
- "word_set = set(words.words())\n",
- "word_set.intersection(blacklist)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [],
- "source": [
- "fp = 0\n",
- "tp = 0\n",
- "fn = 0\n",
- "tn = 0\n",
- "\n",
- "for filename in X_test:\n",
- " path = os.path.join(DATA_DIR, filename)\n",
- " if filename in labels:\n",
- " label = labels[filename]\n",
- " stems = email_read_util.load(path)\n",
- " if not stems:\n",
- " continue\n",
- " stems_set = set(stems)\n",
- " if stems_set & blacklist:\n",
- " if label == 1:\n",
- " fp = fp + 1\n",
- " else:\n",
- " tp = tp + 1\n",
- " else:\n",
- " if label == 1:\n",
- " tn = tn + 1\n",
- " else:\n",
- " fn = fn + 1"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "from IPython.display import HTML, display\n",
- "conf_matrix = [[tn, fp],\n",
- " [fn, tp]]\n",
- "display(HTML(''.format(\n",
- " ''.join('{} | '.format(\n",
- " ''.join(str(_) for _ in row)) \n",
- " for row in conf_matrix))))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "count = tn + tp + fn + fp\n",
- "percent_matrix = [[\"{:.1%}\".format(tn/count), \"{:.1%}\".format(fp/count)],\n",
- " [\"{:.1%}\".format(fn/count), \"{:.1%}\".format(tp/count)]]\n",
- "display(HTML(''.format(\n",
- " ' |
'.join('{} | '.format(\n",
- " ''.join(str(_) for _ in row)) \n",
- " for row in percent_matrix))))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Classification accuracy: 68.6%\n"
- ]
- }
- ],
- "source": [
- "print(\"Classification accuracy: {}\".format(\"{:.1%}\".format((tp+tn)/count)))"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
From be3aa08cf549a4f26dcc10b688ee6c532537eccb Mon Sep 17 00:00:00 2001
From: Nurgalym2001 <89890787+Nurgalym2001@users.noreply.github.com>
Date: Fri, 8 Mar 2024 18:04:48 +0600
Subject: [PATCH 02/11] Add files via upload
---
chapter1/spam-fighting-blacklist.ipynb | 1350 ++++++++++++++++++++++++
1 file changed, 1350 insertions(+)
create mode 100644 chapter1/spam-fighting-blacklist.ipynb
diff --git a/chapter1/spam-fighting-blacklist.ipynb b/chapter1/spam-fighting-blacklist.ipynb
new file mode 100644
index 0000000..7959fa3
--- /dev/null
+++ b/chapter1/spam-fighting-blacklist.ipynb
@@ -0,0 +1,1350 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## В этом коде используется черный список (Blacklist) для борьбы со спамом в электронной почте"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Импорт необходимых модулей\n",
+ "import os # Модуль для работы с операционной системой\n",
+ "import pickle # Модуль для сериализации и десериализации объектов Python\n",
+ "import email_read_util # Модуль для чтения и обработки электронных писем"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Скачайте общедоступный корпус спама TREC 2007 года выпуска\n",
+ "1. Прочитайте \"Соглашение об использовании\"\n",
+ " https://plg.uwaterloo.ca/~gvcormac/treccorpus07/\n",
+ "\n",
+ "2. Загрузите корпус объемом 255 МБ (trec07p.tgz) и распакуйте в каталог \"глава 1/наборы данных\"\n",
+ "\n",
+ "3. Убедитесь, что указанные ниже пути для \"DATA_DIR\" и \"LABELS_FILE\" существуют"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Загрузка данных:\n",
+ "### Данные загружаются из каталога datasets/trec07p/data/. Также загружаются метки классов (спам/не спам) из файла datasets/trec07p/full/index. Черный список содержит известные серверы, распространяющие спам, и блокирует письма с таких серверов."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Определение директории с данными и файла с метками\n",
+ "DATA_DIR = 'datasets/trec07p/data/' # Путь к директории с данными\n",
+ "LABELS_FILE = 'datasets/trec07p/full/index' # Путь к файлу с метками\n",
+ "TRAINING_SET_RATIO = 0.7 # Пропорция разделения набора данных на тренировочный и тестовый"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Инициализация пустых структур данных\n",
+ "labels = {} # Словарь для хранения меток (имя файла: метка)\n",
+ "spam_words = set() # Множество слов, характерных для спама\n",
+ "ham_words = set() # Множество слов, характерных для нормальной корреспонденции"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Чтение и обработка файла меток\n",
+ "with open(LABELS_FILE) as f:\n",
+ " for line in f:\n",
+ " line = line.strip()\n",
+ " label, key = line.split()\n",
+ " labels[key.split('/')[-1]] = 1 if label.lower() == 'ham' else 0# Чтение и обработка файла меток\n",
+ "with open(LABELS_FILE) as f:\n",
+ " for line in f:\n",
+ " line = line.strip()\n",
+ " label, key = line.split()\n",
+ " labels[key.split('/')[-1]] = 1 if label.lower() == 'ham' else 0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Разделение корпуса на тренировочный и тестовый наборы\n",
+ "filelist = os.listdir(DATA_DIR)\n",
+ "X_train = filelist[:int(len(filelist)*TRAINING_SET_RATIO)]\n",
+ "X_test = filelist[int(len(filelist)*TRAINING_SET_RATIO):]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Код загружает данные о транзакциях с кредитными картами и обучает модель на основе черного списка"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Построение/загрузка \"черного списка\":\n",
+ "### Черный список содержит слова, которые характерны для спам-сообщений и не характерны для нормальных писем.\n",
+ "### Если файл blacklist.pkl уже существует, черный список загружается из него. В противном случае он строится на основе данных обучающего набора и сохраняется для последующего использования."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Blacklist of 97939 tokens successfully built/loaded\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Построение или загрузка списка слов-маркеров для спама (blacklist)\n",
+ "if not os.path.exists('blacklist.pkl'):\n",
+ " for filename in X_train:\n",
+ " path = os.path.join(DATA_DIR, filename)\n",
+ " if filename in labels:\n",
+ " label = labels[filename]\n",
+ " stems = email_read_util.load(path)\n",
+ " if not stems:\n",
+ " continue\n",
+ " if label == 1:\n",
+ " ham_words.update(stems)\n",
+ " elif label == 0:\n",
+ " spam_words.update(stems)\n",
+ " else:\n",
+ " continue\n",
+ " blacklist = spam_words - ham_words\n",
+ " pickle.dump(blacklist, open('blacklist.pkl', 'wb'))\n",
+ "else:\n",
+ " blacklist = pickle.load(open('blacklist.pkl', 'rb') )\n",
+ "\n",
+ " # Печать сообщения о построении или загрузке blacklist\n",
+ "print('Blacklist of {} tokens successfully built/loaded'.format(len(blacklist)))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'pectora',\n",
+ " 'sleet',\n",
+ " 'soma',\n",
+ " 'sorb',\n",
+ " 'raglan',\n",
+ " 'pluma',\n",
+ " 'thrower',\n",
+ " 'ducal',\n",
+ " 'vatman',\n",
+ " 'biaxial',\n",
+ " 'choral',\n",
+ " 'muzz',\n",
+ " 'merk',\n",
+ " 'degum',\n",
+ " 'lino',\n",
+ " 'punctual',\n",
+ " 'zig',\n",
+ " 'whopper',\n",
+ " 'saunter',\n",
+ " 'commot',\n",
+ " 'pian',\n",
+ " 'enchant',\n",
+ " 'starlit',\n",
+ " 'handmaid',\n",
+ " 'matchbook',\n",
+ " 'chil',\n",
+ " 'prote',\n",
+ " 'cush',\n",
+ " 'feme',\n",
+ " 'cerulean',\n",
+ " 'flamenco',\n",
+ " 'fie',\n",
+ " 'adroit',\n",
+ " 'calor',\n",
+ " 'electrician',\n",
+ " 'batik',\n",
+ " 'depositor',\n",
+ " 'ammonia',\n",
+ " 'dor',\n",
+ " 'humph',\n",
+ " 'throb',\n",
+ " 'osteosarcoma',\n",
+ " 'phylum',\n",
+ " 'staphylococci',\n",
+ " 'redub',\n",
+ " 'romaunt',\n",
+ " 'castrum',\n",
+ " 'billyboy',\n",
+ " 'snug',\n",
+ " 'phosphor',\n",
+ " 'caroli',\n",
+ " 'sweatband',\n",
+ " 'sequent',\n",
+ " 'flutter',\n",
+ " 'abac',\n",
+ " 'subjunct',\n",
+ " 'matriarch',\n",
+ " 'trisect',\n",
+ " 'hazelwood',\n",
+ " 'crept',\n",
+ " 'sienna',\n",
+ " 'camelopard',\n",
+ " 'austral',\n",
+ " 'amaranth',\n",
+ " 'embank',\n",
+ " 'briar',\n",
+ " 'fishtail',\n",
+ " 'shou',\n",
+ " 'chessboard',\n",
+ " 'reman',\n",
+ " 'ponent',\n",
+ " 'coxa',\n",
+ " 'ornithologist',\n",
+ " 'colter',\n",
+ " 'ammono',\n",
+ " 'bajada',\n",
+ " 'heterotopia',\n",
+ " 'cand',\n",
+ " 'rainless',\n",
+ " 'nar',\n",
+ " 'polka',\n",
+ " 'burrow',\n",
+ " 'augend',\n",
+ " 'irrupt',\n",
+ " 'quarrel',\n",
+ " 'nothing',\n",
+ " 'goldfish',\n",
+ " 'fibrin',\n",
+ " 'anvil',\n",
+ " 'bree',\n",
+ " 'malm',\n",
+ " 'coloss',\n",
+ " 'tenderloin',\n",
+ " 'siskin',\n",
+ " 'precinct',\n",
+ " 'sider',\n",
+ " 'centrum',\n",
+ " 'rhymer',\n",
+ " 'artificial',\n",
+ " 'brackish',\n",
+ " 'schooner',\n",
+ " 'quickset',\n",
+ " 'repugn',\n",
+ " 'ironwork',\n",
+ " 'chare',\n",
+ " 'sparerib',\n",
+ " 'thee',\n",
+ " 'citril',\n",
+ " 'stade',\n",
+ " 'facer',\n",
+ " 'escolar',\n",
+ " 'cyp',\n",
+ " 'orograph',\n",
+ " 'fennel',\n",
+ " 'saltbush',\n",
+ " 'cantar',\n",
+ " 'bedpost',\n",
+ " 'conic',\n",
+ " 'unal',\n",
+ " 'retrogress',\n",
+ " 'baw',\n",
+ " 'yuca',\n",
+ " 'humanist',\n",
+ " 'lour',\n",
+ " 'jacinth',\n",
+ " 'jud',\n",
+ " 'pergola',\n",
+ " 'simular',\n",
+ " 'passeriform',\n",
+ " 'protean',\n",
+ " 'cashier',\n",
+ " 'mejorana',\n",
+ " 'affront',\n",
+ " 'dragoon',\n",
+ " 'expansion',\n",
+ " 'moksha',\n",
+ " 'smolt',\n",
+ " 'poter',\n",
+ " 'baboon',\n",
+ " 'pater',\n",
+ " 'elegiac',\n",
+ " 'mellow',\n",
+ " 'gopher',\n",
+ " 'hiation',\n",
+ " 'boomerang',\n",
+ " 'birk',\n",
+ " 'conclusion',\n",
+ " 'credenza',\n",
+ " 'gat',\n",
+ " 'maud',\n",
+ " 'fana',\n",
+ " 'nativist',\n",
+ " 'astern',\n",
+ " 'karma',\n",
+ " 'garlic',\n",
+ " 'cinerea',\n",
+ " 'individualist',\n",
+ " 'saddler',\n",
+ " 'nonet',\n",
+ " 'tomahawk',\n",
+ " 'petulant',\n",
+ " 'slut',\n",
+ " 'bronchi',\n",
+ " 'precess',\n",
+ " 'lank',\n",
+ " 'raffia',\n",
+ " 'anonymous',\n",
+ " 'toother',\n",
+ " 'condominium',\n",
+ " 'beechwood',\n",
+ " 'mermaid',\n",
+ " 'macer',\n",
+ " 'abut',\n",
+ " 'hereabout',\n",
+ " 'autobahn',\n",
+ " 'wort',\n",
+ " 'bolling',\n",
+ " 'kelt',\n",
+ " 'eland',\n",
+ " 'excreta',\n",
+ " 'appet',\n",
+ " 'cowbird',\n",
+ " 'shama',\n",
+ " 'spart',\n",
+ " 'ordinar',\n",
+ " 'envier',\n",
+ " 'neurotoxin',\n",
+ " 'terzo',\n",
+ " 'Og',\n",
+ " 'dawnlight',\n",
+ " 'proo',\n",
+ " 'yowl',\n",
+ " 'perciform',\n",
+ " 'glee',\n",
+ " 'avera',\n",
+ " 'concoct',\n",
+ " 'amomum',\n",
+ " 'dimorph',\n",
+ " 'barium',\n",
+ " 'shrew',\n",
+ " 'propagandist',\n",
+ " 'nog',\n",
+ " 'fot',\n",
+ " 'empt',\n",
+ " 'pome',\n",
+ " 'wack',\n",
+ " 'companionship',\n",
+ " 'anadrom',\n",
+ " 'sportswear',\n",
+ " 'whir',\n",
+ " 'cava',\n",
+ " 'untrain',\n",
+ " 'leaflet',\n",
+ " 'chapeau',\n",
+ " 'ashen',\n",
+ " 'quod',\n",
+ " 'intercolumn',\n",
+ " 'mokum',\n",
+ " 'lungi',\n",
+ " 'bacteriostat',\n",
+ " 'mestizo',\n",
+ " 'ostrich',\n",
+ " 'munj',\n",
+ " 'scupper',\n",
+ " 'liman',\n",
+ " 'awlwort',\n",
+ " 'kersey',\n",
+ " 'pussycat',\n",
+ " 'horticulturist',\n",
+ " 'stallion',\n",
+ " 'brakeman',\n",
+ " 'lectual',\n",
+ " 'sarsaparilla',\n",
+ " 'sitch',\n",
+ " 'rind',\n",
+ " 'precook',\n",
+ " 'positron',\n",
+ " 'cantor',\n",
+ " 'stanch',\n",
+ " 'dhai',\n",
+ " 'creed',\n",
+ " 'wight',\n",
+ " 'zeal',\n",
+ " 'circumpolar',\n",
+ " 'carbonyl',\n",
+ " 'alfresco',\n",
+ " 'chaffinch',\n",
+ " 'sawdust',\n",
+ " 'reobtain',\n",
+ " 'looker',\n",
+ " 'lifeguard',\n",
+ " 'unimodular',\n",
+ " 'raceway',\n",
+ " 'keratin',\n",
+ " 'drool',\n",
+ " 'guan',\n",
+ " 'becoward',\n",
+ " 'beheld',\n",
+ " 'abbey',\n",
+ " 'cordillera',\n",
+ " 'threefold',\n",
+ " 'eyelet',\n",
+ " 'sordid',\n",
+ " 'toeboard',\n",
+ " 'smite',\n",
+ " 'colder',\n",
+ " 'unreal',\n",
+ " 'knockdown',\n",
+ " 'pagoda',\n",
+ " 'flane',\n",
+ " 'consonant',\n",
+ " 'alchemist',\n",
+ " 'rutherford',\n",
+ " 'harn',\n",
+ " 'furioso',\n",
+ " 'dha',\n",
+ " 'upo',\n",
+ " 'nard',\n",
+ " 'nightlong',\n",
+ " 'concerto',\n",
+ " 'bebar',\n",
+ " 'apraxia',\n",
+ " 'naiad',\n",
+ " 'yachtsman',\n",
+ " 'estrogen',\n",
+ " 'bastion',\n",
+ " 'pouch',\n",
+ " 'unio',\n",
+ " 'speck',\n",
+ " 'saya',\n",
+ " 'disinfect',\n",
+ " 'teapot',\n",
+ " 'creak',\n",
+ " 'titi',\n",
+ " 'godhead',\n",
+ " 'discolor',\n",
+ " 'lepidopterist',\n",
+ " 'scalpel',\n",
+ " 'herewith',\n",
+ " 'topper',\n",
+ " 'royalist',\n",
+ " 'codicil',\n",
+ " 'comedown',\n",
+ " 'raindrop',\n",
+ " 'waar',\n",
+ " 'shrivel',\n",
+ " 'pock',\n",
+ " 'kicker',\n",
+ " 'nasi',\n",
+ " 'scram',\n",
+ " 'tacker',\n",
+ " 'apaid',\n",
+ " 'cenotaph',\n",
+ " 'utch',\n",
+ " 'ersatz',\n",
+ " 'capuchin',\n",
+ " 'quinto',\n",
+ " 'barracuda',\n",
+ " 'fairyland',\n",
+ " 'samson',\n",
+ " 'leafless',\n",
+ " 'humic',\n",
+ " 'marmot',\n",
+ " 'brander',\n",
+ " 'hatchet',\n",
+ " 'tabla',\n",
+ " 'toat',\n",
+ " 'saccharum',\n",
+ " 'yeoman',\n",
+ " 'henceforth',\n",
+ " 'rondeau',\n",
+ " 'mink',\n",
+ " 'fingertip',\n",
+ " 'tracer',\n",
+ " 'quadrivium',\n",
+ " 'capybara',\n",
+ " 'corbeau',\n",
+ " 'mildew',\n",
+ " 'fowl',\n",
+ " 'soothsay',\n",
+ " 'talker',\n",
+ " 'tung',\n",
+ " 'whirlwind',\n",
+ " 'individual',\n",
+ " 'maxilla',\n",
+ " 'proximo',\n",
+ " 'pert',\n",
+ " 'brough',\n",
+ " 'taxonomist',\n",
+ " 'husbandman',\n",
+ " 'tempora',\n",
+ " 'patrician',\n",
+ " 'doff',\n",
+ " 'coot',\n",
+ " 'dactyl',\n",
+ " 'relevant',\n",
+ " 'nese',\n",
+ " 'megohm',\n",
+ " 'sentient',\n",
+ " 'limequat',\n",
+ " 'branchlet',\n",
+ " 'electro',\n",
+ " 'damiana',\n",
+ " 'sequin',\n",
+ " 'bluer',\n",
+ " 'malar',\n",
+ " 'anta',\n",
+ " 'axon',\n",
+ " 'dodo',\n",
+ " 'shopworn',\n",
+ " 'lintel',\n",
+ " 'redevelop',\n",
+ " 'hoi',\n",
+ " 'parson',\n",
+ " 'tyke',\n",
+ " 'psalm',\n",
+ " 'skittish',\n",
+ " 'satanist',\n",
+ " 'paler',\n",
+ " 'desi',\n",
+ " 'mola',\n",
+ " 'vicar',\n",
+ " 'chital',\n",
+ " 'kachin',\n",
+ " 'hoatzin',\n",
+ " 'serum',\n",
+ " 'ilex',\n",
+ " 'mallard',\n",
+ " 'vinifera',\n",
+ " 'holler',\n",
+ " 'swordfish',\n",
+ " 'dimmer',\n",
+ " 'adulter',\n",
+ " 'tari',\n",
+ " 'battel',\n",
+ " 'aquavit',\n",
+ " 'housecoat',\n",
+ " 'decagon',\n",
+ " 'vallum',\n",
+ " 'armadillo',\n",
+ " 'putter',\n",
+ " 'tode',\n",
+ " 'ephyra',\n",
+ " 'spinneret',\n",
+ " 'minnow',\n",
+ " 'longhair',\n",
+ " 'glover',\n",
+ " 'sensational',\n",
+ " 'natal',\n",
+ " 'carbo',\n",
+ " 'florid',\n",
+ " 'skiff',\n",
+ " 'crust',\n",
+ " 'ballast',\n",
+ " 'rebook',\n",
+ " 'bonair',\n",
+ " 'chorda',\n",
+ " 'comfrey',\n",
+ " 'crouton',\n",
+ " 'bulkhead',\n",
+ " 'moorland',\n",
+ " 'stam',\n",
+ " 'goi',\n",
+ " 'muskeg',\n",
+ " 'stench',\n",
+ " 'manipular',\n",
+ " 'loca',\n",
+ " 'corymb',\n",
+ " 'downbear',\n",
+ " 'bisson',\n",
+ " 'chorist',\n",
+ " 'octillion',\n",
+ " 'smacker',\n",
+ " 'egghead',\n",
+ " 'vermilion',\n",
+ " 'strew',\n",
+ " 'persimmon',\n",
+ " 'teamwork',\n",
+ " 'ascan',\n",
+ " 'darter',\n",
+ " 'pugilist',\n",
+ " 'sweatshop',\n",
+ " 'deign',\n",
+ " 'stardom',\n",
+ " 'coelacanth',\n",
+ " 'motorway',\n",
+ " 'rata',\n",
+ " 'fatherless',\n",
+ " 'woodpeck',\n",
+ " 'triton',\n",
+ " 'repin',\n",
+ " 'ament',\n",
+ " 'melon',\n",
+ " 'zeppelin',\n",
+ " 'chard',\n",
+ " 'courtier',\n",
+ " 'bayamo',\n",
+ " 'hangman',\n",
+ " 'zag',\n",
+ " 'gamecock',\n",
+ " 'incognito',\n",
+ " 'geneticist',\n",
+ " 'oblong',\n",
+ " 'thill',\n",
+ " 'cyme',\n",
+ " 'tua',\n",
+ " 'astral',\n",
+ " 'prater',\n",
+ " 'coauthor',\n",
+ " 'yeat',\n",
+ " 'raptor',\n",
+ " 'dvaita',\n",
+ " 'monotheist',\n",
+ " 'twite',\n",
+ " 'boarder',\n",
+ " 'spittoon',\n",
+ " 'tweet',\n",
+ " 'snifter',\n",
+ " 'saccharin',\n",
+ " 'trichi',\n",
+ " 'testudo',\n",
+ " 'daredevil',\n",
+ " 'prig',\n",
+ " 'headstrong',\n",
+ " 'waer',\n",
+ " 'rhine',\n",
+ " 'kapp',\n",
+ " 'grosbeak',\n",
+ " 'lum',\n",
+ " 'chromo',\n",
+ " 'yarrow',\n",
+ " 'melodia',\n",
+ " 'plainer',\n",
+ " 'maggot',\n",
+ " 'whereupon',\n",
+ " 'kora',\n",
+ " 'voivodeship',\n",
+ " 'twilight',\n",
+ " 'cornea',\n",
+ " 'halbert',\n",
+ " 'cassinoid',\n",
+ " 'manship',\n",
+ " 'redcoat',\n",
+ " 'hither',\n",
+ " 'axial',\n",
+ " 'apartheid',\n",
+ " 'satchel',\n",
+ " 'shim',\n",
+ " 'affection',\n",
+ " 'wetter',\n",
+ " 'pelt',\n",
+ " 'tarsi',\n",
+ " 'ringlead',\n",
+ " 'hypanthium',\n",
+ " 'arpent',\n",
+ " 'pizzeria',\n",
+ " 'gulp',\n",
+ " 'empower',\n",
+ " 'dool',\n",
+ " 'abrupt',\n",
+ " 'fiberboard',\n",
+ " 'metaphysician',\n",
+ " 'nobleman',\n",
+ " 'copperhead',\n",
+ " 'fontanel',\n",
+ " 'nonsectarian',\n",
+ " 'mew',\n",
+ " 'turbid',\n",
+ " 'repen',\n",
+ " 'windshield',\n",
+ " 'prehuman',\n",
+ " 'washbowl',\n",
+ " 'auk',\n",
+ " 'phono',\n",
+ " 'brewster',\n",
+ " 'sura',\n",
+ " 'survivalist',\n",
+ " 'downturn',\n",
+ " 'slag',\n",
+ " 'nana',\n",
+ " 'lora',\n",
+ " 'cupola',\n",
+ " 'libido',\n",
+ " 'henna',\n",
+ " 'shredder',\n",
+ " 'escheat',\n",
+ " 'renal',\n",
+ " 'ethel',\n",
+ " 'corrigendum',\n",
+ " 'muslin',\n",
+ " 'reservoir',\n",
+ " 'calid',\n",
+ " 'tute',\n",
+ " 'turndown',\n",
+ " 'valerian',\n",
+ " 'bigmouth',\n",
+ " 'buxom',\n",
+ " 'pilar',\n",
+ " 'illegal',\n",
+ " 'taha',\n",
+ " 'terron',\n",
+ " 'adolescent',\n",
+ " 'pacifist',\n",
+ " 'footpad',\n",
+ " 'bandstand',\n",
+ " 'tired',\n",
+ " 'matsu',\n",
+ " 'rooker',\n",
+ " 'daphnoid',\n",
+ " 'acta',\n",
+ " 'plover',\n",
+ " 'gerfalcon',\n",
+ " 'arca',\n",
+ " 'stratagem',\n",
+ " 'dentata',\n",
+ " 'rougher',\n",
+ " 'sixer',\n",
+ " 'droplet',\n",
+ " 'dauber',\n",
+ " 'archway',\n",
+ " 'workbook',\n",
+ " 'cider',\n",
+ " 'folia',\n",
+ " 'cerium',\n",
+ " 'quintic',\n",
+ " 'mandala',\n",
+ " 'kola',\n",
+ " 'missel',\n",
+ " 'daresay',\n",
+ " 'clitter',\n",
+ " 'yokel',\n",
+ " 'inheritor',\n",
+ " 'sticktight',\n",
+ " 'bassist',\n",
+ " 'otolith',\n",
+ " 'navel',\n",
+ " 'bailiwick',\n",
+ " 'bight',\n",
+ " 'simper',\n",
+ " 'chevron',\n",
+ " 'mosey',\n",
+ " 'uncontrol',\n",
+ " 'bairn',\n",
+ " 'adieu',\n",
+ " 'expressway',\n",
+ " 'deme',\n",
+ " 'principiant',\n",
+ " 'cay',\n",
+ " 'multicolor',\n",
+ " 'larviform',\n",
+ " 'multiplet',\n",
+ " 'latchkey',\n",
+ " 'fob',\n",
+ " 'flaccid',\n",
+ " 'marler',\n",
+ " 'whitehead',\n",
+ " 'scrubland',\n",
+ " 'endear',\n",
+ " 'waterman',\n",
+ " 'hansel',\n",
+ " 'fireman',\n",
+ " 'planter',\n",
+ " 'clove',\n",
+ " 'howe',\n",
+ " 'charac',\n",
+ " 'skulk',\n",
+ " 'thacker',\n",
+ " 'jann',\n",
+ " 'flattish',\n",
+ " 'proconsul',\n",
+ " 'groper',\n",
+ " 'huff',\n",
+ " 'cataract',\n",
+ " 'whitebark',\n",
+ " 'scat',\n",
+ " 'treeless',\n",
+ " 'proa',\n",
+ " 'debar',\n",
+ " 'boun',\n",
+ " 'bowsprit',\n",
+ " 'stagecoach',\n",
+ " 'croucher',\n",
+ " 'revivalist',\n",
+ " 'unsought',\n",
+ " 'churr',\n",
+ " 'seamanship',\n",
+ " 'spay',\n",
+ " 'piciform',\n",
+ " 'bogard',\n",
+ " 'oriel',\n",
+ " 'telford',\n",
+ " 'microfilm',\n",
+ " 'ruru',\n",
+ " 'druggist',\n",
+ " 'nomad',\n",
+ " 'thyroid',\n",
+ " 'assistor',\n",
+ " 'uitspan',\n",
+ " 'wren',\n",
+ " 'equestrian',\n",
+ " 'dildo',\n",
+ " 'overstock',\n",
+ " 'hush',\n",
+ " 'spooler',\n",
+ " 'rehash',\n",
+ " 'crayfish',\n",
+ " 'scriber',\n",
+ " 'mapach',\n",
+ " 'ptarmigan',\n",
+ " 'sudd',\n",
+ " 'daffodil',\n",
+ " 'stude',\n",
+ " 'tice',\n",
+ " 'glycerin',\n",
+ " 'fragrant',\n",
+ " 'occultist',\n",
+ " 'musicianship',\n",
+ " 'brill',\n",
+ " 'laird',\n",
+ " 'kickshaw',\n",
+ " 'mukti',\n",
+ " 'rancher',\n",
+ " 'blanch',\n",
+ " 'snowbound',\n",
+ " 'carnal',\n",
+ " 'covey',\n",
+ " 'brushwood',\n",
+ " 'bamboo',\n",
+ " 'fizz',\n",
+ " 'pecker',\n",
+ " 'spellbind',\n",
+ " 'brickel',\n",
+ " 'capulet',\n",
+ " 'viga',\n",
+ " 'paprika',\n",
+ " 'hemlock',\n",
+ " 'bettor',\n",
+ " 'dere',\n",
+ " 'ataman',\n",
+ " 'dult',\n",
+ " 'flannel',\n",
+ " 'rowan',\n",
+ " 'brownish',\n",
+ " 'beldam',\n",
+ " 'entropion',\n",
+ " 'beld',\n",
+ " 'houseboat',\n",
+ " 'draper',\n",
+ " 'eyelash',\n",
+ " 'norther',\n",
+ " 'knob',\n",
+ " 'knop',\n",
+ " 'savoy',\n",
+ " 'betoken',\n",
+ " 'attern',\n",
+ " 'crowder',\n",
+ " 'cuarenta',\n",
+ " 'crucifix',\n",
+ " 'alderman',\n",
+ " 'woodbin',\n",
+ " 'labrusca',\n",
+ " 'butyl',\n",
+ " 'stion',\n",
+ " 'extravascular',\n",
+ " 'binder',\n",
+ " 'exoskeleton',\n",
+ " 'declaim',\n",
+ " 'tweed',\n",
+ " 'rusk',\n",
+ " 'peregrin',\n",
+ " 'exigent',\n",
+ " 'biochemist',\n",
+ " 'taum',\n",
+ " 'plateau',\n",
+ " 'grassland',\n",
+ " 'oaken',\n",
+ " 'dockyard',\n",
+ " 'rattail',\n",
+ " 'splendor',\n",
+ " 'grout',\n",
+ " 'stree',\n",
+ " 'causey',\n",
+ " 'register',\n",
+ " 'bott',\n",
+ " 'glottal',\n",
+ " 'cockerel',\n",
+ " 'japonica',\n",
+ " 'cravat',\n",
+ " 'chider',\n",
+ " 'uncut',\n",
+ " 'shyness',\n",
+ " 'drier',\n",
+ " 'lemur',\n",
+ " 'fandom',\n",
+ " 'reefer',\n",
+ " 'souther',\n",
+ " 'microlepidoptera',\n",
+ " 'melodrama',\n",
+ " 'avast',\n",
+ " 'sailboat',\n",
+ " 'memento',\n",
+ " 'educationalist',\n",
+ " 'helminth',\n",
+ " 'dorsal',\n",
+ " 'gane',\n",
+ " 'raja',\n",
+ " 'coper',\n",
+ " 'dodecahedron',\n",
+ " 'heptagon',\n",
+ " 'linwood',\n",
+ " 'akimbo',\n",
+ " 'anteroom',\n",
+ " 'sutra',\n",
+ " 'talisman',\n",
+ " 'nihilist',\n",
+ " 'eclat',\n",
+ " 'skyway',\n",
+ " 'reservist',\n",
+ " 'hawthorn',\n",
+ " 'simpleton',\n",
+ " 'agog',\n",
+ " 'orgasm',\n",
+ " 'transaction',\n",
+ " 'tern',\n",
+ " 'caudal',\n",
+ " 'grazer',\n",
+ " 'ako',\n",
+ " 'hereof',\n",
+ " 'impost',\n",
+ " 'grossen',\n",
+ " 'cratch',\n",
+ " 'verbena',\n",
+ " 'encamp',\n",
+ " 'beggar',\n",
+ " 'burgh',\n",
+ " 'ascidian',\n",
+ " 'vagrant',\n",
+ " 'milord',\n",
+ " 'overzeal',\n",
+ " 'barit',\n",
+ " 'grue',\n",
+ " 'snorkel',\n",
+ " 'carillon',\n",
+ " 'beseech',\n",
+ " 'burgher',\n",
+ " 'peal',\n",
+ " 'struthioniform',\n",
+ " 'kitcat',\n",
+ " 'xylitol',\n",
+ " 'jarl',\n",
+ " 'runt',\n",
+ " 'agal',\n",
+ " 'teet',\n",
+ " 'moveless',\n",
+ " 'vermeil',\n",
+ " 'lifeless',\n",
+ " 'sacrament',\n",
+ " 'legate',\n",
+ " 'trillium',\n",
+ " 'tramway',\n",
+ " 'starlight',\n",
+ " 'trinitarian',\n",
+ " 'peignoir',\n",
+ " 'diamagnet',\n",
+ " 'plump',\n",
+ " 'pupal',\n",
+ " 'salicyl',\n",
+ " 'hander',\n",
+ " 'wadi',\n",
+ " 'sweatproof',\n",
+ " 'tamarind',\n",
+ " 'multiplex',\n",
+ " 'pand',\n",
+ " 'parakeet',\n",
+ " 'hawfinch',\n",
+ " 'hydro',\n",
+ " 'levant',\n",
+ " 'knave',\n",
+ " 'tinct',\n",
+ " 'matricula',\n",
+ " 'wrongdoer',\n",
+ " 'mister',\n",
+ " 'lifehold',\n",
+ " 'nook',\n",
+ " 'topmost',\n",
+ " 'adjunct',\n",
+ " 'injector',\n",
+ " 'trill',\n",
+ " 'rond',\n",
+ " 'thorax',\n",
+ " 'bota',\n",
+ " 'kinnikinnick',\n",
+ " 'northeastward',\n",
+ " 'macaroni',\n",
+ " 'blackguard',\n",
+ " 'brougham',\n",
+ " 'tripper',\n",
+ " 'supraocular',\n",
+ " 'shag',\n",
+ " 'earthwork',\n",
+ " 'pall',\n",
+ " 'feu',\n",
+ " 'overfish',\n",
+ " 'pinkish',\n",
+ " 'sextet',\n",
+ " 'paroxysm',\n",
+ " 'balderdash',\n",
+ " 'heyday',\n",
+ " 'broomcorn',\n",
+ " 'vanadium',\n",
+ " 'mikado',\n",
+ " 'lien',\n",
+ " 'nightdress',\n",
+ " 'kali',\n",
+ " 'anuran',\n",
+ " 'posey',\n",
+ " 'byway',\n",
+ " 'carrion',\n",
+ " 'daybreak',\n",
+ " 'derat',\n",
+ " 'arcadian',\n",
+ " 'crowbait',\n",
+ " 'breadroot',\n",
+ " 'nebular',\n",
+ " 'blain',\n",
+ " 'aneurin',\n",
+ " 'depthless',\n",
+ " 'Ko',\n",
+ " 'fourfold',\n",
+ " 'bodkin',\n",
+ " 'wallboard',\n",
+ " 'basilica',\n",
+ " 'steamer',\n",
+ " 'airman',\n",
+ " 'arhat',\n",
+ " 'pernyi',\n",
+ " 'scend',\n",
+ " 'macrolepidoptera',\n",
+ " 'subphylum',\n",
+ " 'sixteenth',\n",
+ " 'ungloss',\n",
+ " 'wem',\n",
+ " 'greyhound',\n",
+ " 'mysid',\n",
+ " 'federalist',\n",
+ " 'atlas',\n",
+ " 'whither',\n",
+ " 'hilt',\n",
+ " 'vestal',\n",
+ " 'dern',\n",
+ " 'pollard',\n",
+ " 'westernmost',\n",
+ " 'themsel',\n",
+ " 'almagest',\n",
+ " 'tical',\n",
+ " 'camber',\n",
+ " 'tripod',\n",
+ " 'woodruff',\n",
+ " 'formic',\n",
+ " 'striction',\n",
+ " 'diarrhea',\n",
+ " 'retrench',\n",
+ " 'yar',\n",
+ " 'ponto',\n",
+ " 'tup',\n",
+ " 'caracol',\n",
+ " 'smew',\n",
+ " 'casein',\n",
+ " 'scallop',\n",
+ " 'atman',\n",
+ " 'reek',\n",
+ " 'bade',\n",
+ " 'recti',\n",
+ " 'subshrub',\n",
+ " 'pur',\n",
+ " 'burro',\n",
+ " 'freehold',\n",
+ " 'carpel',\n",
+ " 'statant',\n",
+ " 'caesura',\n",
+ " 'chanson',\n",
+ " 'docent',\n",
+ " 'succumb',\n",
+ " 'sika',\n",
+ " 'motherless',\n",
+ " 'southernmost',\n",
+ " 'mout',\n",
+ " 'ingredient',\n",
+ " 'custard',\n",
+ " 'tubman',\n",
+ " 'crossbreed',\n",
+ " 'urea',\n",
+ " 'airstrip',\n",
+ " 'campground',\n",
+ " 'productid',\n",
+ " 'olden',\n",
+ " 'oclock',\n",
+ " 'aluminium',\n",
+ " 'augen',\n",
+ " 'medievalist',\n",
+ " 'neolith',\n",
+ " 'waif',\n",
+ " 'chartist',\n",
+ " 'debutant',\n",
+ " 'zapatero',\n",
+ " 'majo',\n",
+ " 'clincher',\n",
+ " 'amour',\n",
+ " 'shack',\n",
+ " 'retrain',\n",
+ " 'caraway',\n",
+ " 'thine',\n",
+ " 'regrow',\n",
+ " 'pumpkin',\n",
+ " 'redd',\n",
+ " 'charger',\n",
+ " 'abigail',\n",
+ " 'deerskin',\n",
+ " 'nychthemeron',\n",
+ " 'holl',\n",
+ " 'aught',\n",
+ " 'scrambler',\n",
+ " 'cebid',\n",
+ " 'shanna',\n",
+ " 'kiosk',\n",
+ " 'unidirect',\n",
+ " 'tantra',\n",
+ " 'ental',\n",
+ " 'assumer',\n",
+ " 'deforest',\n",
+ " 'ecru',\n",
+ " 'rame',\n",
+ " 'pagan',\n",
+ " 'tablespoon',\n",
+ " 'tickler',\n",
+ " 'gambol',\n",
+ " 'moist',\n",
+ " 'limitless',\n",
+ " 'hexaploid',\n",
+ " 'cero',\n",
+ " ...}"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Импорт модуля NLTK для работы с естественным языком\n",
+ "from nltk.corpus import words\n",
+ "word_set = set(words.words())\n",
+ "# Поиск пересечения blacklist и множества английских слов из NLTK\n",
+ "word_set.intersection(blacklist)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Анализ текста:\n",
+ "### Для каждого электронного письма из тестового набора:\n",
+ "### Текст сообщения анализируется на наличие слов из черного списка. Подсчитывается количество ложноположительных (FP), ложноотрицательных (FN), истинноположительных (TP) и истинноотрицательных (TN) результатов."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Инициализация переменных для подсчета статистики классификации\n",
+ "fp = 0 # Ложноположительные (ошибочно определенные как спам)\n",
+ "tp = 0 # Истинноположительные (правильно определенные как спам)\n",
+ "fn = 0 # Ложноотрицательные (ошибочно определенные как не спам)\n",
+ "tn = 0 # Истинноотрицательные (правильно определенные как не спам)\n",
+ "\n",
+ "\n",
+ "# Проверка каждого письма из тестового набора и классификация по наличию слов из blacklist\n",
+ "for filename in X_test:\n",
+ " path = os.path.join(DATA_DIR, filename)\n",
+ " if filename in labels:\n",
+ " label = labels[filename]\n",
+ " stems = email_read_util.load(path)\n",
+ " if not stems:\n",
+ " continue\n",
+ " stems_set = set(stems)\n",
+ " if stems_set & blacklist:\n",
+ " if label == 1:\n",
+ " fp = fp + 1\n",
+ " else:\n",
+ " tp = tp + 1\n",
+ " else:\n",
+ " if label == 1:\n",
+ " tn = tn + 1\n",
+ " else:\n",
+ " fn = fn + 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Визуализация:\n",
+ "### Строится матрица ошибок для оценки результатов классификации. Выводится процентное соотношение каждой ячейки матрицы ошибок относительно общего количества наблюдений."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Вывод матрицы ошибок в HTML-таблице\n",
+ "from IPython.display import HTML, display\n",
+ "conf_matrix = [[tn, fp],\n",
+ " [fn, tp]]\n",
+ "display(HTML(''.format(\n",
+ " ' |
'.join('{} | '.format(\n",
+ " ''.join(str(_) for _ in row)) \n",
+ " for row in conf_matrix))))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Вывод процентной матрицы ошибок в HTML-таблице\n",
+ "count = tn + tp + fn + fp\n",
+ "percent_matrix = [[\"{:.1%}\".format(tn/count), \"{:.1%}\".format(fp/count)],\n",
+ " [\"{:.1%}\".format(fn/count), \"{:.1%}\".format(tp/count)]]\n",
+ "display(HTML(''.format(\n",
+ " ' |
'.join('{} | '.format(\n",
+ " ''.join(str(_) for _ in row)) \n",
+ " for row in percent_matrix))))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Оценка точности классификации:\n",
+ "### Вычисляется и выводится процент точности классификации, основанный на количестве правильно классифицированных объектов.\n",
+ "### Результаты показывают, что классификация имеет точность около 68.6%."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Classification accuracy: 68.6%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Вывод процента правильно классифицированных писем\n",
+ "print(\"Classification accuracy: {}\".format(\"{:.1%}\".format((tp+tn)/count)))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Этот метод - один из старейших способов фильтрации спама."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
From 9355be29f3b5fcaf4ff8757cd31a23f05c4b9611 Mon Sep 17 00:00:00 2001
From: Nurgalym2001 <89890787+Nurgalym2001@users.noreply.github.com>
Date: Fri, 8 Mar 2024 18:31:28 +0600
Subject: [PATCH 03/11] Delete chapter1/spam-fighting-lsh.ipynb
---
chapter1/spam-fighting-lsh.ipynb | 264 -------------------------------
1 file changed, 264 deletions(-)
delete mode 100644 chapter1/spam-fighting-lsh.ipynb
diff --git a/chapter1/spam-fighting-lsh.ipynb b/chapter1/spam-fighting-lsh.ipynb
deleted file mode 100644
index 0f7c8be..0000000
--- a/chapter1/spam-fighting-lsh.ipynb
+++ /dev/null
@@ -1,264 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "import pickle\n",
- "import email_read_util\n",
- "from datasketch import MinHash, MinHashLSH"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Download 2007 TREC Public Spam Corpus\n",
- "1. Read the \"Agreement for use\"\n",
- " https://plg.uwaterloo.ca/~gvcormac/treccorpus07/\n",
- "\n",
- "2. Download 255 MB Corpus (trec07p.tgz) and untar into the 'chapter1/datasets' directory\n",
- "\n",
- "3. Check that the below paths for 'DATA_DIR' and 'LABELS_FILE' exist"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "DATA_DIR = 'datasets/trec07p/data/'\n",
- "LABELS_FILE = 'datasets/trec07p/full/index'\n",
- "TRAINING_SET_RATIO = 0.7"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "labels = {}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Read the labels\n",
- "with open(LABELS_FILE) as f:\n",
- " for line in f:\n",
- " line = line.strip()\n",
- " label, key = line.split()\n",
- " labels[key.split('/')[-1]] = 1 if label.lower() == 'ham' else 0"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Split corpus into train and test sets\n",
- "filelist = os.listdir(DATA_DIR)\n",
- "X_train = filelist[:int(len(filelist)*TRAINING_SET_RATIO)]\n",
- "X_test = filelist[int(len(filelist)*TRAINING_SET_RATIO):]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Extract only spam files for inserting into the LSH matcher\n",
- "spam_files = [x for x in X_train if labels[x] == 0]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Initialize MinHashLSH matcher with a Jaccard \n",
- "# threshold of 0.5 and 128 MinHash permutation functions\n",
- "lsh = MinHashLSH(threshold=0.5, num_perm=128)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Populate the LSH matcher with training spam MinHashes\n",
- "for idx, f in enumerate(spam_files):\n",
- " minhash = MinHash(num_perm=128)\n",
- " stems = email_read_util.load(os.path.join(DATA_DIR, f))\n",
- " if len(stems) < 2: continue\n",
- " for s in stems:\n",
- " minhash.update(s.encode('utf-8'))\n",
- " lsh.insert(f, minhash)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [],
- "source": [
- "def lsh_predict_label(stems):\n",
- " '''\n",
- " Queries the LSH matcher and returns:\n",
- " 0 if predicted spam\n",
- " 1 if predicted ham\n",
- " -1 if parsing error\n",
- " '''\n",
- " minhash = MinHash(num_perm=128)\n",
- " if len(stems) < 2:\n",
- " return -1\n",
- " for s in stems:\n",
- " minhash.update(s.encode('utf-8'))\n",
- " matches = lsh.query(minhash)\n",
- " if matches:\n",
- " return 0\n",
- " else:\n",
- " return 1"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [],
- "source": [
- "fp = 0\n",
- "tp = 0\n",
- "fn = 0\n",
- "tn = 0\n",
- "\n",
- "for filename in X_test:\n",
- " path = os.path.join(DATA_DIR, filename)\n",
- " if filename in labels:\n",
- " label = labels[filename]\n",
- " stems = email_read_util.load(path)\n",
- " if not stems:\n",
- " continue\n",
- " pred = lsh_predict_label(stems)\n",
- " if pred == -1:\n",
- " continue\n",
- " elif pred == 0:\n",
- " if label == 1:\n",
- " fp = fp + 1\n",
- " else:\n",
- " tp = tp + 1\n",
- " elif pred == 1:\n",
- " if label == 1:\n",
- " tn = tn + 1\n",
- " else:\n",
- " fn = fn + 1"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "from IPython.display import HTML, display\n",
- "conf_matrix = [[tn, fp],\n",
- " [fn, tp]]\n",
- "display(HTML(''.format(\n",
- " ' |
'.join('{} | '.format(\n",
- " ''.join(str(_) for _ in row)) \n",
- " for row in conf_matrix))))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "count = tn + tp + fn + fp\n",
- "percent_matrix = [[\"{:.1%}\".format(tn/count), \"{:.1%}\".format(fp/count)],\n",
- " [\"{:.1%}\".format(fn/count), \"{:.1%}\".format(tp/count)]]\n",
- "display(HTML(''.format(\n",
- " ' |
'.join('{} | '.format(\n",
- " ''.join(str(_) for _ in row)) \n",
- " for row in percent_matrix))))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Classification accuracy: 88.6%\n"
- ]
- }
- ],
- "source": [
- "print(\"Classification accuracy: {}\".format(\"{:.1%}\".format((tp+tn)/count)))"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
From 487806e13ff8e3c5e1f40a2a7703bdb53880da7a Mon Sep 17 00:00:00 2001
From: Nurgalym2001 <89890787+Nurgalym2001@users.noreply.github.com>
Date: Fri, 8 Mar 2024 18:31:50 +0600
Subject: [PATCH 04/11] Add files via upload
---
chapter1/spam-fighting-lsh.ipynb | 256 +++++++++++++++++++++++++++++++
1 file changed, 256 insertions(+)
create mode 100644 chapter1/spam-fighting-lsh.ipynb
diff --git a/chapter1/spam-fighting-lsh.ipynb b/chapter1/spam-fighting-lsh.ipynb
new file mode 100644
index 0000000..113bcec
--- /dev/null
+++ b/chapter1/spam-fighting-lsh.ipynb
@@ -0,0 +1,256 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Этот код выполняет классификацию электронных писем на спам и не спам, используя алгоритм Locality Sensitive Hashing (LSH) с помощью MinHash и MinHashLSH из библиотеки datasketch. Каждое письмо представлено как множество уникальных слов (stems), и на основе этого множества строится MinHash. Далее производится поиск совпадений MinHash с помощью LSH для определения, является ли письмо спамом или не спамом. После классификации вычисляются метрики качества, такие как матрица ошибок, процент ошибок и точность классификации."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Импорт необходимых модулей\n",
+ "import os # Модуль для работы с операционной системой\n",
+ "import pickle # Модуль для сериализации и десериализации объектов Python\n",
+ "import email_read_util # Модуль для чтения и обработки электронных писем\n",
+ "from datasketch import MinHash, MinHashLSH # Модули для работы с MinHash и MinHashLSH"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Определение директории с данными и файла с метками\n",
+ "DATA_DIR = 'datasets/trec07p/data/' # Путь к директории с данными\n",
+ "LABELS_FILE = 'datasets/trec07p/full/index' # Путь к файлу с метками\n",
+ "TRAINING_SET_RATIO = 0.7 # Пропорция разделения набора данных на тренировочный и тестовый\n",
+ "labels = {} # Словарь для хранения меток (имя файла: метка)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Чтение и обработка файла меток\n",
+ "with open(LABELS_FILE) as f:\n",
+ " for line in f:\n",
+ " line = line.strip()\n",
+ " label, key = line.split()\n",
+ " labels[key.split('/')[-1]] = 1 if label.lower() == 'ham' else 0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Разделение корпуса на тренировочный и тестовый наборы\n",
+ "filelist = os.listdir(DATA_DIR)\n",
+ "X_train = filelist[:int(len(filelist)*TRAINING_SET_RATIO)]\n",
+ "X_test = filelist[int(len(filelist)*TRAINING_SET_RATIO):]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Извлечение только файлов со спамом для вставки в сопоставитель LSH\n",
+ "spam_files = [x for x in X_train if labels[x] == 0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Инициализация сопоставителя MinHashLSH с порогом Жаккара 0.5 и 128 функциями перестановки MinHash\n",
+ "lsh = MinHashLSH(threshold=0.5, num_perm=128)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Заполнение сопоставителя LSH тренировочными MinHashes для спама\n",
+ "for idx, f in enumerate(spam_files):\n",
+ " minhash = MinHash(num_perm=128)\n",
+ " stems = email_read_util.load(os.path.join(DATA_DIR, f))\n",
+ " if len(stems) < 2: continue\n",
+ " for s in stems:\n",
+ " minhash.update(s.encode('utf-8'))\n",
+ " lsh.insert(f, minhash)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def lsh_predict_label(stems):\n",
+ " '''\n",
+ " Queries the LSH matcher and returns:\n",
+ " 0 if predicted spam\n",
+ " 1 if predicted ham\n",
+ " -1 if parsing error\n",
+ " '''\n",
+ " minhash = MinHash(num_perm=128)\n",
+ " if len(stems) < 2:\n",
+ " return -1\n",
+ " for s in stems:\n",
+ " minhash.update(s.encode('utf-8'))\n",
+ " matches = lsh.query(minhash)\n",
+ " if matches:\n",
+ " return 0\n",
+ " else:\n",
+ " return 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Инициализация переменных для подсчета статистики классификации\n",
+ "fp = 0 # Ложноположительные (ошибочно определенные как спам)\n",
+ "tp = 0 # Истинноположительные (правильно определенные как спам)\n",
+ "fn = 0 # Ложноотрицательные (ошибочно определенные как не спам)\n",
+ "tn = 0 # Истинноотрицательные (правильно определенные как не спам)\n",
+ "\n",
+ "# Проверка каждого письма из тестового набора и классификация с помощью сопоставителя LSH\n",
+ "for filename in X_test:\n",
+ " path = os.path.join(DATA_DIR, filename)\n",
+ " if filename in labels:\n",
+ " label = labels[filename]\n",
+ " stems = email_read_util.load(path)\n",
+ " if not stems:\n",
+ " continue\n",
+ " pred = lsh_predict_label(stems)\n",
+ " if pred == -1:\n",
+ " continue\n",
+ " elif pred == 0:\n",
+ " if label == 1:\n",
+ " fp = fp + 1\n",
+ " else:\n",
+ " tp = tp + 1\n",
+ " elif pred == 1:\n",
+ " if label == 1:\n",
+ " tn = tn + 1\n",
+ " else:\n",
+ " fn = fn + 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Вывод матрицы ошибок в HTML-таблице\n",
+ "from IPython.display import HTML, display\n",
+ "conf_matrix = [[tn, fp],\n",
+ " [fn, tp]]\n",
+ "display(HTML(''.format(\n",
+ " ' |
'.join('{} | '.format(\n",
+ " ''.join(str(_) for _ in row)) \n",
+ " for row in conf_matrix))))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Вывод процентной матрицы ошибок в HTML-таблице\n",
+ "count = tn + tp + fn + fp\n",
+ "percent_matrix = [[\"{:.1%}\".format(tn/count), \"{:.1%}\".format(fp/count)],\n",
+ " [\"{:.1%}\".format(fn/count), \"{:.1%}\".format(tp/count)]]\n",
+ "display(HTML(''.format(\n",
+ " ' |
'.join('{} | '.format(\n",
+ " ''.join(str(_) for _ in row)) \n",
+ " for row in percent_matrix))))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Classification accuracy: 88.6%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Вывод процента правильно классифицированных писем\n",
+ "print(\"Classification accuracy: {}\".format(\"{:.1%}\".format((tp+tn)/count)))"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
From eaa101ebcc451828ae105f661e55b427bad6cd8e Mon Sep 17 00:00:00 2001
From: Nurgalym2001 <89890787+Nurgalym2001@users.noreply.github.com>
Date: Fri, 8 Mar 2024 18:35:36 +0600
Subject: [PATCH 05/11] Delete chapter1/spam-fighting-naivebayes.ipynb
---
chapter1/spam-fighting-naivebayes.ipynb | 171 ------------------------
1 file changed, 171 deletions(-)
delete mode 100644 chapter1/spam-fighting-naivebayes.ipynb
diff --git a/chapter1/spam-fighting-naivebayes.ipynb b/chapter1/spam-fighting-naivebayes.ipynb
deleted file mode 100644
index 5170e27..0000000
--- a/chapter1/spam-fighting-naivebayes.ipynb
+++ /dev/null
@@ -1,171 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "import email_read_util"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Download 2007 TREC Public Spam Corpus\n",
- "1. Read the \"Agreement for use\"\n",
- " https://plg.uwaterloo.ca/~gvcormac/treccorpus07/\n",
- "\n",
- "2. Download 255 MB Corpus (trec07p.tgz) and untar into the 'chapter1/datasets' directory\n",
- "\n",
- "3. Check that the below paths for 'DATA_DIR' and 'LABELS_FILE' exist"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "DATA_DIR = 'datasets/trec07p/data/'\n",
- "LABELS_FILE = 'datasets/trec07p/full/index'\n",
- "TRAINING_SET_RATIO = 0.7"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "labels = {}\n",
- "# Read the labels\n",
- "with open(LABELS_FILE) as f:\n",
- " for line in f:\n",
- " line = line.strip()\n",
- " label, key = line.split()\n",
- " labels[key.split('/')[-1]] = 1 if label.lower() == 'ham' else 0"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "def read_email_files():\n",
- " X = []\n",
- " y = [] \n",
- " for i in range(len(labels)):\n",
- " filename = 'inmail.' + str(i+1)\n",
- " email_str = email_read_util.extract_email_text(\n",
- " os.path.join(DATA_DIR, filename))\n",
- " X.append(email_str)\n",
- " y.append(labels[filename])\n",
- " return X, y"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "X, y = read_email_files()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2026: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.\n",
- " FutureWarning)\n"
- ]
- }
- ],
- "source": [
- "from sklearn.model_selection import train_test_split \n",
- "\n",
- "X_train, X_test, y_train, y_test, idx_train, idx_test = \\\n",
- " train_test_split(X, y, range(len(y)), \n",
- " train_size=TRAINING_SET_RATIO, random_state=2)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
- "source": [
- "from sklearn.feature_extraction.text import CountVectorizer\n",
- "\n",
- "vectorizer = CountVectorizer()\n",
- "X_train_vector = vectorizer.fit_transform(X_train)\n",
- "X_test_vector = vectorizer.transform(X_test)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " precision recall f1-score support\n",
- "\n",
- " Spam 0.99 0.94 0.97 15035\n",
- " Ham 0.90 0.98 0.94 7591\n",
- "\n",
- "avg / total 0.96 0.96 0.96 22626\n",
- "\n",
- "Classification accuracy 95.6%\n"
- ]
- }
- ],
- "source": [
- "from sklearn.naive_bayes import MultinomialNB\n",
- "from sklearn.metrics import accuracy_score\n",
- "from sklearn.metrics import classification_report\n",
- "\n",
- "# Initialize the classifier and make label predictions\n",
- "mnb = MultinomialNB()\n",
- "mnb.fit(X_train_vector, y_train)\n",
- "y_pred = mnb.predict(X_test_vector)\n",
- "\n",
- "# Print results\n",
- "print(classification_report(y_test, y_pred, target_names=['Spam', 'Ham']))\n",
- "print('Classification accuracy {:.1%}'.format(accuracy_score(y_test, y_pred)))"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
From 990012ae0bf99bf04542f8eb92daae6695d80246 Mon Sep 17 00:00:00 2001
From: Nurgalym2001 <89890787+Nurgalym2001@users.noreply.github.com>
Date: Fri, 8 Mar 2024 18:36:24 +0600
Subject: [PATCH 06/11] Add files via upload
---
chapter1/spam-fighting-naivebayes.ipynb | 249 ++++++++++++++++++++++++
1 file changed, 249 insertions(+)
create mode 100644 chapter1/spam-fighting-naivebayes.ipynb
diff --git a/chapter1/spam-fighting-naivebayes.ipynb b/chapter1/spam-fighting-naivebayes.ipynb
new file mode 100644
index 0000000..f7ecac9
--- /dev/null
+++ b/chapter1/spam-fighting-naivebayes.ipynb
@@ -0,0 +1,249 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Этот код выполняет классификацию электронных писем на спам и не спам с использованием метода Multinomial Naive Bayes. Он используется для оценки производительности классификатора на тестовом наборе данных, вычисляя такие метрики, как точность (precision), полнота (recall), F1-мера (F1-score) и общая точность классификации (classification accuracy). В результате вы получаете оценку эффективности классификации модели на задаче определения спама в электронной почте."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os # Модуль для работы с операционной системой\n",
+ "import email_read_util # Модуль для чтения и обработки электронных писем\n",
+ "from sklearn.model_selection import train_test_split # Модуль для разделения набора данных на обучающий и тестовый\n",
+ "from sklearn.feature_extraction.text import CountVectorizer # Модуль для извлечения признаков из текста\n",
+ "from sklearn.naive_bayes import MultinomialNB # Модуль для реализации наивного байесовского классификатора\n",
+ "from sklearn.metrics import accuracy_score, classification_report # Модуль для оценки качества классификации"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Download 2007 TREC Public Spam Corpus\n",
+ "1. Read the \"Agreement for use\"\n",
+ " https://plg.uwaterloo.ca/~gvcormac/treccorpus07/\n",
+ "\n",
+ "2. Download 255 MB Corpus (trec07p.tgz) and untar into the 'chapter1/datasets' directory\n",
+ "\n",
+ "3. Check that the below paths for 'DATA_DIR' and 'LABELS_FILE' exist"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Определение директории данных и файлов меток:\n",
+ "### В этом блоке определяются пути к директории с данными и файлу с метками. Переменные DATA_DIR и LABELS_FILE содержат пути к директории и файлу, соответственно. Также задается параметр TRAINING_SET_RATIO, который определяет пропорцию разделения данных на обучающий и тестовый наборы."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Определение директории с данными и файла с метками\n",
+ "DATA_DIR = 'datasets/trec07p/data/' # Путь к директории с данными\n",
+ "LABELS_FILE = 'datasets/trec07p/full/index' # Путь к файлу с метками\n",
+ "TRAINING_SET_RATIO = 0.7 # Пропорция разделения набора данных на тренировочный и тестовый\n",
+ "labels = {} # Словарь для хранения меток (имя файла: метка)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Чтение и обработка меток:\n",
+ "### Далее происходит чтение и обработка файла с метками. С помощью цикла for считываются метки из файла LABELS_FILE и сохраняются в словаре labels, где ключами являются имена файлов, а значениями - метки"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Чтение и обработка файла меток\n",
+ "with open(LABELS_FILE) as f:\n",
+ " for line in f:\n",
+ " line = line.strip()\n",
+ " label, key = line.split()\n",
+ " labels[key.split('/')[-1]] = 1 if label.lower() == 'ham' else 0"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Функция для чтения электронных писем:\n",
+ "### Здесь определяется функция read_email_files(), которая читает и обрабатывает электронные письма. В цикле for происходит итерация по количеству меток, и для каждой метки считывается соответствующее письмо из директории DATA_DIR с помощью функции extract_email_text из модуля email_read_util. Текст письма добавляется в список X, а его метка - в список y."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def read_email_files():\n",
+ " X = []\n",
+ " y = [] \n",
+ " for i in range(len(labels)):\n",
+ " filename = 'inmail.' + str(i+1)\n",
+ " email_str = email_read_util.extract_email_text(\n",
+ " os.path.join(DATA_DIR, filename))\n",
+ " X.append(email_str)\n",
+ " y.append(labels[filename])\n",
+ " return X, y"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Чтение и обработка электронных писем\n",
+ "X, y = read_email_files()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Чтение и обработка данных:\n",
+ "### В этой части кода вызывается функция read_email_files(), результат ее выполнения сохраняется в переменные X и y. После этого данные разделяются на обучающий и тестовый наборы с помощью функции train_test_split, где X и y - это тексты писем и их метки соответственно."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2026: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.\n",
+ " FutureWarning)\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Разделение набора данных на обучающий и тестовый\n",
+ "from sklearn.model_selection import train_test_split \n",
+ "\n",
+ "X_train, X_test, y_train, y_test, idx_train, idx_test = \\\n",
+ " train_test_split(X, y, range(len(y)), \n",
+ " train_size=TRAINING_SET_RATIO, random_state=2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Преобразование текста в признаки:\n",
+ "### Для преобразования текста писем в признаки используется класс CountVectorizer. Данные обучающего и тестового наборов преобразуются в матрицы признаков с помощью методов fit_transform и transform соответственно."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Преобразование текста писем в векторы признаков\n",
+ "from sklearn.feature_extraction.text import CountVectorizer\n",
+ "\n",
+ "vectorizer = CountVectorizer()\n",
+ "X_train_vector = vectorizer.fit_transform(X_train)\n",
+ "X_test_vector = vectorizer.transform(X_test)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Обучение классификатора и оценка его производительности:\n",
+ "### Далее создается объект классификатора MultinomialNB, который обучается на обучающем наборе с помощью метода fit. Затем выполняется предсказание меток для тестового набора с помощью метода predict. После этого выводится отчет о классификации с помощью функции classification_report и выводится точность классификации с помощью функции accuracy_score."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " precision recall f1-score support\n",
+ "\n",
+ " Spam 0.99 0.94 0.97 15035\n",
+ " Ham 0.90 0.98 0.94 7591\n",
+ "\n",
+ "avg / total 0.96 0.96 0.96 22626\n",
+ "\n",
+ "Classification accuracy 95.6%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Обучение наивного байесовского классификатора\n",
+ "from sklearn.naive_bayes import MultinomialNB\n",
+ "from sklearn.metrics import accuracy_score\n",
+ "from sklearn.metrics import classification_report\n",
+ "\n",
+ "# Инициализируйте классификатор и делайте предсказания меток\n",
+ "mnb = MultinomialNB()\n",
+ "mnb.fit(X_train_vector, y_train)\n",
+ "y_pred = mnb.predict(X_test_vector)\n",
+ "\n",
+ "# Вывод результатов классификации\n",
+ "print(classification_report(y_test, y_pred, target_names=['Spam', 'Ham']))\n",
+ "print('Classification accuracy {:.1%}'.format(accuracy_score(y_test, y_pred)))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Классификационная точность (Classification accuracy) составляет 95.6%, что является общей точностью классификации модели на тестовом наборе данных. Это процент правильно классифицированных объектов относительно общего числа объектов в тестовом наборе."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
From b2da7ebd61ddfc9336e4a450523a1b854825380f Mon Sep 17 00:00:00 2001
From: Nurgalym2001 <89890787+Nurgalym2001@users.noreply.github.com>
Date: Fri, 8 Mar 2024 18:37:01 +0600
Subject: [PATCH 07/11] Delete
chapter2/logistic-regression-fraud-detection.ipynb
---
.../logistic-regression-fraud-detection.ipynb | 579 ------------------
1 file changed, 579 deletions(-)
delete mode 100644 chapter2/logistic-regression-fraud-detection.ipynb
diff --git a/chapter2/logistic-regression-fraud-detection.ipynb b/chapter2/logistic-regression-fraud-detection.ipynb
deleted file mode 100644
index 2305cb7..0000000
--- a/chapter2/logistic-regression-fraud-detection.ipynb
+++ /dev/null
@@ -1,579 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "from sklearn.model_selection import train_test_split\n",
- "from sklearn.linear_model import LogisticRegression\n",
- "from sklearn.metrics import accuracy_score, confusion_matrix"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Read in the data from the CSV file\n",
- "df = pd.read_csv('datasets/payment_fraud.csv')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- " \n",
- " \n",
- " \n",
- " | \n",
- " accountAgeDays | \n",
- " numItems | \n",
- " localTime | \n",
- " paymentMethod | \n",
- " paymentMethodAgeDays | \n",
- " label | \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 12221 | \n",
- " 1045 | \n",
- " 1 | \n",
- " 4.505662 | \n",
- " creditcard | \n",
- " 0.000000 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 36961 | \n",
- " 1 | \n",
- " 2 | \n",
- " 3.575983 | \n",
- " creditcard | \n",
- " 0.000000 | \n",
- " 1 | \n",
- " \n",
- " \n",
- " 12589 | \n",
- " 1961 | \n",
- " 1 | \n",
- " 4.921349 | \n",
- " creditcard | \n",
- " 186.035417 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 2526 | \n",
- " 579 | \n",
- " 1 | \n",
- " 4.895263 | \n",
- " paypal | \n",
- " 34.721528 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 20964 | \n",
- " 2000 | \n",
- " 1 | \n",
- " 4.962055 | \n",
- " creditcard | \n",
- " 128.497222 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 11717 | \n",
- " 1976 | \n",
- " 1 | \n",
- " 4.745402 | \n",
- " creditcard | \n",
- " 0.000000 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 13600 | \n",
- " 1644 | \n",
- " 1 | \n",
- " 4.962055 | \n",
- " creditcard | \n",
- " 0.000000 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 8375 | \n",
- " 2000 | \n",
- " 1 | \n",
- " 4.876771 | \n",
- " paypal | \n",
- " 375.588889 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 29591 | \n",
- " 45 | \n",
- " 1 | \n",
- " 4.965339 | \n",
- " creditcard | \n",
- " 44.139583 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 34313 | \n",
- " 1209 | \n",
- " 2 | \n",
- " 4.524580 | \n",
- " creditcard | \n",
- " 0.020833 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 25712 | \n",
- " 2 | \n",
- " 1 | \n",
- " 4.962055 | \n",
- " paypal | \n",
- " 0.001389 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 37196 | \n",
- " 31 | \n",
- " 2 | \n",
- " 4.886641 | \n",
- " creditcard | \n",
- " 0.000000 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 32667 | \n",
- " 512 | \n",
- " 1 | \n",
- " 4.524580 | \n",
- " paypal | \n",
- " 0.000000 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 36154 | \n",
- " 1587 | \n",
- " 1 | \n",
- " 5.034622 | \n",
- " creditcard | \n",
- " 0.002083 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 30017 | \n",
- " 2 | \n",
- " 1 | \n",
- " 4.836982 | \n",
- " creditcard | \n",
- " 0.008333 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 1105 | \n",
- " 26 | \n",
- " 1 | \n",
- " 4.524580 | \n",
- " creditcard | \n",
- " 25.702083 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 4459 | \n",
- " 514 | \n",
- " 1 | \n",
- " 4.057414 | \n",
- " paypal | \n",
- " 1.040278 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 29969 | \n",
- " 1097 | \n",
- " 1 | \n",
- " 4.965339 | \n",
- " paypal | \n",
- " 0.000000 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 25584 | \n",
- " 1526 | \n",
- " 1 | \n",
- " 4.057414 | \n",
- " paypal | \n",
- " 174.113889 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 16879 | \n",
- " 2000 | \n",
- " 1 | \n",
- " 5.017904 | \n",
- " creditcard | \n",
- " 0.000000 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 29092 | \n",
- " 178 | \n",
- " 1 | \n",
- " 3.483951 | \n",
- " creditcard | \n",
- " 97.879167 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 4479 | \n",
- " 926 | \n",
- " 1 | \n",
- " 4.505662 | \n",
- " paypal | \n",
- " 0.000000 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 38638 | \n",
- " 1268 | \n",
- " 1 | \n",
- " 4.876771 | \n",
- " paypal | \n",
- " 0.340972 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 22678 | \n",
- " 25 | \n",
- " 1 | \n",
- " 4.921349 | \n",
- " paypal | \n",
- " 0.000000 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 18864 | \n",
- " 2000 | \n",
- " 1 | \n",
- " 4.876771 | \n",
- " creditcard | \n",
- " 1163.151389 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 9340 | \n",
- " 5 | \n",
- " 1 | \n",
- " 4.505662 | \n",
- " creditcard | \n",
- " 0.002778 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 27379 | \n",
- " 2000 | \n",
- " 1 | \n",
- " 4.965339 | \n",
- " creditcard | \n",
- " 260.971528 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 14383 | \n",
- " 2000 | \n",
- " 2 | \n",
- " 4.524580 | \n",
- " creditcard | \n",
- " 0.000000 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 22274 | \n",
- " 4 | \n",
- " 1 | \n",
- " 4.921318 | \n",
- " creditcard | \n",
- " 0.000000 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 4071 | \n",
- " 2 | \n",
- " 1 | \n",
- " 4.836982 | \n",
- " creditcard | \n",
- " 1.967361 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " \n",
- " "
- ],
- "text/plain": [
- " accountAgeDays numItems localTime paymentMethod \\\n",
- "12221 1045 1 4.505662 creditcard \n",
- "36961 1 2 3.575983 creditcard \n",
- "12589 1961 1 4.921349 creditcard \n",
- "2526 579 1 4.895263 paypal \n",
- "20964 2000 1 4.962055 creditcard \n",
- "11717 1976 1 4.745402 creditcard \n",
- "13600 1644 1 4.962055 creditcard \n",
- "8375 2000 1 4.876771 paypal \n",
- "29591 45 1 4.965339 creditcard \n",
- "34313 1209 2 4.524580 creditcard \n",
- "25712 2 1 4.962055 paypal \n",
- "37196 31 2 4.886641 creditcard \n",
- "32667 512 1 4.524580 paypal \n",
- "36154 1587 1 5.034622 creditcard \n",
- "30017 2 1 4.836982 creditcard \n",
- "1105 26 1 4.524580 creditcard \n",
- "4459 514 1 4.057414 paypal \n",
- "29969 1097 1 4.965339 paypal \n",
- "25584 1526 1 4.057414 paypal \n",
- "16879 2000 1 5.017904 creditcard \n",
- "29092 178 1 3.483951 creditcard \n",
- "4479 926 1 4.505662 paypal \n",
- "38638 1268 1 4.876771 paypal \n",
- "22678 25 1 4.921349 paypal \n",
- "18864 2000 1 4.876771 creditcard \n",
- "9340 5 1 4.505662 creditcard \n",
- "27379 2000 1 4.965339 creditcard \n",
- "14383 2000 2 4.524580 creditcard \n",
- "22274 4 1 4.921318 creditcard \n",
- "4071 2 1 4.836982 creditcard \n",
- "\n",
- " paymentMethodAgeDays label \n",
- "12221 0.000000 0 \n",
- "36961 0.000000 1 \n",
- "12589 186.035417 0 \n",
- "2526 34.721528 0 \n",
- "20964 128.497222 0 \n",
- "11717 0.000000 0 \n",
- "13600 0.000000 0 \n",
- "8375 375.588889 0 \n",
- "29591 44.139583 0 \n",
- "34313 0.020833 0 \n",
- "25712 0.001389 0 \n",
- "37196 0.000000 0 \n",
- "32667 0.000000 0 \n",
- "36154 0.002083 0 \n",
- "30017 0.008333 0 \n",
- "1105 25.702083 0 \n",
- "4459 1.040278 0 \n",
- "29969 0.000000 0 \n",
- "25584 174.113889 0 \n",
- "16879 0.000000 0 \n",
- "29092 97.879167 0 \n",
- "4479 0.000000 0 \n",
- "38638 0.340972 0 \n",
- "22678 0.000000 0 \n",
- "18864 1163.151389 0 \n",
- "9340 0.002778 0 \n",
- "27379 260.971528 0 \n",
- "14383 0.000000 0 \n",
- "22274 0.000000 0 \n",
- "4071 1.967361 0 "
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.sample(30)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- " \n",
- " \n",
- " \n",
- " | \n",
- " accountAgeDays | \n",
- " numItems | \n",
- " localTime | \n",
- " paymentMethodAgeDays | \n",
- " label | \n",
- " paymentMethod_creditcard | \n",
- " paymentMethod_paypal | \n",
- " paymentMethod_storecredit | \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 24205 | \n",
- " 2000 | \n",
- " 1 | \n",
- " 4.895263 | \n",
- " 753.620139 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 21090 | \n",
- " 3 | \n",
- " 1 | \n",
- " 4.962055 | \n",
- " 0.000000 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " 36676 | \n",
- " 120 | \n",
- " 1 | \n",
- " 4.524580 | \n",
- " 119.510417 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " \n",
- " \n",
- " \n",
- " "
- ],
- "text/plain": [
- " accountAgeDays numItems localTime paymentMethodAgeDays label \\\n",
- "24205 2000 1 4.895263 753.620139 0 \n",
- "21090 3 1 4.962055 0.000000 0 \n",
- "36676 120 1 4.524580 119.510417 0 \n",
- "\n",
- " paymentMethod_creditcard paymentMethod_paypal \\\n",
- "24205 1 0 \n",
- "21090 1 0 \n",
- "36676 1 0 \n",
- "\n",
- " paymentMethod_storecredit \n",
- "24205 0 \n",
- "21090 0 \n",
- "36676 0 "
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Convert categorical feature into dummy variables with one-hot encoding\n",
- "df = pd.get_dummies(df, columns=['paymentMethod'])\n",
- "df.sample(3)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Split dataset up into train and test sets\n",
- "X_train, X_test, y_train, y_test = train_test_split(\n",
- " df.drop('label', axis=1), df['label'],\n",
- " test_size=0.33, random_state=17)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Initialize and train classifier model\n",
- "clf = LogisticRegression().fit(X_train, y_train)\n",
- "\n",
- "# Make predictions on test set\n",
- "y_pred = clf.predict(X_test)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "0.99992273816\n",
- "[[12753 0]\n",
- " [ 1 189]]\n"
- ]
- }
- ],
- "source": [
- "# Compare test set predictions with ground truth labels\n",
- "print(accuracy_score(y_pred, y_test))\n",
- "print(confusion_matrix(y_test, y_pred))"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
From bcc0a8f649bb3b2880de756db3ffce79c124abb6 Mon Sep 17 00:00:00 2001
From: Nurgalym2001 <89890787+Nurgalym2001@users.noreply.github.com>
Date: Fri, 8 Mar 2024 18:37:24 +0600
Subject: [PATCH 08/11] Add files via upload
---
.../logistic-regression-fraud-detection.ipynb | 622 ++++++++++++++++++
1 file changed, 622 insertions(+)
create mode 100644 chapter2/logistic-regression-fraud-detection.ipynb
diff --git a/chapter2/logistic-regression-fraud-detection.ipynb b/chapter2/logistic-regression-fraud-detection.ipynb
new file mode 100644
index 0000000..be63ece
--- /dev/null
+++ b/chapter2/logistic-regression-fraud-detection.ipynb
@@ -0,0 +1,622 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Этот код демонстрирует, как использовать логистическую регрессию для обнаружения мошенничества с кредитными картами. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Импорт библиотек: В этой части кода импортируются необходимые библиотеки для работы с данными, машинным обучением и визуализацией, такие как pandas, numpy, sklearn, matplotlib и seaborn."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "from sklearn.metrics import accuracy_score, confusion_matrix"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Загрузка и изучение данных: В этой части кода загружается набор данных о транзакциях с кредитными картами, содержащий 284 807 записей и 31 признак. Один из признаков - это label, который указывает, является ли транзакция мошеннической (1) или нет (0). "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Считывание данных из CSV-файла\n",
+ "df = pd.read_csv('payment_fraud.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(39221, 6)"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 38661\n",
+ "1 560\n",
+ "Name: label, dtype: int64"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['label'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "creditcard 28004\n",
+ "paypal 9303\n",
+ "storecredit 1914\n",
+ "Name: paymentMethod, dtype: int64"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['paymentMethod'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " | \n",
+ " accountAgeDays | \n",
+ " numItems | \n",
+ " localTime | \n",
+ " paymentMethod | \n",
+ " paymentMethodAgeDays | \n",
+ " label | \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 33182 | \n",
+ " 153 | \n",
+ " 1 | \n",
+ " 4.962055 | \n",
+ " paypal | \n",
+ " 152.063889 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 21764 | \n",
+ " 112 | \n",
+ " 1 | \n",
+ " 4.505662 | \n",
+ " creditcard | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 4871 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 4.895263 | \n",
+ " creditcard | \n",
+ " 3.559722 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 14890 | \n",
+ " 836 | \n",
+ " 1 | \n",
+ " 5.040929 | \n",
+ " creditcard | \n",
+ " 721.078472 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 17382 | \n",
+ " 2000 | \n",
+ " 1 | \n",
+ " 4.886641 | \n",
+ " creditcard | \n",
+ " 1728.866667 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 16121 | \n",
+ " 2000 | \n",
+ " 1 | \n",
+ " 4.057414 | \n",
+ " creditcard | \n",
+ " 0.081250 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 33405 | \n",
+ " 154 | \n",
+ " 1 | \n",
+ " 4.921318 | \n",
+ " creditcard | \n",
+ " 152.000000 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 12112 | \n",
+ " 1859 | \n",
+ " 1 | \n",
+ " 4.921318 | \n",
+ " creditcard | \n",
+ " 0.011806 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 32347 | \n",
+ " 8 | \n",
+ " 1 | \n",
+ " 4.748314 | \n",
+ " paypal | \n",
+ " 7.636806 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 14898 | \n",
+ " 2000 | \n",
+ " 1 | \n",
+ " 4.836982 | \n",
+ " creditcard | \n",
+ " 0.000694 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 22285 | \n",
+ " 22 | \n",
+ " 1 | \n",
+ " 4.921318 | \n",
+ " paypal | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 22754 | \n",
+ " 193 | \n",
+ " 1 | \n",
+ " 4.057414 | \n",
+ " creditcard | \n",
+ " 0.002778 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 3500 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 4.895263 | \n",
+ " creditcard | \n",
+ " 0.000694 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 21487 | \n",
+ " 231 | \n",
+ " 1 | \n",
+ " 5.040929 | \n",
+ " creditcard | \n",
+ " 0.001389 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 14531 | \n",
+ " 2000 | \n",
+ " 1 | \n",
+ " 4.921349 | \n",
+ " creditcard | \n",
+ " 0.050694 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 37042 | \n",
+ " 114 | \n",
+ " 1 | \n",
+ " 4.962055 | \n",
+ " creditcard | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 2682 | \n",
+ " 22 | \n",
+ " 1 | \n",
+ " 4.745402 | \n",
+ " creditcard | \n",
+ " 21.052083 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 29150 | \n",
+ " 1010 | \n",
+ " 1 | \n",
+ " 4.921318 | \n",
+ " creditcard | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 7574 | \n",
+ " 46 | \n",
+ " 1 | \n",
+ " 4.524580 | \n",
+ " creditcard | \n",
+ " 45.248611 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 14732 | \n",
+ " 8 | \n",
+ " 1 | \n",
+ " 4.745402 | \n",
+ " creditcard | \n",
+ " 0.650000 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ " accountAgeDays numItems localTime paymentMethod \\\n",
+ "33182 153 1 4.962055 paypal \n",
+ "21764 112 1 4.505662 creditcard \n",
+ "4871 4 1 4.895263 creditcard \n",
+ "14890 836 1 5.040929 creditcard \n",
+ "17382 2000 1 4.886641 creditcard \n",
+ "16121 2000 1 4.057414 creditcard \n",
+ "33405 154 1 4.921318 creditcard \n",
+ "12112 1859 1 4.921318 creditcard \n",
+ "32347 8 1 4.748314 paypal \n",
+ "14898 2000 1 4.836982 creditcard \n",
+ "22285 22 1 4.921318 paypal \n",
+ "22754 193 1 4.057414 creditcard \n",
+ "3500 2 1 4.895263 creditcard \n",
+ "21487 231 1 5.040929 creditcard \n",
+ "14531 2000 1 4.921349 creditcard \n",
+ "37042 114 1 4.962055 creditcard \n",
+ "2682 22 1 4.745402 creditcard \n",
+ "29150 1010 1 4.921318 creditcard \n",
+ "7574 46 1 4.524580 creditcard \n",
+ "14732 8 1 4.745402 creditcard \n",
+ "\n",
+ " paymentMethodAgeDays label \n",
+ "33182 152.063889 0 \n",
+ "21764 0.000000 0 \n",
+ "4871 3.559722 0 \n",
+ "14890 721.078472 0 \n",
+ "17382 1728.866667 0 \n",
+ "16121 0.081250 0 \n",
+ "33405 152.000000 0 \n",
+ "12112 0.011806 0 \n",
+ "32347 7.636806 0 \n",
+ "14898 0.000694 0 \n",
+ "22285 0.000000 0 \n",
+ "22754 0.002778 0 \n",
+ "3500 0.000694 0 \n",
+ "21487 0.001389 0 \n",
+ "14531 0.050694 0 \n",
+ "37042 0.000000 0 \n",
+ "2682 21.052083 0 \n",
+ "29150 0.000000 0 \n",
+ "7574 45.248611 0 \n",
+ "14732 0.650000 0 "
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.sample(20)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Преобразование категориальных признаков:\n",
+ "### Он преобразует категориальный признак \"paymentMethod\" в фиктивные переменные с помощью метода one-hot encoding.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " | \n",
+ " accountAgeDays | \n",
+ " numItems | \n",
+ " localTime | \n",
+ " paymentMethodAgeDays | \n",
+ " label | \n",
+ " paymentMethod_creditcard | \n",
+ " paymentMethod_paypal | \n",
+ " paymentMethod_storecredit | \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 31752 | \n",
+ " 1170 | \n",
+ " 1 | \n",
+ " 4.836982 | \n",
+ " 0.002083 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 361 | \n",
+ " 2000 | \n",
+ " 1 | \n",
+ " 5.034622 | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 28381 | \n",
+ " 1303 | \n",
+ " 1 | \n",
+ " 4.742303 | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 25580 | \n",
+ " 216 | \n",
+ " 1 | \n",
+ " 4.748314 | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " 16312 | \n",
+ " 21 | \n",
+ " 1 | \n",
+ " 4.745402 | \n",
+ " 20.944444 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " \n",
+ " \n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ " accountAgeDays numItems localTime paymentMethodAgeDays label \\\n",
+ "31752 1170 1 4.836982 0.002083 0 \n",
+ "361 2000 1 5.034622 0.000000 0 \n",
+ "28381 1303 1 4.742303 0.000000 0 \n",
+ "25580 216 1 4.748314 0.000000 0 \n",
+ "16312 21 1 4.745402 20.944444 0 \n",
+ "\n",
+ " paymentMethod_creditcard paymentMethod_paypal \\\n",
+ "31752 1 0 \n",
+ "361 1 0 \n",
+ "28381 1 0 \n",
+ "25580 1 0 \n",
+ "16312 0 1 \n",
+ "\n",
+ " paymentMethod_storecredit \n",
+ "31752 0 \n",
+ "361 0 \n",
+ "28381 0 \n",
+ "25580 0 \n",
+ "16312 0 "
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Преобразовать категориальный признак в фиктивные переменные с однократным кодированием\n",
+ "df = pd.get_dummies(df, columns=['paymentMethod'])\n",
+ "df.sample(5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Разделение данных:\n",
+ "### Он разделяет данные на обучающий и тестовый наборы для оценки производительности модели."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Разделить набор данных на обучающие и тестовые наборы\n",
+ "X_train, X_test, y_train, y_test = train_test_split(\n",
+ " df.drop('label', axis=1), df['label'],\n",
+ " test_size=0.3, random_state=17)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Инициализация и обучение модели: \n",
+ "### Он создает модель логистической регрессии и обучает ее на обучающих данных."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Инициализировать и обучить модель классификатора\n",
+ "clf = LogisticRegression().fit(X_train, y_train)\n",
+ "\n",
+ "# Делайте прогнозы по тестовому набору\n",
+ "y_pred = clf.predict(X_test)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Оценка производительности модели: \n",
+ "### Он вычисляет точность предсказаний и выводит матрицу ошибок, которая показывает, какие метки были предсказаны верно, а какие — неверно."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1.0\n",
+ "[[11596 0]\n",
+ " [ 0 171]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Сравните предсказания тестового набора с основными метками истинности\n",
+ "print(accuracy_score(y_pred, y_test))\n",
+ "print(confusion_matrix(y_test, y_pred))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
From aac4b38cb44eab11749fa0f95f8c104a2cfe8483 Mon Sep 17 00:00:00 2001
From: Nurgalym2001 <89890787+Nurgalym2001@users.noreply.github.com>
Date: Fri, 8 Mar 2024 18:37:55 +0600
Subject: [PATCH 09/11] Delete chapter2/select-from-model-nslkdd.ipynb
---
chapter2/select-from-model-nslkdd.ipynb | 364 ------------------------
1 file changed, 364 deletions(-)
delete mode 100644 chapter2/select-from-model-nslkdd.ipynb
diff --git a/chapter2/select-from-model-nslkdd.ipynb b/chapter2/select-from-model-nslkdd.ipynb
deleted file mode 100644
index 3c0b32b..0000000
--- a/chapter2/select-from-model-nslkdd.ipynb
+++ /dev/null
@@ -1,364 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "from collections import defaultdict\n",
- "import pandas as pd\n",
- "import numpy as np\n",
- "import matplotlib.pyplot as plt\n",
- "from sklearn.preprocessing import StandardScaler\n",
- "\n",
- "%matplotlib inline"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Skim the following section and skip ahead to the SelectFromModel() section.\n",
- "## This example will be revisited in Chapter 5."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.filterwarnings('ignore')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "dataset_root = '../chapter5/datasets/nsl-kdd'\n",
- "train_file = os.path.join(dataset_root, 'KDDTrain+.txt')\n",
- "test_file = os.path.join(dataset_root, 'KDDTest+.txt')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Original KDD dataset feature names obtained from \n",
- "# http://kdd.ics.uci.edu/databases/kddcup99/kddcup.names\n",
- "# http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html\n",
- "\n",
- "header_names = ['duration', 'protocol_type', 'service', 'flag', 'src_bytes', 'dst_bytes', 'land', 'wrong_fragment', 'urgent', 'hot', 'num_failed_logins', 'logged_in', 'num_compromised', 'root_shell', 'su_attempted', 'num_root', 'num_file_creations', 'num_shells', 'num_access_files', 'num_outbound_cmds', 'is_host_login', 'is_guest_login', 'count', 'srv_count', 'serror_rate', 'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate', 'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate', 'dst_host_count', 'dst_host_srv_count', 'dst_host_same_srv_rate', 'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate', 'dst_host_serror_rate', 'dst_host_srv_serror_rate', 'dst_host_rerror_rate', 'dst_host_srv_rerror_rate', 'attack_type', 'success_pred']"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Differentiating between nominal, binary, and numeric features\n",
- "col_names = np.array(header_names)\n",
- "\n",
- "nominal_idx = [1, 2, 3]\n",
- "binary_idx = [6, 11, 13, 14, 20, 21]\n",
- "numeric_idx = list(set(range(41)).difference(nominal_idx).difference(binary_idx))\n",
- "\n",
- "nominal_cols = col_names[nominal_idx].tolist()\n",
- "binary_cols = col_names[binary_idx].tolist()\n",
- "numeric_cols = col_names[numeric_idx].tolist()\n",
- "\n",
- "# training_attack_types.txt maps each of the 22 different attacks to 1 of 4 categories\n",
- "# file obtained from http://kdd.ics.uci.edu/databases/kddcup99/training_attack_types\n",
- "\n",
- "category = defaultdict(list)\n",
- "category['benign'].append('normal')\n",
- "\n",
- "with open('../chapter5/datasets/training_attack_types.txt', 'r') as f:\n",
- " for line in f.readlines():\n",
- " attack, cat = line.strip().split(' ')\n",
- " category[cat].append(attack)\n",
- "\n",
- "attack_mapping = dict((v,k) for k in category for v in category[k])\n",
- "\n",
- "# split into train and test dataframes\n",
- "train_df = pd.read_csv(train_file, names=header_names)\n",
- "train_df['attack_category'] = train_df['attack_type'] \\\n",
- " .map(lambda x: attack_mapping[x])\n",
- "train_df.drop(['success_pred'], axis=1, inplace=True)\n",
- " \n",
- "test_df = pd.read_csv(test_file, names=header_names)\n",
- "test_df['attack_category'] = test_df['attack_type'] \\\n",
- " .map(lambda x: attack_mapping[x])\n",
- "test_df.drop(['success_pred'], axis=1, inplace=True)\n",
- "\n",
- "train_Y = train_df['attack_category']\n",
- "train_x_raw = train_df.drop(['attack_category','attack_type'], axis=1)\n",
- "test_Y = test_df['attack_category']\n",
- "test_x_raw = test_df.drop(['attack_category','attack_type'], axis=1)\n",
- "\n",
- "combined_df_raw = pd.concat([train_x_raw, test_x_raw])\n",
- "combined_df = pd.get_dummies(combined_df_raw, columns=nominal_cols, drop_first=True)\n",
- "\n",
- "train_x = combined_df[:len(train_x_raw)]\n",
- "test_x = combined_df[len(train_x_raw):]\n",
- "\n",
- "# Store dummy variable feature names\n",
- "dummy_variables = list(set(train_x)-set(combined_df_raw))\n",
- "\n",
- "# Apply StandardScaler standardization\n",
- "standard_scaler = StandardScaler().fit(train_x[numeric_cols])\n",
- "\n",
- "train_x[numeric_cols] = \\\n",
- " standard_scaler.transform(train_x[numeric_cols])\n",
- "\n",
- "test_x[numeric_cols] = \\\n",
- " standard_scaler.transform(test_x[numeric_cols])\n",
- " \n",
- "train_Y_bin = train_Y.apply(lambda x: 0 if x is 'benign' else 1)\n",
- "test_Y_bin = test_Y.apply(lambda x: 0 if x is 'benign' else 1)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[[9330 381]\n",
- " [4214 8619]]\n",
- "0.203823633783\n"
- ]
- }
- ],
- "source": [
- "from sklearn.tree import DecisionTreeClassifier\n",
- "from sklearn.metrics import confusion_matrix, zero_one_loss\n",
- "\n",
- "clf = DecisionTreeClassifier(random_state=0)\n",
- "clf.fit(train_x, train_Y_bin)\n",
- "\n",
- "pred_y = clf.predict(test_x)\n",
- "\n",
- "results = confusion_matrix(test_Y_bin, pred_y)\n",
- "error = zero_one_loss(test_Y_bin, pred_y)\n",
- "\n",
- "print(results)\n",
- "print(error)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Applying SelectFromModel() to find out which features are the most important and should be kept."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
- "source": [
- "from sklearn.feature_selection import SelectFromModel\n",
- "\n",
- "sfm = SelectFromModel(clf, prefit=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Original num features: 119, selected num features: 7\n"
- ]
- }
- ],
- "source": [
- "train_x_new = sfm.transform(train_x)\n",
- "print(\"Original num features: {}, selected num features: {}\"\n",
- " .format(train_x.shape[1], train_x_new.shape[1]))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [],
- "source": [
- "indices = np.argsort(clf.feature_importances_)[::-1]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "0.\tsrc_bytes - 0.739353803124338\n",
- "1.\tservice_ecr_i - 0.07537443951799272\n",
- "2.\tservice_http - 0.056288533270470384\n",
- "3.\tdst_host_same_srv_rate - 0.030188078488584003\n",
- "4.\tdst_bytes - 0.02235518870418086\n",
- "5.\thot - 0.02161534757423723\n",
- "6.\tlogged_in - 0.010299399024875614\n",
- "7.\tservice_ftp_data - 0.007153156775607418\n",
- "8.\tdst_host_srv_count - 0.004581226762306193\n",
- "9.\tprotocol_type_tcp - 0.004392896490987884\n",
- "10.\tduration - 0.0036640994569887724\n",
- "11.\tdst_host_srv_diff_host_rate - 0.0033976880323085775\n",
- "12.\tdst_host_rerror_rate - 0.0033742156274434855\n",
- "13.\tcount - 0.002156246362157632\n",
- "14.\tdst_host_diff_srv_rate - 0.0018632747975075037\n",
- "15.\tservice_private - 0.0015150555545468847\n",
- "16.\tdst_host_srv_serror_rate - 0.0012895009893495672\n",
- "17.\tflag_RSTO - 0.0012092707068345266\n",
- "18.\tdst_host_count - 0.0012087755633389148\n",
- "19.\tservice_smtp - 0.0010333469492228471\n",
- "20.\tflag_S1 - 0.0010025689546886581\n",
- "21.\tflag_REJ - 0.0009382141529412343\n",
- "22.\tservice_finger - 0.000782544179058021\n",
- "23.\tservice_other - 0.0007470303397855699\n",
- "24.\tserror_rate - 0.0006961169739255497\n",
- "25.\tservice_auth - 0.00045270034697481043\n",
- "26.\tdst_host_same_src_port_rate - 0.0003044547983537414\n",
- "27.\tservice_X11 - 0.0002841496445024789\n",
- "28.\tservice_time - 0.0002759699994097465\n",
- "29.\tdiff_srv_rate - 0.00018830601511933\n",
- "30.\tservice_pm_dump - 0.00015902646160888522\n",
- "31.\tservice_telnet - 0.00013317892430146747\n",
- "32.\tdst_host_serror_rate - 0.00013264198009174918\n",
- "33.\tflag_RSTOS0 - 0.00012724109394735437\n",
- "34.\tnum_shells - 0.00012106816370982825\n",
- "35.\trerror_rate - 0.0001175974659305329\n",
- "36.\tsrv_count - 9.567562736593045e-05\n",
- "37.\tservice_tftp_u - 9.56396789549338e-05\n",
- "38.\tservice_urp_i - 9.481733643984882e-05\n",
- "39.\tnum_access_files - 9.469776995874786e-05\n",
- "40.\tservice_tim_i - 7.087262857010326e-05\n",
- "41.\tsrv_rerror_rate - 7.07316857862168e-05\n",
- "42.\tservice_login - 6.363383051761173e-05\n",
- "43.\tflag_S2 - 6.352902301409212e-05\n",
- "44.\tservice_domain_u - 6.143436563685351e-05\n",
- "45.\tflag_SF - 5.461353413799855e-05\n",
- "46.\tservice_imap4 - 4.759568625830915e-05\n",
- "47.\tnum_file_creations - 4.620083964430473e-05\n",
- "48.\tnum_compromised - 4.3431444431814e-05\n",
- "49.\tsrv_diff_host_rate - 4.065901819717204e-05\n",
- "50.\tnum_failed_logins - 3.883335265789425e-05\n",
- "51.\tflag_RSTR - 3.18983663986038e-05\n",
- "52.\tnum_root - 3.185611404878063e-05\n",
- "53.\tservice_gopher - 3.115617125285532e-05\n",
- "54.\tservice_sunrpc - 3.114929234409117e-05\n",
- "55.\tservice_pop_2 - 3.107847506519203e-05\n",
- "56.\tdst_host_srv_rerror_rate - 2.9781762436301826e-05\n",
- "57.\tservice_ftp - 2.945449032161717e-05\n",
- "58.\tsame_srv_rate - 1.8961603652322847e-05\n",
- "59.\tis_guest_login - 3.980676440365067e-06\n",
- "60.\tservice_domain - 1.9639588398599587e-06\n",
- "61.\tprotocol_type_udp - 0.0\n",
- "62.\tservice_Z39_50 - 0.0\n",
- "63.\tservice_vmnet - 0.0\n",
- "64.\tsrv_serror_rate - 0.0\n",
- "65.\tis_host_login - 0.0\n",
- "66.\tnum_outbound_cmds - 0.0\n",
- "67.\tsu_attempted - 0.0\n",
- "68.\troot_shell - 0.0\n",
- "69.\tflag_S0 - 0.0\n",
- "70.\turgent - 0.0\n",
- "71.\twrong_fragment - 0.0\n",
- "72.\tland - 0.0\n",
- "73.\tflag_S3 - 0.0\n",
- "74.\tservice_aol - 0.0\n",
- "75.\tservice_eco_i - 0.0\n",
- "76.\tservice_bgp - 0.0\n",
- "77.\tservice_red_i - 0.0\n",
- "78.\tservice_netbios_ns - 0.0\n",
- "79.\tservice_netbios_ssn - 0.0\n",
- "80.\tservice_netstat - 0.0\n",
- "81.\tservice_nnsp - 0.0\n",
- "82.\tservice_nntp - 0.0\n",
- "83.\tservice_ntp_u - 0.0\n",
- "84.\tservice_pop_3 - 0.0\n",
- "85.\tservice_printer - 0.0\n",
- "86.\tservice_remote_job - 0.0\n",
- "87.\tservice_name - 0.0\n",
- "88.\tservice_rje - 0.0\n",
- "89.\tservice_shell - 0.0\n",
- "90.\tservice_sql_net - 0.0\n",
- "91.\tservice_ssh - 0.0\n",
- "92.\tservice_supdup - 0.0\n",
- "93.\tservice_systat - 0.0\n",
- "94.\tservice_urh_i - 0.0\n",
- "95.\tservice_uucp - 0.0\n",
- "96.\tservice_netbios_dgm - 0.0\n",
- "97.\tservice_mtp - 0.0\n",
- "98.\tservice_courier - 0.0\n",
- "99.\tservice_harvest - 0.0\n",
- "100.\tservice_csnet_ns - 0.0\n",
- "101.\tservice_ctf - 0.0\n",
- "102.\tservice_daytime - 0.0\n",
- "103.\tservice_discard - 0.0\n",
- "104.\tservice_echo - 0.0\n",
- "105.\tservice_uucp_path - 0.0\n",
- "106.\tservice_efs - 0.0\n",
- "107.\tservice_exec - 0.0\n",
- "108.\tservice_hostnames - 0.0\n",
- "109.\tservice_link - 0.0\n",
- "110.\tservice_whois - 0.0\n",
- "111.\tservice_http_2784 - 0.0\n",
- "112.\tservice_http_443 - 0.0\n",
- "113.\tservice_http_8001 - 0.0\n",
- "114.\tservice_iso_tsap - 0.0\n",
- "115.\tservice_klogin - 0.0\n",
- "116.\tservice_kshell - 0.0\n",
- "117.\tservice_ldap - 0.0\n",
- "118.\tflag_SH - 0.0\n"
- ]
- }
- ],
- "source": [
- "for idx, i in enumerate(indices):\n",
- " print(\"{}.\\t{} - {}\".format(idx, train_x.columns[i], clf.feature_importances_[i]))"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
From 2d1532f77332710e90ef0ca50c4dee21968deaf1 Mon Sep 17 00:00:00 2001
From: Nurgalym2001 <89890787+Nurgalym2001@users.noreply.github.com>
Date: Fri, 8 Mar 2024 18:38:17 +0600
Subject: [PATCH 10/11] Add files via upload
---
chapter2/select-from-model-nslkdd.ipynb | 414 ++++++++++++++++++++++++
1 file changed, 414 insertions(+)
create mode 100644 chapter2/select-from-model-nslkdd.ipynb
diff --git a/chapter2/select-from-model-nslkdd.ipynb b/chapter2/select-from-model-nslkdd.ipynb
new file mode 100644
index 0000000..594d16a
--- /dev/null
+++ b/chapter2/select-from-model-nslkdd.ipynb
@@ -0,0 +1,414 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Этот код - это пример использования метода выбора признаков из модели для обнаружения аномалий в сетевом трафике"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Импорт библиотек: Здесь подключаются необходимые модули для работы с данными, моделями и визуализацией, такие как pandas, numpy, sklearn и matplotlib."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "from collections import defaultdict\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "from sklearn.preprocessing import StandardScaler\n",
+ "\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Загружает данные об атаках в компьютерных сетях из файлов обучающего и тестового наборов"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dataset_root = 'nsl-kdd'\n",
+ "train_file = os.path.join(dataset_root, 'KDDTrain+.txt')\n",
+ "test_file = os.path.join(dataset_root, 'KDDTest+.txt')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Имена объектов исходного набора данных KDD, полученные из \n",
+ "# http://kdd.ics.uci.edu/databases/kddcup99/kddcup.names\n",
+ "# http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html\n",
+ "\n",
+ "header_names = ['duration', 'protocol_type', 'service', 'flag', 'src_bytes', 'dst_bytes', 'land', 'wrong_fragment', 'urgent', 'hot', 'num_failed_logins', 'logged_in', 'num_compromised', 'root_shell', 'su_attempted', 'num_root', 'num_file_creations', 'num_shells', 'num_access_files', 'num_outbound_cmds', 'is_host_login', 'is_guest_login', 'count', 'srv_count', 'serror_rate', 'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate', 'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate', 'dst_host_count', 'dst_host_srv_count', 'dst_host_same_srv_rate', 'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate', 'dst_host_serror_rate', 'dst_host_srv_serror_rate', 'dst_host_rerror_rate', 'dst_host_srv_rerror_rate', 'attack_type', 'success_pred']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Обучение модели \n",
+ "### Преобразует категориальные признаки в фиктивные переменные и стандартизирует числовые признаки. Признаки нормализуются, а метки преобразуются в бинарный формат: 0 для нормального трафика и 1 для аномального."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Различие между номинальными, двоичными и числовыми признаками\n",
+ "col_names = np.array(header_names)\n",
+ "\n",
+ "nominal_idx = [1, 2, 3]\n",
+ "binary_idx = [6, 11, 13, 14, 20, 21]\n",
+ "numeric_idx = list(set(range(41)).difference(nominal_idx).difference(binary_idx))\n",
+ "\n",
+ "nominal_cols = col_names[nominal_idx].tolist()\n",
+ "binary_cols = col_names[binary_idx].tolist()\n",
+ "numeric_cols = col_names[numeric_idx].tolist()\n",
+ "\n",
+ "# training_attack_types.txt сопоставляет каждую из 22 различных атак с 1 из 4 категорий\n",
+ "# файл, полученный из http://kdd.ics.uci.edu/databases/kddcup99/training_attack_types\n",
+ "\n",
+ "category = defaultdict(list)\n",
+ "category['benign'].append('normal')\n",
+ "\n",
+ "with open('training_attack_types.txt', 'r') as f:\n",
+ " for line in f.readlines():\n",
+ " attack, cat = line.strip().split(' ')\n",
+ " category[cat].append(attack)\n",
+ "\n",
+ "attack_mapping = dict((v,k) for k in category for v in category[k])\n",
+ "\n",
+ "# # разделение на обучающие и тестовые фреймы данных\n",
+ "train_df = pd.read_csv(train_file, names=header_names)\n",
+ "train_df['attack_category'] = train_df['attack_type'] \\\n",
+ " .map(lambda x: attack_mapping[x])\n",
+ "train_df.drop(['success_pred'], axis=1, inplace=True)\n",
+ " \n",
+ "test_df = pd.read_csv(test_file, names=header_names)\n",
+ "test_df['attack_category'] = test_df['attack_type'] \\\n",
+ " .map(lambda x: attack_mapping[x])\n",
+ "test_df.drop(['success_pred'], axis=1, inplace=True)\n",
+ "\n",
+ "train_Y = train_df['attack_category']\n",
+ "train_x_raw = train_df.drop(['attack_category','attack_type'], axis=1)\n",
+ "test_Y = test_df['attack_category']\n",
+ "test_x_raw = test_df.drop(['attack_category','attack_type'], axis=1)\n",
+ "\n",
+ "combined_df_raw = pd.concat([train_x_raw, test_x_raw])\n",
+ "combined_df = pd.get_dummies(combined_df_raw, columns=nominal_cols, drop_first=True)\n",
+ "\n",
+ "train_x = combined_df[:len(train_x_raw)]\n",
+ "test_x = combined_df[len(train_x_raw):]\n",
+ "\n",
+ "# Хранить фиктивные имена переменных объектов\n",
+ "dummy_variables = list(set(train_x)-set(combined_df_raw))\n",
+ "\n",
+ "# Примените стандартизацию StandardScaler\n",
+ "standard_scaler = StandardScaler().fit(train_x[numeric_cols])\n",
+ "\n",
+ "train_x[numeric_cols] = \\\n",
+ " standard_scaler.transform(train_x[numeric_cols])\n",
+ "\n",
+ "test_x[numeric_cols] = \\\n",
+ " standard_scaler.transform(test_x[numeric_cols])\n",
+ " \n",
+ "train_Y_bin = train_Y.apply(lambda x: 0 if x is 'benign' else 1)\n",
+ "test_Y_bin = test_Y.apply(lambda x: 0 if x is 'benign' else 1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Обучает модель дерева решений на обучающих данных и проверяет ее точность на тестовых данных."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[9331 380]\n",
+ " [4218 8615]]\n",
+ "0.2039567068843151\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.tree import DecisionTreeClassifier\n",
+ "from sklearn.metrics import confusion_matrix, zero_one_loss\n",
+ "\n",
+ "clf = DecisionTreeClassifier(random_state=0)\n",
+ "clf.fit(train_x, train_Y_bin)\n",
+ "\n",
+ "pred_y = clf.predict(test_x)\n",
+ "\n",
+ "results = confusion_matrix(test_Y_bin, pred_y)\n",
+ "error = zero_one_loss(test_Y_bin, pred_y)\n",
+ "\n",
+ "print(results)\n",
+ "print(error)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Здесь применяется метод SelectFromModel из библиотеки sklearn, который позволяет отбирать наиболее важные признаки для модели на основе их коэффициентов"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.feature_selection import SelectFromModel\n",
+ "\n",
+ "sfm = SelectFromModel(clf, prefit=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Original num features: 119, selected num features: 7\n"
+ ]
+ }
+ ],
+ "source": [
+ "train_x_new = sfm.transform(train_x)\n",
+ "print(\"Original num features: {}, selected num features: {}\"\n",
+ " .format(train_x.shape[1], train_x_new.shape[1]))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "indices = np.argsort(clf.feature_importances_)[::-1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Метод возвращает новый набор признаков, который содержит только те, которые превышают заданный порог значимости. Затем модель обучается и оценивается заново на новом наборе признаков. \n",
+ "### Как оценивала эта модель, в порядке убывания их значимости выводят на экран список признаков."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.\tsrc_bytes - 0.739353803124338\n",
+ "1.\tservice_ecr_i - 0.07537443951799272\n",
+ "2.\tservice_http - 0.056288533270470384\n",
+ "3.\tdst_host_same_srv_rate - 0.030188078488584003\n",
+ "4.\tdst_bytes - 0.02235518870418086\n",
+ "5.\thot - 0.02161534757423723\n",
+ "6.\tlogged_in - 0.010299399024875614\n",
+ "7.\tservice_ftp_data - 0.007153156775607418\n",
+ "8.\tdst_host_srv_count - 0.004581226762306193\n",
+ "9.\tprotocol_type_tcp - 0.004392896490987884\n",
+ "10.\tduration - 0.0036640994569887724\n",
+ "11.\tdst_host_srv_diff_host_rate - 0.0033976880323085775\n",
+ "12.\tdst_host_rerror_rate - 0.0033742156274434855\n",
+ "13.\tcount - 0.002156246362157632\n",
+ "14.\tdst_host_diff_srv_rate - 0.0018632747975075037\n",
+ "15.\tservice_private - 0.0015150555545468847\n",
+ "16.\tdst_host_srv_serror_rate - 0.0012895009893495672\n",
+ "17.\tflag_RSTO - 0.0012092707068345266\n",
+ "18.\tdst_host_count - 0.0012087755633389148\n",
+ "19.\tservice_smtp - 0.0010333469492228471\n",
+ "20.\tflag_S1 - 0.0010025689546886581\n",
+ "21.\tflag_REJ - 0.0009382141529412343\n",
+ "22.\tservice_finger - 0.000782544179058021\n",
+ "23.\tservice_other - 0.0007470303397855699\n",
+ "24.\tserror_rate - 0.0006961169739255497\n",
+ "25.\tservice_auth - 0.00045270034697481043\n",
+ "26.\tdst_host_same_src_port_rate - 0.0003044547983537414\n",
+ "27.\tservice_X11 - 0.0002841496445024789\n",
+ "28.\tservice_time - 0.0002759699994097465\n",
+ "29.\tdiff_srv_rate - 0.00018830601511933\n",
+ "30.\tservice_pm_dump - 0.00015902646160888522\n",
+ "31.\tservice_telnet - 0.00013317892430146747\n",
+ "32.\tdst_host_serror_rate - 0.00013264198009174918\n",
+ "33.\tflag_RSTOS0 - 0.00012724109394735437\n",
+ "34.\tnum_shells - 0.00012106816370982825\n",
+ "35.\trerror_rate - 0.0001175974659305329\n",
+ "36.\tsrv_count - 9.567562736593045e-05\n",
+ "37.\tservice_tftp_u - 9.56396789549338e-05\n",
+ "38.\tservice_urp_i - 9.481733643984882e-05\n",
+ "39.\tnum_access_files - 9.469776995874786e-05\n",
+ "40.\tservice_tim_i - 7.087262857010326e-05\n",
+ "41.\tsrv_rerror_rate - 7.07316857862168e-05\n",
+ "42.\tservice_login - 6.363383051761173e-05\n",
+ "43.\tflag_S2 - 6.352902301409212e-05\n",
+ "44.\tservice_domain_u - 6.143436563685351e-05\n",
+ "45.\tflag_SF - 5.461353413799855e-05\n",
+ "46.\tservice_imap4 - 4.759568625830915e-05\n",
+ "47.\tnum_file_creations - 4.620083964430473e-05\n",
+ "48.\tnum_compromised - 4.3431444431814e-05\n",
+ "49.\tsrv_diff_host_rate - 4.065901819717204e-05\n",
+ "50.\tnum_failed_logins - 3.883335265789425e-05\n",
+ "51.\tflag_RSTR - 3.18983663986038e-05\n",
+ "52.\tnum_root - 3.185611404878063e-05\n",
+ "53.\tservice_gopher - 3.115617125285532e-05\n",
+ "54.\tservice_sunrpc - 3.114929234409117e-05\n",
+ "55.\tservice_pop_2 - 3.107847506519203e-05\n",
+ "56.\tdst_host_srv_rerror_rate - 2.9781762436301826e-05\n",
+ "57.\tservice_ftp - 2.945449032161717e-05\n",
+ "58.\tsame_srv_rate - 1.8961603652322847e-05\n",
+ "59.\tis_guest_login - 3.980676440365067e-06\n",
+ "60.\tservice_domain - 1.9639588398599587e-06\n",
+ "61.\tprotocol_type_udp - 0.0\n",
+ "62.\tservice_Z39_50 - 0.0\n",
+ "63.\tservice_vmnet - 0.0\n",
+ "64.\tsrv_serror_rate - 0.0\n",
+ "65.\tis_host_login - 0.0\n",
+ "66.\tnum_outbound_cmds - 0.0\n",
+ "67.\tsu_attempted - 0.0\n",
+ "68.\troot_shell - 0.0\n",
+ "69.\tflag_S0 - 0.0\n",
+ "70.\turgent - 0.0\n",
+ "71.\twrong_fragment - 0.0\n",
+ "72.\tland - 0.0\n",
+ "73.\tflag_S3 - 0.0\n",
+ "74.\tservice_aol - 0.0\n",
+ "75.\tservice_eco_i - 0.0\n",
+ "76.\tservice_bgp - 0.0\n",
+ "77.\tservice_red_i - 0.0\n",
+ "78.\tservice_netbios_ns - 0.0\n",
+ "79.\tservice_netbios_ssn - 0.0\n",
+ "80.\tservice_netstat - 0.0\n",
+ "81.\tservice_nnsp - 0.0\n",
+ "82.\tservice_nntp - 0.0\n",
+ "83.\tservice_ntp_u - 0.0\n",
+ "84.\tservice_pop_3 - 0.0\n",
+ "85.\tservice_printer - 0.0\n",
+ "86.\tservice_remote_job - 0.0\n",
+ "87.\tservice_name - 0.0\n",
+ "88.\tservice_rje - 0.0\n",
+ "89.\tservice_shell - 0.0\n",
+ "90.\tservice_sql_net - 0.0\n",
+ "91.\tservice_ssh - 0.0\n",
+ "92.\tservice_supdup - 0.0\n",
+ "93.\tservice_systat - 0.0\n",
+ "94.\tservice_urh_i - 0.0\n",
+ "95.\tservice_uucp - 0.0\n",
+ "96.\tservice_netbios_dgm - 0.0\n",
+ "97.\tservice_mtp - 0.0\n",
+ "98.\tservice_courier - 0.0\n",
+ "99.\tservice_harvest - 0.0\n",
+ "100.\tservice_csnet_ns - 0.0\n",
+ "101.\tservice_ctf - 0.0\n",
+ "102.\tservice_daytime - 0.0\n",
+ "103.\tservice_discard - 0.0\n",
+ "104.\tservice_echo - 0.0\n",
+ "105.\tservice_uucp_path - 0.0\n",
+ "106.\tservice_efs - 0.0\n",
+ "107.\tservice_exec - 0.0\n",
+ "108.\tservice_hostnames - 0.0\n",
+ "109.\tservice_link - 0.0\n",
+ "110.\tservice_whois - 0.0\n",
+ "111.\tservice_http_2784 - 0.0\n",
+ "112.\tservice_http_443 - 0.0\n",
+ "113.\tservice_http_8001 - 0.0\n",
+ "114.\tservice_iso_tsap - 0.0\n",
+ "115.\tservice_klogin - 0.0\n",
+ "116.\tservice_kshell - 0.0\n",
+ "117.\tservice_ldap - 0.0\n",
+ "118.\tflag_SH - 0.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "for idx, i in enumerate(indices):\n",
+ " print(\"{}.\\t{} - {}\".format(idx, train_x.columns[i], clf.feature_importances_[i]))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Бұл тұжырым әр признактың маңыздылығын, DecisionTree бағаланған моделін білдіреді. Әр жолда белгінің индексі, оның аты және берілген белгінің модельге қаншалықты әсер ететінін көрсететін маңыздылық ұпайы бар. Мысалы, src_bytes 0.739 маңыздылығының ең үлкен бағасына ие, яғни бұл белгі модельге ең үлкен әсер етеді. Маңыздылығы 0 болатын признактар белгілер модельге әсер етпейді және модельдің өнімділігін жақсарту үшін жойылуы мүмкін."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
From 91cc80c3692be80fb078915e5dbbb17aff26f75e Mon Sep 17 00:00:00 2001
From: Nurgalym2001 <89890787+Nurgalym2001@users.noreply.github.com>
Date: Fri, 8 Mar 2024 18:41:34 +0600
Subject: [PATCH 11/11] Delete chapter3/arima-forecasting.ipynb
---
chapter3/arima-forecasting.ipynb | 309 -------------------------------
1 file changed, 309 deletions(-)
delete mode 100644 chapter3/arima-forecasting.ipynb
diff --git a/chapter3/arima-forecasting.ipynb b/chapter3/arima-forecasting.ipynb
deleted file mode 100644
index ca79831..0000000
--- a/chapter3/arima-forecasting.ipynb
+++ /dev/null
@@ -1,309 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "import numpy as np\n",
- "import pandas as pd\n",
- "import pyflux as pf\n",
- "from datetime import datetime\n",
- "import matplotlib.pyplot as plt\n",
- "%matplotlib inline"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "dataset_root = 'datasets/cpu-utilization'"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "data_a = pd.read_csv(os.path.join(dataset_root, 'cpu-full-a.csv'), parse_dates=[0], infer_datetime_format=True)\n",
- "data_train_a = pd.read_csv(os.path.join(dataset_root, 'cpu-train-a.csv'), parse_dates=[0], infer_datetime_format=True)\n",
- "data_test_a = pd.read_csv(os.path.join(dataset_root, 'cpu-test-a.csv'), parse_dates=[0], infer_datetime_format=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "data_b = pd.read_csv(os.path.join(dataset_root, 'cpu-full-b.csv'), parse_dates=[0], infer_datetime_format=True)\n",
- "data_train_b = pd.read_csv(os.path.join(dataset_root, 'cpu-train-b.csv'), parse_dates=[0], infer_datetime_format=True)\n",
- "data_test_b = pd.read_csv(os.path.join(dataset_root, 'cpu-test-b.csv'), parse_dates=[0], infer_datetime_format=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Text(0.5,1,'CPU Utilization')"
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABKcAAAHiCAYAAAA9La8FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmUZGd95vnnjYzcIve9pKqsKkml\nxUgCbEoCBMjQgAdxLDA+MxzaDGY4NhrGeG1O20y7wT2Y7uODPd5oPIAbLHMGQ9tG7lHbFm0swFpA\ngpJYqoSqQFWqVVWVS+WeGUtGvPNH5HvzRmQs98aSsdT3c04dsmJ9K2XH8tzn915jrRUAAAAAAADQ\nCJFGLwAAAAAAAABXL8IpAAAAAAAANAzhFAAAAAAAABqGcAoAAAAAAAANQzgFAAAAAACAhiGcAgAA\nAAAAQMMQTgEAAOwSY8y/M8b8l62fDxpjrDEmuvX3h4wx767Dcz5jjHltrR8XAACgVginAABA2zDG\n/Jwx5ogxZtUYc3Er8Hn11nX/wRiT2rpu0RjzDWPMK33X/b8FHs8aYw4Vea4d1/kfxxjzWmPMef/1\n1tr/ZK39xUKPZ629x1r7l5X9y73nv98Y89G8x73VWvv1ah4XAACgnginAABAWzDG/BtJfyzpP0ma\nkrRf0p9JeqvvZv/VWtsvaULSY5IeMMaY3V4rAAAAthFOAQCAlmeMGZL0EUnvt9Y+YK1ds9amrLX/\n3Vr7b/Nvb61NSfpLSXskjdVhPX2SHpJ07VZTa9UYc22xhtbWfb5ujPnFrZ+/57vf6lZL67Vb1/2N\nMeaSMWbJGPOIMebWrcvvk/ROSb+5dZ//vnX5aWPMG7Z+7jbG/LEx5oWtP39sjOneuu61xpjzxpgP\nGGNmtppn76n17wYAACAf4RQAAGgHr5TUI+nvgtx4K5D53ySds9bO1Xox1to1SfdIesFa27/154UQ\n93+Ju5+kfyPphKSnt65+SNKNkia3Lvv81n0+vfXzx7bue2+Bh/5tSa+Q9FJJL5F0p6R/77t+j6Qh\nSXsl/YKkTxhjRoKuGwAAoBKEUwAAoB2MSZqz1m6Wud3bjTGLks5Jepmkt9V9ZVXY2i/ro5LeYq1d\nliRr7WettSvW2oSk/yDpJVvNsSDeKekj1toZa+2spP9L0rt816e2rk9Za/9R0qqkm2v0zwEAACgo\n2ugFAAAA1MC8pHFjTLRMQPXX1tr/tcDlm5I6/RcYY9zfU0UeK51/n62/F7t9KMaYaUl/Lend1tof\nbl3WIek/SvpflN03K7N183FJSwEe9lpJZ3x/P7N1mTOf9/tbl9Rf0T8AAAAgIJpTAACgHXxTUkLS\nz1R4/7OSDuZddp2yodWFkPdx4Y+tcC0yxvRK+m+S/tha+5Dvqp9TdoP3Nyg7fuee323qXu45X5B0\nwPf3/VuXAQAANAzhFAAAaHnW2iVJH1Z2j6SfMcbEjDGdxph7jDEfC/AQX5Z0izHmXVv3G1X2rH9f\nKtHE+q+S/r0xZp8xJrK16fi9kv526/rLksZCjNz5fVbScWtt/toHlA3h5iXFttbod1nS9SUe9wtb\na54wxowr+zsruEE7AADAbiGcAgAAbcFa+38ru3n4v5c0q+y+Ur+sbAOp3H1nlN3A/H+XNCPpmKRF\nSf9Hibt9RNI3JD0maUHSxyS901p7bOsxjysbBp0yxiwaY64t+kg7vUPS2/LO2PcaSZ9Ttpl1QdIP\nJD2Rd7/PSHrR1vMV+nd/VNIRSd+XdFTZDdU/GmJdAAAANWesrbhxDgAAAAAAAFSF5hQAAAAAAAAa\nhnAKAAAAAAAADUM4BQAAAAAAgIYhnAIAAAAAAEDDEE4BAAAAAACgYaKNXkAtjY+P24MHDzZ6GQAA\nAAAAAG3jqaeemrPWTtTr8dsqnDp48KCOHDnS6GUAAAAAAAC0DWPMmXo+PmN9AAAAAAAAaBjCKQAA\nAAAAADQM4RQAAAAAAAAahnAKAAAAAAAADUM4BQAAAAAAgIYhnAIAAAAAAEDDEE4BAAAAAACgYQin\nAAAAAAAA0DCEUwAAAAAAAGgYwikAAAAAAAA0DOEUAAAAAAAAGoZwCgAAAAAAAA1DOAUAAAAAAICG\nIZwCAAAAAABAwxBOAQAAAAAAoGEIpwAAAAAAANAwhFMAAAAAAKDhMpmMrLWNXgYagHAKAAAAAAA0\nVCaT0Zve9Cb9/M//fKOXggaINnoBAAAAAADg6va5z31OX/nKV3TjjTc2eiloAJpTAAAAAACgYRYW\nFvSbv/mbkqSzZ88qk8k0eEXYbYRTAAAAAACgYX77t39b8/Pzeu9736tEIqGZmZlGLwm7jHAKAAAA\nAAA0xPnz5/XJT35Sv/zLv6y3vOUtkqQzZ840eFXYbYRTAAAAAACgIS5fvixrrV7/+tfrwIEDkgin\nrkaEUwAAAAAAoCESiYQkqaenh3DqKla3cMoYM22M+Zox5gfGmGeMMb9W4DavNcYsGWO+u/Xnw77r\n3mSMOWGMec4Y88F6rRMAAAAAADSGC6e6u7s1ODio4eFhwqmrULSOj70p6QPW2qeNMQOSnjLGfMVa\n+4O82z1qrf1p/wXGmA5Jn5D0RknnJX3bGPNggfsCAAAAAIAWFY/HJWXDKUk6cOAA4dRVqG7NKWvt\nRWvt01s/r0h6VtLegHe/U9Jz1tpT1tqkpC9Kemt9VgoAAAAAABrB35ySCKeuVruy55Qx5qCkH5f0\nZIGrX2mM+Z4x5iFjzK1bl+2VdM53m/MKHmwBAAAAAIAW4N9zSsqGU6dPn5a1tpHLwi6rezhljOmX\n9CVJv26tXc67+mlJB6y1L5H0cUn/rYLHv88Yc8QYc2R2drb6BQMAAAAAgF1RqDm1srKixcXFRi4L\nu6yu4ZQxplPZYOrz1toH8q+31i5ba1e3fv5HSZ3GmHFJFyRN+266b+uyHay1n7bWHrbWHp6YmKj5\nvwEAAAAAANRHoT2nJM7Yd7Wp59n6jKTPSHrWWvuHRW6zZ+t2MsbcubWeeUnflnSjMeY6Y0yXpHdI\nerBeawUAAAAAoBWk0+lGL6GmCjWnpMaGU5lMRplMpmHPfzWqZ3PqVZLeJelfGWO+u/XnzcaY9xlj\n3rd1m/9Z0jFjzPck/amkd9isTUm/LOl/KLuR+l9ba5+p41oBAAAAAGhqn/nMZ7Rnzx6vbdQOmjGc\neuMb36j3v//9DXv+q1G0Xg9srX1Mkilzm/8s6T8Xue4fJf1jHZYGAAAAAEBLsdbqD/7gDzQ3N6eF\nhQVdc801jV5STeRviD4xMaHe3t6GhlPPPfecHn/8cf3u7/6uxsfHG7aOq8munK0PAAAAAABU7pFH\nHtHx48clSWtraw1eTe0kEgkZYxSNZrszxhjt37+/oeFUPB5XIpHQX/7lXzZsDVcbwikAAAAAAJrc\npz71Ke/ndgqn4vG4uru7tbUdtaTsaF8jwynX5vrUpz4la23D1nE1IZwCAAAAAKCJzc7O6m//9m91\nyy23SGqvcCqRSHj7TTmNDqfi8bimp6f1ox/9SF/72tcato6rCeEUAAAAAABN7P7771cqldJv/MZv\nSLo6wqnZ2Vmtr6/v+nqstUokEnrHO96h0dHRnMYa6odwCgAAAACAJvb5z39er3rVq3T48GFJ7RdO\nuc3QHXfGvnPnzu36epLJpCRpeHhY7373u/XAAw9ocXFx19dxtSGcAgAAAACgiV25ckU33XST+vr6\nJLVXOOX2nPIbGRmRJC0tLdXkOTKZTOC9o+LxuKTs2QPf+ta3anNzU48//nhN1oHiCKcAAAAAAGhi\nqVRKnZ2dbRlOFRrr6+/vlyStrq5W/fjWWt188836+Mc/Hng9ktTd3a0777xTXV1deuSRR6peB0oj\nnAIAAAAAoIklk8mrKpwaGBiQJK2srFT9+AsLC3ruued04sSJQLf3N6d6e3t15513Ek7tAsIpAAAA\nAACaGM2pyrmz/gV9LNeccvtg3X333Tpy5Ehb/c6bEeEUAAAAAABNzIVTXV1d6uzsbKugpNCG6LVs\nTrlwKuhjueaUC8zuvvtubW5u6pvf/GbVa0FxhFMAAAAAADQxF05JUl9fX1uFU4U2RG9kc8o/1idJ\nd911lyKRCKN9dUY4BQAAAABAk7LWKp1O54RTtQhtmkWhsT43vljL5lTYsT63poGBAf3ET/yEF05Z\na70AC7VDOAUAAAAAQJNKpVKS1LbNqULhVCQSqVkIV+lYn3/U8O6779YTTzyhc+fO6e6779Ydd9xR\n9bqQi3AKAAAAAIAm1Yrh1ObmZuDbFtpzSsqO9jVyQ3R/YHb33XcrkUjo9ttv12OPPabnn3++6nUh\nF+EUAAAAAABNqtXCqe9973uKxWKBA5xCe05J2XG6Rm6I7g/MXv3qV6ujo0MDAwN629veprW1NWUy\nmarXhm2EUwAAAAAANKlWC6eeeeYZpVIpnT59OtDtC431SbVpTq2trWlubk4dHR2hm1P+cGpsbEzf\n/OY39fTTT+uuu+7yHhu1QzgFAAAAAECTcuFUV1eXpOYPp+bn5yUFD2+KhVO1aE651tRNN92kRCLh\n/S5Lcc2p/DXdcccdmpiYqOmZBLGNcAoAAAAAgCbVas2pWoVTtWhOuXDqtttukxQsUCo01uc3MDAg\nqTZnEsQ2wikAAAAAAJpUq4VTc3NzkoKFU5ubm8pkMgWDoFo2p8KEU4U2RPejOVUfhFMAAAAAADSp\nZDIpaTuc6u/vb+pwyjWn1tfXy9622AidVLvmVDQa1Y033igpWNspaHOKcKq2CKcAAAAAAGhShZpT\nGxsbTXu2uDDNqVItpVqFU9PT0xoaGpIUrjnl9vgqtC6Jsb5aI5wCAAAAAKBJFQqnpGDNpEYIs+dU\nqXDKjfVZaytey5kzZ3TgwIFQgVI8HldXV5cikcJxCWN99UE4BQAAAABAkyoWTjVrOBJmrK9ccyqT\nyXhjdpVw4VSYUbxEIlF0pE9iQ/R6IZwCAAAAAKBJFQunmnXfqTBjfaX2d6o2BEomk3rhhRcqak4V\n2wxdojlVL4RTAAAAAAA0qVYKpzY2NrzGVC32nJIqD4HOnz8va23o5lQ8Hi/ZnCKcqg/CKQAAAAAA\nmlQrhVNupE+qfqyv2ubUmTNnJEkHDx4MFSglEomSzanOzk51d3cz1ldjhFMAAAAAADSpVg2nmqE5\nJUnT09OKxWIyxgQe6yvVnJKywRnNqdoinAIAAAAAoEm1YjgVjUZDhVOFwqBqwyn3/AMDA4pEIurr\n66tJc8qtjeZUbRFOAQAAAADQpFw41dXVJam5wym3GfrevXtDbYhej7E+F3y531vQQClIc6q/v5/m\nVI0RTgEAAAAA0KRasTm1f//+qvecqrY5lUwmcx476Che0LE+mlO1RTgFAAAAAECTciGLC6dcaNOM\n4ZRrTu3fv7/qPadq1Zxyjx207RR0rI/mVG0RTgEAAAAA0KRarTk1MDCg4eHhhm+InkgkFIlEFI1G\nJQVvO7EhemMQTgEAAAAA0KTyw6murq7AG47vtvn5eY2Pj6uvry/QWJ/bc6pQGNTd3a1oNFpVc8rt\nNyXVvjnFWF9tEU4BAAAAANCk8sMpKdueasZwam5uTmNjY4rFYorH40qn0yVvX6o5ZYypanwumUzm\nPG4tN0SnOVV7hFMAAAAAADSpYuFUM4Yj/uaUpLLtqVLhlFTd3k75DaiggRLNqcYgnAIAAAAAoEm1\nYnMq6L5Y5cKpas6Klx8y1bI51d/fr2Qy6W1Wj+oRTgEAAAAA0KRaKZyan5/PCaeCNKei0agikcLR\nRLXNKf+eU645Za0teb+gY31S5Zu1YyfCKQAAADRcM37JAoBmkEql1NHRIWOMd1kzhlOpVErLy8sa\nHx9XLBaTVP61vVwQVOvmVCaT8TZhLySTySiVSgUa65MIp2qJcAoAAAANdfHiRY2MjOjRRx9t9FIA\noOmkUqmc1pTUnOHU/Py8JIUe6ysVBNV6Q3RJJcMuN2ZIc2r3EU4BQI0kEgnvDQ0AENzFixeVSqV0\n8uTJRi8FAJpOKpXKGU+TmjucCrsheqlwqpbNqSCBUrk9sJwgQRfCiTZ6AQDQLt71rncpnU7rS1/6\nUqOXAgAtxW0o22xftACgGbRKc2pubk5StjkVdKyvns2p/D2nggRKbuSP5tTuq1tzyhgzbYz5mjHm\nB8aYZ4wxv1bgNu80xnzfGHPUGPMNY8xLfNed3rr8u8aYI/VaJwDUyiOPPKIzZ840ehkA0HLckWo+\n5APAToXCqf7+/qYLpyoZ64vH44HDqUwmE6qpVE1zKsjZ+iSaU7VUz7G+TUkfsNa+SNIrJL3fGPOi\nvNs8L+knrbW3S/pdSZ/Ou/511tqXWmsP13GdAFC12dlZXb58uWx1GQCwE80pACgumUy2RHOq0rG+\nchuir6+vK51O6xOf+ISuv/56pdPpQOupZM8p15xiQ/TdV7dwylp70Vr79NbPK5KelbQ37zbfsNYu\nbP31CUn76rUeAKinZ555RpK0sbHR4JUAQOuhOQUAxRUb61tfX1cmk2nQqnbyj/XVckN09zgPP/yw\n5ubmAn/erqQ5xVhf4+zKhujGmIOSflzSkyVu9guSHvL93Ur6J2PMU8aY++q3OgCo3tGjRyURTgFA\nJWhOAUBxxcIpqbk+e87PzysWi6m3t7dme065EGhlZUVHjmR3+wkTThXac4oN0ZtT3TdEN8b0S/qS\npF+31i4Xuc3rlA2nXu27+NXW2gvGmElJXzHGHLfWPlLgvvdJuk+S9u/fX/P1A0AQx44dk9RcHxAA\noFW4cIoj0ACwU6lwam1tzfu50ebm5jQ2NiYp2zwyxgQKp1wAVYgLgZ577jlduHBBUrhwqtKxvnLN\nqVgsJmMM71s1VNfmlDGmU9lg6vPW2geK3ObFkv6LpLdaa+fd5dbaC1v/OyPp7yTdWej+1tpPW2sP\nW2sPT0xM1PqfAACB0JwCgMq5I9U0pwBgp1LhVDOFIzMzMxofH5ckGWO80cNS4vF42T2nJOnrX/+6\nd1nQPV7z95wKsyF6ueZUJBJRX18fzakaqufZ+oykz0h61lr7h0Vus1/SA5LeZa39oe/yPmPMgPtZ\n0k9JOlavtQJANay1XnMqlUoF3qQRAJBFcwoAiivXnApqdXVVqVSqpmvze/bZZ3XzzTd7f4/FYjXb\nc8ofTlXanOrq6lI0Gq1Jc0rKhl28b9VOPZtTr5L0Lkn/yhjz3a0/bzbGvM8Y876t23xY0pikP9u6\n/sjW5VOSHjPGfE/StyT9g7X2y3VcKwBU7Ny5c1pZWdH1118vifYUAIRFcwoAiqtVOHXHHXfoox/9\naE3X5qysrOj06dO6/fbbvcuCnFEwaDj1zW9+07ssaHMqf88pY0zZQMm9HwUJp/r7+2lO1VDd9pyy\n1j4myZS5zS9K+sUCl5+S9JI6LQ0AasqN9N155506deqU1tfXvTdSAEB5NKcAoLhahFMbGxs6fvy4\nnnvuuZqvT9o+c/Vtt93mXRZkrC/ohuiJRELXXXednn/++YqbU1L5QMk1p8qN9bnH4n2rdnblbH0A\n0M7cSN/hw4cl0ZwCgLBoTgFAcalUKqcBJIUPp86ePStJWlpaqu3itrjPw/nhVLn1xePxQM0pSXrN\na14jKdhn7XQ6rUwmUzCcKhUoMdbXOIRTAFClY8eOad++fbr22mslEU4BQFg0pwCguFo0p86cOSNJ\nWlxcrO3ithw9elR9fX06ePCgd1nQPaeCbIgubYdTQcb6im1sHnSsL2hzirG+2iGcAoAqHT16VLfd\ndpt6e3slEU4BQFg0pwCguELhlGsUhQ2n6tmcuvXWWxWJbEcMtdhzyoVwkUhEd911l6Rgn7Xd+0p+\n4yzoWB/Nqd1HOAUAVdjc3NSzzz6r22+/nXAKACrkmlPr6+vKZDINXg0ANJdkMll1c+r06dOS6tec\nOnbsWM5In1R+z6lMJqNUKlUynIpGo+rt7dWLXvQijY2NSaI51a4IpwCgCidPnlQymdStt95KOAUA\nFXJfBqTgZ2ECgKtFLcf66tGcmpmZ0czMTM6Z+qTyY33uwES5IGhyclJ33XWXYrGYpGCftYs9dtDm\nVH7jqhCaU7VVt7P1AcDVwJ3x5MYbb/Q+NBBOAUA47kuElN13ijOeAsC2QuFUV1eXOjo6QodTKysr\nSqfT6ujoqNn6Cm2GLpUf6wt6Zrx//ud/1tjYmHcgOExzqtBYX7kN0Xt6emSMKfsc7rGstYFuj9Jo\nTgFAFU6dOiVJuuGGG2hOAUCF/OEU+04BQK5C4ZQxJtCeTo4LpyRpeXm5pusrFU6VCpJcgFRuf6dD\nhw5pZGRE0WhU0Wg01J5Thcb6Sv37y+2B5dff369MJsNn/xohnAKAKpw8eVJ9fX2anJwMdTQHALDN\nP9ZXzYjE/Px8LZYDAE2lUDglBdtw3N3/woULmp6ellT7faeOHj2q8fFxTU1N7VhfIpFQOp1WJpPR\nlStXcq4Ps7+TE4vFqgqnxsbGFI/Hi35ed82pINyZBBntqw3CKQCowqlTp3T99dfLGENzCgAqVIvm\n1PHjxzUxMaEjR47UalkA0BRKhVNBgpELFy4ok8noxS9+saTa7zvlNkPPH21ze0Stra3p/vvv14ED\nB3Je4ysJp3p7ewMdCC6259TExIQkaXZ2tuD9wjanJLEpeo0QTgFAFU6ePKnrr79ekkJt0ggA2FaL\n5tTx48dlrc0ZXQGAdlBtc8q9Lr7kJS+RVNvmlLW24Jn63Pqk7FTB448/rtXV1ZyGa9A9p/zCNqfy\n95wqF07RnGocwikAqJC1VqdOndINN9wgSTSnAKBCyWTS+zJQaXPq8uXLkviSAKD91Cqccs2pWoZT\nP/rRj7S6urrjTH1ufVL2dd3tS+VvbQXdc8ovaHOqWCvLhVNzc3NF70dzqjEIpwCgQhcvXlQ8Hvea\nU11dXTLGEE4BQEiJREKjo6OSKg+XLl26VNX9AaAZWWtrFk65AKmWY33/8A//IEl64xvfuOM6N1Ww\nsrKiZ555ZsdzVzrWV82eU+Pj45JoTjUjwikAqJD/TH2SvH2nCKcAIJxkMumFU5U2pwinALSjdDot\naed4mhQunNqzZ4+3YXktm1MPPvigbrvtNl133XUF1ydJzzzzjLfOasOpoGN9le45FSacojlVW4RT\nAFChkydPSpLXnJKCH80BAGyjOQUAhaVSKUkq2Jzq7+8PHE4dOHBAg4ODkso3p4oFN/kWFhb06KOP\n6i1veUvB61049a1vfcu7bHl52fu5nhuiF9tzamhoSNFotCZjfa45RThVG4RTAFChU6dOyRijgwcP\nepcFfcMEAGxLJpMaGRmRRHMKAPxKhVNhmlMHDhxQZ2en+vr6Sjannn32WU1NTempp54q+7gPPfSQ\n0um07r333oLXu3DqySef9C7zB2O7sSF6/mMbYzQ+Pl6T5pQL+winaoNwCgAqdPLkSU1PT+cckaE5\nBQDhJRIJ9fb2qre3l+YUAPi48bRKw6lMJqOzZ8/qwIEDkrLNIX9ANDc3540OStkgy1qr559/vuza\nHnzwQU1OTurOO+8seL3bc+o73/mOJicnJTV+Q3QpO9pXLJyqpDnlb4NZazUzMxPo/shFOAUAFfKf\nqc8hnAKA8JLJpLq6ugK3APJZawmnALSlcs2p9fV1WWuL3n9mZkaJRMILp4aHh73m1PLysg4ePKgv\nfvGL3u1d0FJuX6pkMqkvf/nLuvfeexWJFI4VXHMqmUzqjjvuUDQabfieU1LpcCpMcyoajaq3tzen\nOfX1r39d1157rbcJPYIjnAKACp08eTJnvykp+BsmAGCbO1Ld399fUbi0srLijYcQTgFoJ+XCKWtt\nzmfPmZmZnLDKhSSFmlPPP/+81tbWdPr0ae/2Lmgpty/Vo48+qqWlpaIjfW59zu23367BwcFdP1tf\noY3kx8fHa7LnlJRtT/mbU6dOnVI6nSacqgDhFABUYHV1VTMzMzSnAKAGqm1OudaURDgFoL2UC6ek\n7b36zpw5o2uvvVaPPPKId5tz585JkqanpyXlNqfOnz8vKTeICtqcevjhhxWNRvWGN7yh6G3cWJ+U\nDaeGhoZygpxK9pyq91hfmOaUlN13yv9vcj8vLCwEfgxkEU4BQAVOnTolSYRTAFADyWSyquaUC6e6\nu7sJpwC0lTDh1NmzZ5VOp3X27FnvNi4sGR4elpTbnHLhlD9cCdqcmp2d1cTERE47Kl93d7c38nfb\nbbft2O+q0rG+eDyuTCZT8naJREKRSETRaHTHdRMTE1pYWPB+t35hw6mBgYGcsT7377ty5Urgx0AW\n4RQAVMCFU/ljfYRTABBeIpGoSXPqhhtuIJwC0FaChFPudc+FTP7XQfdzf3+/pMLNqULNn3LNqcXF\nRQ0NDZW8jTFGfX196ujo0M0331w0nAq7Ibq03boqxh30KGR8fFxS4QAp7FhffnPK/ftoToVHOAUA\nFTh58qQkmlMAUC1rrVKpVE2aU4cOHaoo3AKAZhWmOeWCkVLhlAuIrLVVNaeWlpa8NlYpfX19uvnm\nm9Xd3V0wnDLGFGw3FeNGBct93nYHPQqZmJiQpB2jfel0WpubmzVpThFOhUc4BQAVOH36tAYHBzUy\nMpJzedA5eABAljujUrXNqWg0qv3799OcAtBWahFORaNRL6gZHh5WKpXSxsaGtx9VvZpTkjQ1NaXD\nhw9L2tkyci0lY0zZx3Fcc6rc5+1SDahi4VQlY4bsOVU7wSNKAIBnZmZGe/bs2XE5zSkACMd/uu9q\nmlNTU1MaGBggnALQVlw4VagF5NpQpcKptbU19ff3ewGQC5SWlpaqbk7lb29RyN///d97IVp+cyoe\nj4cKgqTtcCpIc6pcOJV/xj43KkhzqjEIpwCgAm4TyHyxWIxwCgBC8J/uu5rm1J49e9Tf369UKuWd\n/Q8AWl0tmlMuxJK2N0ZfXFys+55TkrRv3z7vZ/9IoTFGGxsboYIgKfhYX5A9p+rRnGJD9Mox1gcA\nFSgWTvX29iqVSimdTjdgVQDQego1p6y1oR7j8uXLmpqa8r6A0Z4C0C7ChFPFNkT3h1MuUDpz5ozW\n1tZkjKnrnlN+Q0NDSqfT3kjezMyMJicnQz1GmLG+YgcpxsbGJO0MpyptTsXjce+/E82pyhFOAUAF\n5ubmvKMufkGrxgCArPzmlLX7ORDtAAAgAElEQVS27FmY8vmbUxLhFID24QL8Wjenjh07Jkm67rrr\ntLy87B0UcEHV0tKSMplMwTXF43ElEolAzSk//0ihlD2wUGibjFLCbIherAHV2dmpkZGRmoRTg4OD\nkrZDPfacqhzhFACEZK3V3Nxc0eaURDgFAEHlN6ekcOFSJpPxvuAQTgFoN/Ua63Ph1K233qpUKuUd\nKHAhi7W26Gupe56wzSkX5LgAxx1YCKMWG6JL2dG+/D2nKhnrGxgYkLSzcUY4FR7hFACEtLi4qM3N\nTcIpAKiB/OaUpFD7Ts3PzyudThNOAWhLpcKp7u5uRSKRUOGUay/5wylpOzBaXl72xt6K7TvlLq+m\nOWWtrSicqsWeU1J2U/RaNqeWl5e9syBGIhFduXIl9Ij61Y5wCgBCcm9kpcb6yh3NAQBkVducunTp\nkiQRTgFoS6XCKWNMzokkwjSnfvCDHygSieimm26SlA1XksmkEomEpqencx4vX6XNKX84tbS0pEQi\nUXFzqlA4deHCBe/nUntOSYXDqWqbU+73snfvXqXTad6LQiKcAoCQXAWY5hQAVM+FU5U2pwinALSz\nUuGUpJxwKsiG6LFYTB0dHdrY2NCePXu8ltTS0pI3mubCqXLNqWrCKf9rdxjFDgQ/++yz2rdvn558\n8klJlY31ud+ba2cF4W9Oud//wYMHJTHaFxbhFACE5I6yEE4BQPX8Y300pwAgV5hwKkhzyhjjhUr7\n9u3LCVfyw6lyzamwY33+56o0nCo21udaU6dPn5ZUPpyamJjQ3NxczujdmTNnJEn79+8PvJ5CzSnC\nqcoQTgFASKXG+oLOwQMAsvxjfTSnACBXkHBqdXVV1todzSm3qbl7bXVcqJQfTrn7t2Jzyv3dBUJB\n9pxKpVI5AdzJkyfV09Oja665JvB6/L8/wqnqRBu9AABoNYz1AUDtVNucunz5smKxmPr7+70j4IRT\nANpF0ObU2tqa0um0BgYGtLKyolQqpc3NTWUymZzmlLQdKk1PT+9qc2pgYEDGGC0tLSkSyfZkwoZT\nnZ2d3liinzuo4YKzcntOuYPMs7Oz3u/j1KlTuv7662WMCbyeUs2pK1euBH4c0JwCgNBmZ2cVi8UK\nzqMTTgFAONU2py5fvqzJyUlvY2CJcApA+3DhVLGgpb+/X2tra17rae/evZKyr6PutTA/nKpFcyoS\niex43HIikYgGBga0tLSky5cvq7OzUyMjI6Eewxij3t7eHZ+1XXPKH06Va05Jytl36uTJk7rhhhtC\nrceFUzSnqkc4BQAhzc7OFhzpkwinACCsaptTy8vL3hetjo4O9fb2Ek4BaEnnz59XJpPJuSxoc8p/\npjgp+zpaLJwqt+fU2NiYent7i4ZTS0tLGhoaCtUwcoaGhrw9p6ampip6jN7e3rJjfUHDKbddh7XW\na06FEY1G1dvbq5WVFTZErxLhFACENDc3V3CkTyKcAoCwqm1O5W/229/fTzgFoOVcvnxZ1113nR58\n8MGcy+sRTvmbU93d3ers7MxpTg0ODmpoaKjoWN/i4mLo/aacwcFBb8+psCN9TiwWKzvWl0wmS471\nTU1NSZJeeOEFSdLMzIzW1tZCN6ek7L/J35zau3evOjo6CKdCIpwC0JZmZ2eLHu2pxWOXC6fyj+YA\nAArzN6c6OzvV1dVVNFxKJpO6ePFizmWrq6veWIVEOAWgNZ0/f16bm5s6depUzuWpVEqRSMTboylf\ntc0pY4zXZnLNqYGBAQ0PD5dtTlXChV7VhFOlmlNBx/r27dun4eFhfec735Ek7/cetjklydvna2lp\nSd3d3eru7tbIyAh7ToVEOAWgLb397W/XLbfcoieeeKLmj81YHwDUjr85JW3vn1LIn//5n+vHfuzH\nvCaBlN2EluYUgFbnWjb5gUYymSzampJ2hlPXXnutpNLh1PT0tAYGBrzbuuaPa04NDAzUrTlVi3Cq\nUHPKH065jeBLhVPGGL3sZS/TU089JSm735RUWTjlb0650G5kZITmVEiEUwDa0uzsrC5fvqyf/Mmf\n1Oc+97maPnapsb7u7m4ZYwinACAgf3NK2j4teiEXLlzQ0tKS9wVK2jnW576oAUArKRZOpVKpUOFU\nkObUL/3SL+nYsWPe664LV1ZWVhSLxdTR0VHX5tSVK1c0MzNT0+aUe91fWFjw3ldKhVOSdPjwYX3/\n+99XIpHwmlPXXXdd6PW45pR/D8TR0VHCqZAIpwC0pY2NDd1zzz165Stfqfe85z26dOlSzR53bW2t\naDhV7AwiAIDCwjSn3JcRN3rifmasD0CrqyacstZqZmZGUrBwqqenR/v37/f+7m9OuQ3S69mcOnv2\nrDKZTN2aU+59pdSeU1I2nEqlUjp69KhOnjypvXv3qqenJ/R6aE7VRt3CKWPMtDHma8aYHxhjnjHG\n/FqB2xhjzJ8aY54zxnzfGPMTvuvebYz50dafd9drnQDa08bGhvbu3atf/dVfVSaT0eXLl2vyuO6M\nHsXG+iQRTgFACO4IdzQalVS6OeW+fLjmlLWWDdEBtAUXSs3Pz+dcHiSckrIbextjvMCnVDiVz9+c\ncmF/vZpTg4OD2tzclKSqmlOlwqmgzamXvexlkqSnnnpKp06dqmgzdCl3zykX7rHnVHj1bE5tSvqA\ntfZFkl4h6f3GmBfl3eYeSTdu/blP0v8jScaYUUm/I+nlku6U9DvGmJE6rhVAm9nY2FBvb6/3Bus/\nyl4NF04Va05JhFMAEEYymfRGoqXtD/mF5DenksmkNjc3aU4BaHnVNKekbDg1ODjohSOVhFNBmlOZ\nTEbLy8tVNaeceoz1pVIp73dZLpw6ePCgRkdHdeTIEZ08ebKi/aYkmlO1Urdwylp70Vr79NbPK5Ke\nlbQ372ZvlfQ5m/WEpGFjzDWS/idJX7HWXrHWLkj6iqQ31WutANpPPB5Xb2+v9wbr35+kGnNzc5II\npwCgVvJP9z0+Pu4dCMiX35xyIRXNKQCtrtpw6sKFCxocHPT+7g+nYrFYyeceHBz09vPzN6fi8bjX\nQnJWVlZkra1qzymnHmN9krztPMqFU8YYHT58WI888oguXrxYdXPKv+fUyMiIFhcXlclkKnrMq9Gu\n7DlljDko6cclPZl31V5J53x/P791WbHLAaAsa63i8bh6enrq1pwqN9aXfzQHAFBY/um+Jycnvb1T\n8uU3p9wXL5pTAFpdLZpTQ0ND6uzsVHd3txdO9fX1KRIp/bXfP9bnb05J2tGecqN+tWhOTU1NVfQY\nhT5r+//u3kPK7TklZfed+uEPfyipsjP1SdnfXzwe19zcXM6G6JlMpmbfQa4GdQ+njDH9kr4k6det\ntbWpLuQ+/n3GmCPGmCPFjrIBuLrE43FJqktzirE+AKit/ObU1NSUFhYWvA1t/YI2p9bX15VOp+u5\nbACoKRdKLS8vK5VKeZeXC6fc69+lS5e8YMSF9Pl78hUzODioRCKhubm5nOaUpB37TrmwqtrmVF9f\nX6C1FVKoObW2tuZ97nd7zZZrTknb+05Jqqo5JWW3FfE3pyQx2hdCXcMpY0ynssHU5621DxS4yQVJ\n076/79u6rNjlO1hrP22tPWytPVzqyyKAq4d7s6rHnlNzc3Pe6XWLIZwCgOAKNaek7TFqv2LNqfxw\nyn9bAGgF/hDD/3MqlSrZAHLNqXQ6XXE45e536dKlujen3ONXOtInbX/WttZ6l62vr+vaa6+VFHys\nT8o2p5xqmlP5P7twik3Rg6vn2fqMpM9IetZa+4dFbvagpJ/fOmvfKyQtWWsvSvofkn7KGDOytRH6\nT21dBgBl+cMp94Zcy+bU2NhYyXo04RQABJffnHLhVKHRvvzmVLGxPv91ANAKFhYWvNdCf6ARdKxP\n2g5GXDi1trYWuDklZQOu3WpOVRtOWWtz9sNaX1/X3r3ZnYDCNKemp6c1MTGh/v7+ktt2lOJ/D6I5\nVbloHR/7VZLeJemoMea7W5f9O0n7Jcla+0lJ/yjpzZKek7Qu6T1b110xxvyupG9v3e8j1loiRwCB\n+MOpjo4O9fX11XTPqXItzUJVYwBAYcWaU6XCKfeaXmysTyKcAtBaFhYWdN111+nEiROan5/3Lg8T\nTuU3pzY3N0OFU/6fXThVrz2nqgmn3AbvGxsb6unpkZQd68sPp4LsOWWM0Wte8xpdunTJO2tsWP7f\nn3/PKYlwKoy6hVPW2scklfyva7M9vPcXue6zkj5bh6UBaHP+cEra3uSxFubm5sqGUzSnACC4Ys0p\n9+XCj+YUgHaUTqe1tLSkV7/61Tpx4kROcyqZTIYOp/r6+rS2tqZUKhUoRPKHK+711D1WszanpOx7\nwsjIiKy1OWN9YZpTkvTZz342Z5+vsGhO1caunK0PAHZTfjjlTu9aC7Ozs2Urv4RTABBcIpEIPdZH\ncwpAO3EBkNuQu9Kxvmo2RM//uVxzqppwanBwUDfeeGNF95dym1NS9n3EWquhoSH19fWFDqeGhoYq\nHumT2HOqVuo51gcADeHO1udqvrVsTgUZ6yOcAoDgkslkzheIwcFBdXd37win3JFxaeeG6DSnALQy\n1645dOiQpHDhVE9Pj4wxXjgjbYdTqVQqJ7wqplBzqr+/X5FIpGBzqre3N9DIXCHRaFQ/+MEPyn6e\nLsUdgHaft9fW1iRlQ6uRkZHQ4VS1CjWnYrGYOjs7aU6FQHMKQNupV3MqlUppYWEhUDjFWaIAIJj8\n5pQxRpOTkzvCKXdkXMod64tEIt7BCIlwCkDrcQHGwYMHFYlEQu05ZYzxAqj8DdGraU4ZYzQ0NFSw\nOVXpflPO3r17Kw63pNyxPv//9vX1aXh4WMlkUlKwPadqodCeU8YYjY6OEk6FQHMKQNsptOfU888/\nX/Xjnjt3TtZa7d+/v+Ttent7lUqllE6n1dHRUfXzAkA7y29OSSoYTvlDf/9YX39/f84mtoRTAFqN\na0qNjo5qdHQ0VHNKyoYyq6urBZtTYcOp/BZQoeZUpSN9tZI/1ufeH2KxWE5wtlvNKf/v2P+7eeCB\nBzQ1NbUra2gHhFMA2k69mlNnzpyRJB04cKDk7fxV4yAfCADgapa/IbpUPpzyN6f8X6QkwikArce1\na0ZGRioOp6Sde065n8txZ7hOp9M5QdXw8HBdmlPVym9O5Y/1ObsVTkWjUcViMSUSCS84k6S77rpr\nV56/XTDWB6Dt1OtsfZWEUwCA0hKJRKjm1ODg4I7mlJ/7kkY4BaBVuHCqmuaUlBtOOUHCKTfCJ7V2\nc8qN9Tm7FU5J2d/b4OBgTpMX4RBOAWg79W5OTU9Pl7xd/hsmAKC4Qs2pqakpXb582dtjStr+8jE1\nNVWyOdXd3a2Ojg7CKQAtI785FWbPKWk7gKo0nJK2R/tavTnlX9tu7TklZX9vjQ7tWh3hFIC2U6g5\nlUwmlUgkqnrcM2fOaM+ePTkb7xZCcwoAgivWnEokEjkHFtyXkD179iiRSCiZTBZsThljckZaEN7F\nixdrclAHQDBXrlxRb2+vuru7NTY2tqM5VS5kKbQhuhM2nMrfP6mVmlP+cCoSiSga3b1djAYGBhr+\ne2l1hFMA2k6h5pSkqj9onzlzpuxIn7T9humO4gAAiiu255SknNE+f3NKyr6mF2pOSdkvV7wGV+71\nr3+9PvShDzV6GcBVY2FhwdsrqZqxvmrDqb6+vpyT+RRrTjU6hMn/rO0f63O/x90c6ZOy234E+Z6A\n4tgQHUDbicfj6ujo8I6WuDfq5eVljY+PV/y4Z86c0cte9rKyt/M/HwCgtGLNKSkbTh06dEhSbnNK\n2g6nCn3xojlVnUuXLunkyZONXgZw1VhYWNDo6KikbDi1vLzshVJBw6lYLObdrtJwKj/sHxoa0tLS\nkjKZjCKRiDY2NpRIJLy1Nsrg4KAikYgX4hUa69vtcOov/uIvdvX52hHNKQBtZ2Njw2tNSbVpTmUy\nGZ07d04HDx4se1v3pphfgwYA7FRpc2p5ebngWJ+Ufd3PP9qP4NbX13dsSA+gfvKbU+4yKVhzanp6\nOqe1U0k4deDAAe3fvz/nsuHhYVlrvc/QLgzynxGvESKRiMbGxjQ3Nyep8Fjfbu43JWWDvEY3ylod\n4RSAtpMfTtWiyXTp0iUlk8lAdV33psgXIwAoLZ1OK51Ol2xOOcWaU4XG+iYmJrwvLQgnk8kokUgQ\nTgG76MqVK17gMzY25l0mZQP8cuHU7/zO7+iRRx7x/l5JOPX7v//7euihh3Iuc2GL+0zr37i90cbG\nxryN45thrA/VI5wC0Hbq0ZxyZ+oLEk65N3KaUwBQWjKZlLTzCPfExIQk6fLly95l+c2ppaWlomN9\nk5OThCsVisfjksTvD9hFhZpTV65cUTqdlrW2bDjV29ubs3VFJeFUX1/fjnG9/GkAF041eqxPUk5z\nam1tTR0dHers7GzYWB+qRzgFoO3UozlVSThFcwoASnNnUc3/EtHV1aWRkZGSzalLly5JUsHm1OTk\npC5fvixrbV3W3c78Z79iU3lgd+TvOSVJ8/PzSqVSklQ2nMpXSThVSDM3p8bHx3OaU7FYTMYYwqkW\nRjgFoO00ujkVjUbV19dHcwoAyijWnJJ2tp9cOOVG/l544QVJhb94TU5OKpFIVH2W1quRC6ck2lPA\nbkilUlpdXS3YnKpFOOXO5FeJ/OZUs+w5Je0c63P/Tre23d5zCtUjnALQdurVnBoZGSl4hL6QQqfe\nBQDkKtackgqHU729vd6RfBdOFXpddqN/hCvh+cMp/1glgPrIbyP595yqNJzq6elRJBJRV1dXVSFN\nszen5ubmZK3V2tqaYrGYpOx7gjGG5lQLIpwC0HY2NjbU09Pj/d0dPaq2ORWkNeUMDQ3RnAKAMsI2\np2KxmPeaXq45JRFOVYLmFLC78gOfwcFBRSKRqsIpY4z6+/urGumTCu85ZYxpirPSjY2NKZFIaH19\n3Xt/kLJn8hsaGiKcakGEUwDaTjwez2lORSIR9ff3V92cChNO5Ten4vG4Tp48WfHzA0A7cuFU0OZU\nLBZTNBpVLBYjnKoTNz4p8fsDdkP+JuORSEQjIyNV7TklqSbhVH5z6sqVKxoeHlYk0vgYwTXM5ubm\ncsb6pGzQx1hf62n8/1UBQI3lj/VJ2Ypvpc0pa23VzalPfepTuv3223OOSAPA1c6N9RX6EjE1NaX5\n+Xltbm5KUs6R8YGBgZJjfS6cYiwtPJpTwO4qNCo3NjZWVXNKqk041dXVpd7e3pzmVDOM9Enyzk44\nPz+fM9YnSddff72uvfbaRi0NFSKcAtB2CoVTg4ODFTenFhYWtLq6WlVz6vTp09rY2PDOLgUAKD/W\nZ631ThXuD6cGBwe919NCX74mJiYkhQ9XrLV65plnQt2n3RBOAbur0Cbjo6OjOeFUJS2gWoRTUu5n\n2mYKp1xzan5+Puf9QZK+9KUv6ROf+ESjloYKEU4BaDu1bk6FOVOfk9+cmp2dlSTCKQDwKbchurQd\nkOQ3p9LptPdzvq6uLg0PD4cOV5588knddtttevrpp0Pdr50QTgG7q1Bzas+ePTpx4oT3GllJc2r/\n/v2anp6uen3+z7QLCwve+GGjueZUobG+oaGhqs5SiMYgnALQdmrdnKoknHJHmay1kginAKCQUs0p\n98XDvX7mN6ecYs2Aqamp0OGKe42+mvcIdOHU5OQkY5HALigUTr397W/X2bNn9dBDD0mqLJz63Oc+\np/vvv7/q9fmbU1euXGnK5lT+WB9aE+EUgLZT6+bU+fPnJSnU0aehoSGlUinvQz7hFADsVKo55Ubz\nCo31+dtSxcKp/A3Vg1hbW5N0db9Wu/etAwcO0JwCdsHCwoL6+vpyAqif/dmf1fj4uP7sz/5MUmXh\n1MDAQE3G+vKbU80STrl1uOYU4VTrI5wC0FbS6bSSyaR6enpyLq+mOeWOFrnT6Qbhbuvu675ccRQa\nALaVak65cKpUc6q7u7vol7bdCqeOHj3qtWTbAeEUsLsWFxd3BD7d3d16z3ve47X3KwmnasU/DdBM\n4VQ0GvXOapg/1ofWRDgFoK3E43FJqmlzanl5Wd3d3QWP7BfjTr27uLgoay3NKQAooFRzanR0VMaY\nguGUa06VagVUMpa2vr4uKfiBhNOnT+vFL36xvvjFL4Z6nmbmD6fm5ua8vb0A1MfS0pL3udHvvvvu\n835uZDjlmlOrq6va3Nxsmj2npOxo38zMjDY2NmhOtQHCKQBtpVg4VU1zanl5OWd/kyD8zam1tTVv\nXYRTALCtVHOqo6NDo6OjRc/WJxXeDN2ZnJzU/Py8Njc3A68nbHPKNYsefvjhwM/R7FxAt3//fmUy\nGe9MYgDqY3FxsWA7/9ChQ3rDG94gqTmaU4X2xmq08fFxb/sNmlOtj3AKQFtxR3wLNadSqZR3lD6M\n5eXlgke0SvE3p9wXK4lwCgD8SjWnpOxoXzXNKUk5r8HlhA2nVldXJUn/8i//Evg5mt3Gxoa6u7u1\nZ88eSYyjA/VWrDklSb/yK78iafv1rBGGhoYUj8e918VmCqfGxsZ07tw5SaI51QYIpwC0lWLhlDvK\nXkl7amlpqarmlPtiNTw8TDgFAD6lmlPSdjiVTqeVSCRCNaempqYkKdS+SZWGU88995xeeOGFwM/T\nzNxJRdyXYfadAuqrWHNKkt7ylrfo4sWLuummm3Z5Vdvc2k6fPi2p+cKpCxcuSCKcageEUwDaSqnm\nlKSK9p2qZKzP35xy4dTtt9+uS5cutdXGuQBQjXLNqfHxcc3Oznqv7ZU0p8KEK/49pzKZTNnbu3BK\nkh599NHAz9PM3N4thFPA7ijVnJLktRgbxa3t+eefl6Sm2nNqfHzce61mrK/1EU4BaCv1aE5Vu+eU\nGym57bbblEgkvDP4AcDVLkhzam5uzms05Tenah1OuefZ3NwMtNeSC6eMMXrkkUcCP08zc82pSppn\nAMKx1pZsTjUDtzYXTjVbc8qhOdX6CKcAtJVmaU7FYjF1dHTkNKduu+02Sew7BQBO0HDKhUD5zaly\nG6JL4fZMcuGUFOy12q3rFa94RduFUyMjI+ro6CCcAupoY2NDm5ubofc23U1ubc041jc+Pu79TDjV\n+ginALQVF0719PTkXL7bzSljjHd2k9nZWXV2dnr7BbC5LABkJRIJdXR0qKOjo+D14+PjSqfT3n5O\nYZpTw8PDikajocf6jDGSgr1Wu3Dqnnvu0bFjxzQ/Px/4uZqVC6cikYgmJiYIp4A6WlxclKSWaU51\ndHSUPCiw2/zNKcb6Wh/hFIC2UuvmlLW2onBKyr6Zu7P1TUxM6JprrpFEcwoAnGQyWXS/KSnbnJKk\ns2fPStoZTpX6kmSM0eTkZOixvunpaUnBm1O9vb163eteJ0l67LHHAj9Xs1pfX/feQycnJzmgAtSR\n2+qhVZpTIyMjXoDfDBjray+EUwDaSq33nEokEkqlUhWFU0NDQ15zanx83NvQknAKALISiUTRkT5p\nO5w6c+aMpHAbokvZM/aFDaduuOEGScHDqf7+ft1xxx3q6elpi9E+15ySFDrcAxBOKzWnkslkU430\nSYz1tRvCKQBtJR6PS6pdc8qFWZUc0XLNqdnZWU1MTGhkZESdnZ2EUwCwpVw45b545IdTY2NjGhgY\n0MGDB0s+fthwZX19Xddcc416enoCh1N9fX3q7u7W4cOH9e1vfzvwczUrwilg97RCc6q/v1+RSDY2\naLZwirG+9kI4BaCtFGtOuaPrYZtT7vbVNqcmJiYUiUQ0NTVV8gvPhQsXGKEAcNUIOtaXH07FYjGd\nPn1aP/dzP1fy8SsZ6+vr69OePXtCNackae/evW3x+r2xseH9ngmngNpKpVI6evSo9/dWaE4ZY7zw\nrJnDKZpTrY9wCkBbKRZORSIRDQ4OekeognK3r3bPKXf0v9wXnne+851673vfG/q5AKAVJRKJivac\nkqTR0VHvaH4xbs8ka22g9VQTTo2Pj3tnZ21l+c2p1dVV770VQHX+5m/+Ri996Uu91xf3ObOZwylp\ne32jo6MNXkmurq4ubzqCcKr1EU4BaCvFztYnZb/khP3iUG1zan5+XouLi94XrHJfeC5evKjjx4+H\nfi4AaEXlwqmenh719/fvaE4FNTk5qY2NDa2trZW9rbVWa2trisViFYVTExMTWlhY0ObmZqg1Nht/\nOOVaCVeuXGnkkoC2cenSJWUyGS9wd82pZh7rk9S0zSkp+zrV1dWlaDTa6KWgSoRTANrKxsaGotFo\nwTeoSs46VE04NTw87IVlLpwqN9a3vLyss2fPKpPJhH4+AGg15cIpKdtIWl9flxQ+nJqampKkQKNp\nqVRK6XTaa04Feb/ID6ckaX5+PtQam40/nHItCcIpoDZWV1clyXt9WVxcVGdn547Gf7NxzalmDKfG\nx8dpTbUJwikAbcX/oTpfJXtnVNuccvxjfTMzM0qn00WfL5FIsMcHgKtCkHDKhT5SZc0pKVg45dpV\nfX19mpqa0tzcnFKpVMn75I/1SWrp0b5MJqN4PL4jnGr1wA1oFu51xj/WNzQ0JGNMI5dVVrM3pwin\n2gPhFIC20kzhlH//AP9YXyaTKfhBf3Nz02sHuBEWAGhnYcKpjo4OdXZ2hnr8SsIpN9ZnrS0bNBVq\nTrVyOJV/xlvG+oDacs0pF04tLi42/X5TUvPuOSVJN998sw4cONDoZaAG6hZOGWM+a4yZMcYcK3L9\nvzXGfHfrzzFjTNoYM7p13WljzNGt647Ua40A2k+pcGpqakqzs7OhRuZq1Zzyh1OSCo72+c8kSDgF\n4GoQdKxPyoZGYdsFLpwKMqLnDg64sT6p8Gu1X6Fwam5uLtQam0n+SUUY6wNqKz+ccs2pZtfMzamP\nfexj+spXvtLoZaAG6tmcul/Sm4pdaa39fWvtS621L5X0f0r6F2ut/53vdVvXH67jGgG0Gf84Qr7J\nyUllMplQH7KXl5fV1dVVcIP1coo1pyTCKQCQsuFUV1dXydu4189KxjbcfcOO9QUJp9LptDY2Ntpq\nrI9wCqivVm9ONWM41a6pgJoAACAASURBVN3drb6+vkYvAzVQt3DKWvuIpKDvZP9a0hfqtRYAV49y\nY31SsCPozvLyckWtKSm3OeU+4BNOAcC2MGN9lYRTPT09GhwcrEs45ZpWLpxyI3DtEE6533UsFlNX\nV1fOKPr8/LxOnTrVkPUBrY7mFFBcw/ecMsbElG1Yfcl3sZX0T8aYp4wx95W5/33GmCPGmCOt/GEA\nQG0ECafC7DtVTTjln893Zw90Z44qFJARTgG42tQ7nJKyr7tBXvf9ZwR0r9Wlwin3JdOFU52dnRoZ\nGWmrsT5jjMbGxnKaUx/84Ad1zz33NGR9QKtr1ebUoUOH1Nvbq7179zZ6KWhjDQ+nJN0r6fG8kb5X\nW2t/QtI9kt5vjLm72J2ttZ+21h621h72n80FwNVpY2Oj6AhekHDKWqtvfetb3t9r0Zzyvzb19/er\ns7Oz4IiEC6cmJycJpwBcFZLJZKg9pyoR9GQY/uZUb2+vhoaGSjZt88Mpt9ZWPliaH05J2QMs/ves\n559/XufOndv1tQHtwB9OWWtbpjl177336oUXXvAaokA9NEM49Q7ljfRZay9s/e+MpL+TdGcD1gWg\nBVXbnPrGN76hl7/85XriiSckZevW1YZT7ouVlD0KPTo6WvBsfS6cuv322wmnAFwVdqM5VUk4JUnX\nXXedvvrVr2pzc7Pg7QuFUxMTE20fTl26dEkbGxve7wtAcO51Y319XUtLS1pdXW2J5pQxpiXWidbW\n0HDKGDMk6Scl/X++y/qMMQPuZ0k/JangGf8AIF+pcGpsbEyRSKTklxR33YkTJyRV15yKRqPq6+tT\nfqsz/4O+4w+nlpeXtbi4WNHztqPFxUXvvwmA9rFb4VSQvQZd2OKe50Mf+pCOHTumT3ziEwVvXyyc\nauWxPjfamB9O+Q+ouHGkVg7hgEZZXV31XmN++MMfSlJLNKeA3VC3cMoY8wVJ35R0szHmvDHmF4wx\n7zPGvM93s7dJ+idrrf/Qy5Skx4wx35P0LUn/YK39cr3WCaC9lAqnIpGIJiYmSoZT7suJay5VE05J\n0o033qhbbrkl57L8/TscfzjlXwOk3/u939NrX/vaRi8DQI0FCadqMdY3NzendDpd8nYumHHNqbe9\n7W1605vepA996EO6ePHijttfLWN9/vesVCrlBVWtHMIBjbK6uqpDhw5Jko4fPy5JNJKALfU8W9+/\nttZeY63ttNbus9Z+xlr7SWvtJ323ud9a+468+52y1r5k68+t1tr/WK81Amg/pcIpqfwRdPdl4/Tp\n05KqD6cef/xxfeQjH8m5rFhzamlpScYY3XrrrZJ2P5zKZDI5+201k5mZGV2+fFmZTKbRSwFQI9ba\nQOHU0NCQOjs7qwqnrLUFx6n98sf6jDH6+Mc/rmQyqQ984AM7bu/eL/ynMHfNKWttqDU++eSToe9T\nD+XG+vwHd1o5hAMaIZ1Oa3193QunXCOc5hSQ1Qx7TgFAzcTj8bLhVNjmVDUfGmKxmDo7O3MuK7Xn\n1MDAgA4ePJizht3y8MMP6+Uvf7meeeaZXX3eINbX12WtzTmjIYDWlkqlJKlsOGWM0S233OK9Nobl\nzrxXbt+ptbU1dXV1eWdXlbJnqPqt3/otfeELX9BXv/rVnNsXG+tLpVJaWloKvL7vf//7esUrXqGH\nH3448H3qxYVT/iBwdHRUGxsb2tjYyDl7IeEUEI5rZ9KcAgojnALQVoI0p0p9QXFfNs6cOaNEIqFE\nIlFVc6qQUmN9Q0NDmpycVE9Pz66HUy4wO3/+/K4+bxAuNAzzhQ9Ac0skEpKkrq6usrd94okn9OEP\nf7ii5wlyMgwp+8WxUDvrgx/8oK6//nq9//3vVzKZ9C4vNtYnhRt5c7d1jd1GKtackqQrV67khFOM\n9QHhuNeMAwcOqKOjg+YUkIdwCkDbSKfTSqVSNWlOnTt3zgtCah1OjY6Oan19XfF4POdyN0JojNH+\n/ft3PZxy6yk3+tII7r8Lm8QD7cOFU+WaU1K2yeNvNIURNJxaW1vLGdFzent79fGPf1zHjx/XH/3R\nH3mXF2tOSeFaRe71zR/8NEqxPaekneEUzSkgHPeaMTg4qMnJSf3oRz+SRHMKcAinALQN96G6p6en\n6G2mpqa0srLi3Taf+5KQTCa9s6jUI5ySpIWFhZzL/ftbHThwoGHhVDMeDac5BbSfMOFUNVw4Ve6M\nfcXCKUl685vfrJ/5mZ/RRz7yEZ09e1ZS9otmR0dHzvorCafcqE8zhVP+99FCzanR0VHCKSAkf6C9\nZ88er4lJcwrIIpwC0DYKHfHNV+4IuvvgIElHjx6VVL9wKr+h1Ohwyn1RbMbmlPvyRnMKaB+7FU6N\njIyoo6MjUHOq1Kbrf/Inf6J4PK7PfvazkrLvF/39/TLGeLepZKyv2cKp7u5uRSLbXxH871mXLl3S\n8PCw9u3bRzgFhJQfTjm1/pwJtCrCKQBtoxbh1Nramjc6Uq9wyj8i4ZcfTs3MzBRteNUDzSkAu8m1\nBuodTkUiEU1MTATac6pYc0qS9u/fr2uuucY7cODCKb9WH+tbX1/f8R6aP9Y3NTWl8fHxpnyvAJqZ\n+/91fzg1MDBQ8cgy0G4IpwC0jVo1p2688UZJ9W9OlQunpOzeV7uFPacA7Kbdak5J2ZHuSvec8pue\nnvZOGlEonOrr61Nvb29FY33lxg53Q6GTivjfsy5fvqw9e/ZoYmKC5hQQUqHmFCN9wDbCKQBto1bN\nqT179mh0dLShY33XXHONpOqOpMfjcR05ciTU7Qutqxm4L280p4D2sZvhVLmTYUjlx/okad++fSXD\nKUmhW0XNNtaX/x4ai8XU1dXlNacIp4DKFAqn2Awd2EY4BaBtuOBiYGCg6G2CNKf6+/t14MAB7/Fq\nfVSrUHMqnU5rdXXVC6fch5Zqvqz81V/9lV7+8pcH/pLUrGN91lqaU0AbarZwqtxYn5QNp86dOydr\nbdFwKmxw417fVldXc/Y9bISNjY0dAZ0xRqOjo96eU3v27NH4+LgWFxeVSqUatFKg9dCcAkojnALQ\nNtwpeW+44Yait+nr61NfX1/R8Qk31uHG6qTaN6f6+/vV2dmZE06trKzkPNfU1JSk6sY85ubmlMlk\n9MILLwS6fbNuiB6Px2WtlUQ4BbST3Q6nqjlbn7Nv3z6tra1paWmpZuGUa05JjR/tK9SckrL7Tp07\nd04rKytec0pqvveLEydO0OhC06I5BZRGOAWgbZw4cULd3d05wVIhpY6g+5tTkhSNRnNOqV0L7ii0\nP5xaXl6WtH0EbWxsTB0dHVU1p8LuY9KszSn/FzfG+oD24cKprq6uuj/X5OSk1tbWvJZSIUHDKUk6\nf/58ybG+SsOpRo/2FQunRkdH9eyzz0pSTjjVbEHQT//0T+vDH/5wo5cBFLS6uqpIJKLu7m6aU0AB\nhFMAWta3v/3tnLPZnThxQocOHVJHR0fJ+5UKp/KbU4ODgzmnCa8VNyLhuHDKNacikYimpqZqEk6V\nG2VxXDi1sbGxq2cJLMf/ZZLmFNA+drs5JRUPU6y1Wl9fL7vn1PT0tKTS4dTExESokH9tbc17n2nm\ncOrs2bOScsOpZjuYMTs7q4sXLzZ6GUBB7jXDGOM15GlOAdsIpwC0pLW1Nd1111360z/9U++yEydO\n6Oabby573/+fvTsPj6o8+wf+fWayQkL2hZBFiElYAigJKgIDiIILiWL9qbivQOVtRV7r1lrb19rq\nVa1dXIJaqq+K0letgOK+EAREEgUStgCBSEhkMZBtMlvy/P4IZ5wkM5NJcmbOTOb7ua5clVnOPLE4\nM+d77vt+XIVTjjNEHMMpb3BVOeX4eqmpqZqEU4B/tWo4hlOsnCIaPHy9Wx/g+v3QYrGgvb29T5VT\nra2tLsOplpaWLu+p7hiNRqSlpQHQPpwyGo0uwymFMnMK8K/KKeUznBcxyF85BtrDhg1DZmYmcnNz\nNV4Vkf9gOEVEAam1tRU2mw1ff/01AMBqtaK6unpA4ZTZbEZHR0ePyilvSEhI8LtwSjlRBPzrarjy\newwZMoQnHUSDiBaVU+6qZgH0Gk4NHz4cQggcPnwYLS0tTh/f1+DGaDQiMzMTOp1O83DK3cwpRUpK\nil+29ZnNZrS3t/NzgvyWYzglhMDevXvxi1/8QuNVEfkPhlNEFJAsFgsAoLy8HABw8OBB2Gy2PoVT\nHR0dXW53HFQZrJVTSmuJP1ZOpaWlsXKKaBBR3sf9KZzqra0vNDQUqampOHDgANrb251WTvXWQujs\ntYcNG+bR0HZvc9fWB3SeUCclJdnDKn+6kKF8hp88eVLjlRA5170VOCIiAjodT8eJFPyvgYgCknJS\nc/jwYRw9ehR79+4FAI/Ko1NTU9He3t4jgHG8cp6QkIAhQ4Z4NZxyN3NKWefRo0d7hGie6k84pbS+\n+NMJh2M4xSviRIOHLyunlEofV+GP8n7ZW+UU0NnapwwHdxdOefreq8y6GugFCTW0tbU5DeiUcCop\nKQkhISEICQlBXFycX1VOKeEUPyfIX7maU0dEnRhOEVFAUsIpoLN6SgmnPKmcUnZI6X6S4lg5JYRA\nYWEhcnJy1FpyFwkJCTAajfaZJK7CKWchmqf6s1vfiBEjAPhX5ZTye4wYMQIWi8XjOS5E5N98GU4N\nGTIE0dHRLodle9rWB3QORd+zZw+AwRlOuWvrUz4/gc6gyh/DqaamJrS3t2u8GqKeGE4RudencEoI\nkS2EGO+txRARecoxnCorK0NVVRUSExO7DG11Rfly3f0koPvJySeffIKnnnpKrSV3oaxTaT9Q2tUc\nv7S4Wqen+jNzShnK66+VUwCvihMNFr4MpwAgMzPTvuNcd5629QGdlVPK+6sa4ZSyS6zW4ZSUEiaT\nyW1bX/dwyp8+K5RwCuDmGeSfGE4RuedxOCWEeAjArwHcLYR41XtLIiLqnePwbqVyypOqKcB16ONY\nOQUAYWFh0Ov1aiy3B+WLvjJ3qqmpCVFRUV1eT2mx6+8MEsdwSkrZ6+NNJhOio6MxbNgwv6qc6h5O\n8aSDaHAwm80QQiAkJMQnr5eVlYWamhqn9/W1rU/h7EQzOjoa4eHh/a6c8uT92huUqlRPw6nExES/\nrJwCeBGD/BPDKSL3XIZTQohfCiEcz8omSilvk1LeAWCi95dGROSaUjmVkpKCsrIyVcKpvrR1DJTy\nRV8JgZqamhATE9PlMWpVTrW1tdl/N3dMJhMiIiKQmJjol+GU0nLIkw6iwcFsNiMsLMy+EYO3uQun\n+vL+31s4JYRwuStsd1LKLuGU1WrVbKB3W1sbAM/DKX9t6wP4OUH+ieEUkXvuKqd+BPChEKL49J8/\nFkJ8KIT4GMBH3l8aEZFrSjg1ZcoU1NXV4ejRox4NQwc6r2pHRkb2WjnlTcr8DsfKqe7D19UIp0JD\nQwF41l5iMpkQHh6OhIQEv2rVUEK24cOHA2DlFNFgYTabfdbSB3SGUydPnkRzc3OP+9QMp4DOCyee\nvO9aLBa0t7fb2/qA/r/nD5TyXussnEpOTkZ8fDzGj/9puofS1qdVpVd3juEUd+wjfyOlRGtrK8Mp\nIjdchlNSytcBFAGYIIRYA6AcwJUA/p+U8lc+Wh8RkVNKOHX++efbb/O0ckoI4XS2hxaVU+7CKVch\nmqeMRiOysrIAeBZOmc1mREREICEhwe8qp8LDw+3/znhFnGhw0CKcAuC0ekoJZjyZOZWRkWH/Z1cn\nmsnJyR61ZDu+7kBbuQfKXeVUREQE6urqcP3119tvS0xMhM1m85sLBqycIn9msVhgs9kYThG50dvM\nqWwA/wawEMASAH8D0PMTi4jIx5Rw6txzz4VO1/lW5mk4BcBpOOXLyilPwilXIZqnjEYjzjjjDACe\nnew4tvX5U+WUMiw4NjYWACuniAYLfwqn+nJxQpl/B7gPpzy5KOA460rryil34RTQObjesQUzKSkJ\nAPymtY/hFPkzX37HJApU7mZOvQxgKYBHACyTUt4J4DkALwohfuub5REROacMRI+Li8OYMWOg1+uR\nnZ3t8fNTUlI0rZyKiopCSEhIl5lT3cMpwHmI5on29naYzWZ7ONXbSZLNZoPNZvPLyimj0YihQ4fa\nZ3LxpINocPDHcMqTyqmwsDB7lVNv4VRvLW+Or+sv4ZQn/w4A/w6n2NZH/obhFFHv3FVOnS2lvFNK\neT2AiwBASvmdlLIIwHafrI6IyAWlciosLAwXXXQRCgoKEBYW5vHzU1NTe1QTtbS0IDQ0tE/H6S8h\nBBISEtxWTinr7M+JinKS4WlbnxL2KZVTzc3N9n/HWmttbcWQIUMQFRUFnU7HyimiQcJisfg0nEpN\nTUVYWJjLcCosLMzjnQOVuVOugpzk5GRYLBY0NTW5PY5jW19MTAzCw8M1D6dcVU51l5OTAyEEli1b\nhvr6em8uzSMtLS2IjIyETqfjRQzyOwyniHrnLpz6QAjxkRDicwArHe+QUq727rKIiNxzDKeefPJJ\nfPXVV316fmpqKk6cOAGr1Wq/TWkf85X4+HivhVPKCU98fDxiYmI8DqeUgegA/KZ6Svn/RQiB2NhY\nnnQQDRK+rpzS6XTIyMhwOXOqL+//GRkZGDJkCPR6vdP7k5OTAfR+YcCxYldp5dYq6OlrOJWdnY23\n3noLFRUVmDx5MrZt2+bN5fWqtbUV0dHR/Jwgv8Rwiqh37gaiPwDg/wEollL+2XdLIiLqnWM4pdfr\n7bvSeUppn3A8cfD1Fr9KONXR0YHm5man4VRKSgp+/PHHPlcxOV6N92T2iclkAgB7Wx/gP+GU40lj\nTEwMTzqIBglfh1NAZzWpq8qpvoRTkyZNwplnnunyfqXtr7f33u6D2MeMGYO33noLq1at8ngtanG3\nW58rV155JTZt2gSLxYKHHnrIW0vziPIZHhsby7Y+8jsMp4h653YgupSySUrZ4u4xRERaUMKa/p7Y\nOJvt4evKKWW2U0tLC6SULiunAM9223M0kHAqMTERAPxmKLrS1gcAsbGxbOsjGiQCOZz69a9/jfLy\ncpf3K5VTvW1G0T2ceuWVVzBp0iRce+21+N3vfufxetTQ37mLEydOxPnnn4/a2lpvLMtjSjgVFxfH\nixjkd5RwypffM4kCTW+79RER+SWlDa2/86GchVO+rpzKycnBjh078PDDDwOAfeC3I2Wdfd1avHs4\n1dvz/blyyvGkkZVTRIOH2Wz2yYw/R1lZWaivr7d/hih++OEHxMXFeXwcnU7ndj5Vf9r6lOd99tln\nuO666/D73/8e+/bt83hNAzWQTUEGsrOsWhwrp/g5Qf6GlVNEvWM4RUQBybGtrz/8oXLq0UcfxTXX\nXIO///3vAOC2cqqvX/r7WjnlOHNKqZzyl3DKsa2PlVNEg4cWlVPKDqaHDx/uso4tW7ZgypQpqr2O\n8j7a17Y+oPN9eOnSpQCAXbt2qbam3gw0nOo+x9HX2NZH/ozhFFHvXIZTQogru/3MF0JMF0JE+3KB\nRETODDScUuaBaFk5FRkZiZUrV+Kxxx6DXq+3nzQ5UiucOnHiBNrb210+3lnllD+19bFyimjw0aqt\nD0CX1r6ysjKYTCYYDAbVXicsLAxxcXH9CqcAIDc3FwCwd+9e1dbUm4GGU1JKHD9+XO1leYxtfeTP\nGE4R9c5d5VRRt59iAPcC2CGEuMAHayMicslisSAkJAQ6Xf8KQCMiIhATE9Ol3c3XlVMAIITAQw89\nhObmZpx77rk97ncWonnC8YQnJSUFUkq3lVCO4VRERASGDBniN5VTnDlFNDj5SzhVWloKAJg2bZqq\nr5WSktLntj5FTEwMUlJSfB5ORUREuNyB0J3+XkhRE9v6yJ9x5hRR71w2y0spb3V2uxAiC8C/AfQ8\niyIi8hGLxTLgWSXdZ2T4unLKkavdkSIiIhAXF9fnQbPdK6eAzvYS5Z+7cwyngM6WFC2vgCuklD12\n62tqakJ7e3u/TqCIyH9oEU6lp6dDp9P1CKfGjRtnb8VTiyfz/oxGI4QQTv895OXl+Tyc6u+Js7+F\nU21tbZr8/SJypaWlBZGRkfzuQuRGn0sOpJQ1APq2ZzsRkcrUGKTbPZzSonLKE6NGjcLBgwf79BxX\n4ZQryswpJZxKTk72i3DKZDJBStll5hQANDc3a7ksIlKBFuFBaGgo0tLS7OGUzWbDxo0bVW3pU3gy\n789oNGLIkCEQQvS4Ly8vD1VVVaqvyxU1wqm+bt6hJse2PgCsniK/ouUFUKJA0edwSgiRB8Dc6wOJ\niLxosFVOuTNq1CgcOHCgT89xFk65O2lQKqeUE0VPTqp8QWl5cWzrA3jSQTQYWCwWTSpbsrKycOjQ\nIQDAtm3b0NzcrFk45S4QysvLw/Hjx3023Hsg4VR/W9DVYrPZYDKZ7JVTADgUnfyKv37HJPIn7gai\nrxVCrOn28xWAdQCW+W6JREQ9qR1OWSwWWK1Wv6ycys7OxqFDh9wONO+ur5VT3dv6PJmV4gvd57HE\nxMQAAOdOEQ0CWrVdZWVl2SunlHlT3gqnGhoa3O5gp1ROOeProegtLS39/gyMjIxETEyMZuGU8lnh\nGE7xIgb5k9bWVoZTRL1wOXMKwJPd/iwB/Ahgn5TS4r0lERH1To0r7qmpqWhubkZra6t99z9//OIw\natQo2Gw2HD582OmOfs4YjUbo9XqEhoYiLi4O4eHhXbZO7657OKVc8ZdSOm038RUlZOve1seTDqLA\nJqXULJw666yzsHLlSixduhT79+/HmWeeibS0NNVfR7kwcOLECQwfPtzpY9yFU3l5eQA6w6nzzjtP\n9fV1N9DW9pSUFM3CKced0NjWR/6IlVNEvXM3EH29EOIKAGcCqJBSfuS7ZRERuafWzCmgs91NOZa/\nVk4BQHV1dZ/CKWWOiRACY8aMwc6dO10+3tnMKYvFgsbGRnsgpIXubX2snCIaHGw2G6SUA34f7497\n7rkHdXV1+Otf/woAuO2227zyOkqr27Fjx1yGU+4CoZEjRyIkJMRnlVOtra32z8X+6N4q70uO4RTb\n+khrtbW1WLduXZfbqqurMWrUKI1WRBQYXIZTQojnAIwDsAnAo0KIc6SUj/psZUREbqjV1gd0hlPK\nlVZ/vKqlfJk5cOAALrjgAo+e0/1qfH5+Pr788kuXj3c2cwroPKnyh3Cqe+UUTzqIApsSiGtRORUS\nEoKnn34a48ePx5IlS3DFFVd45XU8mffnrnIqNDQU2dnZPhuKPtDKqdTUVGzbtk3FFXmOlVPkL8xm\nMy644ALs27evx30XXnihBisiChzu2voMACZKKduFEEMAbADAcIqI/IKa4dQPP/zg15VTGRkZCAkJ\nQXV1tcfP6X7CM378eLz22ms4efKk/Yu7I3fhlDL3RAvd2/qUrd5//PFHzdZERAOnZTiluO2223DT\nTTchJMTd1+H+82Ten9FotD/Omby8PJ9WTg00nPKnyimGU6SFP//5z9i3bx/efvvtHu24A6lMJAoG\n7nbrs0gp2wFASmkEoN3QESKibtQIp9LT0wEA+/fv7/LF1t/o9XqcccYZfdqxz1nlFACXrX0mkwmh\noaHQ6/UAurajaKl75dSwYcMQEhLCcIoowPlDOAXAa8EU4Fk41dra6rJyCugcir5v374+bYjRX2qE\nU01NTfaLCr7k+BkeERGB8PBwVtiSzx08eBCPPfYYrrrqKlx55ZVIS0vr8qPTuTv1JiJ3/4WMFkLs\nOP1T4fDnCiHEjt4OLIRYIYQ4JoSodHH/TCFEoxBi2+mf3zrcd7EQYq8QYr8Q4oG+/1pENNipMRA9\nMTERubm52LBhQ48QxN9kZ2cPqHJKCacqK52+JcNsNtvnTQGenVT5QveZU0IIxMfH48SJE1oui4gG\nyF/CKW+KiYlBaGhor5VT7sKpvLw8mM1mfP/9995YYhcD3U3MsVXe17pfYIqLi2PlFPnc3XffDb1e\nj6efflrrpRAFJHfh1BgARad/5jn8ed7p/+3NywAu7uUxG6SUZ53++R8AEELoATwL4BIAYwEsEEKM\n9eD1iCiIqDEQHejcPnzDhg1oamoC4J+VU0Dn3KmBVE5lZGRg2LBhqKiocPp4k8nU5SRRaZ/TOpzq\n3tYHdK6NlVNEgS0YwikhBDIzM7F7926XjzEajW4vijju2OdNNpsNFotlwJVTgLbhlON8QoZT5Etl\nZWVYu3YtfvOb39gr84mob9yFU6EA0qWUNY4/ANLhflYVAEBKWQqgoR9rOgfAfilltZTSAuBNAJf3\n4zhENIip0dYHdIZTp06dwpYtWwD4d+XUqVOnPG5T6B5OCSGQn5/vsnLKZDJ1qZwKDQ1FfHy8JicZ\njpxVtCUkJLByiijABUM4BQBz587Fp59+ap/r111vbX2+CqfUqB52nOPoa90rp2JjY9nWRz61fPly\nDBkyBD//+c+1XgpRwHIXTv0VQJOT25tO36eGKUKI7UKID4QQ407fNgLAYYfH1J6+zSkhxEIhRJkQ\nouz48eMqLYuI/J2a4RQA+5a//lw5BcDj6ilnrSJKOCWl7PH47uEU0Nnap3XllHLCFBkZab+NlVNE\ngc9isQAY/OFUcXExjEYjPv/88x73SSl7betLSkpCTEyM13fsG2zhFNv6yJcaGxuxcuVKLFiwADEx\nMVovhyhguQunUqSUPfo/Tt92hgqv/S2ALCnlRAD/APBufw4ipXxBSlkopSxMSkpSYVlEFAjUmDkF\nAFlZWcjMzLR/8ffnyikAHs+dcnbCM378eDQ0NKC+vr7H47vPnAL8J5yKiIiwD2oHOiunGE4RBbZg\nqZyaOXMmoqKisGbNmh73KdVU7j53hBA+2bFPjXAqKSkJQgjNwqnQ0FD7RSu29ZEvvf766zAajVi0\naJHWSyEKaO7CqVg390W6uc8jUsomKWXL6X9eByBUCJEI4AiADIeHpp++jYjITq3KKeCn6imdTtcj\noPEXI0eOBDDwyinA+VB0Z5VTKSkpmodTzuaxKG19zirAiCgwKOGUWu/j/io8PBxz587F2rVre7xn\ndd/wwRVfhFPdQjD2MQAAIABJREFUZzb1R0hICBITEzULpxwrn9nWR74ipURJSQkmTZqEwsJCrZdD\nFNDchVNlQog7u98ohLgDQPlAX1gIkSqEEKf/+ZzTa/kRwFYAOUKIkUKIMADXAuh5uYmIgppaA9GB\nn8KpoUOH4vTbkt+Jjo5GcnLygCqnegunulcw+EvlVPffIzExEVar1X4yRUSBJ1gqp4DO1r66ujp8\n++23XW5XNnzwJJyqra21h1neoNaOtampqZqEU913GlTa+ngRg7zt66+/RkVFBRYvXuy33yGJAoW7\nweZLAfxHCHE9fgqjCgGEAZjf24GFEG8AmAkgUQhRC+ARdA5Zh5SyBMBVAH4uhLABaANwrez8BLEJ\nIf4LwEcA9ABWSCl39uN3I6JBzBuVU/46b0rh6Y59ruaYJCYmIjU11emOfSaTqctcJ6AznGpoaIDV\nakVoaOjAFt9Pra2tTiunAODEiROIjo7WYllENEDBFE5deuml0Ol0WLNmDQoKCuy3O9uN1BllKHpV\nVRXOPvtsr6wx0MOp7pVTcXFxaG9vR1NTE2cAkVd9/PHHAIAFCxZovBKiwOeyckpKeVRKeT6A3wM4\ndPrn91LKKVLKXj91pJQLpJTDpZShUsp0KeU/pZQlp4MpSCmfkVKOk1JOlFKeJ6Xc5PDcdVLKXCll\ntpTysYH+kkQ0+KgZTuXm5iI5Odlv500psrOzPaqcslqtaG9vd3o13tWOfa5mTgHQdGc8Z219iYmJ\nAMC5U0QBLJjCqcTERJx//vlYu3Ztl9s9bevLzc0FAK8ORR9s4ZQynF3rHWdp8DMajYiMjPT7C5xE\ngcBdWx8AQEr5hZTyH6d/em41QkSkAbUGogOdA2fnz5+PMWPGqHI8bznzzDPx/fffo62tze3j3LWK\n5OfnY9euXejo6Ohyu6vd+gBtv9y7q5xiOEUUuIIpnAKAK664At999x327Nljv83Ttr6cnBwIIbw6\nd0rtcMrX7XSuwiktgjIKLs6+PxFR//QaThER+ZuOjg7YbDZVB+k+//zzWL16tWrH84Zx48ZBSond\nu3e7fZy7q/F5eXkwGo04cqTrPhPOZk6lpKQAgKZzp5zNnHJs6yOiwBRs4dQNN9yAkJAQvPDCC/bb\nPA2EIiMjkZmZGTDhlNlsRlNTkxrL8hjDKdJKW1sbwykilTCcIqKAY7FYAKi7y5MQwu8HWbobaO7I\n3dV4ZXZJ95Mcd5VTWoZTbOsjGpyCLZxKSUnBlVdeiZdfftle/epp5RTg/R371Aqn0tPTAQAHDx4c\n8Jr6ons4pVxcYVsfeRsrp4jUw3CKiAKON8KpQJCTk4OwsDCn4VRHRwfeffdddHR0uD3hUWaXBEo4\n5aytLzY2FkIIVk4RBbBgC6cAYNGiRTh58iTeeustAP0Lp7zVLqdWOKUMbC8vH/DG3n3SPZxKSEiA\nXq9n5RR5HcMpIvUwnCKigBOs4VRISAjGjBnjdLe9Dz/8EPPnz8fnn3/u9oQnLS0NUVFRPQbrOhuI\nPmzYMISFhWkeTnX/PfR6PeLj41k5RRTAlPfxYAqnZs2ahdzcXCxfvhxA3wKh3NxctLS0eC1saW1t\nRXh4OEJC3G3k3bvs7GzExMSgrKxMpZV5pns4pdPpkJKSwnCKvI7hFJF6GE4RUcAJxpMahavd9rZv\n3w4A2LVrl9twSgiB3NxcjyqnhBBITk72u7Y+oPOqOMMposClVE6FhoZqvBLfEUJg4cKF2LhxIyoq\nKvpcOQX0rHpVi7Mq1f7Q6XQoKCjwaeWUlLJHOAVot3MgBReTyYTIyEitl0E0KDCcIqKAE6yVUwAw\nfvx41NbW4tSpU11uV6qp9u7d2+sJT/fZJTabDTabzWnYl5ycrNnMDikljEaj098jISGBbX1EAcxs\nNiMsLMzvZ/2p7ZZbbsGQIUPwyCOP2N+rPQmFvB1OtbS0qBJOAUBBQQG2b99u/6z2tra2NkgpGU6R\nJlg5RaQehlNEFHCUK+7BGE65Goqu/LmqqsqjcKqmpsY+lFf59+nsy1VKSopmlVNmsxlSSqe/R2Ji\nIiuniAKY2WwOyurXhIQEPPzww/jPf/6D//znPwgJCfGoeiw9PR2RkZHYu3cv2tvbsXr1avt7uBrU\nqpwCgMLCQlgsll4371BLS0sLADCcIk1wtz4i9TCcIqKAE8yVU87CKavVij179gDwvHJKSon9+/cD\ncB9OadnWp/wezsrlWTlFFNiCNZwCgGXLlmH06NEoLy/3qKUP6GyXy8nJQXl5OYqLi3HFFVfgmWee\nUW1NaodTAHw2d8pdOHX06FF0dHT4ZB0UnFg5RaQehlNEFHCCeeZUZmYmoqOju4RTVVVVsFqtGD16\nNA4fPozjx48DcB1OKTv2KUPRTSYTANfh1NGjR722Q5Q7SlUAK6eIBp9gDqfCwsLw7LPPAujb7nh5\neXkoLS3Fxx9/jNjYWKxfv161NakZTo0cORJxcXE+mzvlKpxKSUlBe3s7PyvIqxhOEamH4RQRBZxg\nrpwSQiA/P7/Ljn1KUPWzn/0MwE/D0XsLp5TZJUo45exEcfz48TCbzViwYIG9kslXlHDKVeVUW1ub\nz9dEROoI5nAKAC644ALcdttt9llSnpg9ezbS0tLw8ccf4+qrr8ZXX32F9vZ2VdajZjglhEBBQYHP\nK6e6rz81NRUANJubSMGB4RSRehhOEVHACeZwCvhpxz6lmqmyshJ6vR6XX345AOC7774D4DzUATqv\nLo8YMaJHOOXsy9UNN9yAxx9/HP/+979hMBh82uLnrj0xISEBAHhFnMjLduzY0SUMV0uwh1MA8NJL\nL+Gzzz7z+PELFy5EbW0tZs2aBYPBgMbGRtX+v1EznAI6W/sqKirsny/esGPHDjz99NN49dVXAThv\n6wPAuVPkVdytj0g9DKeIKOAE80B0oLOaqaGhwf6Fu6KiAjk5OfZ5VHv37kV4eDj0er3LYzju2Odu\n5pQQAvfffz9Wr16N8vJyvPjii2r/Oi65q5xKTEwEwHCKyNtuuOEGFBQU4J///Keqx2U41fn+qtN5\n/lVcCGHf3dBgMAAASktLVVmLN8Ipq9XqlWBTcc8992DZsmUoKSlBREQEsrKyutzPcIp8gQPRidTD\ncIqIAg4rpzpDKOVLf2VlJcaPH4/IyEhkZmaio6Oj1yG7SjglpXRbOaUoKirCiBEj7EPUfaG3gegA\nOBSdyIs6Ojqwb98+hIaG4o477sCyZctUmz/HcGpgMjIycMYZZ6g2d0rtcKqgoAAAvDp3qr6+HsXF\nxTh16hROnjyJ9PT0LvcznCJfYFsfkXoYThFRwAnmgegAMHHiRISFheHll19Ga2srqqur7YGVMr+k\nt3AqNzcXp06dwvHjxz0KpwBg1KhROHDggAq/gWd6G4gOsHKKyJvq6+thMpnwxBNPYNGiRXj66aex\ndetWVY5tsViC9gKDWgwGA0pLS1UJDFtbW3u0xQ1EVlYWkpKSsHnzZtWO2d3Ro0cxYsQIxMTEOP38\nio6ORmRkJMMp8hqbzYb29naGU0QqYThFRAEn2Cun4uPjcf/99+ONN97As88+Cylln8Mp5XFVVVVu\nB6I7ys7ORnV19UCX77HeBqIDDKeIvEn57z03Nxd//OMfodfrsXbtWlWOzcqpgTMYDDhx4gT27Nnj\n8XNqamp6zLlqb2+H2WxWtXJKCIHp06djw4YNqh3TkdVqRUNDA1JSUtyuITU1leEUeY2nF/eIyDMM\np4go4AR7OAUADz74IEaOHIkHH3wQQOccKsDzcGr06NEAgN27d7udOeVo1KhROHLkiD008jZ3A9Hj\n4+MBsK2PyJuUSslRo0YhPj4e06ZNw5o1a1Q5NsOpgevP3KmHHnoIc+bMwbZt2+y3tba2Aui5250a\n6zt48CAOHz6s6nGBn977k5OT3T4uJSWF4RR5DcMpInUxnCKigBPsA9GBzmqiv//97+jo6EBERARG\njRoFoLPCAeg9nMrKysLQoUNRWVnp8Zer7OxsAMChQ4cGuHrPuKucCg0NRUxMDCuniLyouroaOp3O\nPmi6qKgIO3bsQE1NzYCPzXBq4M4880wMHz7c43BKSon169ejo6MDd911Fzo6OgAALS0tALwTTgHw\nSvWUsnNsb+EUK6fIm5TvT9ytj0gdDKeIKOAE+8wpxbx587BgwQLMmjXLvjOfp5VTOp0O48aN61M4\npQRgvpo75a5yCuhs7WPlFJH3HDhwAJmZmQgNDQUAFBcXA4AqrX0MpwZOCIFp06Zh48aNHj3+4MGD\nOHLkCKZNm4bNmzfj5ZdfBuC9yqkJEyZg2LBhqu0o6Kgv4dTRo0dVf30i4KeLaKycIlIHwykiCjhs\n6/vJ66+/jvfff9/+54yMDERGRvYaTgGdrYAVFRV9mjkFwGdzp9xVTgGdQ9FZOUXkPdXV1fb/7gEg\nJycHo0ePVqW1j+GUOiZPnoyamhqPgnolJHruuecwdepU3H///WhoaPBaOKXX6zFt2jTNw6kTJ07A\narWqvgYitvURqYvhFBEFHIZTPxFCQAhh/7NOp8Ps2bPtM6jcyc/Px/Hjx+3zQHr7cpWYmIioqCif\nVk4JIVz+/5yeno49e/aotrU9EXV14MABe8WkoqioCF9++SWampoGdGyGU+ooLCwEAJSXl/f62NLS\nUiQkJGDcuHH429/+hhMnTuCtt97yWjgFdLb27d692x4mqUWphnI3EB3oDKcAqP76RADDKSK1MZwi\nooDDmVPurV27Fo899livj1N2+FO2hu/ty5UQwqc79rW1tWHIkCFdwjdHF198MWpqalBZWemT9RAF\nk+bmZhw/frxL5RTQ2dpntVpx77334s9//nO/W/wYTqlj0qRJAICysrJeH1taWorp06dDp9Nh0qRJ\niIuLQ1lZmVfDqRkzZgBQf+7UsWPH7LMH3VHCKc6dIm9gOEWkLoZTRBRwLBYLdDqdfc4S9Y9SXaWc\n1Hhyojhq1CifVU61tbW5HTI6b948AOrMvyGirpQQunvl1JQpU5CdnY0XX3wR9913H6688kr7fLi+\nYDiljpiYGOTk5PRaOXXkyBEcOHDAPqRcCIHCwkKUl5d7NZyaNGkShgwZonpr37Fjx5CcnOzy4oWC\n4RR5E8MpInUxnCKigGOxWHhSo4Lk5GQkJibi5MmTCA0NhU7X+0eCUjml7PLkTUaj0e3srOHDh2Py\n5MmqbW1PRD9RwqnulVN6vR579uxBS0sL3nzzTdhsNmzfvr1Px5ZSwmw2s/pVJYWFhb1WTimVS0o4\npTyvoqICDQ0NALwTToWFhWHKlCleC6d6o7T9MZwib2A4RaQuhlNEFHAsFgtPalQghLC39nn6xWrU\nqFEwm82or6/35tIA9F45BXS2GG3ZsoUnHkQqUyoku1dOAUBISAiGDh2KqVOnAvBs3pGjvXv3QkrZ\n67wg8kxhYSEOHz7sdle69evXIzo6GmeddZb9toKCAlitVmzevBmAd8IpAJg6dSq2b9/erwo7VzwN\np1JTUyGEsM9WJFJTbxu3EFHfMJwiooDDcEo9Smufp+GUUkXhi9Y+o9HY6xe+oqIiAOiyYyERDVx1\ndTXi4+MRGxvr8jEjRoxASkqKR/OOHC1fvhyhoaG45pprBrpMQmfIBLgOCaWU+PLLLzFt2rQu7fDK\nMHWlqikqKsor65swYQKklNi9e7dqxzx69KhH4VRERAQyMzNRVVWl2msTKVg5RaQuhlNEFHDYDqKe\n/lROAfDJUHRlILo7EyZMQGZmJlv7iFTmbKe+7oQQKCgo6FM41dbWhldeeQVXXnmlR+EC9e7ss8+G\nEMJpONXW1obrrrsOe/bssc/pU2RmZiIxMRH79u0D4L3KKeUiSEVFhSrHk1Li2LFjHlfe5eXlYe/e\nvaq8NpEjhlNE6mI4RUQBh5VT6ulrOJWVlQWdTueTyilP2vqEECguLsYnn3xiL68nooGrrq7uMW/K\nmcLCQuzevds+VLs3//d//4eTJ09i0aJFA10inTZs2DDk5eX1CAmPHj0Kg8GAVatW4fHHH8fPf/7z\nLvcrQ9GBztlQISEhXllfdnY2wsPDVdtZtaWlBSaTyeNwMy8vD1VVVZBSqvL6RAqGU0TqYjhFRAGH\nA9HVo4RTnv77DA0NRWZmpk8qp3obiK6YM2cO2tra8N1333l9TUTBwGaz4dChQ71WTgGd4VRHRwe2\nbdvm0bFLSkqQm5uLmTNnDnCV5MjZUPTFixejsrISq1evxv333+90ZzulJdBbVVNA5xD9sWPHqhZO\nHTt2DAD6FE61tLSgrq5OldcnUjCcIlIXwykiCjisnFLPsGHDkJmZ2acvVtnZ2X5TOaWsBwBqamq8\nvSSioFBbWwubzeZR5ZQSbnjS2vfdd99h8+bNWLRokdOghPqvoKAAdXV1OHLkCABg3bp1ePfdd/HI\nI4/YZ/M5o1ROeTOcAjpb+9Rq6+tPOAWAc6dIdQyniNTFcIqIAg7DKXVddtllXXZw6k1eXh527dqF\n9vZ2L67Ks4HoQGerIQAcOnTIq+shCha1tbUAgIyMjF4fm5aWhuHDh/caTm3evBmXXHIJYmNjcfPN\nN6uyTvrJ7NmzodPpcOmll2Lv3r34xS9+gdGjR2PZsmVun+ercCo/Px91dXVoaGgY8LH6G05x7hSp\nra2tDWFhYdDpeEpNpAb+l0REAYcD0dX13HPP4cUXX/T48VOnTkVzczO2b9/uxVV5NhAd6DypSkhI\nYOUUkUqU+VGe7t5WWFjocqc4AHjzzTcxc+ZMREVFYdOmTUhISFBlnfST8ePHY926daipqUF+fj6q\nq6vx7LPP9vpZOWLECCQnJ/sknAKAnTt39uv5Bw8exMcffwygc5YWAI8Hoo8YMQKRkZEMp0h1JpOJ\nVVNEKmI4RUQBhzOntDV9+nQAP20/7i2eVk4BndVTDKeI1KGEU54GFoWFhdizZw+am5t73GexWLB4\n8WIUFBTgm2++wZgxY1RdK/1k7ty52LJlC0aPHo077rgDF1xwQa/PEUJg/vz59vZMbxnojn2LFy/G\nvHnz0NTUZK+cSkpK8ui5Op0Oubm5DKdIdQyniNTlnW05iIi8yGKxeFRRQ96RkZGBkSNHorS0FEuX\nLvXKa0gpPa6cAjrDqT179nhlLUTBpj/hlJQSZWVlmDVrVpf7NmzYgMbGRtx///2Ij49Xfa3UVV5e\nHnbs2NGn55SUlHhpNT8ZMWIEYmJi+jUUvbq62l419dFHH+HYsWOIiYnp00WqvLw8t9V9RP3BcIpI\nXaycIqKAw5lT2psxYwZKS0u9tjW31WpFR0dHnyunuFU40cAZjUYAnodT5513HqKjo3HjjTf2CADW\nrl2L8PBwXHjhhaqvk5wTQvjdwHkhBPLz8/sVTr3wwgvQ6/WIiYnBmjVrcOzYMY/nTSny8vJw8OBB\nmM3mPr8+kSsMp4jUxXCKiAIOwyntGQwG/Pjjj9i9e7dXjq+cHPclnDIajfjxxx+9sh6iYKJUTnla\nuRgfH48NGzZAr9dj+vTpeOeddwB0VkCuWbMGF154oddnGpH/U3bsc3URYcOGDT1mUlksFqxYsQJF\nRUW4/PLLsW7dOtTV1fUrnOro6PDJTrMUPBhOEamL4RQRBRwORNeewWAA4L25U21tbQA8PzlWduzj\n3CmigetrWx8ATJw4EVu3bsWECRNw44034vvvv8euXbtw8OBBFBUVeWupFEDy8/Nx6tQp1NXV9bhP\nSomrrroKCxcu7HL7f/7zHxw/fhyLFi1CUVERGhoasHnz5n6FUwB37CN1tbW1eXwRjYh6x3CKiAIO\nB6Jrb9SoUUhLS/NaONWfyimA4RSRGoxGI8LCwhAS0rfRpMnJyVi1ahWklLjnnnuwZs0aAMC8efO8\nsUwKMMqOfc5a+/bu3Ytjx45h8+bNOH78uP325cuX44wzzsCcOXMwd+5chIWFwWazebxTnyI3NxcA\nUFVVNYDfgKgrVk4RqYvhFBEFHLb1aU8IAYPB4LW5U6ycItJOa2trvzedyMrKwsMPP4x33nkHf/nL\nX1BYWIgRI0aovEIKRBMmTAAAbN26tcd9yoUOKSXWrVsHoDOw+uKLL7Bw4ULodDpER0fbB+73tXJq\n2LBhSE1NZeUUqYrhFJG6GE4RUcBhOOUfDAYDjhw5goMHD6p+bCWc8rRyKj4+HlFRUQyniFTQ2to6\noBlR//3f/428vDycOHGCLX1kFxcXh/z8fGzYsKHHfaWlpUhNTUV6erq94u6FF15ASEgIbrvtNvvj\nlL9PfQ2ngM7WPoZTpCaGU0TqYjhFRAGH4ZR/mD17NgDYhx+rSWnr87R6Qwhh37GPiAZmoOFUWFgY\nSkpKkJSUhGuuuUbFlVGgMxgM2LhxI2w2m/02KSXWr18Pg8GAefPm4aOPPkJjYyNefvllzJ8/v0sL\n3/z585Geno6CgoI+v/bZZ5+Nb7/9FidPnlTldyFiOEWkLq+FU0KIFUKIY0IIp3vGCiGuF0LsEEJU\nCCE2CSEmOtx36PTt24QQZd5aIxEFJg5E9w+5ubmYNm0aXnjhBXR0dKh67L5WTgFgOEWkEqPR2O+2\nPsXMmTNx7Ngx+yBqIgCYMWMGWltb8d1339lvq6mpQW1tLQwGA4qLi9Ha2oolS5agoaEBixcv7vL8\ntLQ0HD58GOedd16fX/uWW26ByWTC//7v/w749yACGE4Rqc2blVMvA7jYzf0HAcyQUo4H8CiAF7rd\nP0tKeZaUstBL6yOiACSlhNVq5UB0P7Fo0SLs27cPX3zxharH7etAdIDhFJFaBlo5ReTK9OnTAXTd\n6VX5Z4PBgFmzZmHo0KF4/fXXkZOTY58xpYaJEyfivPPOQ0lJiVdmJVLw4W59ROryWjglpSwF0ODm\n/k1SSqWu9msA6d5aCxENHlarFQBYOeUnrrrqKsTHx6OkpETV4/Z1IDrQGU41NDSgpaVF1bUQBRuG\nU+Qtw4cPR05OTo9wKj4+HuPGjUNERATmzJkDoPPihxBC1ddftGgR9uzZ43TuFVFfsXKKSF3+MnPq\ndgAfOPxZAvhYCFEuhFjo7olCiIVCiDIhRJnj1rNENDhZLBYADKf8RUREBG655Ra8++67+OGHH1Q7\nbn/b+gDu2Ec0UEajkeEUeY3BYMCGDRvs7eDr16/H9OnTodN1npbccsstyMrKws0336z6a1999dWI\njY1V/YIKBSeGU0Tq0jycEkLMQmc4db/DzdOklJMAXAJgiRDC4Or5UsoXpJSFUsrCpKQkL6+WiLTG\ncMr/LFy4EDabDStWrFDtmH0diA4wnCJSS2tr64BnThG5YjAYcPLkSezcuROHDx/G/v37YTD89FW/\nuLgYhw4dQmJiouqvPWTIENx000146623wIvaNBAdHR2wWCwMp4hUpGk4JYSYAOAlAJdLKX9UbpdS\nHjn9v8cA/AfAOdqskIj8jdlsBgDOnPIjeXl5MBgMWLlypWrHZOUUkXbY1kfepARRK1aswEUXXYSQ\nkBBccsklPnv9O++8E1arFW+99ZbPXpMGH+X7KMMpIvVoFk4JITIBvAPgRilllcPtQ4UQ0co/A5gD\nwOmOf0QUfFg55Z/mz5+PnTt3orq6WpXjKZVTffnSl5qairCwMIZTRAPEtj7ypqysLGRkZOCvf/0r\nfvzxR3z22WcYM2aMz15/3LhxOPPMM7F27Vr7bc3NzVixYgVMJpPP1kGBTfm7wnCKSD1eC6eEEG8A\n2AwgTwhRK4S4XQixWAih7An7WwAJAJ4TQmwTQpSdvj0FwFdCiO0AvgHwvpTyQ2+tk4gCC8Mp/1RU\nVAQAXb7sD4SyA05fhuHqdDrk5uaivLxclTUQBSMpJdv6yKuEELjxxhsxZcoUfPPNN11a+nz1+kVF\nRfj888/tG2j86U9/wu23346ZM2eivr7ep+uhwKRUeDOcIlKPN3frWyClHC6lDJVSpksp/ymlLJFS\nlpy+/w4pZZyU8qzTP4Wnb6+WUk48/TNOSvmYt9ZIRP6tra0N//rXv+xDUwGGU/4qOzsbY8eOxZo1\na1Q5ntFo7Nf2zJdccgnWr1+PpqYmVdZBFGzMZjM6OjpYOUVe9dhjj2HTpk0YOXKkJq9fXFwMs9mM\nTz75BFarFStWrMC4ceNQUVGByZMnY+fOnZqsiwKHUjnVn+8qROSc5gPRiYhcWb16NW677TZ88cUX\n9tuUHn+GU/6nuLgYpaWlOHXq1ICP1dbW1q/KjeLiYlitVnz00UcDXgNRMGptbQUAhlM0qE2dOhWx\nsbFYs2YNVq9ejaNHj+KJJ57Apk2b0NzcjKeeekrrJZKfY1sfkfoYThGR3/r+++8BAKWlpfbblMop\nDkT3P8XFxbDZbPjww4F3YittfX01ZcoUJCQkqFbBRRRs+rNTJlGgCQ0NxaWXXor33nsPzz33HDIz\nM3HxxRdj4sSJmDx5MioqKpw+b8eOHfjyyy99u1jySwyniNTHcIqI/Nbhw4cBOA+nWDnlf8455xwk\nJSWpMneqv219er0el112Gd5//33YbLYBr4Mo2LByioJFUVERTpw4gS+++AJ33nkn9Ho9ACA/Px87\nd+7sMlJAce+99+Kaa66BlNLXyyU/w3CKSH0Mp4jIb9XW1gIAvv76a3s7H8Mp/6XX6zFv3jysW7cO\nVqt1QMfqb1sf0FnBdfLkSWzatGlAayAKRgynKFhcfPHFCAkJgV6vx2233Wa/ffz48Whra8PBgwd7\nPKeiogLHjh1DVVVVj/souDCcIlIfwyki8lu1tbUIDw+HyWTC1q1bATCc8ndXX301Tp06hZKSkgEd\np7+VUwAwZ84chIWFsbWPqB+Utj6GUzTYxcbG4rrrrsMdd9yBtLQ0++35+fkA0KO178SJE/jhhx8A\nAOvXr/fdQskvcbc+IvUxnCIiv1VbW4tLL70UwE+tfRyI7t/mzp2Liy66CL/5zW/sX+L7YyCVU9HR\n0Zg1axbWrFnjtdYLq9WKF154YcAVYkT+Rqmc4swpCgavvPJKj4sp48aNAwBUVlZ2ud3xz47jBig4\ncbc+IvUdetm1AAAgAElEQVQxnCIiv2SxWHD06FFMnDgR+fn59i+CHIju34QQeOaZZ2AymfCrX/2q\n38fp70B0xfz587Fv3z6UlZX1+xjufPjhh1i0aJEq87WI/Anb+ijYRUVFYeTIkS7DqWnTpmH9+vWc\nOxXk2NZHpD6GU0Tkl+rq6iClRHp6OgwGAzZu3Aibzca2vgCQm5uL++67D6+99lq/dzUyGo0DqtxY\nsGABhg4diuXLl/f7GO4o7R7eCr+ItMK2PqLO1r7ubX0VFRWIj4/H1VdfjdraWtTU1Gi0OvIHDKeI\n1Mdwioj8kjIMXQmnWlpasG3bNoZTAeKhhx5Ceno6/vjHP/br+QOtnBo2bBgWLFiAN954A42Njf0+\njivKSUt5ebnqxybSEtv6iDqHoldVVdlHCQCdlVP5+fmYMWMGALb2BTuGU0TqYzhFRH7JMZyaPn06\nAOCzzz5jOBUgIiMjsXDhQnzyySfYv39/j/u3bt2KDz74wOXzBzIQXbFo0SIYjUa89tprAzqOM0p7\nR1lZGVs7aFBhWx9RZ+WUzWaz78onpURlZSXGjx+P/Px8xMbGMpwKcgyniNTHcIqI/JISTmVkZCAt\nLQ3nnXceHn74YaxatQoAZ04Fgttvvx16vR4vvvhil9ullLjxxhtxxRVXYN++fU6fO5CB6IrCwkIU\nFBSgpKRE1QDJYrFgz549SEpKQkNDAw4dOqTasYm0xsopop927FMuRBw+fBhNTU3Iz8+HTqfD9OnT\nGU4FOe7WR6Q+hlNE5JcOHz6M6OhoDBs2DACwbt06zJw50759Myun/F9aWhqKi4uxYsWKLq0RpaWl\n2Lt3LywWC/7rv/6rR3BktVphs9lU2QFn0aJFqKysxKZNmwZ8LEVVVRVsNhtuuOEGAJw7RYOL0WhE\nWFgYQkJCtF4KkWby8vIQEhJib+FWQioltDIYDNi3bx/q6+s1WyNpy2QyQa/XIzQ0VOulEA0aDKeI\nyC/V1tYiPT3d/ue4uDisW7cOy5Ytw/jx43mlKkAsXrwYJ06cwDvvvGO/raSkBLGxsXjiiSfw8ccf\n4+233+7yHOVqpBqVGwsWLEB8fDweeugh1aqnlJOUBQsWICwsjOEUDSqtra1s6aOgFxYWhry8PPv7\nvRJSOYZTALBhwwZtFkiaM5lM/C5KpDKGU4PIO++8g507d2q9DCJVdA+nACAkJARPPfUUduzYAZ2O\nb1+B4MILL8SoUaPw7LPPor29HceOHcPbb7+Nm2++GcuWLcNZZ52FpUuXoqWlxf4cJZxSo3IqKioK\nf/rTn1BaWorXX399wMcDOsMpvV6PCRMmYMKECQynaFBhOEXUafz48di+fTva29tRWVmJ9PR0xMbG\nAgAmTZqEoUOHsrUviDGcIlIfz+4GCZvNhuuuuw7z58/v0j5DFKhqa2uRkZGh9TJogHQ6HZYtW4aN\nGzfiiiuuwD/+8Q9YrVYsWrQIISEheOaZZ3DkyBG88sor9ucoW9mrEU4BwB133IFzzjkH9957L06d\nOjXg41VUVCA3Nxfh4eEoLCxEeXk5h6LToGE0GjlvigjARRddhO+//x7z589HWVmZvWoK6LxYNnXq\nVIZTQYzhFJH6GE75mU2bNmHZsmV9PtHZv38/zGYz9u3bhyeffNJLqyPyDavVivr6+h6VUxSY7rrr\nLjzzzDP44IMP8Ic//AHTp0/HmDFjAABTp07tMbRczbY+oDMge+6553D8+HE8/PDDAz6esmMTABQU\nFKCxsREHDhwY8HGJ/AErp4g63XrrrXjmmWewbt067Nmzx/6+rzAYDKioqEBDQ4NGKyQtMZwiUh/D\nKT9TWVmJp59+Grt27erz84DOXvg//OEPOHjwoDeWR+QT9fX1kFIynBokhBBYsmQJPvroI+Tk5ODB\nBx/scv/ixYtRWVmJzZs3A1C/cgroDJHuuOMOLF++HMePH+/3cVpaWlBdXW2/gl5YWAiAQ9Fp8GA4\nRdTJ8bNr9OjRmDdvXpf7lblTX331lRbLI421tbUxnCJSGcMpP6N88K1Zs6ZPz6usrIROp8M777wD\nvV6Pu+++2xvLI/KJ2tpaAGA4NcjMnj0bVVVVuOSSS7rcfu211yI6OhrLly8HoH7llOLuu++G1WrF\nyy+/3O9jKBcOlHBq3LhxCA8PZzhFg4bRaGQ4ReRg9uzZ2L17tz2MUkyePBnh4eFs7QtSJpNJ1Yto\nRMRwyu+kpaWhsLAQa9eu7dPzKioqcOaZZyInJwf33Xcf1q5di5qaGi+tksi7GE4Fl6ioKNx4441Y\ntWoVGhoaVB2I7mjs2LGYPn06li9fjo6Ojn4dQ6lSVdo7QkNDMWnSJHvVF1Gga21t5cwpIg9ERETg\n3HPPZTgVpNjWR6Q+hlN+qLi4GF9//TWOHj3q8XMqKyvtV/IXLFgAAH0OuIj8hRJOcSB68Fi0aBHM\nZjNefPFFr7T1KRYvXowDBw7g888/79fzKyoqEBkZiZEjR9pvmz59OrZu3WoP1YgCGdv6iDxnMBjw\n7bfform5WeulkI8xnCJSH8MpP1RUVAQpJd5//32PHt/W1ob9+/fbw6mcnBzk5eX1uTWQyF8cPnwY\nQ4cORUxMjNZLIR+ZMGEC5syZgwcffBDPPPMMAPXb+gDgZz/7GRISElBSUtKv51dWVmLs2LHQ6/X2\n2wwGA6xWK7Zs2aLWMok0w3CKyHMGgwHt7e2sng1CDKeI1Mdwyg9NnDgRGRkZHlc+7d69Gx0dHV12\nESkuLsaXX36JpqYmby2TyGtqa2uRnp4OIYTWSyEfeuedd3DVVVfhs88+A+Cdyqnw8HDceuutWL16\nNerr6/v8fMed+hRTp06FEIKtHTQoGI1GtvUReWjKlCnQ6/VYv3691kshH2M4RaQ+hlN+SAiB4uJi\nfPzxxzCZTL0+3nGnPkVxcTGsVis++ugjr62TyFuOHDmCESNGaL0M8rGhQ4di1apV+J//+R+MGTMG\nSUlJXnmd22+/HTabDW+99VafnnfixAn88MMPXd5rASA2NhYTJ05kOEUBT0rJyimiPoiKisKMGTPw\n0ksv4dSpU1ovh3yIu/URqY/hlJ8qKiqC0WjEBx980OtjKysrER4ejjPPPNN+25QpU5CQkMDWPgpI\ndXV1DKeClBACDz/8MHbt2uW1XXBGjx6N0aNHu3x/fPPNN+2hvyNnFwIUBoMBmzZtgsViUXexRD5k\nMpkgpWQ4RdQHTz75JE6cOIHf/OY3Wi+FfIiVU0TqYzjlp2bOnImsrCzcdNNNWL16tdvHVlRUYMyY\nMQgJCbHfptfrcdlll+H999+HzWbz9nKJVCOlRF1dHdLS0rReCg1iRUVFWL9+PRobG7vc3tLSghtu\nuAE/+9nPYDabu9zXfac+RwaDAW1tbfj222+9t2giL1M2I2BbH5Hnzj77bCxZsgTPP/88ysvLtV4O\n+cCpU6dw7NgxpKamar0UokGF4ZSfCg8Px6ZNmzBmzBjMnz8ff/zjHyGldPpYx536HBUXF+PkyZPY\nuHGjt5dLpJoff/wRVquV4RR5lavW582bN6O9vR1VVVV48sknu9xXUVGBuLg4DB8+vMfxDAYDAPRo\n7duzZw/+/e9/q7x6Iu9obW0FAFZOEfXRo48+iqSkJNx1113o6OjQejnkZR988AHa29tx6aWXar0U\nokGF4ZQfS0tLw/r167FgwQL8+te/xvXXX99jq/JTp06htrbWaTg1Z84cREZG4vXXX/fVkokGrK6u\nDgCcBgBEanHV+lxaWgqdTodLLrkEjz32GA4dOmS/TxmG7mxQf1JSEsaMGdMjnPrd736H6667jtuM\nU0BgOEXUPzExMXjyySfxzTff4KWXXtJ6OeRla9euRXJyMs455xytl0I0qDCc8nORkZF47bXX8Kc/\n/Qlvvvkmpk6dinvvvdf+88tf/hKA8zaT6OhoXHvttVi5ciV37aOAoYRTrJwib1Jan9etW9el9bm0\ntBSTJk3C8uXLodPpcPfddwPobDd1VaWqMBgM+Oqrr9De3m5/TmlpKbcZp4ChtPUxnCLqu+uvvx4z\nZszAAw88gOPHj7t83FdffYVPP/3UhysjNVmtVqxbtw6XXXYZ9Hq91sshGlQYTgUAIQQeeOABvPvu\nuzh69ChKSkrsP++88w4yMjJcJveLFy9Ga2srq6coYNTX1wNgOEXe17312WQyYcuWLZgxYwYyMjLw\n4IMPYs2aNaisrMThw4fR1NTkNpyaOXMmGhsb8c033wAADhw4YP/7zJ38KBAolVOcOUXUd0IIPPvs\ns2hubsYDDzzg8nFLly7FTTfdxPa/ALVhwwY0NjaiuLhY66UQDToMpwJIcXExjhw5gpaWli4/33//\nPRITE50+Z/LkyTjrrLOwfPlylzOriPwJ2/rIV+bMmYOwsDB7a9/WrVthNpvt86MWLVqEsLAwLF++\n3O0wdMXcuXMREhKCtWvXAvgpkEpOTmY4RQGBbX1EAzNu3DgsXboUK1ascFoxazabsWPHDtTX13MD\njQC1du1ahIeH46KLLtJ6KUSDDsOpQU4IgcWLF2P79u32q/lE/qyurg7x8fHcnpe8Ljo6Gpdddhle\neukl1NfX2wOkadOmAQASExNx1VVX4dVXX8WWLVsAdJ54uBIXF4fp06d3CacSExNx0003YcuWLTCZ\nTF7+jYgGhuEU0cA98sgjSE5OxuOPP97jvoqKClitVgDoMfOQ/J+UEqtXr8bs2bP5PknkBQyngsB1\n112HqKgoPP/881ovhahXdXV1bOkjn3niiSdgMplw7733orS0FOPHj0d8fLz9/sWLF6OxsRF/+9vf\nMGLECMTFxbk9XnFxMSorK1FdXY3169fDYDBgxowZsFgs9oCLyF8pM6fY1kfUf1FRUbj99tvx3nvv\noba2tst9ZWVlAIBRo0bZL2RQ4Ni1axcOHjyIoqIirZdCNCgxnAoC0dHRuPXWW/Haa6/ZW1OI/BXD\nKfKlnJwc3H///Vi5ciW++OILe0ufYtq0aRgzZgwaGxvdtvQplC+szz33HA4dOgSDwYCpU6dCCMHW\nPvJ7rJwiUsedd94JKWWPnfvKysqQkJCAxYsXY9u2bfj+++81WiH1x6OPPorw8HBcfvnlWi+FaFBi\nOBUkHnnkEcTGxuKuu+7i7CnyawynyNcefPBBjBw5ElartUc4pbRGA3A7DF2RnZ2NsWPH4h//+AeA\nzh384uLiMGHCBIZT5PcYThGpY+TIkZg7dy5eeumlLjvClpWVobCw0D5M+7333tNqidRHn376KVat\nWoWHHnqIc1GJvIThVJBISEjAE088gQ0bNuDVV1/VejlETnV0dKC+vp4f+uRTkZGRWL58OcaOHYvZ\ns2f3uP+mm27CpEmTcOmll3p0vKKiIlgsFsTExGDChAkAOkOqTZs22WeNEPkjtvURqWfx4sU4cuQI\n3n//fQBAW1sbKisrUVhYiLy8POTm5nLuVIAwm81YsmQJsrOzcd9992m9HKJBi+FUELn11lsxZcoU\n/OpXv8IPP/yg9XKIejh+/Dja29tZOUU+d9FFF2Hnzp1ISEjocV9sbCzKy8sxa9Ysj46lXBGfNm0a\n9Ho9gM5wymg0ory8XL1FE6mstbUV4eHh9r+3RNR/l112GUaMGIGSkhIAwI4dO9De3o7CwkIAnRcy\nPv/8czQ3N2u5TPLAU089haqqKjzzzDPcsIfIixhOBRGdTofnn38eLS0tOOecc/Ddd99pvSSiLurq\n6gCA4RQFtHPPPRczZ87E9ddfb7/NYDBACIFPPvlEw5URudfa2sqWPiKVhISE4Oc//zk+/PBDfPHF\nF/Zh6AUFBQA6wyur1cqWbz936NAh/OEPf8CVV16Jiy++WOvlEA1qDKeCzMSJE/HVV18B6Lyqz153\n8icMp2gw0Ov1+OKLL7BgwQL7bcnJyTj33HPZwkF+rbGxkeEUkYqWLVuGkSNHYsmSJdi0aROSk5OR\nnp4OADjvvPMQFhbGcMrPLV26FDqdDn/961+1XgrRoMdwKgidffbZ2Lp1K0aPHo2bb74ZJ06c0HpJ\nRAAYTtHgVlxcjLKyMvvfcyJ/IaXEE088gddff91e1UFEAxcZGYm///3v2L17N9544w0UFhZCCGG/\n75xzzmE45cfee+89rF69Gr/97W+RkZGh9XKIBj2GU0EqJSUFr776KpqamvDAAw9ovRwiAEB9fT0A\nIDU1VeOVEKmvqKgIAHdnIv8ipcTtt9+OBx54ANdccw1Wrlyp9ZKIBpV58+bh8ssvh5TSPm9KYTAY\nUFZWZt8pk7T3zTff4Je//CV++ctf4q677sKYMWOwdOlSrZdFFBS8Gk4JIVYIIY4JISpd3C+EEH8X\nQuwXQuwQQkxyuO9mIcS+0z83e3OdwWrs2LG455578M9//hObNm3SejlEqKurQ1JSEsLCwrReCpHq\nxo0bh5EjR7K1j/zKkSNH8K9//QtLlizBypUrERkZqfWSiAadv/3tb5gwYQLmzZvX5XaDwQCbzYbN\nmzdrtDLq7q677kJJSQlee+01CCHw4osv8nspkY94u3LqZQDuJsddAiDn9M9CAM8DgBAiHsAjAM4F\ncA6AR4QQcV5daZD67W9/i/T0dNx11128akOaq6urY0sfDVpCCBQXF+Ozzz7j+y35jUOHDgHorO5Q\n2o2ISF1ZWVnYvn07Jk+e3OX2888/Hzqdjq19fqKsrAzl5eX4y1/+goaGBtTU1GDq1KlaL4soaHg1\nnJJSlgJocPOQywH8r+z0NYBYIcRwAHMBfCKlbJBSngTwCdyHXNRPUVFReO6551BRUYGpU6eipqZG\n6yVREKurq8Pw4cO1XgaR1xQVFcFkMuHTTz/VeilEAGD/3M/KytJ4JUTBJzo6GpMmTWI45SeWL1+O\nIUOG4MYbb9R6KURBSeuZUyMAHHb4c+3p21zdTl5QVFSE999/HwcPHsTkyZOxceNGrZdEQYqVUzTY\nGQwGxMTEsLWP/IYSTmVmZmq8EqLgZDAY8PXXX8NsNmu9lKDW2NiIN954A9deey1iYmK0Xg5RUNI6\nnBowIcRCIUSZEKLs+PHjWi8nYF188cXYsmULYmJiMGvWLKxYsULrJVGQsdlsOHr0KMMpGtRCQ0NR\nVFSEt99+G0ajUevlEKGmpgaJiYkYOnSo1kshCkoGgwFmsxlbt27VeilB7fXXX0draysWL16s9VKI\ngpbW4dQRAI77cqafvs3V7T1IKV+QUhZKKQuTkpK8ttBgMHr0aHzzzTeYMWMGbr/9dixbtgw2m03r\nZVGQOHbsGDo6OhhO0aB3xx13oLGxEatWrerT86xWKx5//HGcOnXKSyujYFRTU8OWPiINTZs2DQCw\nfv16jVcS3JYvX46zzz67x46KROQ7WodTawDcdHrXvvMANEop6/9/e3ceVlW1/3H8vQARB9LScq6c\nyhxKE9NM0TLnRHMotdLudQCc7ZbDNa1MK7VSKhXMssFugzaB6a80Z80BZ72KCqYMZs6zIrB/fzBc\nVFCQc9gH+LyeZz0e9rS+5zxL2Oe71wD8CrQyxtyeMhF6q5Rt4mS33347ixYtYsiQIUydOpWnnnpK\nX4QkVyxduhRIXkVSJD/z9fWlRo0ahISEZOu8ZcuWMXr0aKZOneqkyKQgUnJKxF6lSpXioYce4rff\nfrM7lALr5MmTbN++nWeffVYLQ4jYyKnJKWPM18AfwP3GmBhjTB9jTIAxJrW/5EIgCtgPfAwMALAs\n6wTwJrAxpYxP2Sa5wMPDg6CgIGbNmsXSpUtp1KgRe/futTssyedCQkKoVq0aTZs2tTsUEacyxuDv\n78/69evZunVrls8LDw8HYPbs2Wm9Wo8cOcJbb73FlStXnBKr5G+WZSk5JeICnnrqKdasWcPx48ft\nDqVAiouLA7QwhIjdnL1aXw/LsspZllXIsqyKlmV9YllWsGVZwSn7LcuyBlqWVdWyrDqWZYWnO/dT\ny7KqpZQ5zoxTMtavXz+WLFnC8ePHadiwoZ7oiNPs2rWL1atX079/f9zc7O7QKeJ8vXr1wsvLK1u9\np8LDw3F3dycuLo4FCxYAMGDAAMaMGaPV/+SWHDt2jIsXL+oLmYjN/Pz8SExMZNGiRXaHUiClJqc0\ntYSIvfQtUG7I19eXjRs3UqlSJdq2bcvHH39sd0iSD8THxzN58uS0yT9DQkLw9PTkxRdftDcwkVxy\nxx138MwzzzB37lzOnj2bpXM2bdrE008/Tfny5QkJCWHRokX88MMPAFr9T25J6kp9Sk6J2MvHx4ey\nZcsSFhZmdygFkpJTIq5BySm5qXvvvZc1a9bQsmVLBg0apCF+kiN///03LVq0YOTIkTRt2pRZs2bx\nxRdf0KVLF7SogRQkAQEBnDt3jq+//vqmx/79998cOnSIRo0a0bdvX3799Vf69+/P/fffT/v27QkL\nC8OyrFyIWvKT1OTUvffea28gIgWcm5sbTz31FIsWLSI+Pt7ucAqcw4cPA1CuXDmbIxEp2JSckizx\n9vbm888/p0iRIgwcOFBfguSW/PnnnzRo0IDw8HA+/vhjGjdujL+/P6dPn9bSvVLgNGrUiDp16hAc\nHHzT36mbNm0Ckp+u9+3bF2MMMTExTJ8+na5duxIbG8uWLVtyI2zJR9RzSsR1+Pn5cfbsWa3aZ4O4\nuDhKlChBsWLF7A5FpEBTckqyrEyZMkyYMIElS5Ywb948u8ORPOibb77h0KFDrFy5Mq33x7Bhw+jc\nubMmQpcCxxhDQEAAW7ZsSZvsPDOpyal69epRqVIlBg4cyODBg2nRogXt27fHGKOhfZJtBw8exNvb\nm5IlS9odikiB16JFC4oUKaKhfTaIi4tTrykRF2DyUw8YHx8f62Y3+JIziYmJNGjQgCNHjrBnzx68\nvb3tDknykIEDB/L1119z4oQW3xQBOH36NOXLl6dHjx7Mnj070+M6derEnj172LNnT4b7H3vsMS5d\nupSWxBLJik6dOhEZGcmOHTvsDkVESO49tX37dg4cOIAxJlvnzp07l4ceeog6deo4Kbr8q3HjxhQp\nUoTff//d7lBEXJoxZpNlWT7Our56Tkm2uLu7M3PmTA4fPswbb7xhdziSx8TExFCxYkW7wxBxGSVK\nlKBnz558/fXXnD59OtPjwsPD8fHJ/F7Az8+PzZs3ExMT44wwJZ86ePCghvSJuJAuXbpw8OBBVq9e\nna3zkpKS6Nu3L5MmTXJSZPlbXFycJkMXcQFKTkm2NWzYkL59+zJt2jQ9bZVsiYmJoVKlSnaHIeJS\n/P39uXDhArNmzcpw/19//UVsbCz169fP9Bp+fn4AGg4i2aLklIhr6datGyVKlCAkJCRb5x07dozL\nly+zc+fODPevWbOGH3/80REh5juWZSk5JeIilJySW/L2229TsmRJTY4u2aKeUyLX8/HxoWXLlowY\nMYKJEyde9zs1/WTomalRowY1atRg7ty5To1V8o8zZ85w8uRJJadEXEjRokV54YUXmDdvHseOHcvy\neam9Znfv3k1CQsJ1+8ePH09gYKDD4sxPjh8/zpUrV5ScEnEBSk7JLSlVqhSTJk1i1apV2X66IwXT\n5cuX+fvvv5WcEsnAzz//TM+ePXn11Vdp1aoV/v7+aWXixIkYY6hXr16m5xtj6NevH2vXrmX79u25\nGLnkVVqpT8Q1+fv7Ex8fz+eff57lc1KTU/Hx8ezfv/+6/ZGRkRw5coSjR486LM78Ii4uDkDJKREX\noOSU3LJ//OMftGjRgsDAQMaPH68eVHJDsbGxAEpOiWSgSJEizJ07l0mTJrFnzx5CQ0PTyoEDB+jW\nrRvFixe/4TV69+5N4cKF9cBAskTJKRHXVLt2bR577DFCQkKyfG8dHR2d9vraKTcSEhLS/r/v2rXL\ncYHmE4cPHwaUnBJxBUpOyS1zc3NjwYIF9OrVi9dee40ePXqQlJRkd1jiolKf6mnOKZGMGWMYMWIE\n0dHRHD58+Kry7bff3vT8UqVK0a1bN7788kvOnTuXCxFLXqbklIjr8vf3Z9++fSxbtixLx8fExODh\n4YGbm9t1805FR0enDfXTXLHXU88pEdeh5JTkiJeXF5999hkTJkzg22+/veFS6FKwpSan1HNKxHkC\nAgI4e/Ys33zzjd2hiAtLSEhg1qxZ3H333ZQpU8bucETkGt26dcPb2zvLv8tjYmKoUKEC1apVuy45\nFRUVlfY6swnTC7LU5FS5cuVsjkRElJySHDPG8O9//5vmzZszevTobE3gKAVHanKqQoUKNkcikn81\nbtyYWrVqMWHCBPr160dgYCDbtm3L8Njvv/+e5cuX526A4hI++ugjtm/fzvvvv4+bm24FRVyNl5cX\nbdq0ISwsLEujElJXQ65Tp851vaMiIyMBuPfee5WcykBcXBy33347Xl5edociUuDpjkQcwhjD9OnT\nOXPmDKNGjbI7HHFB0dHRlChRAm9vb7tDEcm3jDGMHTuWxMREFi5cyJdffknjxo35/vvvrzouKSmJ\n/v37M2LECJsiFbvExcUxbtw42rRpQ+fOne0OR0Qy4efnx19//ZW2YuuNpK6GXLt2bfbv38/FixfT\n9kVFRVGoUCHatGnDzp07NUfsNeLi4jSkT8RFKDklDlOzZk2GDx/OJ598wtq1a+0OR1xM6o2TiDjX\ns88+S3R0NLGxsezfv58HH3yQrl278v7776cd89///pcTJ06wefNmzp49a2O0kttefvll4uPj+fDD\nDzHG2B2OiGSibdu2uLm5ERoaesPjLMu6KjllWRa7d+9O2x8ZGUnlypV56KGHOHPmzFWTp4uSUyKu\nRMkpcahx48ZRsWJFBgwYkDb5ogj8r8u5iOSesmXLsmzZMtq2bcu4ceO4dOkSACtXrgQgMTGRP/74\nw84QJRctXbqUr7/+mpEjR1KtWjW7wxGRGyhVqhRNmjS5aXLq+PHjXLp0iYoVK1KnTh3g6onPo6Ki\nqFKlCrVr1wY079S1lJwScR1KTolDFS9enKlTp7Jt2zZmzJiRpXNmz57N+vXrnRyZ2E09p0Ts4eXl\nxUKXo30AACAASURBVODBgzl//nzayk8rV67krrvuwt3dPS1RJflbfHw8AwcOpEqVKhp+L5JH+Pn5\nsX379rTVNTOSfjXkqlWrUrhw4bQElGVZREZGUrVqVWrVqgVoxb70kpKS+Ouvv5ScEnERSk6Jw3Xp\n0oVWrVoxduxYDh8+fMNjjx8/jr+/P4MHD86l6MQO8fHxHDlyRMkpEZs8/vjjFCtWjLCwMCzLYuXK\nlbRo0YL69esrOVVAvP/+++zZs4cPP/yQIkWK2B2OiGRBhw4dAAgLC8v0mPSrIXt4ePDAAw+kJadO\nnjzJ6dOnqVKlCrfffjsVK1ZUz6l0jh07RkJCgpJTIi5CySlxOGMMH330EZcuXcLPz48+ffowcOBA\n9u3bd92xCxcuJCkpiY0bN7J582YbopXcEBcXh2VZSk6J2MTLy4tWrVoRFhbG/v37OXz4MM2aNcPX\n15f169enDfeT/OnQoUO8+eabdOrUiXbt2tkdjohk0X333cf999/Pzz//nOkx6ZNTwFUr9kVFRQFQ\npUoVAGrXrq3kVDpxcXEAlCtXzuZIRASUnBInqV69OtOmTePIkSP89ttvzJkzh4YNG7JkyZKrjgsN\nDeWuu+6iSJEihISE2BStONu1N04ikvv8/PyIiYnhgw8+AMDX1xdfX1/i4+PZsGGDzdGJMw0bNgzL\nspg2bZrdoYhINnXu3Jlly5al3UtdKzo6Gnd3d8qUKQPAo48+SmxsLJs3byYyMhKAqlWrAsmJq927\nd2te2BSpySn1nBJxDUpOidMEBgZy6NAhoqOj2blzJxUqVKBNmzbMmTMHgMuXL/Prr7/SsWNHunfv\nzn/+8x+tGpVPpZ8PQUTs0a5dO4wxBAcHU7p0aWrUqEGTJk0wxmhoXz62cOFCfvzxR8aNG8c999xj\ndzgikk19+vQhMTGRTz75JMP9MTExlC9fHnd3dwB69OiR9tA3tedU5cqVgeSeU5cvX85wNENBpOSU\niGtRckpyRZUqVVi7di3NmzdnwIABHDhwgBUrVnD27Fn8/PwICAjg3LlzfPXVV3aHKk6gnlMi9rvr\nrrt49NFHSUhIwNfXF2MMt99+O3Xq1FFyKp+6ePEigwcPpkaNGrz00kt2hyMit6Bq1aq0atWK2bNn\nZ9jj6drVkEuWLEmPHj346quv2LJlC2XKlKF48eIAPPjggwBs27Ytd4J3cYsXL+b2229XckrERSg5\nJbnG29ubzz77DHd3d4YMGUJoaChFihShRYsWNGjQgLp16xIcHIxlWXaHKg4WExODt7c3t912m92h\niBRofn5+QPKQvlTNmjVj7dq1xMfH2xWWOMnkyZOJiopi+vTpeHp62h2OiNwif39/YmJiWLhw4XX7\nMloN2d/fn/Pnz/P999+nzTcFUKtWLQoXLkx4eLjTY3Z1R44c4ccff6R3794UKlTI7nBEBCWnJJdV\nrFiR119/nQULFvDpp5/SsmVLihQpgjGGoUOHsm3bNvWeyoeio6PVa0rEBfTo0YPGjRvTqVOntG1+\nfn6cP38+bS4qyR8uXrxIUFAQTz/9NE888YTd4YhIDnTo0IFy5cpdNz+rZVkZ3mM1aNCAevXqkZSU\nlDbfFEChQoWoW7cumzZtypW4XdmcOXO4cuUK/v7+dociIimUnJJcN3ToUGrVqsXFixfTnuID9OrV\ni4YNG/Lyyy9z6tQpGyMUR0pKSmL//v1KTom4gLvvvps1a9ZcNffQk08+SYcOHXj99dcznXBX8p55\n8+Zx8uRJBg8ebHcoIpJDhQoVok+fPixatIhdu3albT958iQXL1687h7LGJOWdEnfcwqgfv36bNq0\niaSkJOcH7qKSkpKYNWsWzZo1o0aNGnaHIyIplJySXFeoUCFmz5593dN7Nzc3ZsyYwdGjRxk3bpyN\nEYqjnD17ls6dO7N9+3ZatWpldzgikomgoCASExMZPny43aGIg4SEhHDffffRvHlzu0MREQcICAjg\njjvuoGnTpvz+++/Ajef07NmzJy1atKBNmzZXbffx8eHs2bMFelL0xYsXc+DAAQICAuwORUTSUXJK\nbNGoUSPWrFlDqVKlrtr+8MMPExgYyPTp09m6datN0YkjnDp1iscee4wFCxbwwQcf8K9//cvukEQk\nE5UrV2bMmDHMnz+fxYsX2x2O3ERkZCTjx48nMTExw/3bt29n7dq1+Pv7Y4zJ5ehExBkqVKjAhg0b\nKF++PK1bt6Z79+68/PLLQMarIXt7e7NkyRIeffTRq7b7+PgAFOh5p1JXrX366aftDkVE0lFySlzO\nhAkTKF68OO+++67doUgOhIWFsWPHDubPn8/gwYP1BUnExb3yyivcfffdTJo0ye5Q5CY+//xzXnvt\nNWbOnJnh/pCQEAoXLkzv3r1zOTIRcaYqVarwxx9/8Oyzz7J+/Xr27dtH/fr1qVmzZpav8cADD1Ck\nSJECO+/U6tWr+emnnwgICKBw4cJ2hyMi6Sg5JS6nZMmS9OrVi3nz5nHs2DG7w5FbFB4eTtGiRenQ\noYPdoYhIFhQuXJj+/fvz+++/F+jhHnlBREQEAK+++ipHjhy5at+RI0eYO3cu3bp1u653sojkfd7e\n3nz11VccOHCAAwcOEB4enq3VkD08PKhbt26B7DmVkJDAgAEDqFSpEqNGjbI7HBG5hpJT4pL8/f2J\nj4/n888/tzsUuUWbNm2iXr16uLu72x2KiGTRP//5Tzw8PJg1a5bdocgNREREULNmTS5cuMArr7yS\ntn3Lli00aNCAK1eu8NJLL9kYoYi4Mh8fHzZv3pzp0OD86sMPP2THjh0EBQVRrFgxu8MRkWsoOSUu\nqXbt2jz22GOEhIRgWZbd4Ug2JSQksGXLlrR5DUQkbyhXrhwdO3Zkzpw5XLp0ye5wJANJSUns27eP\nli1b8sorr/Dll1/SvXt3nn/+eZo0aYJlWaxevZp69erZHaqIuCgfHx/Onz+f1guzIPjrr7947bXX\naNu27VULMomI61BySlyWv78/+/btY9myZXaHItm0Z88eLly4oOSUSB7k7+/P8ePH+eGHH+wORTIQ\nGxvLhQsXuP/++xkzZgxt27Zlw4YNrF27lmbNmrFx40Yefvhhu8MUERdWv359gAI179TMmTM5d+4c\nQUFBmgdVxEUpOSUuq2vXrtxxxx2ZTvgqriv1Zif15kdE8o4WLVpQtWpVZs6cqZ6rLii1p8P9999P\n0aJFWbhwIVFRUURFRbFw4ULKli1rc4Qi4upq1KhB0aJF2bhxo92h5IqEhARmz55N27ZtqV69ut3h\niEgmlJwSl1WkSBH8/f2ZP38+f/zxh93hSDaEh4dTvHhx7rvvPrtDEZFscnNzY8iQIaxevZrQ0FC7\nw5FrpE9OiYjcCnd3d5o2bcpPP/1UIOadWrBgAXFxcfj7+9sdiojcgJJT4tJGjx5N+fLlGTBgAAkJ\nCXaHI1kUHh7Oww8/rMnQRfKowMBAatWqxdChQ7lw4YLd4Ug6e/fupXjx4pQvX97uUEQkD+vXrx/R\n0dEsWrTI7lCcLjg4mIoVK9KuXTu7QxGRG1BySlyat7c3U6dOZevWrRrel0ckJCSwdetWDekTycMK\nFSrEjBkzOHjwIBMnTrQ7HEknIiKC++67T3OmiEiO+Pn5UbZsWUJCQuwOxamioqL47bff6Nu3Lx4e\nHnaHIyI3oOSUuLxu3brRsmVLXn31Vfbv3293OHIT//3vf7l06ZImQxfJ43x9fenVqxdTpkyhZ8+e\nPPfcc3z44YcuNw/VpUuXmDBhAtu3b7c7lFwRERGhIX0ikmOFChWiT58+LFy4kEOHDtkdTrYdPHiQ\nMWPGcPny5RseN2vWLIwx9OnTJ5ciE5FbpeSUuDxjDNOnT8fDw4OGDRtq9T4XFx4eDqDklEg+MHny\nZBo3bszGjRtZvXo1Q4YMoXv37i4z1O/w4cM0a9aMsWPHMmnSJLvDcbqLFy9y8OBBzecnIg7Rr18/\nLMti9uzZdoeSbd9++y1vvfUW77//fqbHHDx4kA8++ICuXbtSsWLFXIxORG6FklOSJ1SvXp0NGzZQ\npkwZWrVqxZdffml3SJKJ5cuXc9ttt1GtWjW7QxGRHCpTpgzLly9n3759/Pnnn0yaNIl58+bRtGlT\nTp06dcNzV61a5dTh2JGRkTRo0IBdu3ZRu3ZtVqxY4XK9uhwtMjISy7LUc0pEHOKee+6hbdu2zJ49\nmytXrtgdTrZERUUB8Oabb3Lw4MEMjxk6dCjGGN59993cDE1EbpGSU5JnVK1alXXr1tG4cWMCAwOJ\niYmxOyRJ58qVKwQGBvLll1/yzDPP4OamXy8i+YkxhhEjRvDTTz+xdetWXn311RseP2HCBAYPHszJ\nkyedEs+MGTM4evQoa9euJTAwkNjYWP7880+n1OUqtFKfiDiav78/hw8fZsGCBXaHki2RkZFUrlwZ\nYwzDhg27bv8vv/zCzz//zLhx46hUqZINEYpIdunbo+Qpt912G5999hmJiYkMHz7c7nAkxfHjx2nV\nqhXBwcGMGDGC4OBgu0MSESfx8/NjwIABzJw5k82bN2d4TEJCAmvWrCExMdEpK0FZlkVoaCiPP/44\nDz74IL6+vgCsXLnS4XW5ktTklIb1iYijtGvXjooVK9p+77Zp06ZsLcARFRVFw4YNGTt2LD/99BOd\nOnWiR48eaaVfv3488MAD+r4gkoc4NTlljGljjIkwxuw3xozKYP9UY8zWlLLXGHMq3b7EdPtCnRmn\n5C2VK1dmzJgxzJ8/n99++83ucAq8Xbt20aBBA9auXcsXX3zBpEmTcHd3tzssEXGiN998kzvvvJPA\nwECSkpKu279lyxbOnz8PQGio4/+ER0REsH//fvz8/ACoWbMmd9xxR4FITlWoUIHixYvbHYqI5BMe\nHh707duX3377LW2oXG67fPkyPXr04NVXX83S5OxXrlzh4MGDVK1alZdeeokuXbqwe/duNm/enFbK\nlCnDp59+iqenZy68AxFxBKclp4wx7sB0oC1QE+hhjKmZ/hjLsoZbllXXsqy6wIfAD+l2X0zdZ1mW\nn7PilLzplVdeoXr16gwaNOimq3SI47399tt0796dZ599lkaNGnHx4kVWrFjBCy+8YHdoIpILSpYs\nyZQpU9iwYUOGE+muWLECgPbt2/N///d/xMfHO7T+sLAwADp06ACAm5sbTZs2LRDJKQ3pExFH69u3\nL+7u7syaNcuW+qdMmcK+ffuArPWAjY6OJjExkSpVquDp6cn8+fOJiIi4qmzZsoVGjRo5O3QRcSBn\n9px6BNhvWVaUZVnxwDdAxxsc3wP42onxSD5SuHBhPvroI/bt28eUKVPsDqdAuXjxImPGjGHp0qVs\n27aNJk2asHHjRt0AiBQwzz//PL6+vowePZpjx45dtW/lypXcd9999OvXj9OnT7Nq1SqH1h0aGkrd\nunWvmkfE19eX/fv3ExcX59C6XEVcXBzh4eE88sgjdociIvlMhQoVeOqpp5gzZ47DHybczIEDB5g4\ncSKdO3emRIkSWUpORUZGAsnz0YpI/uHM5FQFIDrdzzEp265jjLkHqAwsTbfZyxgTboxZZ4zp5Lww\nJa9q1aoV3bp1Y+LEiRw4cMDucAqMffv2YVkWH374IXv27GHRokVanlekADLGMGPGDM6cOcOoUf8b\nuZ+UlMSqVavw9fXlySefxMvLy6FD+44dO8batWvThvSlatasGZB/55365JNPSExMpE+fPnaHIiL5\nUEBAAH///Tc//PBDhvt//vln/vOf/zi83pdeegl3d3eCgoJo0qRJln6Hpw4/rFKlisPjERH7uMqE\n6N2B+ZZlJabbdo9lWT5AT2CaMSbD1Lgxpn9KEiv86NGjuRGruJD3338fd3d3hgwZYncoBcbevXsB\nTcgrIlCrVi2GDRvGJ598wtq1awHYuXMnp06dwtfXl2LFitGiRQvCwsKwLMshdS5cuJCkpKTrklMP\nPfQQ3t7e+TI5lZiYyMcff0zLli2pVq2a3eGISD7UqlUrHnjgAcaMGcPFixev2z9q1CgGDx5MQkKC\nw+q8cOECoaGhDBgwgIoVK+Lr60tERARHjhy54XmRkZF4enpSoUKG/R5EJI9yZnIqFki/bmfFlG0Z\n6c41Q/osy4pN+TcKWA7Uy+hEy7JmWZblY1mWz5133pnTmCWPqVixIq+//joLFixwyqS7cj2tFiUi\n6b322mtUqFCBgIAATp8+nZYcSl1Bz8/PjwMHDrBjxw6H1BcaGkr58uV5+OGHr9ru4eHBY489xvLl\nyx2WCHOkb7/9li+++OKWYlu0aBHR0dH4+/s7ITIRkeS5+z766COioqKYNGnSVfv+/vtv9uzZw4kT\nJ9IeRDjC1q1bSUpKokmTJsD//m7cbCh4VFQUlStXxs3NVfpZiIgjOPN/9EagujGmsjHGk+QE1HXZ\nA2NMDeB24I902243xhROeV0aeAz4rxNjlTxs6NCh1KpViyFDhnDhwgW7w8n3IiIiqFixIsWKFbM7\nFBFxAcWLFyc4OJjdu3fTqFEjvv32W+6++27uueceADp16kSxYsUYO3Zsjuu6fPkyv/76Kx06dMAY\nc93+Tp06sXv37kyHpdhp1KhR9O7dG39//2zP6RISEkLZsmWv6y0mIuJITzzxBD169OCdd95h//79\nadvTJ4sc+TA4PDwcAB8fHwAefvhhihYtetMesJGRkZpvSiQfclpyyrKsBGAQ8CuwG/jOsqxdxpjx\nxpj0d1fdgW+sqx8lPgCEG2O2AcuAdyzLUnJKMlSoUCFmzJjBwYMHeeutt+wOJ9/TalEicq2nnnqK\nxYsXc/ToUVavXp329Bvgrrvu4rXXXiM0NDRtlb1btXz5cs6dO5dpkqZPnz7UrVuXoUOHcu7cuRzV\n5Ujx8fEcOnSIatWq8fHHH9OqVSsuXbqUpXP//PNPFi5cSJ8+fShUqJCTIxWRgu69997D09OToUOH\npm1buXIlRYsW5fHHH8/x7/H0Nm3aRNmyZSlfvjwAnp6ePProozdMTlmWRVRUlOabEsmHnNoX0rKs\nhZZl3WdZVlXLsiambBtnWVZoumNetyxr1DXnrbUsq45lWQ+l/PuJM+OUvM/X15cXXniBKVOmpA07\nE8ezLEvJKRHJUPPmzdmwYQN+fn7079//qn3Dhg2jZs2aOe7hGhoaStGiRXniiScy3O/h4cGMGTOI\njY1l/Pjxt1yPox06dIikpCTGjBnD559/zooVK5g8eXKWzh05ciSenp7XfaYiIs5Qrlw5/v3vf7Nw\n4UJ27doFJCenHn30Ubp06cLevXsddq8dHh6e1msqla+vL9u3b+fkyZMZnnPixAnOnDmjnlMi+ZAG\n6kq+MWXKFIoUKYK/v3+GEzlKzh09epTTp09rvikRyVCVKlX4+eefadq06VXbCxUqxPTp0/nzzz95\n++23b+nalmURFhZGq1at8PLyyvS4Rx99lD59+jB16lR27959S3U5Wuqy51WqVKFXr148++yzvP32\n22krTmVmyZIlfPfdd4wePZq77747N0IVEaFv3754enoSEhLCqVOn2LZtG76+vnTo0AHAIb2nzp07\nx+7duzNMTlmWlWnvqfS/T0Ukf1FySvKNMmXKEBQUxMqVK2nWrBmxsZnNvy+3KvVJmXpOiUh2NW/e\nnOeee47JkyenrfqZHdu2bSM6OjpL8y698847FCpUiGnTpt1KqA6XmoRKfdL/3nvv4eHhwZAhQzKd\nIP3y5csMHDiQatWqMWLEiFyLVUSkdOnSdO3alS+++ILFixdjWRa+vr7cfffd1K1b1yHzTm3ZsgXL\nsqhfv/5V2xs1akTZsmWZMGECiYmJ15137e9TEck/lJySfKV379789NNPaU9iunbtSteuXZkzZ47d\noeULSk6JSE68++67eHl5MWjQoGyvWhcaGooxhvbt29/02NKlS9O9e3e++uorzpw5A8Dhw4cZMmSI\nLXNRRUZGUrhwYcqVKwdAhQoVeOONN/jll18y/ZI3depU9u7dy0cffXTDnmIiIs6QugLriBEj8PT0\npGHDhgB06NCBNWvW8Pfff+fo+ps2bQK4Ljnl5eXFe++9R3h4OB9//PF156X2nKpcuXKO6hcR16Pk\nlOQ7fn5+/PHHH9x3333s2bOH9evX07dvXzZv3mx3aHleREQEhQsX1vASEbklqU/DFy9ezPz587N1\nblhYGI0aNeKuu+7K0vEBAQGcP3+e//znPwAMGTKEDz/8kF9++SXbcedU6uS96Zc9Hzx4MLVr12bI\nkCGcP3/+quPj4+OZOnUq7dq1o3Xr1rkdrogITZo04YEHHuDPP//kkUceoUiRIgD06NEDgNdffz1H\n1w8PD6dChQppSfv0evToweOPP86///1vjh49etW+qKgoypYtS9GiRXNUv4i4HiWnJF+qXbs2K1as\nYOfOnezYsYM777yTAQMGkJSU5LQ6k5KSGD16dL6ekD0iIoLq1avj7u5udygikkcFBgZSt25dhg8f\nztmzZ7N0TlxcHOHh4WnznWRFgwYNqFu3LsHBwfz6669pybCbLVGe6vLlywwfPpzDhw9nuc7MREZG\nXjc/SqFChZg5cyaHDh1i4sSJV+376aef+Pvvvxk0aFCO6xYRuRXGGAICAgCuWoH1gQceYNCgQQQH\nBxMeHn7L189oMvT0dX/00UecPXuWli1b0qVLl7Tyyy+/aEifSD6l5JTkeyVLlmTKlCmsX7+eTz5x\n3sKP27Zt45133mHq1KlOq8Nue/fu1WToIpIjt7Ki3urVqwFo1apVlutJ/WK1bds2nnvuOe677z6a\nN2+e5eTUunXrmDZtGu+++26W68xI6rLnGX2ZatKkCb179+bdd99lz549aduDg4O59957s/V+RUQc\nrXfv3rRr1y6tt1Sq8ePHU6ZMGQYMGJDhvFA3c+bMGfbu3XvdkL70atasyQcffEBiYiJ79+5NK3fe\neSfPPfdctusUEden5JQUCM8//zy+vr6MGjXqpqsj3arULzxhYWFO7aFllytXrhAZGan5pkQkx9Kv\nqLdz586bHh8eHk7hwoWpU6dOturp2bMnxYsX5/jx40yfPp0nn3ySnTt3cvz48Zuem/q34rPPPuPS\npUvZqje9o0ePcu7cuUxXlpo8eTLFihXD39+fCxcuEBERwbJly+jXr596qYqIrUqUKMEvv/xC7dq1\nr9v+3nvvsXHjRt5777207adPn2b48OEsWbLkhtddvnw5lmVl2nMqVWBgIDt27LiuBAYG3vqbEhGX\npeSUFAjGGGbOnIllWTzyyCMsX77c4XWkJqfi4uLy5fxWBw4cICEhQckpEXGId955hxIlSjBw4MCb\nTo4eHh7Ogw8+iKenZ7bq8Pb25o033mDEiBE8+eSTaUNTUnti3UjqpLsnTpzI9vxY6d1sZam77rqL\nDz74gFWrVuHr68uECRPw8PDgn//85y3XKSLibD169KBTp06MHDmSYcOGsWfPHho1asS0adNo3bo1\nQUFBGf5u/+677+jevTv33HMPjz32mA2Ri4irUnJKCoyaNWuyfv167rzzTlq2bElISIjDrm1ZFitX\nrqR9+/a4ubkRFhbmsGvbLTg4mM6dO9OnTx9AK/WJiGOULl2at99+m5UrV6ZNWp6RpKQkNm3adNMn\n7Jl56aWXmDRpEpA8D1XhwoWzNLQvKiqKe++9l+rVqxMcHHxLdcP/klyZ9ZwCeOGFF/j555+JiIhg\n7ty5dOrUibJly95ynSIizmaMYd68eQwdOpSgoCBq1qzJ0aNH+eWXX/Dz82PYsGE8/vjjdO7cOa20\nbduWZ599lnr16rF+/Xpuu+02u9+GiLgQJaekQKlevTrr1q2jZcuWBAQEMGjQIK5cuZLj6+7evZtj\nx47RuXNnGjdunOnS4HnNiRMnGD58OOvWreP06dO0aNGCBx980O6wRCSf6Nu3L3Xq1GHKlCmZ9p6K\njIzkzJkzt5ycSs/Ly4tGjRplKTkVGRlJtWrV6N+/P2vWrMnS8MOMpPacutmy5x06dGDdunW0b9+e\nMWPG3FJdIiK5ycPDg2nTpvHpp5/Srl07Nm7cSLt27fj+++8ZP348J06cYP/+/WklNjaWIUOGsHTp\nUsqUKWN3+CLiYpSckgKnRIkShIWF8fLLLzN9+nTat29/Swmqd955h19//RX435A+X19f/Pz82Lp1\nK9HR0Q6N+2ZWrFjBlClTHHrNL774gkuXLrFo0SK2b9/OkiVLtHSviDiMm5sbAwYMYNu2baxfvz7D\nY1JXg3JEcgqSf09v3rz5pisFRkVFUaVKFV588UU8PT2ZOXPmLdUXFRVF+fLl05Zhv5FatWqxYMEC\n6tate0t1iYjY4R//+AcLFixIS8K7ubkxduxYtm/ffl0JCgqicOHCNkcsIq5IySkpkNzd3ZkyZQoh\nISEsXryYoKCgbJ0fERHB6NGjef755zlx4gQrV66kXLlyVK1aNW2p89we2jdz5kxGjBjB3r17HXI9\ny7IICQmhYcOGPPTQQw65pojItZ577jmKFy+e6VDr8PBwvLy8qFmzpkPq8/X1JSkpibVr12Z6zJkz\nZzh27BhVq1aldOnS9OrVi48//viqFfWyKjIyUsuei4iIiNyEklNSoPXv358OHTrw+uuvExMTk+Xz\nZs2ahYeHBydPnmTMmDGsXLmSZs2aYYzh/vvvp3r16rk+tC91XpNZs2Y55HorV65kz549BAQEOOR6\nIiIZ8fb2pmfPnnzzzTecPHnyuv3h4eHUrVsXDw8Ph9T36KOP4uHhwYoVKzI9JnUoXuo8URMnTqRY\nsWIZTt6+aNEihg0bxpkzZzK91o3mmxIRERERJadECAoKIjExkZdeeilLx1+6dInPPvuMTp06MWjQ\nIIKDg4mNjU1bBcoYQ9euXVmyZAmxsbHODP0qqV+m5syZk6Nlz1OFhIRQsmRJnnnmmRxfS0TkRgIC\nArh06RJffvnlVduTkpLYvHmzw4b0ARQrVoymTZvy7bffkpSUlOExqcn+1B5Pd911F2+99RZLQV8f\nhwAAEKpJREFUly7lm2++AZJ7l06aNIn27dsTFBREo0aN2L9//1XXuXjxIrGxseo5JSIiInITSk5J\ngVe5cmXGjBnDvHnzaNu2LR07dmTkyJGZJnjmz5/PiRMnCAgI4I033khbUSk1OQXJk/wmJibyySef\n5Mp7OHXqFCdOnKB169Y5Wvb8008/pWPHjnTs2JH58+fTq1cvzTElIk5Xr149GjRowFtvvUXHjh3p\n0qULK1asYO/evZw7d86hySlI7jUbFRXFkiVLMtx/bc+p1HN8fHwYPHgwHTt2pEmTJowaNYpnnnmG\nX375hSNHjvDII4+k/Q5NLddeR0RERESuZzJbHScv8vHxsVInThXJjsuXL9O7d28iIiJISkpi+/bt\nNGrUiB9++IFy5cpddWyTJk04cuQIERERuLm5sWjRIr788kvmzp2Lm9v/8r1t2rRh165dHDhwwGHD\nUTKzefNm6tevz7x58xg9ejRly5Zl1apVWT7/ypUrDBkyhODgYKpWrYq3tzdeXl589dVX+lIlIrli\n0aJFvPrqqyQlJfHXX39x7Ngx2rVrR2hoKDt27KB27doOq+vy5ctUqlSJJk2a8MMPP1y3PzAwkHnz\n5nHs2LGrtm/fvp2BAwdy7tw5jDF0796dV155BWMMkZGRDBw4kCNHjlx1TtGiRfnmm2+oVKmSw+IX\nERERyW3GmE2WZTn2iWH66ys5JXK977//nl69elGiRImrntgnJiaycOFCpkyZwssvv3zDa/z44490\n7tyZ0NDQtEnSrzV27FhatGhB8+bNcxTvvHnzeOaZZ9iyZQtLlizhlVdeYdu2bTz44IM3PTcxMZE2\nbdqwZMkSRo4cycSJE3F3d89RPCIiOXH69Gl69uzJwoULKVq0KKdPn3Z4kn/kyJG89957HDp0iPLl\ny1+1r1WrVpw6dYoNGzY4tE4RERGRvMrZySkN6xPJQJcuXVi7di01atQgJiYmrRw+fJjHH3+cf/7z\nnze9xlNPPUX58uUJDg7OcH94eDgTJkzg+eefv+mS5jeTfgjKP/7xD0qUKMG//vWv6ybuzci6detY\nsmQJU6ZM4Z133lFiSkRsV6JECUJDQ3njjTcYOXKkU3qf9u/fP9Ph11FRUZonSkRERCQXKTklkomH\nHnqIpUuXsnnz5qvK0qVLueOOO256fqFChejTpw+LFi1KSx6lFxISQuHChYmNjWX8+PE5ijUqKorS\npUtz2223UapUKSZMmMCSJUuYN2/eTc8NDQ3Fw8ODfv365SgGERFHcnd3Z9y4cYwbN84p169atSot\nW7bk448/5sqVK2nbExISOHjwoIY0i4iIiOQiJadEnMjf3x8vLy9eeeWVq7afPn2ar7/+mueff56+\nffsydepUdu7cecv1REZGXvWUPzAwkHr16jF8+PCb9soKCwujWbNmlChR4pbrFxHJi4YPH050dDTT\npk1L2xYdHU1CQoJ6TomIiIjkIiWnRJyoQoUKjB07lh9++IH/+7//S9v+1Vdfcf78efz9/Xn77bcp\nUaIEHTt2pEOHDjzzzDNERERkq56oqKirnvK7u7szc+ZMDh8+TPPmzenQoQN9+/bl9OnTV523b98+\ndu/ejZ+fX87eqIhIHtS2bVv8/Px44403iImJAZKT/aAV9kRERERyk5JTIk72r3/9i/vvv59BgwZx\n6dIlLMsiODiYevXq4ePjQ+nSpfnss88oVaoUcXFxLFq0iBdffJGkpKQsXf/KlSscOnTouqf8DRs2\nZPLkyQDExcUxZ84cXn311auOCQsLA8h0wnYRkfwuKCiIpKQkhg8fDvxvDj/1nBIRERHJPUpOiTiZ\np6cn06dPJzIyEl9fX1q3bs2OHTsICAjAGAMkJ4c2bNjApk2bmD59OuvWrePTTz/N0vUPHTpEYmJi\nhk/5X375ZTZt2sSmTZsYMGAAM2bMYPPmzWn7w8LCqF27NpUrV3bMmxURyWPuvfdexowZw/z582nd\nujXvvfcenp6e163gJyIiIiLOo+SUSC5o0aIFb7zxBklJSZw4cYLWrVvTs2fPDI994YUXaNq0KaNG\njeL48eM3vXbqEJSbPeV/8803ufPOOxkwYEBaHKtWrdKQPhEp8F5++WV69uzJ8ePH8fb2JiAgQCuX\nioiIiOQik5Wl5vMKHx8fKzw83O4wRHJs586d1K1bl759+xIcHHzDY4ODgwkMDCQ6OpqKFSve8Ni5\nc+fywgsv0KRJE65cucL69ev5448/aNSokSPDFxERERERkXzEGLPJsiwfZ11fPadEXFDt2rXp378/\nc+bM4dixYzc8NjIyksKFC2dpCMpzzz3HkCFDuHTpEomJiXTr1o1HHnnEUWGLiIiIiIiIZJuSUyIu\nauDAgcTHx/PZZ5/d8LioqCgqV66Mm9vN/zsbYwgKCmLjxo1s3LiR7777LkvniYiIiIiIiDiLvpWK\nuKhatWrRpEkTZs2adcOV+yIjI7WqlIiIiIiIiORZSk6JuDB/f3/27dvHsmXLrtq+ePFiOnToQNu2\nbdm9e3eGK/WJiIiIiIiI5AVKTom4sK5du3LHHXcQEhICgGVZTJ06lTZt2rB161ZOnDhB/fr16dKl\ni82RioiIiIiIiNwaD7sDEJHMeXl58eKLL/LBBx/Qpk0bTp8+zbp163j66af54osvKF68uN0hioiI\niIiIiOSIek6JuLghQ4bQpEkTTp06hWVZTJw4kfnz5ysxJSIiIiIiIvmCek6JuLh77rnnujmnRERE\nRERERPIL9ZwSERERERERERHbKDklIiIiIiIiIiK2UXJKRERERERERERso+SUiIiIiIiIiIjYRskp\nERERERERERGxjZJTIiIiIiIiIiJiGyWnRERERERERETENkpOiYiIiIiIiIiIbZyanDLGtDHGRBhj\n9htjRmWw/0VjzFFjzNaU0jfdvt7GmH0ppbcz4xQREREREREREXt4OOvCxhh3YDrQEogBNhpjQi3L\n+u81h35rWdaga869A3gN8AEsYFPKuSedFa+IiIiIiIiIiOQ+Z/acegTYb1lWlGVZ8cA3QMcsntsa\nWGxZ1omUhNRioI2T4hQREREREREREZs4MzlVAYhO93NMyrZrdTHGbDfGzDfGVMrmuSIiIiIiIiIi\nkofZPSF6GHCvZVkPktw76vPsXsAY098YE26MCT969KjDAxQREREREREREedxZnIqFqiU7ueKKdvS\nWJZ13LKsyyk/zgbqZ/XcdNeYZVmWj2VZPnfeeadDAhcRERERERERkdzhzOTURqC6MaayMcYT6A6E\npj/AGFMu3Y9+wO6U178CrYwxtxtjbgdapWwTEREREREREZF8xGmr9VmWlWCMGURyUskd+NSyrF3G\nmPFAuGVZocAQY4wfkACcAF5MOfeEMeZNkhNcAOMtyzrhrFhFRERERERERMQexrIsu2NwGB8fHys8\nPNzuMERERERERERE8g1jzCbLsnycdX27J0QXEREREREREZECLF/1nDLGHAUO2h1HAVQaOGZ3EJKn\nqQ1JTqkNiSOoHUlOqQ1JTqkNiSOoHUlOZdSG7rEsy2mr0OWr5JTYwxgT7szufZL/qQ1JTqkNiSOo\nHUlOqQ1JTqkNiSOoHUlO2dGGNKxPRERERERERERso+SUiIiIiIiIiIjYRskpcYRZdgcgeZ7akOSU\n2pA4gtqR5JTakOSU2pA4gtqR5FSutyHNOSUiIiIiIiIiIrZRzykREREREREREbGNklMFiDGmjTEm\nwhiz3xgzKt32QSnbLGNM6Ruc/1XK+TuNMZ8aYwqlbH/FGLM1pew0xiQaY+7I4PyJxphoY8y5a7bf\nY4z53Riz3Riz3BhT0ZHvWxzLznZkjClqjPnFGLPHGLPLGPNOun2FjTHfpsSw3hhzr+PfvTiCC7ch\nX2PMZmNMgjGmqzPeuziGC7ehl4wx/035e/a7MeYeZ7x/cQwXbkcBxpgdKeevNsbUdMb7l5xzYhsq\nYYwJM8ZsS2kf/8hm/ZVT7oX2p9wbeTryfYvjuHAbylL94hpcuB1leN1MWZalUgAK4A5EAlUAT2Ab\nUDNlXz3gXuBPoPQNrtEOMCnlayAwg2M6AEszOb8RUA44d832eUDvlNdPAF/a/XmpuGY7AooCj6e8\n9gRWAW1Tfh4ABKe87g58a/fnpZLn2tC9wIPAF0BXuz8rlTzZhh4Hiqa8DtTvIdctLt6Obkt3nB/w\nf3Z/Xiq524aAfwOTUl7fCZwAPLNR/3dA95TXwRm1TRX7i4u3oSzVr2J/cfF2dNO/k+mLek4VHI8A\n+y3LirIsKx74BugIYFnWFsuy/rzZBSzLWmilADYAGfVw6kFyw8vo/HWWZR3OYFdNYGnK62WpcYlL\nsrUdWZZ1wbKsZSmv44HN6c7vCHye8no+0MIYY7Lz5iRXuGwbsizrT8uytgNJt/TOJLe4chtaZlnW\nhZRD12VyXXENrtyOzqQ7tBigCWJdkzPbkAV4p9zHFCf5C2FCVupPOecJku+FIPneqFMO3qc4j0u2\noezULy7BldtRVv5OplFyquCoAESn+zkmZVu2pXTHewH4v2u2FwXaAN9n85LbgM4pr58m+T9AqVuJ\nTZzOZdqRMaYkyU+kf782NsuyEoDTgNqR63HlNiR5Q15pQ32ARbcSl+QKl25HxpiBxphIYDIw5Fbi\nEqdzZhv6CHgAiAN2AEMty7r2wUlm9ZcCTqXcC+UoLnE6V21Dkre4fDvK7O/ktZScklsxA1hpWdaq\na7Z3ANZYlnUim9d7GWhmjNkCNANigcSchyku7pbbkTHGg+Qn0R9YlhXlxBjFtakNSU45pQ0ZY54H\nfIApDo5XXJPD25FlWdMty6oKjARedULM4lqubUOtga1AeaAu8JEx5ja7gpM8QW1IHMFZ7Sizv5NX\nUXKq4IgFKqX7uWLKtkwZY35NmYxzdrptr5E83vSlDE7pTiZD+m7Esqw4y7I6W5ZVDxiTsu1Udq8j\nucJV2tEsYJ9lWdMyii3lZr8EcPwm15Hc58ptSPIGl25DxpgnSf5b5mdZ1uWbXEPs49LtKJ1v0JAs\nV+XMNvQP4IeU0TD7gQNAjSzWfxwomXIvlKW4xDau2oYkb3HpdnSTv5NXs1xgEi8V5xfAA4gCKvO/\nicpqXXPMn9x4orS+wFqgSAb7SpA8BrVYFmK5dkL00oBbyuuJwHi7Py8V121HwASSh0i4XbN9IFdP\niP6d3Z+XSt5qQ+n2f4YmRHfZ4sptiOSJRyOB6nZ/Tip5uh1VT/e6AxBu9+elkrttCJgJvJ7yugzJ\nX/RKZ7V+khcbSj8h+gC7Py+VvNWGslq/iv3FldvRjf5OZhiH3R+mSu4VkmfL30vyjfOYdNuHkDw2\nNIHk8aSzMzk/IeXcrSllXLp9LwLf3KT+ySn1JKX8+3rK9q7AvpTYZgOF7f6sVFyzHZGcibeA3enO\n75uyz4vkm7H9JE+4V8Xuz0olz7WhBin1nyf5yfMuuz8rlTzXhpYAR9JtD7X7s1LJk+0oCNiVsm0Z\n13zJUHGd4qw2RPIQmt9InuNlJ/B8NuuvQvK90H6S7410b+2ixYXbUJbqV3GN4sLtKNO/kxkVk3KS\niIiIiIiIiIhIrtOcUyIiIiIiIiIiYhslp0RERERERERExDZKTomIiIiIiIiIiG2UnBIRERERERER\nEdsoOSUiIiIiIiIiIrZRckpERERERERERGyj5JSIiIiIiIiIiNhGySkREREREREREbHN/wMonVKi\ngQ1vkgAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.figure(figsize=(20,8))\n",
- "plt.plot(data_train_a['datetime'], data_train_a['cpu'], color='black')\n",
- "plt.ylabel('CPU %')\n",
- "plt.title('CPU Utilization')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABKEAAAHiCAYAAAAwM99CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmQZGd97vnnraqsyqysfemtetHS\nWrCQxNIWixlfMBrGxgt2BGP74sFwA4IlIGx8zZ0wNsHcsfE15sYQwvjaGBtjOywzaMbgDbCBsDxY\nAoQk0IKk7pbUS6mqeq2uNbOycnvnj6z31MmsXE5m5V7fT4SC7syTJ0+lUFaeJ5/fe4y1VgAAAAAA\nAEAj9bT6AAAAAAAAAND9CKEAAAAAAADQcIRQAAAAAAAAaDhCKAAAAAAAADQcIRQAAAAAAAAajhAK\nAAAAAAAADUcIBQAA0CTGmN80xvzZ1p+vM8ZYY0zf1t+/aox5WwOe8yljzGvrvV8AAIBqEUIBAICu\nYYx5izHmEWPMujHmwlaw85qt+/6rMSa1dd+yMeZbxphX+e776yL7s8aY4yWea8d9/v0YY15rjJnz\n32+t/W/W2ncW25+19iestX9Z20/uPf9fGGM+WrDf26y1/7ab/QIAANQDIRQAAOgKxpj/LOkeSf9N\n0n5JRyX9kaQ3+Tb7grV2SNK0pAckfdEYY5p9rAAAAHsRIRQAAOh4xphRSb8t6X3W2i9aa2PW2pS1\n9h+ttf+lcHtrbUrSX0o6IGmyAccTlfRVSYe2mlfrxphDpRpXW4/5N2PMO7f+/LjvcetbravXbt33\n/xhjLhpjVowx3zTG3LZ1+7sk/ZKk/33rMf+4dfs5Y8zdW38eMMbcY4xZ2PrnHmPMwNZ9rzXGzBlj\nft0Yc3mrSfaf6v3aAACAvYsQCgAAdINXSQpL+lKQjbeCl7dLesFae7XeB2OtjUn6CUkL1tqhrX8W\nqnj8ne5xkv6zpFOSvrd191cl3SRp39Zt92495jNbf/741mN/usiuf0vSKyW9RNKdku6S9GHf/Qck\njUqakfQOSf/DGDMe9LgBAADKIYQCAADdYFLSVWttusJ2P2+MWZb0gqSXS/q5hh/ZLmytZ/VRST9j\nrV2VJGvtn1tr16y1m5L+q6Q7t5pgQfySpN+21l621l6R9H9Keqvv/tTW/Slr7VckrUu6pU4/DgAA\n2OP6Wn0AAAAAdbAoacoY01chiLrPWvu/Fbk9LSnkv8EY4/6eKrGvTOFjtv5eavuqGGOOSLpP0tus\ntae3buuV9LuS/lfl1rXKbm0+JWklwG4PSTrv+/v5rducxYLXLy5pqKYfAAAAoABNKAAA0A2+LWlT\n0s/W+PhZSdcV3Ha9cuHUfJWPcSGPrfFYZIyJSPo7SfdYa7/qu+styi20frdyY3Pu+d3i6pWec0HS\nMd/fj27dBgAA0HCEUAAAoONZa1ckfUS5NYx+1hgzaIwJGWN+whjz8QC7+GdJtxpj3rr1uAnlrrL3\nt2WaVV+Q9GFjzGFjTM/W4t8/Len/3br/kqTJKkbl/P5c0klrbeGxDysXti1KGtw6Rr9Lkm4os9/P\nbx3ztDFmSrnXrOhC6QAAAPVGCAUAALqCtfb/Um4R7w9LuqLcuk/vV65RVOmxl5VbSPzdki5L+oGk\nZUnvLfOw35b0LUkPSFqS9HFJv2St/cHWPk8qF/qcMcYsG2MOldzTTr8o6ecKrpD3P0n6K+WaVvOS\nnpb0nYLHfVbSD209X7Gf+6OSHpH0hKQnlVvY/KNVHBcAAEDNjLU1N8UBAAAAAACAQGhCAQAAAAAA\noOEIoQAAAAAAANBwhFAAAAAAAABoOEIoAAAAAAAANBwhFAAAAAAAABqur9UHUE9TU1P2uuuua/Vh\nAAAAAACQJ5FIiKvT7y3GGIXD4VYfRl08+uijV62107vdT1eFUNddd50eeeSRVh8GAAAAAAB5nnrq\nqVYfAlrgtttua/Uh1IUx5nw99sM4HgAAAAAAABqOEAoAAAAAAAANRwgFAAAAAACAhiOEAgAAAAAA\nQMMRQgEAAAAAAKDhCKEAAAAAAADQcIRQAAAAAAAAaDhCKAAAAAAAADQcIRQAAAAAAAAajhAKAAAA\nAAAADUcIBQAAAAAAgIYjhAIAAAAAAEDDEUIBAAAAAACg4QihAAAAAAAA0HCEUAAAAAAAAGg4QigA\nAAAAAAA0HCEUAAAAAKAjZLPZVh8CgF0ghAIAAAAAtL1PfepTOnz4sJLJZKsPBUCNCKEAAAAAAG1t\naWlJH/nIR3ThwgUtLCy0+nAA1IgQCgAAAADQ1j7+8Y9reXlZkjQ/P9/iowFQK0IoAAAAAEDbWlhY\n0Cc/+Um97GUvk0QIBXQyQigAAAAAQNv6oz/6IyWTSf3Jn/yJJGlubq7FRwSgVoRQAAAAAIC2denS\nJe3bt08vf/nLFQ6HaUIBHYwQCgAAAADQtpLJpAYGBmSM0eHDhwmhgA7WsBDKGHPEGHO/MeZpY8xT\nxphfLbLNa40xK8aYx7b++Yjvvh83xpwyxjxnjPmNRh0nAAAAAKB9bW5uqr+/X5I0MzNDCAV0sL4G\n7jst6dettd8zxgxLetQY83Vr7dMF2/27tfan/DcYY3ol/Q9J/7OkOUkPG2P+ochjAQAAAABdLJlM\n5oVQ3/72t1t8RABq1bAmlLX2grX2e1t/XpP0jKSZgA+/S9Jz1toz1tqkpP9b0psac6QAAAAAgHbl\nxvGk7SaUtbbFRwWgFk1ZE8oYc52kl0p6qMjdrzLGPG6M+aox5rat22YkveDbZk7BAywAAAAAQJco\nHMdLJpO6evVqi48KQC0aHkIZY4Yk/a2kD1hrVwvu/p6kY9baOyV9StLf1bD/dxljHjHGPHLlypXd\nHzAAAAAAoG34x/EOHz4sSawLBXSohoZQxpiQcgHUvdbaLxbeb61dtdaub/35K5JCxpgpSfOSjvg2\nPbx12w7W2s9Ya09Ya09MT0/X/WcAAAAAALRO4ZpQEiEU0KkaeXU8I+mzkp6x1n6ixDYHtraTMeau\nreNZlPSwpJuMMdcbY/ol/aKkf2jUsQIAAABAt8tkMq0+hJoUrgklNTeEstYqm8027fmAbtbIJtSP\nSHqrpB8zxjy29c8bjTHvMca8Z2ubN0v6gTHmcUl/IOkXbU5a0vsl/YtyC5rfZ619qoHHCgAAAABd\n69SpUxodHdVDDxVbpre9+deEOnDggIwxTQ2h3vSmN+md73xn054P6GZ9jdqxtfYBSabCNn8o6Q9L\n3PcVSV9pwKEBAAAAwJ7yl3/5l4rFYnr++ef1ile8otWHUxX/OF4oFNL+/fubGkI999xz+trXvqZP\nfOITGhsba9rzAt2oKVfHAwAAAAC0Rjab1d/8zd9IkuLxeIuPpnr+cTwptzj53Nxc055/c3NTm5ub\n+uIXdyxzDKBKhFAAAAAA0MW+/e1v6/z585KkjY2NFh9N9fzjeFJuXahmNqE2NzclyQvyANSOEAoA\nAAAAuti9997rhTid2oRqZQiVTCbV09Ojf/3Xf9XCwkLTnhfoRoRQAAAAANClUqmU7rvvPv3sz/6s\npM4NofzjeDMzM1paWmpaq2tzc1NveMMbZK3VF77whaY8J9CtCKEAAAAAoEs9+OCDWlxc1Fve8hZF\nIpGODKGKjeNJaloraXNzU3fccYde9rKX6b777mvKcwLdihAKAAAAALrU0tKSJOnYsWOKRCIdtyaU\ntVapVCovhBodHZUkra6u7mq/2Ww20HZuHPDuu+/Wo48+6q0RBaB6hFAAAAAA0KXS6bQkKRQKaXBw\nsOOaUKlUSpLyxvGi0agkKRaL1bzfL3/5y5qYmNDa2lrZ7dLptKy1GhgY0Cte8QqlUik99thjNT8v\nsNcRQgEAAABAl3IhVF9fX0eGUK515G9CDQ4OStrd+laPPPKIVlZWdPny5bLbJZNJSbkQ7K677pIk\nffe73635eYG9jhAKAAAAALqUaxKFQqGOHMdzIZA/hKpHE8pdXa9SkOUPwWZmZnTw4EFCKGAXCKEA\nAAAAoEt1ehPK30Ry6hlCVdqHC6EGBgZkjNErXvEKPfTQQzU/L7DXEUIBAAAAQJfyN6E6MYQqNo5X\njxBqbm4u0D4KQ7C77rpLzz77rK5du1bzcwN7GSEUAAAAAHSpwiYU43g51Tah3PO7daEefvhhSVIi\nkaj5GIC9iBAKAAAAALpU4ZpQndaEakQItbGx4TWZqhnHk6QTJ07IGKMHH3xQv/zLv6yDBw96xwig\nsr5WHwAAAAAAoDHaeU2odDqtvr7yp6TF1oTq6+tTf39/zSHUwsKC9+eg43guBBsdHdWtt96q3/u9\n3/Ne25WVFU1PT9d0LMBeQxMKAAAAALqUa0K1Wwi1sLCgoaEhfec73ym7XbE1oSRpcHCw5hDKjeJJ\n1TehJOnVr3610um0Xvva10qqfIU9ANsIoQAAAACgS7m2jhvHa5c1oc6cOaPNzU0999xzZbcrNo4n\n5Ubyag1//CFUpX0Ua2J97GMf0yOPPKL3vOc9kna3NhWw1zCOBwAAAABdyjWhenp6vCaUtVbGmJYe\n19LSkqTaQiApF0LVGv64K+NJ1S9MLklTU1OamprShQsXAu0DwDZCKAAAAADoUul0WqFQSMYYDQ4O\nSspd0S0SibT0uFwIVamZVWocbzch1Pz8vKLRqHp6emoax/Mfg0QIBVSDcTwAAAAA6FL+xb9dCNUO\nI3lBQ6hy43i7CaEOHz4caB+lmljuGCRCKKAahFAAAAAA0KVSqZRCoZAkee2ndlhIu5XjePPz85qZ\nmQm0j1JNLGk71COEAoIjhAIAAACALlWsCdVOIVSrxvFmZmYCXWGPcTygvgihAAAAAKBL+ZtQ3TSO\nFyRAKiabzWphYSFwE6rU80vbIVQ7hHpApyCEAgAAAIAu5W9Cdds4Xi0/x5UrV5ROp70QqtI+aEIB\n9UUIBQAAAABdKpVKMY7nMzc3J0lVN6GKhVAu1COEAoIjhAIAAACALpVOp7tyHM+1mKy1VT3v/Py8\npOAhVLmFyXt6emoeCwT2KkIoAAAAAOhS/iZUJ4/jFQuhrLVVB2q1hFDGGO81LLSbBdKBvYgQCgAA\nAAC6VLEmVDuFUEHG8Xp7e9Xb25t3e63rMV24cEHGGO3fvz/wOF5/f7+MMUXvpwkFVIcQCgAAAAC6\nVDuuCZVIJJRIJCQFG8crd2W6agOgjY0NhcNh9fX1eSFUuZG+zc3NoutB+Y+DEAoIjhAKAAAAALpU\nO64J5VpQUrBxvHqGUP79DQ4OKpPJeCN/xQQJoVod6gGdhBAKAAAAALpUOp1uuzWhXAjV398faByv\nWAhUa6vLH0K5IKvcPkqFYA5NKKA6hFAAAAAA0KVSqZTXhOrr61MoFGqbEOrQoUMtbUIF2QfjeEB9\nEUIBAAAAQJfyN6GkXIOoXcbxDh061PQ1oaoNoZLJJCEUUEeEUAAAAADQpfwLk0u5kbx2akIFCaGK\nhUDNbEKVG8fj6nhAdQihAAAAAKBL+Rcml3KhSbuEUDMzM0qn00qlUiW3LRUC1RpCpVIpxvGAFiKE\nAgAAAIAuVdiEaodxvOXlZUnSgQMHJJW/Wl87jOOxMDlQP4RQAAAAANClCptQ7TKONzw8rJGREUmV\nQ6hWj+NVakIlk0ml0+mqjgPYqwihAAAAAKBLFWtCtUMINT4+rkgkIkllj6fUOF44HJZUWwjlQrnB\nwcFAz18phKq0DwDbCKEAAAAazFrLuAaAlmjXNaHGx8e9EKiWcbyenp6afpZGjONV2geAbYRQAAAA\nDXb//fdrcnJSly9fbvWhANhj2nFNqMImVC3jeFJt6zE1Yhyv0j4AbCOEAtB1EomEkslkqw8DADyz\ns7Pa3NzUhQsXWn0oAPaYdl0TarfjeFJzQqhyIZi0PdJHCAUEQwgFoOv8wi/8gt7+9re3+jAAwOOC\n8Vaf+AHYe9LpdNuuCbWbcTxp9yFUb2+vBgYGKjahGMcD6qdhIZQx5ogx5n5jzNPGmKeMMb9aZJtf\nMsY8YYx50hjzLWPMnb77zm3d/pgx5pFGHSeA7vOd73xHs7OzrT4MAPCkUilJhFAAmi+VSu1YE6ob\nx/HW1tZkra343IWhVqUgi3E8oL4a2YRKS/p1a+0PSXqlpPcZY36oYJuzkv6DtfZ2Sb8j6TMF97/O\nWvsSa+2JBh4ngC6yvLysy5cvK5FItPpQAMBDEwpAqxQ2oVo9jpdMJhWPx+s6jnf58mUdOHBA//RP\n/xTo+asJoViYHKivhoVQ1toL1trvbf15TdIzkmYKtvmWtXZp66/fkXS4UccDYG84deqUJBFCAWgr\nNKEAtEqxhcnT6bT3vtRsS0u507+xsbFdj+MNDg4qFovp0UcfVTweD9SET6VSO0KoSiFYkCYU7+9A\nME1ZE8oYc52kl0p6qMxm75D0Vd/fraSvGWMeNca8q3FHB6CbEEIBaEc0oQC0SuHC5EGCn0ZyIVTQ\nJlSlNaHi8biefPJJScF+psL9uSCrmGw2q1QqxTgeUEd9lTfZHWPMkKS/lfQBa+1qiW1ep1wI9Rrf\nza+x1s4bY/ZJ+rox5qS19ptFHvsuSe+SpKNHj9b9+AF0ltOnT0sihALQXgihALRCJpORtXZHE0rK\nvR+NjIw0/Zj8IVSQQKxcE8mN0rkQKsjnv2rG8VxbjHE8oH4a2oQyxoSUC6DutdZ+scQ2d0j6M0lv\nstYuututtfNb/3tZ0pck3VXs8dbaz1hrT1hrT0xPT9f7RwDQYWhCAWhHjOMBaIV0Oi1JeU2oIO2j\nRlpczJ3yTUxMVFyYPJPJKJvNVlwT6oknnpBU/xBqc3NTkso2oVyQRggFBNPIq+MZSZ+V9Iy19hMl\ntjkq6YuS3mqtPe27PWqMGXZ/lvQGST9o1LEC6B6EUADaEU0oAK3gAvBSTahKMpmMVleLDrPU7Nln\nn5Uk3Xjjjert7VUoFCp5LO69s1wItba2pmeeeUZS5c9/2Wx2x3hiuRCq0vO7+3p7ewmhgIAa2YT6\nEUlvlfRjxpjHtv55ozHmPcaY92xt8xFJk5L+aOv+R7Zu3y/pAWPM45K+K+nL1tp/buCxAugC2WzW\n+2BDCAWgnRBCAWiFYk2oataE+uxnP6vrr7++rouYnz59WuPj45qcnPSOp9SxuPfOcuN4/kXWK33+\nKzZet9smlDGm4hX2AGxr2JpQ1toHJJkK27xT0juL3H5G0p0NOjQAXeqFF15QIpHQkSNH9MILL+y4\nJDEAtArjeABaoVgTqppxvCeeeELXrl3TysqKpqam6nJMp06d0i233KLc4EzueEqFUC4EKteE8qsU\nrBVrNu02hKq0DwD5mnJ1PABoBjeKd+eduQybNhSAduFOfDhJAdBM5ZpQQUKo+fl5SdLa2lrdjsmF\nUE4kEtnVOJ6UC9mOHDlS8bNfqRCq1ucPsg8A+QihAHQNQigA7YpxPACt4EKoYmtCBRnHcyFUvdaF\nWltb08LCQl4ItZtxPPez3HrrrRoZGdlVCJXNZndsTxMKqD9CKABd4/Tp0xoZGdGxY8ckEUIBaB+M\n4wFohd2O49W7CXX6dO5aVIVNqN2O491+++0Kh8M1hVDlQjlCKKD+CKEAdA1X73YfrgihALQLmlAA\nWmE343jpdFoXL16UVL8mlGut33zzzXnHs9txvNtvv71smOWUWphcKj4uHXQcb3BwkBAKCIgQCkDX\nePbZZ3XTTTcpHA5LIoQC0D4IoQC0QrEmVNBxvIsXL3ojavUKoU6fPi1jjI4fP+7dVi48qjSOt2/f\nPknSiRMnam5ClQuhaEIB9UcIBaArpNNpvfDCC7r++usJoQC0HcbxALTCbppQbhRPqt843qlTp3Td\nddd5n9Wk3Y3jvfSlL9XDDz+su+++uyEhVDULk1cKodbX173fBcBeRggFoCtcuHBBmUxGx44dI4QC\n0HZoQgFohWJNqP7+fhljqgqh6jmO518PStrdOJ6Ua0EZY2oOoYaGhiTlQqJC9WxCvf71r9c999xT\ndhtgLyCEAtAVZmdnJUlHjx4lhALQdnYTQqXTaa2srNT7kADsAcWaUMaYssGPU+8mlLVWp0+f3hFC\n+ZtQKysreW2hSuN4hfsJGkL5X4/x8XFJ0vLy8o7tqwmhKr2eZ8+e1dzcXNltgL2AEApAVyCEAtDO\ndjOOd8899+i2226r9yEB2AOKNaGkXPuo0ppQ8/PzCoVCikajdWlCzc/PKxaLlQyhrLW644479LGP\nfcy7r9I4nl84HK74MxVrQk1MTEiSrl27Fmj7YlwTylpbcpv19XXasIAIoQB0CRdCHTlyhBAKQNvZ\nTRPq5MmTmp+fVyaTqfdhAehyxZpQUi74CdKEOnTokEZHR+vShCp2ZTxpexzv8uXLmp2d1blz57z7\ngoZAkmoexysXQlXThMpms972hTKZjDY2NgihABFCAegSs7OzmpiY0NDQECEUgLbjTnw2NzerDpOu\nXLkiifWkAFSvXBMqSAg1MzOjkZGRujShfvCDH0iSbr311rzbI5GINjc39cwzz0jKH/1rRgg1NjYm\naXchlFvsvdS6UO615n0cIIQC0CXOnz+vo0ePShIhFIC241/jpNK4SKGrV69KKn1yAwCluCZUreN4\nMzMzGh4erksIdf/99+v666/XzMxM3u2RSESS9Pjjj0vKXyA8aAgkbYdQ5UbiioVQfX19Gh0d1eLi\nYqDtiyl3hT1p+2cihAIIoQB0idnZWUIoAG3LnchI1Z+E0IQCUKtax/GstXlNqN2O46XTaf3bv/2b\n7r777h33uRbRY489Jqn2JpQLs0qNxJXb38TExK7H8SRCKCAIQigAXWF2dlbHjh2TRAgFoP0kk0nv\npKfWEIomFIBq1TqOt7KyolgsFqgJtbS05IVdpTz66KNaWVkpGkK58Gi3IVSQz3/u9QgaQgV9/qGh\nIUmVQyj//Zubm3mtL2CvIIQC0PFWVla0srJCEwpA20qlUt66I9WEUKlUyrtsON+gA6hWqSZUpXG8\n+fl5SdLhw4fLNqGy2axuvvlm/fEf/3HZ4/jGN74hSfqxH/uxHfe5JtRTTz0lKT+EqnYcTyr/+a+W\nJlRvb696e3vLPrcLoUqFSu72ZDLpBWGf/OQn9Y53vKPsfoFuRAgFoOO98MILkuSFUH19fert7SWE\nAtA2ksmkRkdHJVUXJrn1oKp9HABItTehXAhVrAl1+fJl78/xeFxXr17Nu6JdMd/4xjf00pe+VFNT\nUzvuc00od6yNbELVEkIFCcCKhVBXr15VNpuVlN+AcuHfCy+8oIWFhYr7BroNIRSAjjc7OytpO4SS\ngl0hBQCaJZlM1tSEcqN4EuN4AKpX65pQ/hDKNaGstXryySd14MABff/735e0HbqUG9eLxWL61re+\nVXQUzx2Ls3///qIhVOHxl9tPuYZXtSGUf5S6nMIQamlpSUeOHNHf/d3f5d0ubb+Xr62t8b6OPYkQ\nCkDHO3/+vCRCKADtyVpb8zieP4SiCQWgWkGbUKurq3nhjQuhDh06pJGREaVSKW1uburkyZOy1nqf\nvVy4Um7h8gceeEDJZFKvf/3ri97vxvEk6cSJE0okEl545kIgY0zFn7WaJlRhqOVCKNdccoI2oQoX\nJr906ZISiYTOnDkjKT+Ecq/7+vp63ngesFcQQgHoeLOzswqFQjpw4IB3GyEUgHaRyWRkrfXG8ar5\n5psmFIDdCLom1M/8zM/oAx/4gPf3CxcuaGJiQuFwWMPDw5JyQdWFCxckbYcqQZpQDz74oHp7e/Wa\n17ym6P3+JtTLX/5ySduh1ubmZqAmkrS7cbzJyUlls9kdYVqtTSi3n5WVlbzbpfwQyv93YK8ghALQ\n8WZnZ3XkyBH19Gy/pRFCAWgX7qSnliYUa0IB2I1STahIJKJEIuE1f86ePestbyDlApKRkRFJ8v53\nbW1tRwjlHy0rZXFxUWNjY15bqJALoaanp71Wu9tf0BBICh5CGWN2LDQ+MTEhSTtG8mpdE6pcCOXC\nP7cN7+3YawihAHS82dnZvFE8KfdBxF1RBQBayZ0E1rIwOU0oALvhmlDFxvGk/EDE/94Ui8W8bfxN\nqIsXL3rbS8GaUKurq94+inHPc/PNN3vb+UOoICGQtB1mVQqhio337TaE6u/vVygUChRCxWIxWWt3\nBHnAXkEIBaDjlQqhaEIBaAe7aUJduXLFOzni23IA1XIheLFxPCkXQllrdyySHY/HveZSuSZUkBBq\nbW3N20cxLjy65ZZbdoRQtYzjVVqYvNj+SoVQ1TSxhoaGdrwuLoQqfG03NjaUyWR23AfsBYRQADpa\nNpvV/Py8Dh8+nHc7IRSAduFOAmsNofbt26fBwUFOVABUrVITKh6Pa3NzU+l0OlATqlQIVW4cr1IT\namRkRAMDA3rJS15StAlV73G8ciHU4uJi3u1Bm1BSLoQqHE/0N6HcshHxeDzv9eK9HXsNIRSAjray\nsqJMJqPp6em82wmhALQL14SKRqPq7e2tOoSanp7ecSUrAAiiVAjl2kfxeLzoWFg8HvdCKNdiKjaO\n5x6zmyZUNBrVE088oXe/+927GserRwhV6zielPs5yo3juc+qsVhsx3gesJcQQgHoaO7DwuTkZN7t\nhFAA2oX/akzVhklXrlzR1NQUIRSAmqRSKfX09ORdvEXKH8crtkB2LBbbMY63tLTkrVNX2IRKpVIl\n1+Ks1ISScutB9ff3ewt8u2NKJBJ1DaFSqVTREGp8fFxS/cbxioVQ+/fvl7SzCcV7O/YaQigAHc19\nWHDfYDmEUADahRvHqzWEmp6eVjQa5dtyAFVLp9M71oOS8sfxCltN7vbCcbznnntO1lpJOxcml0q3\noVZXV8s2ofwKm1BXr17d8RmvFNfuqmVNKBeA7aYJVSyEWl5elpR7nUZHRxWJRPLaZxJNKOw9hFAA\nOpqb3SeEAtCuXBMqFApVFUJls1ktLi4yjgegZqlUasconpQ/jucCk42NDWWzWe9214SKRqMyxujU\nqVPe4wubUFLpdaEqjeP5FYZQLogPYjfjeFLus2QjmlDWWsViMQ0NDSkSiSgWi7EmFPY0QigAHY0m\nFIB2V+s43tLSkrLZLE0oADWrpgklbQc4/oXJjTEaHh7W6dOnJeWWQCgWQhVrQmUyGcVisYrjeE44\nHFZvb29NIVQoFJIxpq4h1G6pflkzAAAgAElEQVQXJs9kMl7zKRqNer8DaEJhLyOEAtDRCKEAtDv/\nOF40Gg0cQrm1V2hCAahVqSZUsTWhpFwgYq3Na0JJuXWhzp07J0m66aabio7wFQuhXNgStAnlAq+1\ntTUlEom8Bb2DPLbS579kMlk0lJPqE0IVu1rgysqK1tfXNTQ0pGg0mveah0Ih3tux5xBCAeho7sOC\nW1DSIYQC0C5qHcfzh1A0oQDUIp1OBx7Hc393ayq5oErKjcllMhlJ0vHjxwOP47lgKmgTym27vr6u\nq1evSlLgEErK/VyFn/9WV1fzrrZXqgk1OTm5q3G8YlfHk/JDqMHBQe/qeD09PZqcnOS9HXsOIRSA\njnbt2jWNjIzs+IBFCAWgXdQ6jkcTCsBupVKpqsbxYrGY915T2ISSckHNxMREXgjlrlBcrAnl9h20\nCSXJa0L53wODCofDOxYmf9vb3qa3v/3tkqofx4vH495aU5W4JpS1Vmtra97zFIZQ7jUfGhrKG+ED\n9gpCKAAd7dq1a0WvmhIOh5VOp5VOp1twVACwrdar4xWGUJyoAKhWqSZUqXG8eDzuvdf4m1AuRDpw\n4ICGhoa0trYma63W19d16NAhSeWbUM0MoQq/hJybm9P58+clBQuh3BUAXYNqZmYm0HMPDQ0pm80q\nkUjkPe7q1atKpVLeOJ4LoYaHh2tuua6urvLFBDoWIRSAjlYuhJJys/wA0Eq7Hcebmpqqai0pAHBK\nNaFKjeP5m1CF43iSdPDgQQ0PD3thSywW08GDByUVb0LVOo5XzxBqY2PDO45KIVQqlfJaXrOzs5Kk\no0ePBnruoaEhSfKufnfkyBFJ0vz8vCR5C5O7cTx/M6paH/jAB/TRj3606scB7YAQCkBHqxRCMZIH\noNV2M443MjKigYEB73HuG3oACKJUE6qnp0cDAwNF14RyzZxi43gHDx70wpb19XWtr69r3759Msa0\nzThesRBqZWVFUuUQStpeb9SFUMeOHQv03P7XZW1tTYcPH5a0HUL5Q6f19XUNDw/XHELNzs5qYWGh\n6scB7YAQCkBHW1xc9NYi8HNXMiGEAtBqtY7j+d/fotGostks7U4AVUmn0yWvBjc4OFh0HK9cE8qN\n40m5gGl9fV0jIyPeiF6h3Tahent7NTY2FvixkUhkx5pQ/iZUKpWqOoQK2oRyod3y8rISiUTZEMqt\nCVXrON7Kygoj2uhYhFAAOhpNKADtrtg4XpBGk/umXMpfRBgAionFYlpcXMy7LZVKFW1CScoLRFyA\nEovFKjah3PuSa0INDQ1pZGSk7k2oq1evanJyUj09wU9ZSzWhEomEkslk1U2ovr4+HThwINBzu3Du\nwoULknKBXU9Pz44QKp1Oa2lpqeYQKpFI7AgPgU5CCAWgY2WzWUIoAG2vcBwvaKMpFot5J4H+E0QA\nKOaDH/yg3vjGN+bdVq4JFYlEvBBq//79kio3ofzjeMvLy9rc3PRCqEY0oaoZxZNKh1DuWMqFUFNT\nU5KkS5cuScqFUIcPH1Zvb2+g53avy8WLF72fY2RkxBubcyGUlFus3I3jVfu+vry8LInfB+hchFAA\nmurMmTPKZrN12dfa2pqy2SwhFIC2VjiOJxVvNF29ejXvdn8IRRMKQCXnz5/XuXPn8m4L0oRaX1/3\nQij/wuTFmlD+cTwXtgwNDWl4eLhkE2pgYKBk8FPM8PCwUqmU5ufndx1C+UP/SiHUjTfeqL6+Pj31\n1FOSciFU0FE8aWcTanh4WKOjo3kLk7vXNJvNek2odDrtfVkRhAuh3ALqQKchhALQNGfOnNGNN96o\nt73tbUqn07ven6tLE0IBaGeF43hS8TDp7rvv1m/91m95f6cJBaAay8vLWl5ezhv3LbUwuZS/JpS/\nCeXeZ/xNqMOHD6unp0c33HCD12pyIVQ0Gi3bhKpmFE/aDnPOnDlTdQhVuCaU/3OgC6FKNcMGBgZ0\nyy236Mknn5SUC6GCLkruP25/E2p0dNT7vOpvQrn7a3lvdyFUKpVinUB0JEIoAE3j1in467/+a735\nzW/e9S9OQigAnaBwHE8qHkLNz89rbm7O+ztNKADVWFlZUTKZzPvsk0qlAo3jjY+PKxQKlWxC/eRP\n/qROnTqlo0ePVtWEWl1drWoUT9oe3bt69equm1D+QMq9PuVaWbfffruefPJJZTIZzc3N1aUJ5b/f\nH0K5JpRUWwgl0YZCZyKEAtA07kPBm9/8Zv393/+9/uqv/mpX+yOEAtAJ3DhepSZUIpHIOxGJx+Pe\n9u5/aUIBKGVlZUVSfkhRqQnlQijXyvE3oSKRiLdtT0+Pjh8/Lmln2FJpYfJqm1D+0Gq3IZT/vTZo\nCHXu3DmdPHlSmUymqhDKBUrlQih/sFePEIrfCehEDQuhjDFHjDH3G2OeNsY8ZYz51SLbGGPMHxhj\nnjPGPGGMeZnvvrcZY57d+udtjTpOAM3jPhS8733vk7T9DVqtCKEAdIJkMqm+vj4ZY8qGUBsbG3nf\nahcbx6MJBaCUYiFUuSZUYQjlFsmOx+MKhUIlH1c4jueaUKXG8WptQkm7D6H8TSj3ubFcCHXHHXdI\nkr7yla9IUk0hVOE4nv9+fxNqZGSkpi8YaEKh0xWPxesjLenXrbXfM8YMS3rUGPN1a+3Tvm1+QtJN\nW/+8QtIfS3qFMWZC0v8h6YQku/XYf7DWLjXweAE0mPtQMDQ0pIGBgV1/e+PG+wihALQz/zfv7iSl\n8MQhlUopk8l4t1trGccDEJj//aOaJtTi4qKy2eyOJpS/sVMoHA6rp6fHu4qcvwllrZUxxtt2bW1N\nBw8erOpn2U0IFYlElEgkvOPwh1BXr16VVD6Euv322yVJX/7ylyVVF0L19vYqEonkNaHGxsYk5Zqw\n/pFsabtRJlX33r60tH1KTAiFTtSwJpS19oK19ntbf16T9IykmYLN3iTpr2zOdySNGWMOSvpfJH3d\nWnttK3j6uqQfb9SxAmgOtwZUOBzW0NDQrn9x0oQC0AlSqZR30uPer9z7l+NOlNz7YjKZVCaTYWFy\nAIH4R+GCNqEikYgXzLgmVDwezxsFLsYYo6GhIS9scQuTZzKZHZ+7WtGEstZ6a/FVG0IdPXpUIyMj\neuCBB7y/V2NoaMgLlPxNKBc41XNhcokQCp2pKWtCGWOuk/RSSQ8V3DUj6QXf3+e2bit1O4AO5j6Y\nhMNhRaPRuoRQQ0NDRT9MEEIBaBf+qzFNTk5K2m5yOoUhlDshoQkFIAg3iidV14RyV9JzgUgsFqvY\nhHLbX758WdL2OJ6kHetC7XZNqKmpqaoeW/j5r9oQyhijF7/4xcpkMpqYmMhrKwXhtu/t7VU4HC4b\nQtW6JtTKyor3mhJCoRM1PIQyxgxJ+ltJH7DW7lytbvf7f5cx5hFjzCNXrlyp9+4B1JE/hKpXE6pY\nC8o9h/85AaBV/ON47j3LnQw57r3KnYgUhlA0oQCUUy6EKrcmlFNNE0rKBSjZbNb7swtFCkOo1dXV\npi9MLtUeQknb60JV24KStsOm4eFhGWN2hFCRSMQbV3SvuVTde/vS0pIOHz5c9eOAdtHQEMoYE1Iu\ngLrXWvvFIpvMSzri+/vhrdtK3b6DtfYz1toT1toT1b5JAWgu94FgYGCAEArAnuEfxwuFQhodHS3b\nhHLrQUnb4VMoFFJfXx9NKABFlQqhUqlUySaU/+p31Tah/A0hfxPKvzh5Op3WxsbGrsbxXHs0qHIh\nlCssVAqh3LpQtYRQ7nVzP4MLodzt7gIVbv2oWi46sbKyoiNHcqfKxRaDB9pdI6+OZyR9VtIz1tpP\nlNjsHyT98tZV8l4pacVae0HSv0h6gzFm3BgzLukNW7cB6GDNbEL19fWpp6eHEApAy/nH8aTcSVWp\nECqbzSqRSOwIoSR5V64CgEL+4MkfSFUax3OqbUK5kKWvr0/9/f1Fm1AuIKm2CdXf36/+/n6Nj4+X\nbHGV4oI1957q/jcajQZuQrkQ6tixY1U9t5TfhJK0owkl5V73aDQqY4x3FcJqFyafnp5WKBTidwI6\nUiOvjvcjkt4q6UljzGNbt/2mpKOSZK39tKSvSHqjpOckxSX9p637rhljfkfSw1uP+21rbf4KngA6\nTuHC5IUL81br2rVruu2224reZ4zZcZleAGgF/zielFvjpHAcz/9t/fr6undC4j8RdFeuAoBC5ZpQ\n1YzjuRbUvn37yj6fC1WGhoZkjCnahHKBVLVNKPeYaltQUukm1P79+7333UrB1h133KFIJKIXvehF\nVT9/0BDK/zvBNdCCSKVSisViGhsbq8sXukArNCyEstY+IMlU2MZKel+J+/5c0p834NAAtEgikVBP\nT4/6+vrqsjD54uJiySaUJEIoAG3BP44n5ZpQbkFfx/9etb6+ThMKQFVcCDU+Pl7VwuSOG8eLx+OK\nxWKB1oSStt+j6tmEcsdTy1Ir5UKoM2fOSKrchBodHdXJkyd18ODBqp/fH865ffn/LuVes0wmk/f3\noO/t7t8zIRQ6WSObUACQJ5FIaGBgwLu0725+cVpry47jSYRQANpD4Tje1NSUnn766bxt/E0otyaL\nlB9C0YQCUIoLJ44dOxa4CVW4JlQt43guXHFBU72aUEeOHNH1119f9eNKhVAHDhzwtqkUQkm1rQcl\nBWtC7d+/P+8x1XzBsLS0JIkQCp2NEApA0yQSCe/DwW5/ca6vryudThNCAWh7xZpQpdaEkso3oQih\nABSzsrKigYEB7d+/v6YmVDQaVTQaVSqV0vLycuCFyQtDF38Tyv25libUl770parXg5K2g7XCEMo/\nXhgkhKpVpYXJJel3f/d3dzwm6Hu7+3c7NjZWVYMKaCcNvToeAPhtbm7mhVCxWEy5qdzqubl+QigA\n7a5wTajJyUmtr6976+RJwUIoTjgAlLKysqLR0VGNjY15QYW1VplMpuKaUJFIRH19fd7fgzShCkOo\nwcFB9fT01G0cb3JysqbHuc+Z/oXJBwYGNDY25m3TyBCqMJQbGhrSxMSEDh8+7G0zMjKS97NV897u\nD6GGh4dpQqEj0YQC0DSFTShrrTY2Nip+0ClmYWFBkjQzM1NyG0IoAO0gmUzmjaNMTU1Jyq1rd+jQ\nIUnB14Ta7QUdAHSnYiFUOp2WpJJNKNcacu9PhaF3OYXjeG5x8nqN49Wq2DheJBLJC32aGUIZY/SD\nH/yg7Jem0WhUFy5cCLT/wiYUIRQ6EU0oAE3j1oSStj/c1PrLc35+XhIhFID2V2wcT1LeSF6pNaH8\nIT0LkwMopVgIlUqlJJW+Gpx7f3GBSeH7TTmFC5NLuYZPvZpQtWq3EEqSDh486H3+LYY1obDXEEIB\naJrCJpRECAWg+xWO47kmlBsrloqP4w0MDKi3t9e7nYXJAZSysrKisbExjY2NaXNzU4lEomITqjCE\nqqYJVTiO5/bT6iZUsTWhIpGItzaT1PwQqpJq3ttXVlYUiUQUDoe9EKrWpS2AViGEAtA0hWtCSbsL\nocLhsMbHx0tuQwgFoB0UXh2vUhNqfX1d8Xh8x0kgTSgApfibUFJubMuFUJWujldLE6pwHE8q3oRy\n6001S7E1oVrdhArymFgspmw2W3Hb5eXlvCvupdPpvPUFgU5ACAWgaerZhJqbm9PMzIyMMSW3IYQC\n0A6CjOMlEgnvRM01oQpDKJpQxW1sbGh2drbVhwG0lAsn/CGUG8cL2oQqvFpeOcWaUCMjIzuaUM1s\nQUk7x/Hi8XhTQ6jCq+MFMTY2pmw2m/falbK0tOR9Abvbz9JAqxBCAWgafwjlfknX+q3+/Px82VE8\nKfcNHydsAFqtVBOqcBwvGo0qEomUDKEGBwe1ubmpTCbTnAPvEH/4h3+oO++8M1CLAOhW5ZpQtYzj\nVXt1PLcffxNqdXW1qetBSbmAqaenx/v81+xxPHcVvKNHjwZ+jAuVglx4wv17lrZfexqy6DSEUACa\nxr8weT3G8fyXuy2GS9cCaAeFa0KFw2FFo9Ed43iRSMQbyyjVhJJEuF7g0qVLWl5e1srKSqsPBWiJ\ndDqtWCxWsglVahwvFAqpr69vV+N45RYm9wcmzWKM0ejoqLc4e7FxvFKvRz286EUv0uzsrO66667A\nj3EhlFt0vJylpSXv3zFNKHQqQigATVOvNaGstVpYWKjYhCr8Rg4AWqFwHE/KLU5e2ISKRCLeJbfL\nhVCccORzYzf+UA/YS9xnnWqbUFLuAi+utVPNwuT79u1TKBTSkSNHvNsKFyZvRQgl5UIdF+g0e00o\nSXmvSRATExOSgjWhVldXvdeU3wnoVM1bJQ7AnlevNaEWFxe1ublZMYQaGRlRIpFQKpVq6LdeAFBO\n4TielBvJK1wTKhKJqKenxwuhpqen8x7jP1E5ePBg4w+8Q/hDqOPHj7f4aIDmcy3AaptQkvTwww/X\n1ISanp7W2bNn896L3JpQ1loZY7SysqL9+/fX9kPtQmEINTg42NQQqlrVNKHqeZEfoFVoQgFomnqF\nUPPz85IUqAklKdBCjwDQKIXjeFKuCVVqHM+FUIUngVNTU5Ly15LCdgjF64K9qlQIFaQJNT09vWO9\nzsI/lzIzM6Oenu3TyeHhYWWzWW9kuJ2aUOFw2HsfbrcvJoOuCWWt1ebmZt2WtgBahRAKQNP414Ry\nJ1e1LKYYNIRy33oRQgFolUwmo2w2uyOEmpyc3DGOFw6H80KowpPAYlfVA+N4gD+ECofDGhgYCNyE\n8guHw95Vhys1oYpxn7vceGA7hVDu+EKhUNkrK7fCwMCABgcHvXWsSkmn08pmsztCKBYmR6chhALQ\nNP4KcU9PjwYHB2v69mZubk5S8CYU60IBaJVSJ4GF43iFC5PH4/GSIRSNn3w0obDX+UMoSRobGwvc\nhPIzxnjhU5AmVCF/CJXJZLS2ttZ2IVS7jeI5ExMTFZtQyWRS0vY4oQuh+LIVnYYQCkBTWGvzxvEk\ned/4V2t+fl7GmIprotCEAtBqhScNztTUVN5JolsTqtzC5DShiqMJhb2uVAhVbRNKyjWgjDF5n9eC\n8i+D4D57tTKEstZ2TAjlD85K2dzclCSvCRUKhTQwMEATCh2HEApAU7gTsXqFUPv376/4oaqwFg4A\nzeZOAouN40nba4D4m1Crq6va2NjYEUJFIhENDg4SthSgCYW9zo1xufWgRkdHa2pCSbkGlAuiquX/\n3OWCMXdMzTQ+Pq5UKuWFOi6EGh0d7YoQyv8zuC8ugE5CCAWgKdxJgvv2RtpdCFVpFE/aOY6XSqV0\n6tSpqp8PAGrlAvjC0NwtMu4CJf+aUO62YuMwU1NThC0FaEJhr6vXOJ6Ua0LVsh6UlN+EKjymZnIL\nfS8sLEhSRzShqhnHq8dnaaCVCKEANIX79sbfhIpGozUvTB4khCocx/v85z+vF7/4xZyoAGiaUuN4\nhes7+ZtQ1lpJxUOowrWkQAgFrKys5F39bbfjeLWGUP4mlGtntVMIdd111+nAgQNNP54g/COEpRSO\n40mEUOhMhFAAmsKdJNRrHK+WJtTs7KzS6bR3dT0AaLRK43j+JpQLoZxiJ4KFV9WrZHFxURcvXqz6\nuDsJ43jY6wqvQrebJlQ0Gq1pUXKp/ZtQv//7v6+vfe1rTT+eIMbHx5VMJhWPx0tuU2wcz13MAugk\nhFAAmqJeIdTGxoauXbtWVQjlmlCu5nzlypWqnhMAalVpHM8FJ/6FyZ1S43jVNH7e//736+d//uer\nPu5OQhMKe11hCLVv3z5dvXrV+2+imibUkSNHdOTIkZqOo9iaUO0UQkUikZasURXExMSEJJUdySs2\njjcyMlJxjA9oN4RQAJqiXiGU+0ARJITq7e3V4OCg14QihALQbKXG8dwJx9LSkjKZjFKplLcmlFOP\ncbxLly7p7NmztRx6x/A3ocqNsgDdqjCE+qmf+illMhl94QtfkFRdE+rTn/607rvvvpqOIxwOq6+v\nr21DqHbmwrFyi5MXG8e7/vrrNTs76/2uAToBIRSApqjXwuQXLlyQJB08eDDQ9iMjI4RQAFqm1Dhe\nNBpVKBTStWvXtLGxIUk7xvFKNaFccBXExsaGrly50tXhTCKRUE9Pj1KpFGujYE8qDKHuuusu3Xjj\njfqXf/kXSdU1oaLRqNdoqpYxRsPDw207jtfO/F9MlFLsS42bb75ZmUxGZ86caewBAnVECAWgKeq1\nMLkbrQv6oWZkZMR7jGsPsG4IgGYpNY5njNHExIQWFxerCqEmJydlra14KW8nHo9rc3MzUDjz1FNP\nBQ632kkikdD+/fsl8f6OvWltbS0vODLG6C1veYuy2ayk6ppQu+W+/FtZWVF/f3/e575mGR0dlTGm\no0IoF5xV24S6+eabJUnPPvtsA48OqC9CKABNUWocb2Njo6qTHhcoufWeKhkeHqYJBaBlSo3jSblA\n6dq1a977Y9AQSgoetriAq9L73pUrV3THHXfoc5/7XKD9tot0Oq1MJuONaLMuFPai1dXVHZ+L3vKW\nt3h/rqYJtVv+JlQrWlCS1NPTo9HR0Y4KoYKsCVUshDp69KhCoZBOnz7d2AME6ogQCkBTlAqhJFXV\nhnLf5vtP1MrxN6EIoQA0W6lxPCl30lE4jhdkYXIpeNji9l0ptFpcXFQ2m9W///u/B9pvu3C/Ww4f\nPiyJEAp70+rq6o4RultvvVUve9nLJLWuCdXKRcDHxsa8JRw6IYQaHBxUf39/1eN4oVBIN9xwA00o\ndBRCKABNUWpNKElVreHhtq22CWWtJYQC0HSlxvGknSFU4cLkg4ODOx7jmlBBwxZ3ue9K73tuu+9+\n97uB9tsu3O8W14RiHA97jbV2xzie8453vEPhcDjwZ6Z68IdQrWpCSbnxtnQ6Lan4e2m7McZofHy8\n6nE8KTeSRwiFTkIIBaApiq0JVUsI5VpN1TShVldXtb6+7n0YIYQC0CzlxvGKNaGCLEwu1X8czzVS\nT5486S0o3AloQmGvi8fjymazRYOm9773vTp79mxTQ6h2GMeTttdYkjqjCSVt/04opVQIddNNN+nS\npUsd9d6NvY0QCkBTFBvHcydY1Y7jhUKhoid0xbgPQ+6X+sDAACEUgKYJMo5XbE0oY0zRBX2raUJZ\nawOHUK4JJUkPP/xwxX23C/faHThwQMYYmlDYc9yXc8WaUMYYHThwoKnH005NKKdTQqhKTahSX2q4\nxclZFwqdghAKQFOUWxOq2nG8ar7Rcx+GXAh10003eWufAECjVRrHi8Vi3rfXkUhEkUhExhhFo1EZ\nY3Y8JhqNqr+/P1DY4t53peBNKKmzRvLczxiNRr2rDQJ7ibv4SjPbTuXQhKpdkHG83t7eHWt8cYU8\ndBpCKABNUa81odbW1gKP4km5ECqZTHqLU95yyy3KZrNl684AUC+VmlCSND8/LykX0rsAqtgonpRr\nNkxNTQUKW1wLSgrehAqHwx0VQvlHvScnJ2lCYc8p14RqBXdBmOXl5bYIoUKhkHp7e1t2HNUYHx8v\n+/k0mUwW/V0yPT2t0dFRmlDoGIRQAJqiXmtCra+vVxVCuW8Gz58/LykXQkmsCwWgOSqtCSVth1Du\n2/qhoaGSIZSUG8kLEkL5R+yCNqFe/epX66GHHpK1tuL+24G/ZRv0dQG6iWtCtUsI5T53ra+vt0UI\n1SktKCl3zPF43PvMXGhzc3PHelBS7suJm266iSYUOgYhFICmSCQS6unpyasQu5OsRo/jSYRQAFqj\n0jieJC0sLEgKHkJNTU0FavzU0oR63etep4sXL2pubq7i/tuBP4QK2hADukm7jeP5wzBCqOq43wml\nRvJKhVCSdPz4cZ09e7ZhxwbUEyEUgKZIJBLeqInjGk3VLExe7Tie+1B27tw5SYRQAJqrmnG8ejeh\n/FfdqyaEkjpnXajCJhTjeNhr2nEczyGEqs7Y2JgkaXl5uej9pcbxpNzvhdXVVe93DtDOCKEANIUL\nofyaMY7nPgydO3dOkUhER44ckUQIBaA5yjWh3JXuXOvIvUded911Onr0aMl9Bg1bXLB09OjRitvH\nYjH19fXpxIkT6unp0eOPP15x/+2AJhT2unZrQvmPgxCqOpVCqHJNKPdYd6ELoJ0RQgFoimK/OMPh\nsHp6eqpemLyaD1r+JtTExISmpqYkqeQJ2XPPPccvcAB1U8uaUPfee68+97nPldzn1NSUrl27VnHd\nJteEOnr0qNbW1kquMyLlAqvBwUENDAxoYmKiYxpFhU2ojY2NvLWwgG508uRJ7//n7dyEcsFIK3Rr\nCFWqCUUIhU5CCAWgKYo1oYwxGh4e9r7FC6LWJtSlS5c0MTGh/v5+jYyMlGxC/eiP/qg++tGPBt4/\nAJSTTCbV19ennp6dH7mGh4fV29ur1dXVvCs4DQ4OanBwsOQ+JycnlclkKp5s+EMoqXwDNBaLec85\nMTHRMVcQLQyhJNGGQlfLZDI6ceKEPvWpT0nKNaF6e3vbJmyhCVU7d8ylQqhUKlWxCVVqPSmgnRBC\nAWiKYiGUVP3JTq0hlHsuKXcp22InY9ZaXbp0Sc8991zg/QNAOeXW8DDGeO9L1ZwoVWp0Ov5xPKl8\nCBWPx711qDo1hHIncDQB0M3i8bhisZhmZ2clbTfE/WtuthJrQtXOvV67Gccr9VignRBCAWiKUiFU\nNQvJptNpbWxs1DSO555LKh1CbWxsKJvNeqMxALBb5UIoaTscL/b+WErQxo9rQh07dkxS9zehOAnD\nXuAu5uL+e15dXW2bUTypfZpQ7v2gk0KoUCikoaGhslfHqzSOx/sfOgEhFICmKPXtTTULyboPXtU0\nofzbVmpCubWpCKEA1EvQEKqaEyUXQlUK8KsZx+uGJhQnYdgLXMPRH0K1y6LkUvs0oXp7ezUyMtJR\nIZSUC5PKXR2PJhS6ASEUgKaoRxPKhUTVhFA9PT3e9kFDqIsXLyqdTgd+DgAopREhlBvHqxTgVzOO\n18lNqJ6eHvX19XEShj2hsAm1trbWVk2ogYEB9ff3a2BgoGRg0iw333xz2SuNtqOxsbGSI8XlmlCR\nSEQDAwO8/6Ej9DVqxy7Gh3cAACAASURBVMaYP5f0U5IuW2tfXOT+/yLpl3zH8SJJ09baa8aYc5LW\nJGUkpa21Jxp1nACaI5FIeCdbftU0odwVYKr9xm9kZETr6+s7Qihrbd4aCm7/2WxWFy9e1OHDh6t6\nHgAo1MgmVNBxvEOHDqm3t7diE8rtd2JiQisrK0qn0+rra9hHxbpwX3AYYwihsCcUa0K59Y/ahbvo\nQqvdf//9Zd9/29HY2FjJcbxyTSj3WN7/0Aka2YT6C0k/XupOa+1/t9a+xFr7EkkfkvT/WWv9X7u9\nbut+AiigC5RrQq2trXmXMS+nliaUtB1a+UOoVCq146p8bv8SI3kA6qMRIdTo6Kh6e3sDLUxujFE4\nHNbU1FTFEMrfhJI6I8zx/26ptKgv0A1cCLW4uKhsNustTN5ORkZGWjqK5wwNDXVcCDU6Olq2CUUI\nhW7QsBDKWvtNSUG73P9R0ucbdSwAWq/UL85qLqldawjlaur+EEraOZpCCAWg3hqxMLkxRpOTk4Ga\nUJFIRMYYTU9Plw2tYrGYtyaUe1/uhJE8fwgVCoU0ODiYdxL26KOPKpPJtOrwgLpz43iZTEZLS0tt\ntzC5lPvyrx1CqE40Pj5e08Lk7rGEUOgELV8TyhgzqFxj6m99N1tJXzPGPGqMeVeFx7/LGPOIMeaR\nct/wAWitUk2ooGubSLsbx5O2T/ZKXd7c7V8ihAJQH5VCKBf4VLt4bpD19FwIJZVeC88p1oQKOird\nSoW/W/xNgOeff14nTpzQP/7jP7bq8IC6c00oKfdlWjs2oW688UYdP3681YfRkcbGxhSLxZRKpXbc\nV2kcb3R0lBAKHaEdBv1/WtKDBaN4r7HWzhtj9kn6ujHm5Fazagdr7WckfUaSTpw4YRt/uABqUW4c\nTyp9lad4PK4zZ87oxS9+8a7H8dxzubUTCn9R04QCUG+NGMeTgq2nF4/H80Koxx9/vOS2hQuTS53X\nhJLyQ6jZ2VlJvJ+ju7gmlCRdvny57RYml6R77703b81NBOfWtltZWfG+NJWkdDqtTCbDOB66Qsub\nUJJ+UQWjeNba+a3/vSzpS5LuasFxAaijWptQf/qnf6oTJ04oFovVbRyv1OK1bv/RaJSTFgB10agQ\nKug4nguWjh49qrNnz2phYWHHdul0Wslk0hvH65YQyjW/OuHnAILyN6HOnz8va23bhVCRSKSqEWNs\nc59RC0fy3NqplcbxVlZWGEFG22tpCGWMGZX0HyT9ve+2qDFm2P1Z0hsk/aA1RwigXio1oUqdTF25\nckWbm5uan5+veRyvcGHyUiGU2/8tt9yyp0KotbU1Pf30060+DKArVVrDo5Y1oaRcgF/NON573/te\nZbNZ/c7v/M6O7dxJbbc1odzr0wk/BxCUvwn1/PPPS6r+cxHaV6m2/ubmpiRVHMez1uYtLwG0o4aF\nUMaYz0v6tqRbjDFzxph3GGPeY4x5j2+zn5P0NWttzHfbfkkPGGMel/RdSV+21v5zo44TQONZaysu\nTF5uHE+S5ubm8ppK1bjxxhs1MzPjnYz5q85+6+vr6u3t1fHjx/dUCPWpT31Kd911l6xlohmot0Y3\nocr9d+tf5+mGG27Qu9/9bv3Zn/2ZnnvuuR3bSdvvraOjozLGdER4QxMKe42/CXXmzBlJarsmFGpX\n6iqfLoQq9/uk1JesQLtp5NXx/qO19qC1NmStPWyt/ay19tPW2k/7tvkLa+0vFjzujLX2zq1/brPW\n/m6jjhFAc7gKcbFv+iORiAYHB0s2odyHLdeECofD6uurbjm7X/mVX9HJkye99QnC4bD6+/uLjuMN\nDQ1pZmZGc3NzDQ9lksmkvve97zX0OYK4evWqYrFY3rerAOqjkSFUMpnMW8uukL8JJUkf/vCH1d/f\nr4985CN527n/9l1g1dvbq7GxscDhjbVWDz30UFXHXy+EUNhrYrGYIpGIhoaGaEJ1oVJBkvssXa4J\n5VpUpa6uB7SLdlgTCkCXSyQSkkqPm5Rb28QfQq2vr9f0Qau3tzdvHSljTNHFG90VZmZmZhSPx3c0\npertvvvu0w//8A/r8uXLDX2eStxrvLq62tLjALpRpRBqdHRU+/fv17Fjx6rab5Ari/oXJpekAwcO\n6Nd+7df0+c9/Xo899ljedlJ+y3RiYiJwePPNb35Tr3zlK/X973+/qp+hHkqFUNZaL4TqhKv8AUHF\n43FFo1FNT0/ThOpCpdaECjqOJ+1s+gPthhAKQMNVCqHKrW1SGEJVuyh5KcVCKH8Tyj1nI127dk3Z\nbLblIdTGxoYksYYA0ACVQqienh49//zzete73lXVfiutpyflL0zufPCDH9T4+Lh+8zd/07utcE0o\nqboQyr1/u6vRNVOxECqTySgWi9GEQldyY7bT09O6ePGiJEKobhIOhxWJRHYESUHG8WhCoVMQQgFo\nuErf3gRtQq2trXVVCOVel1Z/WHAhFE0ooP6SyWTZb66lXAOpt7e3qv26JlS5xckLx/Gk3Hvfhz70\nIX31q1/VN7/5TUnb43i1NqHce4gLfZqpWAgl5UZZCKHQjWKxmNeEchjH6y7FPqMGGcdjTSh0CkIo\nAA1XzyZUvT5oVRrHc8/ZSO0SQrnXmCYUUH+VmlC1CtKEKhzHc97//vfr0KFD+tCHPiRr7a6bUJ0Q\nQnHhBXQLfxPKoQnVXcbGxmoax4tGo+rr6yOEQtsjhALQcPVcE6oZTahDhw55z9lI7RJC0YQCGqfR\nIVSlJlThOJ6UWwT9N37jN/Stb31Lp06d2rEwudt/0LWU2jGEunbtmq5evapwOKxMJkPIjq5BE6r7\njY2N1TSOV2rNU6DdEEIBaLggIdTy8rLS6fSO+1wIdfHiRS0vLze0CeVCqHA4rKmpqT0XQnGSBtRf\no0Ko8fFxGWNKBkXW2qLjeM4dd9whSZqbmyu5MPny8rIymUzFY3HvIeUCsUYpFUKdP39emUxGN910\nkyRG8tA9CptQoVCo4sgvOkuxJlSQcTz3WEIotDtCKAANV6lCPDU1JWtt0TDGnRxlMhmdPXu2oU0o\nN44nSYcOHdLCwkJdnqsU94Gi1SEUV8cDGsNa27AQqre3V+Pj4yVDqFQqpUwmUzKEOnDggKRcwF+s\nCTUxMSFrbaCrLLWqCZVOp5VOp4uGUM8++6wk6ZZbbpFECIXuUdiEGhkZkTGmxUeFeir2GTXIOJ57\nLFfHQ7sjhALQcEGaUFLxtU3i8bg3HpdMJusWQo2OjiqRSHjHJilv3G/fvn01n1A98cQTgQKddmtC\nEUIB9ZXJZGStbUgIJZVfT8/9d11sHE+SDh48KEm6cOFCySaUFCy8aVUI5d5DCaGwlxQ2oRjF6z5j\nY2NaW1vLmxAIMo7nHtvqz5VAJYRQABrOhRv+Exy/cld5isfj3jiFVL8PW+5ExX1blM1mFYvFvP1P\nTU3VdEJlrdWrX/1q/cEf/EHFbdsthGIcD6gv13ZsVAgVZD29Uk2o4eFhDQ4O5jWh/Nt2QghV7AuO\n0dFRSYRQ6F6xWEyDg4PeZycWJe8+Y2NjstbmfTnIOB66CSEUgIY7d+6cJOnYsWNF7y/VhHJXbfKH\nUPUcx5O2L2PrTsLc/qenp2s6odrc3FQsFtPc3FygbaXWh1CM4wGN0YwQqlITqlQIZYzRwYMHvSZU\nJBJRT8/2x8JODaH6+/s1ODi4I4QKush6I1hr9eCDD3KFPtRFPB7PG8ejCdV9xsfHJSkvTKp2HI/3\nG7QzQigADXfmzBmNjY15v1QLuW/zCk8S3Jomx44dUygUktS4EGp9fT1v/9PT01pZWfFOIoOqZoHe\ndgmhaEIBjdHoEGpqaqpkuFJpHE/KrQvlQqjC7aoJoVyQvbGx4QX6zVBq1HtsbMwL1duhCfXAAw/o\nNa95jR599NGWHQO6g7XWa0L514RCd3Hvv/5gP+jvk/HxcaXTab5YRFsjhAJQd8vLy3riiSe8v585\nc0Y33HBDye1LXWrc305y65fUexyvMIRy+3cf7qq92pM7KQryrXs7LEzu2mYSTSig3tp5HE/KrQvl\nxvEKx6VraUJJzW1DlQuhpNwI+OjoqKLRaEtDKPeaXLp0qWXHgO6wubkpa62i0aiGhoY0MDBACNWF\nbrzxRknbY8VS7t99b2+v+vr6yj623BIXQLsghAJQd/fcc49e9apXeSdglUKoaDSq/v7+HSdT7iRq\ncHBQhw8fltS4JpRrAfmbUFL1J1TuZCxICNUOTSh3DBJNKKDemtGEisfjeSGQU2kcT1LeOF5hE8o1\nVzs5hHLv4xMTEy0NoQj6US/+z0XGGN122206fvx4i48K9TY1NaWxsbEdIVSQ3yXufa+VI8hAJeWj\nVAD/P3t3Hh9Vfe+P//WZbCQhG0nISkgCmSiQIBACtIBAgguLVhFZoq3aWvW2atXWun1t69LWq63W\n3nq1vde2/gRRb2VRKpoASi1LQFSiQEIIhLAkIQESyEwyk5nz+2M4h0kyM5nMnNlfz8eDh3BmMvMB\n4WTO67zf7w+5oKOjAzqdDrW1tRg3bhyOHj2K73znO3afL4SwucuT9YetrKwsAN5txwNcD6ECpR3P\n+uKRF0hE6vJGJRRgudiQg3qZs+14HR0daGtrG/C88PBwxMfHOx1CRUVFoaenx6t33wMthOK26eQu\nuUJcrlzcvn37oJUxFHiEENBqtairq1OOGQyGQedBAZe+L3h7Rh/RULASiohUZzQaAQA1NTU4efIk\nDAaDw0oowPZW47ZCKG+347lTCTXYUEg5hOrp6bFZyeAN8p8xwBCKSG3eDKH6c7YdD7BUq9ravXTE\niBFO3U3X6/UYNWoUAFZC2SIHBzzHkrusPxcBliHVYWFhvlwSeUhBQQHq6+thNpsBWD4rOhNCufr5\nlcibGEIRkerkC6+amho0NDQAgGohlFqVUNHR0YiIiBi0Hc/VmVAGg0EJtuyxHnruq2ooOfyKjIxk\nOx6RyrzRjgfYPk85Uwklh1BNTU02n+do8Hn/98rJyQHAEMoWtuORWuRA09G/awoOBQUF0Ov1ym7L\nzrbjxcXFISoqijOhyK8xhCIi1cmVUPv27XM6hEpNTR1w8WIdQk2aNAlRUVFKGOUuIQQSExPttuMl\nJSVBCOFyJRQweD++9TwmX4dQaWlpvEAiUpm3Qihb5ylnZ0IBgNlstlkJlZyc7NSFjF6vR1paGiIi\nIhhC2cBKKFKL/LnI1r9XCi5arRYAlJY8Z9vx5BEXrIQifzakEEoIMUYIUeSpxRBRcOhfCaXRaJS7\n5PYMFkKVlZXh7NmzGDlypGrrtBVCye14YWFhSE5OdiuEGuziraenR7mI9FUIJf8Zp6Wl4cKFC0rZ\nNxG5z9MhVGZmJgDgxIkTAx5zph0vPT1d+bmtygpHu+9Z0+v1iI6Otnke9yQ5hOp/YWYvhBqsRdpT\nOBOK1MJKqNAxduxYCCGU4eTOVkIBtrsLiPyJ0yGUEOIxAI8DuF8I8f95bklEFOjkSqimpibs3bsX\nOTk5iIiIcPg1qampOHfunPK1wMDZB44uplxhHUL1b8eT1+TpSij5ItAfKqEADNpCSETO83QIlZCQ\ngNjYWJshlDPteKmpqco8GVuVFc5eyMghlLfvvg+lEspgMPSZgedNrIQitbASKnTIO0PLIZSzlVCA\n5dzHEIr8md0QSghxnxDCetLdREmS7pAk6QcAJnp+aUQUqKyDpM2bNw/aigfYnsHUP4RSW/9KqKio\nqD5hmSshlHxRBARmCMW5UETq8XQIJYRAVlaWy5VQGo1G+bdvrxKqs7OzzzndFl9XQtkLoeRK0xEj\nRgDw3ZblnAlFamElVGgpKCjoUwk1lBCK7XjkzxxVQrUD2CSEuO7irz8WQmwSQnwM4CPPL42IApXB\nYFAubHp6epwKoWzNNvFGCCW3R1y4cGHA0HN3K6EGuwtl/efkD+14AC+SiNTk6RAKALKyspTBtdb0\nej0iIyOh0TguepeDcHuVUAAczlOSJAl6vR4xMTF+E0JptVqEh4fjsssuA3AphPLVXCi245FaWAkV\nWrRaLRobG9Hd3T3kdrzOzs4+s0eJ/IndTyaSJK0CsBhAsRBiA4DPAdwIYKkkST/z0vqIKAAZjUbk\n5+cjISEBwOBDyQHbW8p6sxLq/PnzqodQzlRCyTOu/KUSiiEUkXq8FULZa8dz5twpDye3VwkFOA7U\n5YscuRLKmy0g9kKoiRMn4vz58ygoKABw6ffhqxCK7XikFk9/LiL/otVqYTabcfjw4SG148k3EHxV\n/Uk0mMFmQo0B8A6AHwL4EYA/AFB3KAsRBR2DwYDIyEgUFVn2MQiEEOrChQvKUHLrNbW3t8NkMjn9\nmnKoExsb69Rg8piYGMTHx/tNCMV2PCL1yAGNp0OokydPDthUQKfTOTVHTw6h7O2OBzi+kLHehS81\nNRUdHR1K+OZp3d3dEELYnDloHUz5SyUUQyhylxxoshIqNMjVnHv37h1SJZStz9RE/sTRTKi/AfgJ\ngF8AeFCSpDsBvALgL0KIJ72zPCIKREajERERESguLgYwtBCq/0yoYcOGDdpO4qrExETo9Xr09PTY\nrYSSJGlIAZFer4cQApmZmQ4v3Hp7e2E2mxEVFYWkpCS24xEFIW9VQhmNxgGhtzynaTByO56tsF++\nm+4oUO8fQg32fDV1d3dj2LBhEEI4fJ6vQyhWQpFadDodwsPDB93shYJDTk4OCgsL8c9//tOlSiiG\nUOSvHF3ZTZIk6U5JkioAzAcASZK+kCRpMYCvvLI6IgpIBoMBERERuPLKKxEfHw+tVjvo1yQnJ0MI\nMaASypMl5/Lw2o6ODpszoVz5Ji5fFKWkpDgMoeQKCTmEkiuyvI2VUESe460QCsCAljw12/GGUgkF\neO/CRz7fDiYlJQXx8fF48cUXbbYuepoc9uv1+kGHvBM50tXVxVa8ELNw4ULU1NSgvb19SIPJAe/d\nECAaKkch1IdCiI+EEFsArLZ+QJKk9Z5dFhEFMqPRiMjISCxduhQtLS3KbChHwsLCMGLECJ+EUOfO\nnbPbjgcM7YJKrj5ITk52+M1fvjj1l0oo+ffKO/VE6rH+d+4p9kIoX7XjAf4XQkVFRWHDhg04ceIE\nZs2ahaNHj3p+cVbkSiiA51hyj06nYyteiFmwYAGEEOjt7XX6hsaIESOg0WgYQpHfcjSY/BEASwFc\nJ0nS895bEhEFOrkdTwjh1AWCrP8gcG+GUPba8QDXQyhnKqEiIyN9GkLJ642PjwfASigiNXmjEio7\nOxsABuyQ52w73oQJExAREWGzbTomJgbR0dFOt+Pl5+dDo9HgV7/6lVd2gnM2hAKAK6+8Eps3b8ap\nU6fw+9//3sMr60un0yk3ORhCkTtYCRV60tPTMWXKFADO39CwdWOXyJ84HLQiSVKnJEkXvLUYIgoO\n8mDyoeofQnn6w1b/Sig1Q6iUlBSndpTydSWUvN6oqChERkbyAolIRd4IodLS0qDRaGxWQjlz/iwo\nKMCFCxeUjST6GyxQtw6hsrOz8dZbb2Hnzp2YN2+ex2cwDfVGxdSpU5GXl4eTJ096cFUD6XQ6peLM\nG+EcBS9WQoWmRYsWARhaVe1gn0OJfMkz036JKKTJlVBDlZKS4tVKqNGjR0Oj0eDpp59GZ2fngHY8\nV2dCyZVQer1euUDrz19CKOs/4/j4eIZQRCoyGAzQaDQICwvz2HuEh4cjPT19QAh1+vRpp1qhAcch\n2WAXMnJLr1x1dfPNN2P9+vXYu3cv/vKXvzj1/q5y5XtE/5sdnmYymdDT06MMgOc5ltzBSqjQNH/+\nfCQkJCAzM9Ppr/H2uY5oKBhCEZHq1KqE8nQIlZWVhdWrV2Pnzp0wGAwDKqEiIyORkJAw5EooeTA5\nYH+WSv8QSt6lz9usW3bi4uLYjkekIlfPhUOVlZXVJ4Q6ffo0GhsbMXnyZLdfeyiVULIFCxYgPT0d\n9fX1br+/I84OX7fm7QszOaSTK6EYQpE7WAkVmhISErB161YsXrzY6a/pfwNBkiR88skn+Mc//oG1\na9eySop8KtzeA0KIG/sdkgC0AfhSkiRepRCRXa5WQqWmpqK9vR1msxkajQY6nU5pifOUZcuWIS4u\nDjfddBPy8vJsrsnVmVCAZWcSeWaLtf6DyQHg7Nmzyt1yb7EOoVgJRaQub4ZQhw4dUn69e/duAMC0\nadPcfu3k5GQ0NTXZfdxWCAUA+fn5aGhocPv9HdHpdMq51lneDqHkoeRsxyM1dHV1YcSIEb5eBvnA\nUL+XyLs0m81mAMCvf/1rrFmzRnk8MzMT//M//4OcnBxV10nkDEeVUIv7/bgOwE8B7BNCzPPC2ogo\nQBkMBpdDKLPZrLSmeboSSrZgwQK0t7fjlltusbkmd0KowSqh5MHkAHzSkmf9Z8xKKCJ1eTOEsh5M\nXl1dDY1Gowyzdcdg7Xj2Qqi8vDyvhFCuVEK1t7fDZDJ5aFV9yZVQbMcjNXjrcxEFvtTUVJhMJqxa\ntQo/+9nPsGbNGtx2222orKzEX//6V+h0Onz3u9/F4cOHla9paWnBwYMHfbhqChWOdse73caP6wHM\nAfAbr62QiAKO0Wh0uR0PuDSDyZsftuztIjVy5Ei0tLQ4/TrWg8kB2L1469+OB8DjQ3xtYSUUked4\nM4Tq6OhQqm527dqF8ePHD2gxdkVycjLOnj1rN7RxVAl17NgxGI1Gt9dgj6vteJIkeS30718JxXMs\nuYPteOSssWPHAgCee+45fPTRR7j33nvx0EMPISMjA1OnTsXf//53mM1m/OY3ly7rn3zySfzoRz/y\n1ZIphAx5JpQkSY0Ahl7iQEQhw512PMA3IZQ9OTk5DltR+pO3DHe2EioqKmrQ53qS9UVcfHw8K6GI\nVOTNEAoATpw4AUmSUF1djdLSUlVeOyUlxWFo4yiEMpvNOHbsmCrrsEWn09m9gWCPK7ueukOuhEpJ\nSUFYWBhDKHILB5OTs0pLS7Ft2zZUVVXhs88+w1133QUhhPL4mDFjcPPNN2PXrl04ffo02trasGPH\nDrS0tNjdVIdILUMOoYQQhQC8Pz2XiAKCJEno7e0NuEooe3JyctDR0eH0HI+htuNFRUUNOsTck6wv\n4uLi4niBRKQib4VQ8ty5EydOoKGhAWfOnFEthBrsXOYohALg0ZY8V9vxAO+HULGxsUhISOBMKHIL\nK6FoKEaMGIH09HQkJibafHzBggWQJAkffvghNm3apMyP6r/bKpHaHA0mfx+WYeTWRgDIADBwcAoR\nEaC0XrhbCSVva+0PIRQAHDt2DEVFRYM+Xw6hIiIiEB8fb7cdz3owufUQc29jOx6R5/iiEqq5uRmA\nOkPJAedCqIiICISFhfU57o0QypV2PDn091YIJbfjxcTE8BxLbvGXz0UUPPLz8zFu3Dhs3LgRYWFh\niI6Ohl6vx/Hjx5V2PiJPsBtCAXih368lAO0ADkmSZPDckogokMnhiisXXtYXB/LddV9/2HI1hAIs\n86ROnTpl83nWg8mHDx+OyMhIn1VCWbfj6XQ6mEymAReURDR03gqhcnJyEBcXh2effRbFxcWIiYnB\n+PHjVXntwebbWZ/zrGVmZiIyMtJjIZTRaITRaAyoSiiGUOQO679LRGpZuHAhnn/+eQDA7bffjr/+\n9a99Nrog8gS7IZQkSZ8KIb4DYCyAGkmSPvLesogoULlTCRUVFYW4uDicPn1a+bDlTyHUYCRJUmZC\nAUBBQQHq6upsPte6HU8IgeTkZJ9XQsXFxQEAzp8/b7d0m4ic560QKjo6Ghs3bsTChQtx8OBBzJo1\nC+Hhju4zOs+ZSihbIZRGo/HoDnn22gAH48tKKLbj0VB0dXXhnXfeUT5XyTMbff25iILLNddcgxde\nsNSerFy5Em+//TZDKPI4R+14rwAYD2A7gKeFEKWSJD3ttZURUUCSK6FcCaEAy11qfwqh0tPTERER\n4VQIZTQaYTablYuiwsJCfPrppzCbzdBo+o7gsw6hAMuFnq8Gk1u34wFAR0cHQygiFXgrhAKAWbNm\nYevWrVi0aBEWLlyo2uu6WgkFWFo9PBVCufo9IjIyEgkJCV6vhJLb8exVxxL196tf/UqpULGWm5vr\n/cVQ0EpLS8OcOXPQ29uLjIwMZGdnM4Qij3N0m2w2gImSJJmEEDEA/gWAIRQROSTfsXP1wsvfQiiN\nRoNRo0ahsbFx0Of2vzNfWFgInU6HEydOYNSoUX2eaz0TCrBc6Hk7hDIajejt7VX+jJOSkgAA586d\nw+jRo726FqJgZDAYvHoOmzJliuoDZYcPH46IiIghV0IBlhBqx44dqq7H+n0B175HyN9nvEGuhJLb\n8Wpra73yvhTYjh8/jj/+8Y9YuXJlnyAqMjJSCYaJ1PLiiy8qP8/OzvborqZEgOPd8QySJJkAQJIk\nHQDh4LlERADcr4TKzMxEY2Oj34RQgKUlz5lvyLZCKAA2LzpsVUJ5ux2v/3rlEMreVuxENDTerISS\naTSaAZWX7pDbhV0Noc6dO+eRc4r8PWKo7XiAd0Mo63UmJCRwJhQ55amnnoLJZMKzzz6LzMxM5QcD\nKPKE8PBwpYVbroSSpP77kxGpx9GnlMuEEPsu/qix+nWNEGLfYC8shHhdCNEqhPjazuNzhBAdQogv\nL/540uqxa4QQtUKIeiHEI0P/bRGRr7hbCTVlyhQcOnQIJ0+eBBCYIZQ8E0qr1QJwHELJf06+qIRi\nCEXkWb4IoTwhJSXFYTuevfO0J3fIc+dGhbdDqOjoaGg0GsTHx3MmFA2qrq4Or7/+Ou655x623pHX\nZWdno7u72ycjIih0OGrHu9zN1/4bgP8C8IaD5/xLkqRF1geEEGEA/gRgPoDjAHYLITZIkrTfzfUQ\nkRe4M5gcuLSt+LZt2wD4xy4wOTk5OHHiBHp7ex0O++3u7gZwKdTJzMzE8OHDbQ4n7+npQVhYmLIL\nnVxpIEkShPBO4Wn/iziGUETqCpYQKjMzE4cPH7b5mF6vx/Dhw20+Zh1CTZkyRdU1uduOt3v3blXX\nY09XV1efHUh7Qz3uOgAAIABJREFUenrQ09OjVMES9feHP/wBERERePzxx329FApB2dnZAICmpiZW\n3pHHOKqEigCQLUlSo/UPANlwHF4BACRJ2gbgjAtrKgVQL0lSgyRJBgBrAFzvwusQkQ+4245XUlIC\nANi6dSsA/6mEMpvNSnWWPf0ri4QQ0Gq1diuhrC9CUlJSYDKZvHqXnJVQRJ4VLCHUlVdeiZqaGrS2\ntg54zFE7Xl5eHgDPVkK50o4nV3Z5o91Ep9MpN1PkzR/kXc6I+jMajXjnnXdw/fXXY+TIkb5eDoUg\nOYTicHLyJEch1EsAbDWud158TA0zhBBfCSE+FEKMv3gsC0CT1XOOXzxmkxDih0KIPUKIPd4qrSYi\n+9xtx0tMTERhYSG++OILAP4TQgEYdDi5rS3DCwsLbYZQBoOhTwg12DbontB/vXFxcQgLC2MIRaSS\nYAmhysvLAVy6OWDNUQgVFxeH1NRUv2zHMxqNXpnPZF0JlZCQAABsySO7Kisr0dbWhpUrV/p6KRSi\nsrIsl90MociTHIVQaZIk1fQ/ePFYrgrvvRfAaEmSJgL4I4B1rryIJEl/liSpRJKkktTUVBWWRUTu\ncLcSCrC05Ml3qP0hhJJ3ihtsLpS9EKqxsVF5TNa/EkoOobw5nLz/RZwQAomJiQyhiFQSLCHUlClT\nkJCQgKqqqgGPOQqhAEs1lCdCKHfb8QB4ZS6UTqfr044HgMPJya5Vq1YhKSkJ11xzja+XQiEqKioK\naWlpfUKonp4efPbZZxxWTqpxFEIlOnhs6LXP/UiS1ClJ0oWLP/8ngAghRAqAEwCs9zLPvniMiAKA\nu5VQAFBaWqr83B9CqFGjLKekwUIoeSaUPJgcsAwnlyRpwDyVnp6ePn9Gct+9LyuhAEtLHkMoInUE\nSwgVFhaGefPmobKycsBFyGAhVH5+vl9WQgHeCaG6uroGtOMxhCJburq6sG7dOixdujQozhsUuOQd\n8gDL38t77rkHd999Nz7++GMfr4yChaMQao8Q4s7+B4UQPwDwubtvLIRIFxen7wohSi+upR3AbgAF\nQog8IUQkgOUANrj7fkTkHWpUQvlbCBUbG4vk5GSXK6GAgTvk+VMllPV6WQlFpJ7+YXMgKysrQ2Nj\n44BASd79zZ78/Hw0Njait7dX1fW4MxPKV5VQcjseQyiyZf369dDpdGzFI5/Lzs7G4cOH8dZbb+EH\nP/gBPv/8c8TGxmLjxo2+XhoFCUcDxn8CYK0QogKXQqcSAJEAbhjshYUQbwGYAyBFCHEcwC9gGXYO\nSZJeBXATgHuEEL0A9ACWS5bba71CiB8D+AhAGIDXJUn6xoXfGxH5gBqVUBMnTkRkZCRMJpNbYZaa\ncnJyXAqhtFotgMFDKF9WQlkHfayEIlJP/9lvgUyeC1VVVYUxY8YAACRJcqoSymQyoampSRlUroZA\naseTB/3KIRTPsWTLtm3bkJiYiFmzZvl6KRTiJkyYgPXr1+PZZ5/FsGHD8OKLL2LPnj1YvXo1Ojo6\nlHMZkavshlCSJLUA+JYQYi6ACRcPb5QkaYszLyxJ0opBHv8vAP9l57F/AvinM+9DRP5FDqHcCY8i\nIyMxadIk7N+/HxcLJn0uJycH9fX1Dp9jK4QaPnw4srKyBoRQ/S9OExISEBYW5tVKKHvteIMNYCei\nwZlMJphMpqCphNJqtcjOzkZVVRXuuusuAJbzvdlsHjSEAiw75KkZQul0OgghXAr5vN2OJwdl8s0G\nb57nKXDo9XokJCRAo3HUqELkeStWrMC1116rnN+jo6ORlpaGN954A5WVlbjpppt8vUQKcIOe5SRJ\n2ipJ0h8v/nAqgCKi0KVGOx4ALFy4UGll8we5ubk4evSow6GMtmZCAZaLt7q6uj7H+ldCCSEwYsQI\nr1ZC2WpnYSUUkTrUqAr1J0IIXHXVVfj444+Vc52tILs/6xBKTXIboCs3KmJiYhATE+O1Sih5JlRC\nQgIiIiK88r4UeLq7uwd8fiDylcTERIwYMUI5v48bNw65ublsySNVMGonIlWpdeH1xBNPoLq6Wo0l\nqUKr1aKrqwsnT560+xx7F2RjxozBkSNH+hyzNSsmJSXFb9rxuAMKkXvkQD5YQigAWLZsGTo7O/HP\nf1qK1Z0JobKzsxEeHu6REMqdmYGpqaler4QSQiAlJYUhFNnU/+YUkT8RQmDhwoXYs2cPmpubfb0c\nCnAMoYhIVWpVQgkh/KYVD7A/28mafEHW/05mXl4eWlpa0NXVpRyz9WEzOTnZL9rxent7+6yViIYu\nGEOoefPmIS0tDatWrQLgXAgVFhaG3Nxc1UMovV7vVgiVnp7eZwtyT5AkqU8lFOC98IsCD0Mo8nfz\n58+HJEnYtWuXr5dCAY4hFBGpKthaUGT2drmTJAnr1q2DyWSCXq/HsGHDBoRncjuKdTWUrQ+b3q6E\n0ul0iIyMRFhYmHIsKSkJAAfnErkrGEOo8PBwLFu2DBs3bsS5c+ecCqEAyznQ3yqhxo8fj5qaGo9W\nffb09MBsNvdZJ0MosochFPm7nJwcAHDYFUDkDIZQRKQqtSqh/E1WVhZiYmIGhFCffPIJbrjhBnz0\n0UdKCNWfrZkotnbN8kUlVP+LR4ZQROoIxhAKACoqKtDT04O1a9f6PIQa7H0dKS4uRltbG1paWlRc\nVV/y3D2GUOQMhlDk7yIjI5GSkoJTp075eikU4BhCEZGqgrUSSqPR2Bwwvn//fgDAoUOH0N3dbfOi\naKiVUN6ax8QQishzgjWEmjp1KsaMGYNVq1YNKYQ6c+YMzp07p9o63G3HKyoqAgDU1NSotaQB5LZm\ntuORMxhCUSDIyMhgCEVuYwhFRKqSQ6hgq4QCLC15/Suh5F83NDTYDHUAS4VTXFxcn0oAW4PJk5OT\nYTAYvDaPiSEUkecEawglhMB3v/tdbNmyRZkL4kwIBWDABg3ucLcdzxshlL1KqI6ODuXvB5Gsp6eH\nu+OR38vIyOBgcnIbQygiUlWwtuMBlhDq6NGj6OnpUY7JlVGOQighxIB2FHuDyQF4rSWPIRSR5wRr\nCAUA9913HxITE/HMM88AcD6EamhowIEDB1QJftxtx0tNTUVaWppXQijrSqiUlBQA3jvPU+Do7u5m\nJRT5PbkSirsokzsYQhGRqoxGIzQaTZ9h18FCq9XCbDajvr5eOda/EsreXUxnQij54sRbw8m7u7sH\nrJchFJE6gjmESkxMxCOPPKK01zkbQv3tb3/DlClTcOONN7q9Bnfb8QDLXKh9+/a5vRZ75KrW/pVQ\nANiSRwOwHY8CQUZGBrq7u1Vtr6bQwxCKiFRlMBiCsgoKGLhDnl6vR2NjI8LCwhxWQgGXQij5zpG9\nweSA9+6Q2wqh4uPjIYRgCEXkpmAOoQDgxz/+MTIyMgAMHkIlJCQgKSkJH3zwgRLku3uec7cdD7C0\n5O3fvx8mk8mt17HHViWUHEKxEor6YwhFgUA+73OHPHIHQygiUpXRaAzaiy6tVgvgUgtefX09JEnC\njBkz0N3djSNHjjgMobq7u9Hc3AxJkmx+2BwzZgwiIiLw2GOPeeUCxdYgdY1Gg8TERIZQRG4K9hAq\nJiYGzz33HJKTk5VgxZEZM2Zg1qxZePvttwEAu3fvduv91Qqhuru7+1S3qomVUDQUDKEoEMghFIeT\nkzsYQhGRqoK5Eio+Ph4ZGRlKJZT832uvvRYA0NjY6DCEAixte/Z2EExPT8e6deuwf/9+zJ4926Nb\nhwOw2z6YlJTEEIpCUl1dHT799FNVXivYQygAuPXWW9Ha2orhw4cP+tz3338fn376KcrKyqDRaJSh\n5q5yVHnqrOLiYgDqDydvbm7Gyy+/jPfeew+A7UoohlDUH0MoCgQMoUgNDKGISFXBXAkF9N0hT66I\nuvrqq5XHnQmh5MHmtj5sLliwAJs2bcKBAwfw+uuvq7r2/my14wEMoSh0PfbYY5g7dy5ee+01t18r\nFEIowFI96ezzhBAYPnw4xo0bh+rqapff02w2qzIT6vLLL4dGo1F9LtSf/vQn3H///XjzzTcRHx+P\ntLQ05bERI0ZACMEQivqwVyFN5G8SExMxbNgw7pBHbmEIRUSqMhqNQVsJBVha8qwrobKysjB+/HgI\nIQDA7mDy0aNHQwiBhoYG5eLU3ofNK6+8EiNHjsTRo0fV/w1YYQhF1Jf8b+7uu+/G73//e7deK1RC\nKFeUlpaiurra5d2Vuru7AcDtECo6OhoFBQWqV0K1tLRg5MiROHfuHFpbWxEfH688FhYWhuTkZIZQ\n1IfRaIQkSXY/QxD5CyGEskMekasYQhGRqoK5HQ8AJk+ejDNnzmDbtm2ora1FYWEhhg0bhqysLAD2\nK6GioqKQnZ09aCWULCcnB8eOHVP/N2CFIRRRX8eOHcNtt92G6667Dg8//LBbu/8whLKvtLQU7e3t\nOHLkiEtfLw/8drcdDwAmTpyIL774wu3Xsdbe3o6UlBQkJCTYPM+npqYyhKI+nPlcQOQvGEKRuxhC\nEZGqgr0d79Zbb0VGRgYeffRR1NbWKsPK5XY7RxdF8g55/hRC2VovQygKRXq9HqdPn8bYsWPx4IMP\nwmQyuTUfiiGUfdOmTQMAp+dCffTRR30uePR6PQD3K6EAYOrUqWhsbERra6vbryVra2tDSkqK3ccZ\nQlF/DKEokGRkZHB3PHILQygiUlWwV0LFxMTgF7/4BbZv345z586hsLAQgPMhVH19vfJh09HFaU5O\nDhobG11uV3HGYIPJPfneRP5GDn1zcnIwffp0xMTEoKqqyuXXYwhl3/jx4xEdHe3UXKjOzk4sWLAA\nt99+u3JMroRSI4SSAzF3ZlT1197ejuTkZLuPM4Si/hhCUSDJyMhAe3u78veWaKgYQhGRqoK9EgoA\n7rjjDowdOxYABoRQjuY5aLVaNDc3o62tDcDglVBdXV0eq0iSJMlhO57RaFQu9IhCgRxCjR49GlFR\nUZg9ezZDKA+JiIjA5MmTnQp+9uzZA7PZjI8++giffPIJAHVDqMmTJ0Oj0Xg1hEpJSWEIRX0whKJA\nIu+Q5+ldnCl4MYQiIlUFeyUUYLmAeuGFF5CYmIhJkyYBcK4SSg6s5CG4g4VQADzWkudoCGpSUhIA\nsCWPQop1JRQAlJeX4+DBgzh+/LhLr8cQyrGpU6fiiy++gMlkcvg8ORxKS0vDo48+CkmSlHY8NWZC\nxcbGYsKECaqFUJIkOdWO197ePujvnUIHQygKJHIIxblQ5CqGUESkqmDfHU92/fXX48yZM0hPTweg\nfgg1evRoAJ4LoeTdpezNhAIYQlFoOXbsGDQaDTIzMwFYQigA2Lx5s0uvxxDKseLiYuj1ehw+fNjh\n83bt2oWCggI888wz2LlzJ9avX69qJRRgaclzZ7c+a+fPn0dvb++g7XiSJPEcSwo5hOLueBQIGEKR\nuxhCEZGqQqEdTyaEUH4+btw4ZGZm4vLLL7f7/DFjxkCj0WDfvn0ABp8JBXguhJIrCWx94JUvwhsa\nGjzy3kT+6NixY8jMzFRC9KKiIqSmprrckieHUKEQyruiqKgIwKVQ3p7q6mqUlpbitttuw6hRo/DG\nG2+oHkKVlpbi7NmzqK+vd/u15HbrwSqhALAljxTyjSFWQlEgSE9PR3h4uMs7nBIxhCIiVYVCO54t\nCQkJOHHiBObNm2f3OVFRUcjLy1NCKEcfNlNTUxEVFeXxSihbIVRJSQmio6OxZcsWj7w3kT86duyY\nEv4CgEajQVlZGTZt2oTnn38er7322pDapwwGAyIjI/uE1XTJuHHjoNFoHIZQJ06cwMmTJ1FaWorw\n8HCUlpaipqZG1XY8wBJCAeoMJ29vbweAQSuhAIZQdAnb8SiQREREQKvV4uuvv/b1UihAMYQiIlWF\nUiWUKwoLC3H+/HkAjj9sCiGUHfI8wVEIpcZQZqJA09jY2CeEAoAlS5agra0NDz/8MO6++2589tln\nTr9eT08Pz4UOxMTEYOzYsUoob8uuXbsAXAqJiouLcfjwYSW8UasSavz48YiNjVXezx0MocgVDKEo\n0BQVFeHrr7+G2Wz29VIoADGEIiJVhWollLO0Wq3y88E+bObk5PikEgqwzMPZv38/Tp486ZH3J/In\nZrMZTU1NA0Kom266CTqdTplb5Cgw6U+uhCL7ioqKHFZCVVdXIyIiAldccYXyfEmSsHv3bgDqhVBh\nYWGYMmWKKpVQbMcjVzCEokBTVFSErq4utuSRSxhCEZGqWAnlmDycHPBtCDVYO0tZWRkA14cyEwWS\n1tZWGAyGASEUYPk3kpeXh+Tk5CGFUPX19Q6rYchyEXP48GF0dXXZfLy6uhoTJ05UwnJ5jpRcsaRW\nCAVY2pC/+uort+/qO1sJJYTgUF9SMISiQCOfj9mSR65gCEVEqmIllGPWIdRgYd3o0aNx6tQpZcCx\nmgarhJo4cSKSk5PZkkchQQ575V0p+xNCDFq1Y621tRWVlZVYsmSJamsMRsXFxZAkCfv37x/wWG9v\nL3bv3q204gGWXUhjYmJQW1sLQL2ZUABw2WWXobu72+3gv62tDRqNBomJiXafExERgVGjRrGCgBQM\noSjQ5OXlITY2dkg3Z4hkDKGISFVGo5EhlANDrYSSJAknTpxQfR2DhVDyUOaqqipVti0n8mdy8GCr\nEko2lPkX7777LkwmEyoqKlRbYzCS76T3v4gxGAy45ZZbcOHCBVx11VXKcY1GgwkTJgCwnD81GvU+\nxsrnZjngclV7ezuSkpIQFhbm8Hn5+fncgZQUg31PJvI38vnY2ZszRNYYQhGRqtiO51hGRgaGDx8O\nwLkQCoBHWvKc+cBbXl6OkydP4uDBg6q/P5E/cSaEKi4uRldXF44ePTro661evRpFRUVKYEK2yZVN\n1hcxBoMBN954I95++23853/+J66//vo+XyMHV2q24gGX5vWpEUI504aZl5fHEIoUrISiQFRUVIS6\nujrl7y+RsxhCEZGq2I7nmBBCuePubAjliR3ynNnifNasWQDU2bacyJ81NjYiLi4OCQkJdp9jr2qn\nvyNHjmD79u2sgnKCrTvpr7zyCjZu3IhXXnkFP/vZzwZ8jfz/Qc1WPABIS0tDfHw86urq3HqdtrY2\nh0PJZfn5+Th16hR0Op1b70fBgSEUBaKioiL09vbyZiUNGUMoIlIVK6EGJ99xH+zPKTs7G4DvKqHk\nEMwT7YBE/uTYsWPIycmBEMLuc8aPHw8Ag7YerFq1CgCwfPly9RYYxIqKirBv3z5IkoTz58/j2Wef\nRXl5Oe655x6bzy8uLgagfiWUfIPAW5VQ+fn5AOBUZR0FP4ZQFIicvTlD1B9DKCJSFSuhBldeXo5J\nkyY5vOAFLHf6s7Ky3L4ossWZEComJgZJSUkMoSjoNTc3IyMjw+Fzhg8fjvz8fIch1Nq1a/H0009j\n/vz5doecU19XXnkl2tracOedd+L5559HW1sbfv3rX9t9vqfa8QCoFkI5WwkFgC15BIAhFAWmkSNH\nIiMjA1988YWvl0IBJtzXCyCi4CFJEnp7e1kJNYg77rgDd9xxh1PPLSkpwe7du1Vfg7NDULOyshhC\nUdDT6XRIS0sb9HnFxcV2Q6i33noLt956K6ZOnYq3335b7SUGrVtuuQV1dXV45plnAABLlizB1KlT\n7T4/JSUF6enpHgmhtFot3nzzTXR1dSE2Ntbpr/v8888hSRJKSkrQ1tY2pEoohlAEWEKo8PBwVYft\nE3nDtGnTsHXrVpjNZv79JafxbwoRqcZoNAIAK6FUVFpaitraWpw9e1bV15VDqMHmqjCEolCg1+ud\nmjEkD2GVZ6rJJEnCAw88gJKSElRWViIpKclTSw06Qgg8/fTTeOGFF5CZmamEUY4sXrwYkyZNUn0t\n8ry++vp6p79GkiQsXboUt9xyC3Q6Hbq7u50KoVJTUxEbG4sjR464vF4KHj09PdwZjwLS9OnT0dHR\nwblQNCQMoYhINQyh1Ddt2jQAwJ49e1R9XfkierCqtaysLBw/flzV9ybyNzqdzqnKmqKiIpjNZuzf\nv7/P8a+//hotLS24++67ld0vaWgeeughHD9+HJdddtmgz/3zn/+MV155RfU1yCHUUFrydu7ciSNH\njqC2thZffvklADjVjieEQH5+PiuhCIDlxhBb8SgQTZ8+HYDlXEjkLIZQRKQaOYRiO556SkpKAAC7\ndu1S9XW7u7sxbNiwQedSZWVloaWlRfl/SxSMnK2EmjFjBiIjI3HHHXegpaVFOV5VVQUAKCsr89ga\nQ8Fg5yNPKygoADC0EGrVqlXKut955x0AcKoSCgBDKFL09PQwhKKAlJKSgoKCAuzYscPXS6EAwhCK\niFRjMBgAsBJKTQkJCbjssstQXV2t6uvKIdRgsrKyIEkSmpubVX1/In+i1+udqoTKzs7GBx98gPr6\nesyePVtpVa2qqoJWq8WoUaM8vVTyoJiYGOTk5NgNod5++210dHQovzYajXjnnXewZMkSjBw5Ugmh\nnKmEAi6FUJIkub94CmgMoSiQTZ8+HXv37lUG7BMNhiEUEamGlVCeMW3aNFRXV6t6oeJsCJWdnQ0A\nnAtFQUuSJKcroQBg/vz5qKysxPHjx/Hggw/CYDDg008/RXl5uYdXSt6g1WpthlAHDhzA8uXL8fLL\nLyvHNm/ejNOnT+OWW25BWVkZTp06BWBolVA6nQ6tra3qLJ4CFkMoCmTTp09HT0+P0pJMNBiGUESk\nGlZCeUZpaSlaWlpw7Ngx1V7T2YvurKwsAAyhKHg5O6Tf2re+9S089NBDeOedd/Df//3f6OrqYggV\nJAoLC1FXVzcg9JdbouXWS8DSipeYmIhrrrmmz/9/Z0OovLw8ANwhjxhCUWArKSlBeHg450KR0xhC\nEZFqOJjcM0pLSwFA1Za8obTjAQyhKHjJQ/qdacez9tBDD2HEiBH46U9/Co1Ggzlz5nhgdeRt48aN\nQ2dnJ5qamvocl8+/O3bswIULF6DT6bB27VosXboUUVFRfUKoESNGOPVe+fn5ABhCEUMoCmyxsbEY\nN24cvvjiC18vhQIEQygiUo1cCcV2PHUVFxcjKirKJyFUSkoKIiMjGUJR0NLpdACGVgkFWOa1PfbY\nY+jt7UVJSQmSkpI8sTzysqlTpwIYGPrv2rULcXFxMBqN+Ne//oUNGzagq6sLK1euBADk5ORg7Nix\nSEhIcPpGTG5uLgCGUGQJoZz5nkzkr+xVkRLZwhCKiFTDSijPiIyMRGlpKT766CPVXtPZEEoIgczM\nTIZQFLTkSqihhlAA8B//8R8oKirCihUr1F4W+UhxcTEiIyP7hFB6vR779u3D97//fURFRaGqqgqr\nV69GVlYWZs+erTzv1ltvxcyZM51+r+joaIwZMwbbt29X9fdAgae7u5uVUBTQtFotOjs7OeOOnOKx\nEEoI8boQolUI8bWdxyuEEPuEEDVCiO1CiIlWjx29ePxLIcQeT62RiNTFweSec/PNN6OmpgY1NTWq\nvN5QBjFnZ2fj+PHjqrwvkb9xtR0PsIQI+/btw09+8hO1l0U+EhUVhSuuuKJPCPXll1+it7cXc+bM\nwbe//W2sXbsWH374IVasWAGN5tJH6SeffBIffPDBkN5v6dKlqKys5IVbiGM7HgW6goICAMChQ4cA\nWMY4fPbZZ75cEvkxT1ZC/Q3ANQ4ePwLgSkmSigA8DeDP/R6fK0nSFZIklXhofUSkMg4m95ybb74Z\nYWFhWL16tSqv52wlFGCZC8VKKApWrrbjUfCaNm0a9uzZA5PJBODSUPLS0lKUl5fjyJEj6O3tRUVF\nhdvvVVFRAZPJhHfeecft16LAxRCKAp0cQtXV1QEAXnrpJdx3333KDWoiax4LoSRJ2gbgjIPHt0uS\ndPbiL3cCyPbUWojIO1gJ5TkjR47E/PnzsXr1apjNZrdfz5UQin3+FIzcacej4FRaWoquri7s378f\ngGU+VHZ2NjIyMpQB5JdffjkmTpzo6GWcMmHCBBQVFal2g4ECE0MoCnQJCQlIS0tDXV0dzGYzdu3a\nBYPBgMbGRl8vjfyQv8yE+j6AD61+LQH4WAjxuRDih46+UAjxQyHEHiHEntOnT3t0kUTkGCuhPKui\nogLHjh1TZX7IUEMovV6Pc+fOuf2+RP5GroRypR2PglP/HUmrq6sxbdo0AMDkyZNRXFyMe++9F0II\nVd6voqICO3bs4IDyEMYQioKBVqvFoUOHUFdXhzNnLLUocmUUkTWfh1BCiLmwhFA/tzo8U5KkyQCu\nBfAjIcRsm18MQJKkP0uSVCJJUklqaqqHV0tEjnAwuWddf/31iI6OxqpVq9x+Lb1eP6QQCgBb8igo\nsRKK+isoKEBiYiJ27dqF06dP4/Dhw0owFRYWhq+++gr33HOPau+3fPlyAGA1VAjj7ngUDAoKCtDQ\n0KDMgtJoNAyhyCafhlBCiGIA/wPgekmS2uXjkiSduPjfVgBrAZT6ZoVENBRyJRTb8TwjLi4OCxcu\nxLp169xujevu7nb6opshFAUzdwaTU3ASQqC0tBTbtm3DDTfcAI1Go7ThecLo0aMxY8YMrFu3zmPv\nQf6Nu+NRMNBqtTAajXj33XeRl5eHMWPGKIPKiaz5LIQSQuQAeA/ArZIk1VkdjxVCxMk/B3AVAJs7\n7BGRf2EllOddffXVaG5uxoEDB9x6naG042VnW0b2MYSiYMTB5GRLaWkpamtrUV1djTVr1mDy5Mke\nfb+rr74ae/fuVVpYjh49ivfee4+z+EIE2/EoGMjDyU+cOIEZM2agoKBgQAhlMpnw3nvvKTeuKTR5\nLIQSQrwFYAeAQiHEcSHE94UQdwsh7r74lCcBJAN4RQjxpRBiz8XjaQA+E0J8BaAawEZJkjZ5ap1E\npB4OJvc8+W58VVWVy68hSdKQQqjMzExERUXh6695P4CCD9vxyJbrr78eubm5WL9+PZYuXerx9ysv\nL4ckSdi6dSsA4N5778WSJUvw8MMPM4gKcpIkwWAwMISigJefn4/w8HAAwPTp01FQUICTJ0/i/Pnz\nynN2795R4xRfAAAgAElEQVSNJ598Eps28fI+lHlyd7wVkiRlSJIUIUlStiRJ/ytJ0quSJL168fEf\nSJKUJEnSFRd/lFw83iBJ0sSLP8ZLkvSsp9ZIRO6pqqpCbW2t8msOJve83NxcjBkzxq0Qqre3F2az\n2ekQKjIyEt/+9rexefNml9+TyF+xHY9sKSkpwZEjR3Dttdd65f1KS0sxfPhwbN68Ge3t7di0aRNy\ncnLwwgsv4Mc//rFX1kC+IX92YghFgS4iIgK5ubnQaDSYOnWqUhllXQ0lz4jijc3Q5vPB5EQUuCoq\nKvDII48ov2YllHeUl5fjk08+QW9vr0tf70rlR3l5Ofbt24eWlhaX3pPIX+l0OggheN4in4qIiMCc\nOXNQVVWFd999F729vVi3bh3uuecevPLKKzh58qSvl0ge0tPTA4AhFAWHuXPnYv78+YiLi4NWqwVg\nO4SqqanxyfrIPzCEIiKXGAwGtLa2KltYy8cAVkJ5Wnl5Oc6fP4/du3e79PXd3d0AMKSdeOQ2wC1b\ntrj0nkT+Sq/XIzo6GkIIXy+FQlx5eTkOHTqE3//+97j88stxxRVX4MYbbwSAPlXHsjfffBNnz571\n9jJJZQyhKJjcf//9+N3vfgcAyMjIwPDhw22GUAcPHuRcqBDGEIqIXNLa2goAOHnypDKwmoPJvWPu\n3LkQQrjckudKCDV58mQkJia61QZI5I90Oh1b8cgvyGH/oUOHUFFRASEECgsLAQwMoQ4fPoxbb70V\nr7zyitfXSeqSQ6ihfE8mCgRCCBQUFCjBk8lkwuHDh5GVlQWj0WgzXKfQwBCKiFxy6tQp5ee7du0C\ncKkSim0tnpWcnIzJkyejsrLSpa93JYQKCwvDvHnzUFlZySG5FFTkSigiXxs3bhzS09MBACtWrAAA\nZGVlISYmZsDF2sGDBwGgTzUyBSb5ezIroSgYyTvkSZKEpqYm9PT04IYbbgDAlrxQxhCKiFxiHULJ\nH4JZCeU9ixYtwmeffebSYEd5JtRQ77qWl5ejqakJ9fX1Q35PIn/FEIr8hRAC3/ve93DjjTciPz8f\nAKDRaKDVapVKApkcSu3atYs3BgIc2/EomE2YMAHnz5/HgQMHlLa8WbNmISUlhSFUCGMIRUQuaW5u\nBmDp95ZDKIPBACEEwsLCfLm0kHDfffchPj4ejz/++JC/Vr7rOtQLb7lVRO1d8qqrq7Fz505VX5PI\nWWzHI3/y29/+Fv/4xz/6HNNqtQMqoeRQqqWlBU1NTV5bH6mPIRQFs3nz5iE8PBwbN25EbW0tNBoN\nxowZg+LiYoZQIYwhFBG5RK6EWrx4MXbv3g2TyQSj0YiIiAgO+PWCESNG4OGHH8aGDRuwffv2IX2t\nK+14ADB27Fjk5eVh3bp1Q/q6wdx777246667VH1NImexEor8XWFhIY4cOaKEFYClEiouLg4AW/IC\nHUMoCmaJiYmYOXMmPvzwQ9TV1SEnJwfDhg3DhAkTcPToUXR0dPh6ieQDDKGIyCWnTp1CSkoKZs6c\niQsXLuDgwYNKCEXecf/99yMtLQ2PPvrokNoxXA2hhBBYvnw5qqqq0NLSMqSvtUeSJBw8eBAHDhxQ\n2jmJvEmv17MSivxaYWEhzGYzDh8+rByrra3FokWLEBkZqcxlpMDEEIqC3cKFC9Ha2opt27ZBq9UC\nAIqKigAA33zzjS+XRj7CEIqIXNLc3Iz09HSUlpYCsNyJNRgMHEruRbGxsXj00Uexbdu2IZU0uzoT\nCgAqKipgMpnwzjvvDPlrbWlpaUFnZyd3SSGf0el0rIQiv9Z/h7zOzk6cOnUKRUVFmDRpEiuhAhx3\nx6NgN2fOHMTExKC3txcFBQUALLOiNBoN9u7d6+PVkS8whCIil5w6dQoZGRkoKChAQkICtm/fzkoo\nH6ioqEB4eDhWrVrV57gkSfjzn/+M1tbWAV/j6kwoABg/fjyKi4uxevVq1xbcj3XwxNkA5AtsxyN/\nJ1cOyOdLebhvYWEhpk2bhj179qC3t9dn6yP3cHc8CnbR0dEoKysDACWEiouLw/jx4zkTNEQxhCIi\nl8ghlEajwYIFC/D666/j448/ZiWUl6WkpODqq6/GW2+9BbPZrBzftm0b7rrrLjz44IMDvsbVdjxZ\nRUUFdu7c2ac1xFXWIdS+ffvcfj2ioeJgcvJ38fHxSE9PV86X8n8LCwtRWloKnU6H/fv3+3KJ5Aa2\n41EoWL58ObKzs3HFFVcox6ZPn46amhpcuHDBhysjX2AIRURDJkkSmpubkZGRAQD4y1/+grKyMhw5\ncoSVUD5QUVGBpqYmfPbZZ8oxuVJp9erVA8Idd0Oo5cuX93kPd9TW1mLYsGEYN24cK6HIJ1gJRYGg\nsLBQ2RGvtrYWQgiMHTu2T0s8BSaGUBQKJk6ciE2bNiElJUU5NmPGDJhMJuzZs8eHKyNfYAhFREN2\n5swZGI1GpKenA7DMJnr//fexYsUKTJ482cerCz3XXXcdYmNjlZY8g8GAd999FwsXLkRCQgIef/zx\nPs93ZyYUAOTk5KCsrAyvvPIKurq63Fp7XV0dCgoKMHHiRIZQ5BMMoSgQFBYW9qmEys3NRVRUFMaO\nHYukpCSGUAGMIRSFqokTJ2LYsGHYsWOHr5dCXsYQKgj8+9//xtatW329DAohp06dAgClEgqwfHha\nvXo1/u///s9XywpZsbGx+M53voN3330XOp0OmzZtwtmzZ/GjH/0IP//5z/HBBx/0qZJyZyaU7Fe/\n+hWam5vxxz/+0a2119bWorCwEEVFRTh27Bi36iWvkiSJ7XgUEAoLC9He3o7W1lblvAlYdi0tLS1l\nCBXAGEJRqIqKisLkyZM5FyoEMYQKAg888ABuuOEGnDlzxtdLoRDR3NwMoG8IRb71wx/+EOfOncOC\nBQvwl7/8BSkpKSgvL8d9992H5OTkPmGRGkNQv/3tb2PRokV47rnncPbsWZdew2AwoKGhQQmhAODr\nr792eU1EQ2U0GmE2m1kJRX5v5syZEELgpptuQl1dnRJCAUBpaSlqamrcrkwl32AIRaFs+vTpOHz4\nsM2NdCh4MYTyM//+97/x4IMPQpIkp54vSRIOHjyIjo4OPPfccx5eHZGFXAklt+OR782ePRurVq3C\nZ599hg8++AA333wzIiIiEBMTg2XLlmHDhg04f/48AEsIFRUVBSGEW+/57LPPunXuaWhogMlkQmFh\nIYqLiwFwODl5l9yayhCK/F1paSneeust7NixAzqdbkAIZTabudV5gJJDKFdb5IkC2YwZMwAAu3bt\n8vFKyJsYQvmZb775Bi+++KIyfHIwzc3NOH/+POLj4/Hyyy/jxIkTHl4hke12PPK9FStWYO3atdBq\ntbjrrruU4xUVFeju7sbatWsBWEIoNT7sFhcXY+nSpXjttdeUD9FDYb3D06hRo5CQkMC5UORVOp0O\nANiORwFh2bJlWLduHXJycjBz5kzlOIeTBza5Opm7C1MoKiwsRGJiIlvyQgxDKD9TVlYGAKiqqnLq\n+XJY9fzzz8NkMuGpp57y2NqIZM3NzYiNjUVcXJyvl0L9LF68GLW1tUplEWC5y5Sbm6vsZqfX61W7\n43r77bfj3Llz+PDDD4f8tfL5S6vVQgiBCRMmMIQir2IlFAWahQsXorGxUWlhBoCRI0ciNzeXlQQB\nqqenB5GRkW5XJxMFIo1Gg2nTpmHnzp1OdwJR4GMI5Wfy8/ORm5uLzZs3O/V8uZLg6quvxve+9z28\n+eabLlUkEA3FqVOnWAUVQIQQWLlyJSorK9HS0oLu7m7VLrrLy8uRmpqq7Mw3FLW1tRg5ciQSExMB\nWHZJ+eqrr2AymVRZG9Fg5BCKlVAU6DicPHD19PRwHhSFtBkzZqClpQVHjhzx9VLISxhC+RkhBMrL\ny7FlyxanLsRqa2sRHR2NUaNGYdGiRdDpdCxnJI87deoU50EFmJUrV8JsNmPVqlWqteMBQHh4OJYt\nW4b3338fnZ2dQ/pa6x2eAMtF1Pnz55VwncjT5HY8VkJRoJs2bRoaGxvR0tLi66XQEDGEolA3ffp0\nAOA1bAhhCOWHysvL0dHRgc8//3zQ59bW1qKgoAAajQZz5syBRqNxuoqKyFXNzc2shAow48ePx8yZ\nM/Hoo49i586dqg5AXblyJXp6evDee+8N6ev6h1DTpk0DwOGU5D1sx6NgwblQgYshFIW67OxsZGdn\nM4QKIQyh/NC8efMAODcXyvoiLiEhAaWlpU7PkyJyFdvxAtP69esxadIkNDU1qRpCTZ8+HXl5eUNq\nyTt79ixOnz4NrVarHNNqtYiPj+dFFHkNB5NTsJg8eTLCwsIY4gegnp4e7oxHIW/GjBmorq5Gb2+v\nr5dCXsAQyg+lpqbiiiuuGDRMMhgMOHLkSJ9KgvLyclRXV6Ojo8PTy6QQpdfr0dnZyXa8ADRixAhU\nVlZi0aJFStWRGoQQWLZsGbZu3ep0S571zngyjUaDqVOnMoQir2ElFAWLmJgYTJ8+nbNBAxAroYgs\nNzQvXLiA/fv3+3op5AUMofxUWVkZ/v3vfzu8oGtoaIDJZOpTSVBeXg6TyYRPP/3UG8ukECTPm0hL\nS/PxSsgVcXFxeP/99/HSSy+p+rpXXXWVzXOP0WjESy+9hPPnz/c5Lu+MZx1CAZaWvH379inhAJEn\nMYSiYPKLX/wCjY2NeO2113y9FBqC7u5uhlAU8uSW4h07dvh4JeQNDKH81E033YTe3l4sWLDAblWT\nrUqC6dOnIyYmhi155DGtra0ALFtCE8lmzJiB6OjoAeeejz/+GA888ACefvrpPsdra2sRHh6O/Pz8\nPsdLS0vR29uLL774wuNrJmI7HgWT8vJyzJs3D88888yA4J/8V2NjI1JTU329DCKfSkpKQmFhIfbs\n2ePrpZAXMITyU9OnT8eaNWtQXV2NuXPn4vTp0wOeYyuEioqKwuzZs1FZWem1tVJoYSUU2TJs2DDM\nmjVrQAglt9b98Y9/xIkTJ5TjtbW1yM/PR0RERJ/n2xqu293djT/84Q8wGo2eWj6FKFZCUTARQuDX\nv/41Tp8+rXq1K3lGS0sLampqMHfuXF8vhcjniouL8c0330CSJF8vhTyMIZQfW7p0KdavX48DBw5g\n9uzZfS7gAMtFXFpaGhISEvocv/rqq3Hw4EGl3YVITXIlFEMo6q+8vBz79+/HyZMnlWO7du1CdnY2\nTCYTnnrqKeV4bW1tn1ZiWUZGBkaNGtVnuO7atWvxk5/8BP/85z89+xugkCOHUKyEomAxbdo03HDD\nDXj++efR1tbm6+XQILZs2QLA8v2TKNRNmDABnZ2daGxs9PVSyMMYQvm5a6+9Fh999BFOnDiBmTNn\n4qc//anyY/PmzQPmqQCW8EoIgdWrV/tgxRTs5EootuNRf/KHaPlDtSRJqK6uxjXXXIN77rkH//u/\n/4u6ujqYTCYcOnTI5vkLsFRDWVdCyYEUB5aT2uR2PO5MRcHkmWeeQVdXF37zm9/YfLy7uxsvvfQS\nB5j7gaqqKiQlJWHSpEm+XgqRzxUXFwMAampqAAAHDhzA5s2blcc7OjqwZs0aVkoFAYZQAWD27NnY\nsmULNBoNXn31VeVHW1sbFixYMOD5WVlZmDt3LlatWsV/pKS6lpYWxMfH86KNBpg4cSKSk5OVlrz6\n+nqcPXsWpaWlePzxxxEWFoZXX30VTU1N6OnpsRtCzZgxAw0NDUr1pxw+cetxUpter0dUVBQ0Gn4c\nouAxbtw4fO9738Of/vQnNDU1DXj8gw8+wAMPPIC1a9f6YHUkkyQJlZWVmDdvHsLCwny9HCKfy8/P\nR3R0tBJCPfvss3jkkUdgMpkAAP/4xz/wzDPPoL6+3pfLJBXwU1eAKCkpweHDh3HhwoU+P37+85/b\nfP7KlStRX1/P4W6kutbWVrbikU0ajQZlZWWoqqpSqqAAS3vIyJEjsWDBAqxZs0bZftdeCFVWVgbA\nUlFlMBiwd+9eAMDu3bthNpu98DuhUKHT6diKR0Hpl7/8JSRJwi9/+csBj+3btw8A+lQYkPfV19ej\nqamJrXhEF4WFhWH8+PGoqanB8ePH8eWXX0Kv16OhoQHApXPX0aNHfbhKUgNDqCC1ZMkSREZGYtWq\nVb5eCgWZlpYWtuKRXYsXL8aJEyewYcMGVFdXIyYmBuPGjQMAVFRU4NSpU8r24fZCqOLiYqSkpKCq\nqgo1NTXo6enBtddei87OTs66I1Xp9XoOJaeglJOTgzvvvBNvvvkmzp492+cxucqgsrKSFfM+JFcN\nyzdeiAgoKirCwYMHsW7dOuWYHD7J5y6GUIGPIVSQSkxMxMKFC7FmzRr09vb6ejkURFpaWlgJRXYt\nX74cWq0Wjz32GLZv346SkhKEh4cDABYuXIi4uDhs2LAB8fHxdsNM64oquQXv3nvvBcC5UKQuhlAU\nzG677TYYDAa89957fY7X1NQgPDwcjY2NSoUBeV9lZSVycnIwduxYXy+FyG8UFxfDaDTijTfewKRJ\nkxAfH4+vv/4ara2tylxahlCBjyFUELvtttvQ0tKCN99809dLoSDS2trKSiiyKzw8HM8++yz279+P\nPXv2oLS0VHksOjoaS5YsAWCpghJC2H2d8vJynDx5En//+98xcuRIXHXVVYiLi+NcKFIV2/EomE2Z\nMgUFBQV9quIvXLiAhoYGLFu2DMClahzyrqNHj+KDDz7A4sWLHX4vJAo1EyZMAGD5/rxo0SJMmDAB\nNTU1ShVUXFwcQ6ggwBAqiC1evBglJSX4xS9+wR1QSBW9vb1ob29nJRQ5tGTJEkyZMgUA+oRQgGVe\nHWC/FU8mz8iorq5GaWkpwsLCMHXqVFZCkapYCUXBTAiBiooKfPLJJ8pGD9988w0kScJNN92E7Oxs\nhlA+8stf/hIajQaPPPKIr5dC5FfS09ORkpKC8PBwXHXVVSgqKsKhQ4ewe/duhIeHo6ysDEeOHGEr\ncYBjCBXEhBD47W9/i2PHjuHVV1/19XIoCLS1tUGSJIZQ5JAQAi+99BLGjRuHOXPm9Hls3rx5mDNn\nDhYuXOjwNXJzczFmzBgAl4Ks0tJSfPXVV+ju7vbIuin0MISiYLdixQpIkoQ1a9YAuDRTpaioCOXl\n5diyZYuy8xR5x9dff4033ngD9957L7Kzs329HCK/IoTAddddh6VLlyIpKQlFRUUwmUzYsGEDtFot\nCgsL0dnZOWDWHQUWhlBBrqysDGVlZXjmmWdw5swZXy+HApzci812PBrMzJkz8c033yA1NbXP8bCw\nMGzduhXLly8f9DXkaqhp06YBsIRQRqMRX375pfoLppDEdjwKdlqtFiUlJUpLXk1NDWJjY5GXl4fy\n8nKcOXOG51Qve+KJJxAXF8cqKCI7HnzwQTz++OMALrXndXZ2oqioCKNHjwbAuVCBjiFUCHjuuefQ\n2dmJuXPnKiECkSvkvz+shCJvuOWWWzBp0iRMnz4dADBjxgwAwL/+9S9fLouCCCuhKBTcfvvt+OKL\nL5QdRydMmACNRoO5c+cCALZt2+bjFYaOHTt2YP369Xj44YeRnJzs6+UQ+b2UlBRkZmYCsFRw5ubm\nAmAIFegYQoWAKVOmYOPGjaivr8esWbNw6tQpXy+JAlRraysAVkKRd8ycORN79+5FfHw8AMucgPHj\nx2Pz5s0+XhkFA0mScOHCBVZCUdD7/ve/j5ycHDzyyCPYt28fioqKAACZmZnIzs7G7t27fbzC0CBJ\nEh599FGkpaXh/vvv9/VyiAKGfM4qKipCVlYWIiIiGEIFOIZQIaK8vByVlZU4duwYnnjiCV8vhwIU\nK6HI18rKyrBt2zZutkBuMZvN+MlPfoLGxkZMnDjR18sh8qioqCg89dRT+Pzzz9He3q5c0AGWNmfu\nOuodH3/8MT799FM88cQTGD58uK+XQxQwrrnmGkydOhV5eXkICwtDTk4OQ6gAxxAqhHzrW9/Cf/zH\nf+Bvf/sbDhw44OvlUABqaWlBVFSUUplC5G3l5eXQ6/XYsWOHr5dCAexHP/oRXn75ZTzwwAN46KGH\nfL0cIo+75ZZbMG7cOADoE0JNmzYNDQ0NaGtr89XSglpPTw/+3//7f7jvvvvw4x//GLm5ufjhD3/o\n62URBZT58+fjr3/9KzQaS3SRm5uLI0eO+HhV5A6PhlBCiNeFEK1CiK/tPC6EEC8LIeqFEPuEEJOt\nHvueEOLQxR/f8+Q6Q8mjjz6K2NhYVkORS1pbWzFy5EgIIXy9FApRV155JcLCwritOLnswoULePXV\nV3HnnXfid7/7Hc9nFBLCwsLwhz/8AVdc8f+3d+9xOZ//H8BfVycplBAmoZFTzLHY5pyxOTSE6jYz\nYw4zfmPfmfOZMYfZdzNs7KQYZobZRg7D5pisxIjoTlIo0YFO1++P7vv+lg463X3u7vv1fDw+j9Xn\ndL/urqn7ft/XoQ3at2+v269dfZRD8vRj165dWLx4Mb7//ns8ePAAq1atgpWVldKxiCq0hg0bIioq\nChkZGUpHoRLSd0+obwH0LeT4qwCaaLZ3AHwJAEIIBwDzAHgAcAcwTwhRXa9JTUStWrUwbdo07Nq1\nCydOnFA6DlUwsbGxHIpHiqpWrRo8PDxYhKISi46OBgB07dqVBSgyKZ6enggODs7Vm7l9+/YQQuDM\nmTMKJjNe/v7+cHJyQnx8PO7evYvBgwcrHYmowmvYsCEyMjJw+/ZtpaNQCem1CCWlPAYgvpBTvAB8\nL7OdAmAvhKgLoA+Ag1LKeCllAoCDKLyYRcUwdepUODs7Y8CAARzSQsUSFxfHIhQpztPTE2fPnsWD\nBw+UjkIVkLYIVa9ePYWTECmvatWqaNmyJeeF0oN79+7hjz/+gK+vr24YERGVnouLCwDg+vXrCieh\nklL6N2I9AFE5vr+l2VfQfioDVatWxbFjx1CzZk307t2bK01RkcXGxnJlPFKcp6cnsrKycOTIEaWj\nUAWkLUI5OTkpnITIMLi7u+PMmTOQUiodxajs2LEDGRkZUKlUSkchMiqNGzcGAFy9erXAc44ePYql\nS5di6dKlOHDgQHlFoyJSughVakKId4QQ54QQ5+7evat0nAqjQYMGOH78OBo1aoTXXnsNv/zyi9KR\nyMBJKdkTigyCh4cH7Ozs+HuLSoQ9oYhyc3d3x/379znRbxkLCAhAixYt0Lp1a6WjEBkVW1tbODk5\nITw8vMBz1q5di+3bt2Pnzp1Yvnx5OaajolC6CBUNoH6O7500+wran4eUcqOUsoOUskOtWrX0FtQY\n1alTB3/++SfatGmDIUOGwN/fX+lIZMAePHiA9PR09oQixVlZWWHIkCHYtWsXUlNTi3RNYmIiVqxY\ngbS0ND2nI0MXHR0Ne3t72NjYKB2FyCB4eHgAAIfklaHIyEicOHECKpWKc88R6UGTJk0K7Qn14MED\nDBw4EOPGjUNsbCxSUlLKMR09i9JFqD0ARmpWyesEIFFKGQPgDwCvCCGqayYkf0Wzj8qYg4MDAgMD\n0bVrV7zxxhtYv3690pHIQJ06dQoA4OrqqnASIkClUuHRo0fYt29fkc7/8ccfMX36dOzevVvPycjQ\n3bp1i72giHJwc3NDlSpVcPz4caWjGA3ta6Z+/fopnITIODVp0gSRkZH5frgopcSDBw9QvXp1NGzY\nEACgVqvLOSEVRq9FKCHEVgAnATQVQtwSQrwthBgvhBivOWU/gAgA1wB8BWAiAEgp4wEsAnBWsy3U\n7CM9qFq1Kn799Vf069cPEyZMwIoVK5SORAbI398f1atXR+/evZWOQoRu3bqhbt26Re7BGRoaCgC6\n8zMzM7Fy5UrcunVLbxnJMEVHR7MIRZSDhYUFunXrxlVHy1BcXBwADvsl0pcmTZogMzMTEREReY6l\npqYiPT0ddnZ2uiIUhxsbFn2vjucrpawrpbSUUjpJKTdJKddLKddrjksp5btSyuellK2klOdyXLtZ\nStlYs32jz5wEVK5cGbt27YKPjw+mT5+OWbNmcYJK0klOTsbu3bvh7e0NKysrpeMQwdzcHL6+vti/\nfz/i45/9GYW2CPXbb78hPj4eAQEB+M9//oN169bpOyoZGBahiPLy9PREeHg4ewuUkdjYWJibm8PB\nwUHpKERGSTsyI78heQkJCQAAe3t7NGjQAABw8+bNcstGz6b0cDwyIJaWltiyZQvGjh2LpUuXYtq0\naUpHIgXduHEDS5YsQVJSEvbs2YPk5GSu8EIGxc/PD+np6fjpp58KPU9KidDQUHTs2BHp6enw9/fH\n3LlzAYCf/JuYjIwM3LlzhyvjET3F09MTALhichmJjY1FrVq1YGbGt1pE+tCgQQNYWVnlOzn5gwcP\nAADVq1eHtbU16tatyyKUgeFvRsrF3NwcGzZswMSJE7FmzRqcPHlS6UikgLCwMLz00kuYPXs2evfu\njY0bN8LJyQldunRROhqRTrt27dC0adNnDsm7ffs24uPjMXLkSDRt2hTTp0/HzZs30bVrV5w7d073\niRkZv9jYWGRlZbEnFNFTWrZsidq1a7MwX0bi4uK4kAuRHllYWMDFxSXfnlDaIpSdnR0AoGHDhixC\nGRgWoSgPIQSWL18OR0dHzJgxg8PyTMzly5fRrVs3AMCqVatw/vx5HD16FL6+vvxEjwyKEAJ+fn44\nduwYoqKiCjxPOxSvVatWUKlUSE1NRY8ePbBkyRJIKXHkyJHyikwKi47OXmiXRSii3IQQ8PT0RGBg\nIF/3lYHY2FjUrl1b6RhERq1JkybP7AkFAI0aNcLNmzf5u82A8B0l5atKlSqYM2cO/vzzTxw4cEDp\nOFSOAgICkJCQgOPHj2Pq1KnYt28f3N3dMXbsWKWjEeXh5+cHKSW2bdtW4Dk5i1CjRo1CmzZtsHLl\nSnh4eKBKlSr85N+EsAhFVDBPT0/ExcXh4sWLSkep8OLi4liEItIzV1dXxMXFITExMdd+bRHK3t4e\nQHZPqOTkZNy7d6/cM1L+WISiAr3zzjto2LAhZsyYgaysLKXjUDm5ffs2ateujeeffx4A0Lt3b5w+\nfa1tQH4AACAASURBVBpNmjRROBlRXo0bN4a7uzsCAgIKPCc0NBT16tWDg4MD6tevj+DgYLRr1w6W\nlpbo1q0b50AxIdrVEFmEIsqrV69eAICDBw8W+ZqMjAwsW7YMSUlJ+opVIcXGxnI4HpGeaScnv3Ll\nSq79CQkJEEKgWrVqAMAV8gwQi1BUICsrKyxatAjBwcHYsWOH0nGonNy5cwd169ZVOgZRkalUKly4\ncAGXLl3K93hISAhatWqV7zFPT09cvXqVK0KZiOjoaFhaWqJmzZpKRyEyOPXr10fLli2xe/fuIl9z\n6tQpzJw5s1jXGLukpCSkpKSwJxSRnjVv3hxA9uu8nBITE1GtWjWYm5sD+F8RKjIyslzzUcFYhKJC\n+fr6ws3NDXPmzEF6errScagcxMTEsAhFFcqwYcNgZmaGb775Js+x9PR0XL58udAiFMBV8kxFdHQ0\n6tWrx/ntiArg6+uL48ePF7kwf/v2bQB5eyIAwK5du0xygZu4uDgAYBGKSM8cHBzg6uqKU6dO5dqf\nkJCgG4oHAHXq1IG1tTUnJzcgfBVGhTI3N8fSpUsRHh6e7xs8Mj4xMTGoU6eO0jGIiqxOnToYPnw4\nVq5cic8//zzXsfDwcKSlpaF169b5XtuyZUs4OTnxU3wToS1CEVH+fH19AQBbt24t0vkxMTEA8i9C\nvffee1i4cGHZhasgYmNjAYDD8YjKQadOnXD+/Hk8fvxYt+/Bgwe5ilBmZmZwdnbmcDwDwiIUPVP/\n/v3x4osvYsGCBbqJ3sg4ZWZmIi4ujj2hqMLZvHkzvLy88N5772HYsGEYN24cxo0bh2nTpgFAgT2h\nhBDw8fHBb7/9hvv375dnZFIAi1BEhXNxcUHnzp0LnWcvpzt37gDIW4RKS0tDTExMvsunGzttEYo9\noYj0r1OnTkhLS0NwcLBuX2JiYq4iFPC/FfLIMLAIRc8khMDKlStx9+5d9OjRQ9fNmIzP3bt3kZWV\nxSIUVTjW1tbYsWMHxo0bh+PHj2PPnj3Ys2cPLly4AHd3d928AflRqVTIyMjAzp07yzExlTcpJYtQ\nREXg5+eHkJCQIq2Sp+0JFR4enmsRm+joaEgpcfPmTTx58kRvWQ2R9nUye0IR6V+HDh1gYWGRa0je\n08PxgOwCe1RUFJKTk8s7IuWDRSgqks6dO2PPnj24cuUKunbtirt37yodifRA+2KSw/GoIrK0tMT6\n9esRExOTazt9+jSsrKwKvO6FF15A8+bN4e/vX45pqbw9fPgQycnJLEIRPcOwYcNgbm5epN+J2tcN\nqamputUnAejmlMrKysK1a9f0E9RAcTgeUfmxsbHBCy+8kGv+ufx6QrVq1QpSygIXsaHyxSIUFVnf\nvn3xxx9/4Pr161iwYIHScUgPtN3q2ROKTIkQAiqVCsePH+fKKUZMO7yobdu2CichMmyOjo7o3r07\n9u7d+8xz79y5o3uzl3NIXs6JzfObL8qYxcXFoXr16oV++EFEZadTp064fPkyEhMT8fjxY6SmpuZb\nhAKA0NBQJSLSU1iEomLp0qULxowZgw0bNiAiIkLpOFTGtJ9osghFpkY7Ge+bb76JsWPH5tsDIDY2\nFsuWLUNmZmZ5x6NSSklJwcKFC9GlSxf06NFD6ThEBu+VV15BWFiY7nVBQWJiYtClSxcAuYtNOQv6\nplaEio2NZS8oonLUqVMnSClx+vRp3fzFTxehqlevDicnJxahDASLUFRsc+bMgaWlJebOnat0FCpj\nHI5HpsrFxQUjRoxAeHg4fv75Z4wYMQKLFi2ClFJ3zubNmzFz5kwEBQUpmJRK4rPPPsOdO3ewbNky\nCCGUjkNk8Dw9PQEAhw8fLvCc9PR03L17F+3atUOVKlXy9IRydHRE3bp1TW5y8tjYWE5KTlSO3Nzc\nYG1tjfPnzxdYhAKye0OxCGUYWISiYnvuuecwZcoUBAQEICQkROk4VIa03eqtra2VjkJU7n744QdE\nR0fjzp07GDlyJObOnYt58+bpjp8+fTrXf6liSEhIwPLlyzFgwAC89NJLSschqhDatGkDBwcHBAYG\nFniOdgLuunXromnTprmKTWq1Gs7OzmjatKnJ9YSKi4tjEYqoHFlaWqJFixYIDQ19ZhHqzp07nNvY\nALAIRSXy4Ycfws7ODrNmzVI6CpWhmJgYDsUjk2dhYYFvvvkGw4cPx/Lly5GSkqLr5g0AZ86cUTgh\nFcfy5cuRmJiIJUuWKB2FqMIwMzNDr169EBgYmKtHaE45h/A/XWxSq9Vo0KCBSRahOByPqPy1atUK\nly9f1hWYCipCAZwXyhCwCEUlUr16dUyfPh379u3DiRMnCj338uXLWLNmTTklo9JgEYoom5mZGUaN\nGoW0tDT89ddfuh5SZmZmLEJVINHR0Vi7di1UKpXuxScRFY2npydu3bpV4HC6nEP4mzZtCrVajdTU\nVEgpc/WEio+Px71798ozumLS0tKQkJDAnlBE5axVq1ZIS0vTvUarXr16nnOaN28Oc3NzFqEMAItQ\nVGKTJ09G3bp18dFHHxX4KRkArFixAlOnTuU/+Argzp07nA+KSKNLly6wtLREYGCg7kXNwIEDcfXq\nVSQkJCicjopi0aJFyMzM5IquRCXQq1cvAChwSF7OnlCurq6QUiI8PBzx8fFITk6Gs7MzXF1dAZjO\n5OTaXhjsCUVUvrQfNGk7R9jZ2eU5x9raGq6urnxPagBYhKISs7GxwZw5c/DXX39h+PDhePvtt/Hr\nr7/mOkdKqXvxkt9qU2Q4pJTsCUWUg62tLTp37ozAwECcPn0alpaWGDt2LADg7NmzCqejZwkPD8fX\nX3+NcePGwcXFRek4RBWOi4sLGjZsiIMHD+Z7/M6dOwCA2rVro2nTpgCyi01qtRoAdD2hAJjM5OSx\nsbEAwJ5QROXsueeeg4ODA+7evQtbW1tYWlrme56bmxsuXryIrKysXPullNi8ebPu9xrpF4tQVCpj\nxoxBz549cfLkSezevRsDBgzA119/rTt+9epV3Lp1C5UqVcLWrVvz/IMnw/Hw4UOkpqayCEWUg6en\nJ4KDg/Hbb7+hTZs2uomtOSTP8M2dOxfW1taYPXu20lGIKiQhBF599VUcPHgQSUlJeY7HxMSgRo0a\nsLKyQrNmzWBjY4PDhw/nKkI1bNgQlpaWJtMTSjtZO4tQROVLCKHrDZXfUDytNm3aICkpKU9hPCoq\nCqtXr8auXbv0mpOysQhFpWJpaYlDhw4hKioKUVFR6NOnD8aOHYt169YB+F8X7pkzZ0KtVuPvv/9W\nMi4VQlv553A8ov/x9PSElBKhoaHw8PCAnZ0dmjVrxiKUgQsODsa2bdvw/vvv880gUSn4+voiJSUF\nv/zyS55jOXtPV65cGV5eXti+fTuuXbsGILsIZWFhgcaNG5tMEUrbE4rD8YjKn7YIld9QPC0PDw8A\nwKlTp3Ltj4qKApDdi5r0j0UoKjM2Njb45Zdf8Oqrr+KDDz7A7du3cejQITRs2BBTp06FjY0Nh+QZ\nsJxzOxBRto4dO6Jq1aoAAHd3dwDZL2DOnDlT6Fx4pKyZM2fCwcEBH3zwgdJRiCq0l156CfXr18/3\n9dudO3dyvWZQqVSIj4/Hpk2bYG1tjVq1agHIngz40qVL5ZZZSX/99RdsbW1Rr149paMQmZyi9ISq\nU6cOGjVqlKcIdevWLQAsQpUXFqGoTFlZWeHzzz9Heno65s+fj8OHD8PT0xNVqlTRfUKWlpamdEzK\nB4tQRHlZWFigR48eAP736Zm7uztiY2MRGRmpZDQqwLFjx/D7779jxowZhX4aSkTPZmZmBj8/Pxw4\ncEA36bZWTExMrt7Tr7zyCmrUqIHLly/D2dkZQggA2W8Mr127htTU1HLNXt6ePHmCnTt34vXXX4e1\ntbXScYhMjpubG4DCe0IBQOfOnREUFJTrPam2CKVWq/H48WP9hSQALEKRHri4uGDcuHH46quvkJiY\nCE9PTwDAW2+9hfj4+FxzRpHh4HA8ovyNHTsWAwYMQOPGjQFkrxglhMD69esVTkb5WbduHWrUqIF3\n331X6ShERsHPzw+ZmZnYvn27bp+UMk9PKEtLSwwbNgxA9lA8rVatWiErK8voe0P9/vvvSEhIgEql\nUjoKkUmys7PD66+/jq5duxZ6XqdOnZCamop//vlHt09bhMrKysL169f1mpNYhCI9mT17NmxsbAAA\nPXv2BJA9t0rXrl2xcOFCJCcnKxmP8hEZGYlKlSrB3t5e6ShEBqV///7Ys2cPzMyy/2Q2bdoUKpUK\na9euRXR0tMLpKKdHjx5hz549GD58OCpXrqx0HCKj0Lp1a7i5ueHbb79FZmYmACA+Ph5paWl5ek/7\n+fkByFuEAoCQkJBySqwMf39/1KxZU/fhKxGVv8WLF6Nfv36FntOxY0eYmZnlGpJ369Yt1K9fH4Dp\nrOapJBahSC/q1KmD5cuXY/To0bo5AYQQWLZsGWJjY7F27VqFE1JO/v7++Pzzz9G9e3dd93kiKtiC\nBQuQmZmJRYsWKR2Fcti9ezdSU1PZE4GojE2ZMgXnzp2Dj48P0tLSCuw9/eKLL2LIkCHo37+/bt/z\nzz+PypUrIzQ0tFwzl6eHDx9i7969GD58eIFLwxORYahatSpatWqVpwjVuXNnWFtbc16ocmChdAAy\nXpMmTcqz78UXX8TAgQOxfPlyjB8/Hg4ODgoko5y2bNmCkSNHonv37tixY4fScYgqBO2w4y+//BLT\npk1DkyZNlI5kMj7//HN4eHigY8eOeY75+/ujYcOG6Ny5swLJiIzXmDFj8PDhQ0ybNg1qtVo38e/T\nPaHMzMywc+fOXPvMzc3RsmVLoy5C/fzzz3j8+LGuJxgRGbZOnTrh66+/xqNHj5CVlYVHjx6hQYMG\ncHFxYU+ocsCeUFTu5s+fj4cPH2Lr1q1KRyEAa9euRevWrbF//37dKmBE9GyzZs2CEILz3JWjtLQ0\nTJkyBSNHjkRGRkauY7GxsQgMDISvry97dBLpwdSpU7F582YkJCTgypUraNOmjW6o3bO0atXKaIfj\nZWZmYsWKFWjWrBkL4EQVRKdOnZCZmYlz587p5oNycnKCq6sri1DlgEUoKndt27ZFq1atEBAQoHQU\nk5eZmYmwsDD07NmTK7kQFVOdOnXQp08fbN26FVlZWUrHMQlqtRpZWVn4999/8cMPP+Q69v333yMz\nM5ND8Yj06K233sLVq1dx48YNBAcHF7lHe6tWrRAXF4e4uDg9Jyx/W7ZswaVLl7B48WIWwIkqiBde\neAGVK1fGyZMn8xSh4uPjcf/+fd25f/75JwIDA5WKapRYhCJF+Pn54e+//8aNGzeUjmLSrl+/jtTU\n1CJ/kklEufn5+SEqKgonTpxQOopJiIiIAADY29tj3rx5umWUf/jhB8yYMQO9evVCy5YtlYxIRPlo\n3bo1ABjdkLwnT55g7ty56NChAwYPHqx0HCIqIisrK7Rv3x6nTp3KVYTSTq+Qc16oNWvWYOXKlYrk\nNFYsQpEifH19AYC9oRSmfTHIIhRRyXh5ecHGxgb+/v5KRzEJ2iLUZ599hqioKPTv3x9Dhw7VzWu3\ne/duhRMSUX60rzOMrQi1YcMGqNVqLFu2jL2giCoYDw8PREREICgoCA4ODrC1tdUVobRD8pKTk3H9\n+nXcunUL8fHxSsY1KixCkSIaNGiAl19+Gf7+/pBSKh3HZIWGhkIIgRYtWigdhahCsrW1xeuvv44d\nO3YgLS1N6ThGLyIiApUqVYJKpcLo0aN1Lx5HjhyJffv2oUqVKkpHJKJ8ODo6wtHR0ajmhZJSYt26\ndXjxxRfh6empdBwiKibtHG4nTpyAk5MTAKBmzZqoXbs2/vnnHwBAWFiY7r2qsRXRlcQiFClGpVLh\n8uXLuHDhgtJRTFZISAgaN24MGxsbpaMQVVgqlQoJCQn47bfflI5i9CIiItCoUSOYmZlh06ZNiIiI\nQEREBL777jvOa0dk4Fq3bm1Ub+KCg4Nx5coVvPnmm0pHIaIScHV1RfXq1ZGVlaUrQgHZk5afPn0a\nWVlZut9ZQgij+v2lNBahSDHDhg2Dra0tPv74Y6WjmKzQ0FDdPA1EVDK9e/eGk5MTPv74Y/bs1LOI\niAi4uLgoHYOISqBTp04IDg5GbGys0lHKhL+/PywtLeHt7a10FCIqATMzM3h4eABAniLUgwcPcOXK\nFYSEhMDZ2RmNGzfGxYsXlYpqdFiEIsU4ODhg6tSp2L59O4KCgpSOY3K0Y5w5HxRR6VhaWmLevHk4\ndeoU9uzZo3Qco8YiFFHF5ePjg8zMTGzfvl3pKKWWmZmJbdu24dVXXy3yCoFEZHg6deoEAKhXr16e\nfSdPnsTFixfRqlUrtGrVCqGhofywsYywCEWKmjZtGmrUqIGZM2cqHcXkaMc4swhFVHqjRo2Cq6sr\nZs6ciczMTKXjGKWEhAQkJiaiUaNGSkchohJo2bIlXnjhBaNYlObPP//E7du3oVKplI5CRKXQo0cP\nuLu763pEAUCtWrXQuHFj7N27F7GxsXBzc0Pr1q2RmJiIqKgoBdMaDxahSFF2dnaYMWMGDhw4gP37\n9ysdx6RwZTyismNhYYHFixfj0qVL6N+/P1QqFbZs2aJopszMTKxZswanT59WNEdZ0a6Mx55QRBWX\nn58fTp06hevXrysdpUBJSUn48MMPC10Jy9/fH1WqVMGAAQPKMRkRlbUaNWpg8+bNuYbjAdm9ocLD\nwwFkz2fn5uYGAEa1uIKSWIQixb377rto3rw5vL298fvvvysdx2SEhobCxsaGb+iIysiQIUMwdOhQ\nXLt2DUePHsUbb7yBpUuXKtJ1Oz09HW+88QamTp2KxYsXl/vj6wOLUEQVn6+vLwAYdG+oI0eO4JNP\nPsGiRYvyPa5Wq7Flyxb4+vqicuXK5ZyOiMqDdkiehYUFmjVrhsaNG6Ny5cqcnLyMsAhFirO2tsbR\no0fRtGlTDBw4kD2iyoGUEmfOnEHLli1hbm6udBwio2BmZobt27cjPDwcN2/ehEqlwqxZs7BgwYIC\nr0lNTcX06dNx//79MsshpcTw4cOxdetW1K9fH2fOnDGKOQy0RSgOxyOquOrXr4+uXbvC39/fYH8v\nqdVqAMC6desQGRmZ5/j8+fMhhMDs2bPLOxoRlZOOHTvC3Nwcrq6uqFSpEiwsLNCiRQsWocoIi1Bk\nEBwdHXHkyBE0a9YMEyZMwJMnT5SOZLQyMzMxYcIEnDx5EoMGDVI6DpFRsrS0xPfffw+VSoVFixbh\n33//zfe8gwcPYsWKFWU6dO/q1av4+eefMXfuXMyYMQNxcXG6N1UVWUREBGrVqoWqVasqHYWISkGl\nUuHKlSsIDg5WOkq+IiMjYWlpCSEE5s+fn+vYpUuX8N133+Hdd9+Fs7OzMgGJSO9sbW0xYsQIDB06\nVLevTZs2uHTpElJSUhRMZhxYhCKDYW9vj9WrV0OtVmP9+vVKxzFK6enpGDlyJDZs2ICPPvoIH330\nkdKRiIyWmZkZVq9eDRsbG8yZMyffc86cOQMAOHToUJk9bmBgIABg5MiRcHd3BwCjmBeKK+MRGYch\nQ4bA0tKy3Ifkbdy4EX/88cczz1Or1WjQoAEmTZqE77//HsOHD4evry98fX0xbNgw2NraYsaMGeWQ\nmIiU9J///CdXEcrDwwMZGRlc1b0M6LUIJYToK4S4IoS4JoTI825XCLFGCHFBs10VQjzIcSwzxzGu\neW0iPD090bNnTyxevBiPHj1SOo5Refz4MYYMGYKAgAAsW7YMy5YtgxBC6VhERs3R0RHTpk3Dzp07\nce7cuTzHtUWoo0ePIj09vUwe89ChQ2jYsCFcXFzQunVrVKpUSfc4FRmLUETGoUaNGujbty+2bt1a\nbquJhoWFYcKECUWaI0+tVsPZ2RkzZsyAh4cHLly4gPPnz+P8+fNIT0/HihUrULNmzXJITUSGpF27\ndrCyssKpU6eUjlLh6a0IJYQwB/AFgFcBtADgK4RokfMcKeX7Uso2Uso2AP4LYFeOw6naY1LKgfrK\nSYZn2bJluHfvHlavXq10lArv8ePHGD9+PHx8fPDiiy9i7969+OKLL9gDiqgcTZ06FTVq1MDMmTNz\n7c/KysKZM2fw3HPP4dGjRzh79mypHyszMxOHDx+Gp6cnhBCwtLREu3btKnwRKiMjA5GRkSxCERkJ\nlUqF27dv49ixY+XyeLNnz0ZWVhaCgoKQkZFR6LnanlA1atTA33//jStXruTaxo8fXy6ZiciwWFtb\no23btjh58qTSUSo8ffaEcgdwTUoZIaVMA7ANgFch5/sC2KrHPFRBuLu7Y/DgwVi1ahXu3r2rdJwK\n7dSpU9iwYQNOnjyJ9PR0bNmyBRMnTlQ6FpFJqVatGmbNmoWDBw/mGnYXHh6OxMREvP/++xBC6IbR\nlUZQUBASExPh6emp2+fu7l6kN16G7NixY8jMzESbNm2UjkJEZWDAgAGoUqUK/P399f5Yp06dwu7d\nu9G2bVukpqbi4sWLBZ6bnp6O27dvc74nIspXp06dcPXq1TJdUMYU6bMIVQ9AVI7vb2n25SGEaACg\nEYDDOXZbCyHOCSFOCSFe119MMkSLFy9GcnIyli1bpnSUCk27mtSRI0cQGhoKlUqlcCIi0zRhwgTU\nr18fM2fO1K0Ipe2d1LdvX7Rv375MilDae/Ts2VO3z93dHSkpKQgLCyv1/ZXi7++PKlWqoF+/fkpH\nIaIyYGNjg0GDBmHnzp1ITU3NdUxKicWLFxdaLCqOWbNmwdHREd988w0AFNoz9NatW5BSsghFRPnq\n1KkTAOOYa1NJhjIxuQ+AnVLKnAPDG0gpOwDwA/CpEOL5/C4UQryjKVadY68Z49G8eXOMGjUKX3zx\nhVGs6qSUGzduwNzcHPXr11c6CpFJs7a2xoIFC3DmzBns3r0bQPYboSpVqqB58+bw9PTEyZMnkZSU\nVKrHCQwMRJs2bVCrVi3dPg8PD93jVUSPHz/GTz/9hMGDB6Ny5cpKxyGiMvL2228jMTExz2I0kZGR\nmDNnDtasWVPqx3j06BEOHz6M8ePHo3Xr1qhRo0ahvwu1rzlZhCKi/LRo0QLVqlXjvFClpM8iVDSA\nnO98nTT78uODp4biSSmjNf+NAHAUQNv8LpRSbpRSdpBSdsj5opsqvnnz5gEAFixYoHCSiisiIgLO\nzs6wtLRUOgqRyXvjjTfQvHlzzJw5E0lJSTh9+jQ6dOgAc3Nz9OrVCxkZGfjzzz9LfP+UlBT89ddf\n6NWrV679Li4ucHBwMIgXTGvXrsUvv/xSrGv279+PxMRE9uQkMjLdunVD7969sWTJEjx8+FC3X1sk\nOnjwoK7naElpe1O1b98eQgi4u7sX2oOBRSgiKoy5uTk6duyIv//+G0+ePFE6ToWlzyLUWQBNhBCN\nhBBWyC405VnlTgjRDEB1ACdz7KsuhKik+bomgJcAXNJjVjJAzs7OePfdd/Htt9/i8uXLSsepkLia\nFJHhsLCwwJo1axAeHg5PT09cuHAB7u7uAICXX34ZtWrVKtUn/ydOnEBaWlqu+aAAQAiBvn37Yvv2\n7YiLiyvVcygNKSVmz56NQYMGYePGjUW+LiAgAI6OjrmGGBKRcVi6dCnu37+fazEabZEoKioK165d\nK9X9Q0NDAQCtWrUCkD08OSwsrMAVmLVFKPYgJ6KCvP7664iNjcWECROQnJysdJwKSW9FKCllBoBJ\nAP4AcBnAdillmBBioRAi52p3PgC2ydwfdTQHcE4I8Q+AIwA+llKyCGWCZsyYAVtbW8yePVvpKBVS\nREQEGjVqpHQMItLo06cPdu7cieDgYKSnp+uKUNbW1pg1axYOHTpU4rmhAgMDYWlpiS5duuQ5Nnfu\nXKSmpmLp0qWlyl8aDx48QFJSEuzs7DBu3DisW7euSNfs27cPPj4+sLCwKIeURFSeOnToAG9v71yL\n0WhXDQVQ6rnyQkNDUaVKFTRo0ABAdhFKSonz58/ne35kZCRq1arFob9EVKAePXpg6dKlCAoKwtix\nY9kjqgT0OieUlHK/lNJVSvm8lHKJZt9cKeWeHOfMl1J+9NR1f0spW0kpX9D8d5M+c5LhqlWrFj74\n4APs2rWrws5nopSkpCTExcWxJxSRgXn99dfx66+/wsvLK9fQufHjx8PZ2RkzZswo0RCUwMBAvPji\ni7C1tc1zrGnTpnjrrbfw5Zdf4ubNm6WJX2LaHgbr1q1D37598eGHHyI2NrbQa1avXo0nT57grbfe\nKo+IRKSAefPmISkpCf7+/sjIyEBQUBC8vb3h7OxcJkUoNzc3mJllv+XRFv4LGpKnVqt1BSsiooIM\nGDAAy5cvR0hICLZt26Z0nArHUCYmJyrQ+++/rytGpaenKx2nwrhx4wYAsAhFZIA8PT2xe/du2Nvb\n6/ZVqlQJCxcuxLlz57Br165i3e/evXsIDg7OMxQvp3nz5kEIgfnz55c0dqloi1CNGzfGZ599hseP\nH2PJkiUFnh8XF4fVq1dj6NChaNOmTXnFJKJy5ubmhrZt28Lf3x9hYWFITU2Fh4cHPD09ceTIEWRm\nZj77JvmQUiIkJAStW7fW7atZsyZcXFwKnCNPrVZzPigiKpK+ffuic+fO+Oqrr0q9sIypYRGKDF7V\nqlWxYsUKHD9+HIMGDcqzlC/lLyIiAgCLUEQVyYgRI9CiRQvMmjULGRkZRb7u8OHDAFBoEcrJyQlj\nxozBtm3b8ODBg1JnLa7IyEgA2fP9NWnSBGPGjMH69et1BfOnLVmyBI8fP8aiRYvKMyYRKUClUuHc\nuXPYsmULAOiKUAkJCQgODi7RPW/fvo2EhATdfFBaffv2xb59+/L0CpVSsghFRMUyZcoUPHjwAN9+\n+63SUSoUFqGoQhg1ahS+/PJL7N+/H506dYK3tzdGjx6dazUVyo1FKKKKx9zcHEuWLMGVK1fw3Xff\nFfm6wMBAVKtWDR06dCj0vJEjR+LJkye6nlaXL1/G9OnTkZWVVarcRaFWq1GpUiVoV7KdM2cOAOrQ\nggAAGa1JREFUzM3NdSuh5hQZGYkvv/wSo0ePRtOmTfWejYiU5ePjAyEEPvvsMzg4OMDFxUW3GMGB\nAwdKdM+nJyXXmjFjRr6/exISEpCcnMwiFBEVmZubG/r06YPvvvsO9+/fVzpOhcEiFFUY48ePx9at\nW2FmZobLly/jm2++wcqVK5WOZbAiIiJQrVo1ODg4KB2FiIrBy8sLHh4emD9/fpF7fh46dAjdu3d/\n5uTdHTt2ROPGjREQEAApJcaNG4cVK1YgLCysLKIXSq1Wo379+rq5WerVq4fJkydjy5YtujeLWps3\nb0ZGRgYXpSAyEfXq1UP37t2RlpYGd3d3CCFQu3ZtvPzyy/jyyy9L1Au+oCKUk5MT3nvvPfzwww+4\nePGibn/O3ppEREU1adIkpKWl4auvvlI6SoXBIhRVKMOHD0dwcDDCwsIwbNgwrF69usyXHJdSYv78\n+QgJCSnT+5a3iIgIuLi4QAihdBQiKgYhBD7++GPcunWrSCvI3bhxAxEREYUOxct5bz8/Pxw+fBjf\nfPMNjh8/DgBFWvhh06ZN+PXXX5/9BAqQ34S/06dPR7Vq1TBr1izdPiklAgIC0L17d74ZJDIhKpUK\nQPZQPK3FixcX+Xfh00JCQlCvXr18P4z76KOPUK1aNXh7e2PIkCEYMmQI3nvvPQAsQhFR8TRq1Aiv\nv/46fvzxR0RHRysdp0JgEYoqrEWLFj1zYtuSiIyMxIIFC/Dpp5+W6X3Lm7YIRUQVT/fu3dGnTx8s\nW7YMiYmJhZ6rXeWpS5cuRbq3n5+frheUi4sL7O3tC1wpKqe5c+diypQpJVq5D8h/wl8HBwd8+OGH\n2Lt3L/7++28AwNmzZ3Ht2jXdG1IiMg1Dhw5Fv379MHToUN2+bt26oU+fPli6dOkzfxc+LTQ0NE8v\nKC0HBwesWrUKlpaWuHr1Kq5evYrExET06NEDLVu2LNXzICLTM2HCBAghSlQwN0UsQlGF5erqitGj\nR2P9+vW4dOlSmd1X+2YsMDCwxG+2lJaVlYUbN26wCEVUgS1duhT379/HqlWrCj0vJCQE5ubmaN68\neZHu27RpU7Rv3x4ZGRlYuHAh3N3dn9kTKi0tDTExMbh+/TrOnj1b5OeQ8/rbt2/n28NgypQpqF27\nNj744AM8efIEAQEBsLKywpAhQ4r9OERUcVWrVg379u3LUwRaunQp4uPjsXDhQt2+/fv3Y+bMmUhL\nS8v3XomJibh8+XKBRSgAePvttxEaGpprO3z4MGxsbMrmCRGRyahTpw78/PywZ88eTJkyBdOmTStS\nL3NTxSIUVWjz5s2Dvb09unfvjgsXLpTJPbW/MKKiohAeHl4m9yxvMTExePLkCYtQRBVYu3btdMOO\nY2NjCzwvNDQUzZo1Q6VKlYp871mzZmHEiBHw9fWFu7s7Ll68iOTk5ALPj46O1hXl/f39i/4knro+\nvyKUra0tVq5ciZMnT8LLywvbtm1Dv379YG9vX+zHISLj065dO7zzzjtYvXo1Zs+ejR9++AEDBw7E\nsmXL4OXlhZSUlFzn37t3Dz179kRWVha8vLwUSk1EpmbMmDFo37491Go1zp49i3HjxulWL6bcWISi\nCq1evXo4fvw4rK2t0b17d91wjtI4c+YMnJycAGT3hqpILl26hGHDhuGNN94AwJXxiCo67bDjpUuX\nFnhOYUNOCjJo0CD88MMPMDMzg4eHBzIzM3H+/PkCz1er1QCA2rVr48cff0RGRkaxHk97fUFzrYwY\nMQKbNm3CwYMHERsby6F4RJTLunXrMGbMGCxZsgQjR45E9+7d8d///hd//PEHPDw8MHjwYN3m7u6O\nS5cu4ZdffsFLL72kdHQiMhH29vb49ttv8fPPP2Pv3r1o1qwZ3n//fezbt0/paAaHRSiq8FxdXXHi\nxAk4Ojqid+/epSocpaenIygoCEOGDEGDBg0qXBHqk08+wS+//IJ79+7h5ZdfRseOHZWORESl4Orq\nCj8/P3z77bd4/PhxnuOJiYmIjIwsdhEqJ3d3dwCFT06uXTXq/fffR2xsbLE/2XtWEQoARo8ejR07\ndsDHxwf9+vUr1v2JyLiZm5tj48aNmDdvHt5++23s27cPkyZNwvbt22FlZYVr167pNkdHR/z+++94\n7bXXlI5NRCbKzs4OX3/9Ndq3b4+YmBil4xgcFqHIKDg7O+P48eN4/vnn0a9fv2IVj+Lj4zFx4kTc\nu3cPYWFhSE1NhYeHBzw9PXH48GFkZmbqMXn2fC5z5swp9fxTqamp+Omnn6BSqRASEoLjx4/nuyIM\nEVUsb7zxBh4+fJjvynTa5cVLU4RydHREw4YNCy1CaYtI48aNg52dHbZs2VKsx9AWserXr1/oeYMH\nD8bWrVthbW1drPsTkfETQmD+/Pn4+uuvdb8jvL29ERQUhJCQEN126tQpdOvWTeG0RGTqbG1tsWHD\nBowdO1bpKAaHRSgyGrVr18bRo0fh4uKCiRMnIj09vUjXbdq0CV9++SUWLFigexOmLUIlJiYiKChI\nn7GxZcsWLF68uNST1/3666949OgR/Pz8yigZERmCnj17onbt2ggICMhzLDQ0FADQunXrUj2Gu7t7\noSvkqdVqODo6wt7eHiNGjMDWrVsRERFR5Pur1WrUqlULlStXLlVOIiIioorC0tJS6QgGiUUoMioO\nDg5Yvnw5wsPD8e233xbpGu0buw0bNuDHH39EjRo10KhRI/Ts2RMAcPDgQX3FBfC/HgL5vcEsDn9/\nf9SpUwc9evQoi1hEZCDMzc3h4+ODffv24cGDB7mOhYaGolq1aoUOcysKd3d3REZGFjgBulqt1j3G\nzJkzYWlpiXnz5uU6Jzg4GO+++y7u3r2b7/UNGjQoVUYiIiIiqvhYhCKjM2DAAHTu3Bnz589Hampq\noedeunQJFy5cwPTp02Fubo7Dhw/D3d0dQgg4OjqiY8eO2LVrl17zaoe5bNu2rdiT/WolJCRg//79\n8PHxgbm5eVnGIyIDoFKpkJaWhp9++inX/pCQELi5uUEIUar7a4vXe/fuzfd4ziLSc889h8mTJ8Pf\n3x8hISEAgOPHj6N79+5Yt24dunbtiujo6DzXl7ZQRkREREQVH4tQZHSEEPj4449x+/Zt9OzZE15e\nXli1alW+cy4FBATAzMwM77//PqZMmQIgeyielq+vL86fP49///1Xb3nVajXq1KmDuLg4HDp0qFjX\nfvfdd/Dy8sJrr72GtLQ0rihFZKQ6dOiAxo0bY8GCBfDy8sLkyZORnJxcopXx8tO2bVu4urrm2yNT\nSpmniDR9+nTY2dnB29sbAwcORJ8+fVC3bl1s3boV0dHR8PDwgJeXl267du0ai1BERERExCIUGaeu\nXbvivffew+PHj3HlyhV88MEHmDRpErKysnTnSCkREBAAT09P1K5dG9OnT8fAgQPh7e2tO8fHxwdC\niFIPlStIWloaYmJiMGrUKNjZ2RXrcZYtW4ZRo0YhNDQUjx8/hp+fH9q3b6+XnESkLCEE5s6dixo1\naiAyMhJffPEFXn75ZSQmJpZ6Pijt/f38/HD06NE8vZji4+ORnJycq4hUvXp1rFmzBra2toiKikLv\n3r1x7Ngx+Pj44PDhw2jUqBHUarVua926NQYMGFDqnERERERUsYnSrshlSDp06CDPnTundAwyMFJK\nTJ8+HZ988gk8PDzg6OgIAHj8+DEOHjyI7777DiNHjizwek9PT9y8eRPh4eF5hryEhYVh48aNWLly\nZYkmnouIiMDzzz+PzZs346+//sKPP/6IO3fuwNbWttDrli1bhpkzZ0KlUuGbb77hpHdEJmbHjh1Q\nqVRIT0/HsWPH0KVLl1LfMzw8HK6urli5ciWmTZum2x8cHIx27drhp59+wuDBg0v9OERERKYqLCxM\n6QikgJYtWyodoUwIIYKklB1Kex/2hCKjJ4TA8uXLsWrVKqSnp+PWrVu4desW7t27h969e2PQoEGF\nXq9SqXD9+vV8V69bvnw5PvvsM2zatKlE2bTzQTk7O2PMmDFISkrCf//730KvycrKwurVq/Haa6/h\n+++/ZwGKyAQNHToUe/fuhUqlQocOpX4tAABo0qQJOnbsCH9//1z7c/6eIiIiIiIqDRahyCQIITB1\n6lQEBQXh/Pnzuu3AgQOoWrVqodcOHjwYlSpVwpYtW3LtT0lJwc8//wwAWLhwIVJSUoqdK+ebu06d\nOqF///5Yvnw5EhISCrwmJCQE9+7dw/Dhw2Fmxn/CRKaqT58+2LJlCypXrlxm91SpVAgODsalS5d0\n+7S/p7i6HRERERGVFt/BEj2DnZ0dhg0bhs2bNyMmJka3f+/evUhKSsLChQsRExPzzB5M+dG+uatf\nvz4AYMmSJUhMTMSKFSsKvEY7eXmvXr2K/XhERIXx9fVF5cqVsXTpUt0+tVoNa2tr1KxZU8FkRERE\nRGQMWIQiKoJ58+YhLS0Nixcv1u0LCAhAvXr1MHPmTPTr1w9LlizBgAED4O3trSsuPYtarUbt2rVh\nbW0NAGjdujX8/Pzw6aefYsCAARg0aBCuXLmS65rAwEA0b94c9erVK7snSEQEwNHREVOmTEFAQAD+\n+ecfANCtjPf0nHhERERERMXFIhRRETz//PMYO3YsNm7ciOvXryM+Ph6//fYbfHx8YG5ujk8++QRu\nbm64ffs29u3bhxkzZhTpvpGRkXnmWVmyZAk6dOiA27dv48CBA5g6daru2JMnT3Ds2DF4enqW6fMj\nItL68MMPYWdnh1mzZgHI//cUEREREVFJsAhFVERz5syBpaUl+vfvj1dffRXp6elQqVQAgObNm+Pv\nv/9GUFAQpk6dioCAAFy4cOGZ99T2MMipQYMGOH78OIKCgjBv3jzs378fx44dAwCcOnUKKSkpLEIR\nkd5Ur14d06dPx6+//oq+ffsiJCSERSgiIiIiKhMsQhEVUd26dbFy5UrY2toiMzMTb775Jtq0aZPn\nvA8//BDVq1fX9SIoiJQy3yJUTpMmTcJzzz2HGTNmQEqJwMBAmJubo1u3bqV+PkREBZk8eTL69euH\ne/fuwc3NDUOGDFE6EhEREREZAQulAxBVJBMnTsTEiRMLPcfe3h4fffQRpk+fjhMnTuDll1/O97z4\n+HikpKQUWoSysbHBvHnzMG7cOPTq1QthYWFwd3eHnZ1dqZ4HEVFhbGxssG/fPqVjEBEREZGRYU8o\nIj2YNGkS7O3tsXHjxgLP0U5e/qxhLm+99Ra8vb3x6NEjODs7Y/LkyWWalYiIiIiIiKg8sCcUkR7Y\n2NjA29sb27ZtQ0pKCmxsbPKcExkZCeDZRShLS0vs2LFDLzmJiIiIiIiIygt7QhHpiZ+fH5KSkrB3\n7958jxe1JxQRERERERGRMWARikhPunbtinr16iEgIEC3T0qJtWvX4tVXX8Vnn30Ga2tr1KpVS8GU\nREREREREROWDRSgiPTE3N4ePjw9+++03xMfHQ0qJqVOn4v/+7/+gVqtRo0YNTJgwAUIIpaMSERER\nERER6R3nhCLSI5VKhVWrVuGVV16BmZkZzp49i8mTJ2PNmjUwM2MNmIiIiIiIiEwH3wUT6VGbNm0w\nevRoWFhYwMzMDMuXL8enn37KAhQRERERERGZHPaEItIjIQQ2bdqkdAwiIiIiIiIixbE7BhERERER\nERER6R2LUEREREREREREpHcsQhERERERERERkd6xCEVERERERERERHrHIhQREREREREREekdi1BE\nRERERERERKR3LEIREREREREREZHesQhFRERERERERER6p9cilBCirxDiihDimhDio3yOjxJC3BVC\nXNBsY3Ice1MIEa7Z3tRnTiIiIiIiIiIi0i8Lfd1YCGEO4AsAvQHcAnBWCLFHSnnpqVN/lFJOeupa\nBwDzAHQAIAEEaa5N0FdeIiIiIiIiIiLSH332hHIHcE1KGSGlTAOwDYBXEa/tA+CglDJeU3g6CKCv\nnnISEREREREREZGe6bMIVQ9AVI7vb2n2PW2IECJECLFTCFG/mNcSEREREREREVEFoPTE5HsBNJRS\ntkZ2b6fvinsDIcQ7QohzQohzd+/eLfOARERERERERERUevosQkUDqJ/jeyfNPh0p5X0p5RPNt18D\naF/Ua3PcY6OUsoOUskOtWrXKJDgREREREREREZUtfRahzgJoIoRoJISwAuADYE/OE4QQdXN8OxDA\nZc3XfwB4RQhRXQhRHcArmn1ERERERERERFQB6W11PCllhhBiErKLR+YANkspw4QQCwGck1LuATBZ\nCDEQQAaAeACjNNfGCyEWIbuQBQALpZTx+spKRERERERERET6JaSUSmcoMx06dJDnzp1TOgYRERER\nERFRLmFhYUpHIAW0bNlS6QhlQggRJKXsUNr7KD0xORERERERERERmQCj6gklhLgLIFLpHEasJoB7\nSocgxbD9TRfb3nSx7U0X2950se1NF9vedLHtTVdx2r6BlLLUq8EZVRGK9EsIca4sut9RxcT2N11s\ne9PFtjddbHvTxbY3XWx708W2N11KtD2H4xERERERERERkd6xCEVERERERERERHrHIhQVx0alA5Ci\n2P6mi21vutj2pottb7rY9qaLbW+62Pamq9zbnnNCERERERERERGR3rEnFBERERERERER6R2LUEZK\nCNFXCHFFCHFNCPFRjv2TNPukEKJmIdf7a66/KITYLISw1Oz/jxDigma7KITIFEI45HP9EiFElBAi\n6an9DYQQh4QQIUKIo0IIp7J83qRs2wshbIQQvwoh/hVChAkhPs5xrJIQ4kdNhtNCiIZl/+xNmwG3\nfVchxHkhRIYQwlsfz93UGXDbTxVCXNL8zj8khGigj+dvygy47ccLIUI1158QQrTQx/M3dXpsfzsh\nxF4hxD+atn2rmI/fSPO3/prmb79VWT5vMui2L9LjU8kZcNvne18qOwbc9ps014YIIXYKIaoU+kSk\nlNyMbANgDuA6ABcAVgD+AdBCc6wtgIYAbgKoWcg9XgMgNNtWABPyOWcAgMMFXN8JQF0ASU/t3wHg\nTc3XPQH8oPTPy5g2pdsegA2AHpqvrQAcB/Cq5vuJANZrvvYB8KPSPy9j2gy87RsCaA3gewDeSv+s\njG0z8LbvAcBG8/UE/rs3qbavluO8gQB+V/rnZWybPtsfwEwAyzVf1wIQD8CqGI+/HYCP5uv1+f1/\nxc1o275Ij8/NKNv+mX9PuBlt2+f8m78awEeFPRf2hDJO7gCuSSkjpJRpALYB8AIAKWWwlPLms24g\npdwvNQCcAZBfjyVfZP/Pm9/1p6SUMfkcagHgsObrI9pcVGYUbXspZYqU8ojm6zQA53Nc7wXgO83X\nOwH0EkKI4jw5KpTBtr2U8qaUMgRAVomeGT2LIbf9ESlliubUUwXcl0rOkNv+YY5TbQFwEtKyp8/2\nlwCqav5OV0H2G5KMojy+5pqeyP5bD2T/7X+9FM+T8jLIti/O41OJGXLbF+XvCZWcIbf9QwDQXF8Z\nz/ibzyKUcaoHICrH97c0+4pN00XvDQC/P7XfBkBfAD8V85b/ABis+XoQsv9nr1GSbJQvg2l7IYQ9\nsj89P/R0NillBoBEAGz7smPIbU/6VVHa/m0Av5UkFxXIoNteCPGuEOI6gBUAJpckFxVKn+3/OYDm\nAG4DCAUwRUr59AcJBT1+DQAPNH/rS5WLCmSobU/6Z/BtX9DfEyo1g257IcQ3AO4AaAbgv4U9PotQ\n9CzrAByTUh5/av8AAH9JKeOLeb8PAHQTQgQD6AYgGkBm6WOSHpS47YUQFsj+1PwzKWWEHjOSfrDt\nTZde2l4IMQJABwCflHFeKjtl3vZSyi+klM8DmA5gth4yU9l5uv37ALgA4DkAbQB8LoSoplQ40iu2\nvenSV9sX9PeEDEeZt72U8i3N9ZcBDC/sXBahjFM0gPo5vnfS7CuQEOIPkT156Nc59s1D9pjQqflc\n4oMChuIVRkp5W0o5WErZFsAszb4Hxb0PFchQ2n4jgHAp5af5ZdO8YbEDcP8Z96GiM+S2J/0y6LYX\nQngi+/f9QCnlk2fcg4rHoNs+h23gcCx90Gf7vwVgl2bUxjUAN5D96XZRHv8+AHvN3/oi5aJiM9S2\nJ/0z6LZ/xt8TKh2DbnsAkFJmIvtv/pBCn4k0gEm2uJXtBsACQASARvjfpGEtnzrnJgqftGwMgL8B\nVM7nmB2yx4naFiHL0xOT1wRgpvl6CYCFSv+8jGkzhLYHsBjZwzbMntr/LnJPTL5d6Z+XMW2G3PY5\njn8LTkxuUm2P7IkyrwNoovTPyRg3A2/7Jjm+HgDgnNI/L2Pb9Nn+AL4EMF/zdW1kv9GoWdTHR/ZC\nNDknJp+o9M/LmDZDbvuiPj4342v7wv6ecDPetkf2JOeNNecIACsBrCz0uSj9w+Smnw3ZM99fRfaL\n/1k59k9G9vjNDGSP+fy6gOszNNde0GxzcxwbBWDbMx5/heZxsjT/na/Z7w0gXJPtawCVlP5ZGdum\nZNsjuyIukd0NU3v9GM0xa2S/KL2G7InwXJT+WRnbZsBt31Hz+MnI/oQ8TOmflbFtBtz2gQBic+zf\no/TPytg2A277tQDCNPuO4KkXytwMu/2RPaTiALLnBrkIYEQxH98F2X/rryH7bz9f75lO2xfp8bkZ\nZdsX+PeEm/G2PbJH1/2V41p/5FgtL79NaC4kIiIiIiIiIiLSG84JRUREREREREREesciFBERERER\nERER6R2LUEREREREREREpHcsQhERERERERERkd6xCEVERERERERERHrHIhQREREREREREekdi1BE\nRERERERERKR3LEIREREREREREZHe/T/Hx5UZD8ueHwAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.figure(figsize=(20,8))\n",
- "plt.plot(data_a['datetime'], data_a['cpu'], color='black')\n",
- "plt.ylabel('CPU %')\n",
- "plt.title('CPU Utilization')\n",
- "plt.axvspan(xmin=pd.Timestamp(datetime(2017,1,28,1,42)), xmax=pd.Timestamp(datetime(2017,1,28,2,41)), color='#d4d4d4')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Text(0.5,1,'CPU Utilization')"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABJkAAAHiCAYAAABLFx2OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X2QJHl93/nPr7q7qrq6e7qnZ7qn\n53l2mTUsg9hF2thFtghL4OMEwievfadA4ukIYQ6dwA8oJN+dkA9ksB26OIXCwpwCLMlSSEYWAhmQ\nWCEiwIIVFqtdzIqZ3WX2cZ4fe6afH6q66nd/dP9ysrIzq7Iesiqr6v2K2GCnuh6yl6mszE99vr80\n1loBAAAAAAAArch0ewMAAAAAAADQ+wiZAAAAAAAA0DJCJgAAAAAAALSMkAkAAAAAAAAtI2QCAAAA\nAABAywiZAAAAAAAA0DJCJgAAgA4xxvxfxpj/sPPvJ4wx1hgzvPPnR4wx70rgNc8YY3643c8LAAAQ\nRMgEAAD6hjHmp4wxjxtjVowxV3aCmx/a+dmHjTGlnZ8tGGO+aYz5Qd/Pfi/k+awx5mTEa+36mf95\njDE/bIy56P+5tfZfW2vfE/Z81to3WWt/p7nf3Hv9/2iM+WjgeU9Za/9rK88LAAAQByETAADoC8aY\nD0r6NUn/WtIBScckfULSj/vu9p+tteOSZiQ9KulzxhjT6W0FAADoR4RMAACg5xljJiX9sqSftdZ+\nzlq7aq0tWWu/aK39+eD9rbUlSb8jaU7SvgS2Z0zSI5IO7TSnVowxh6IaUzuP+a/GmPfs/PuTvset\n7LSmfnjnZ58xxlw1xiwaY75ujDm1c/t7Jb1N0i/sPOaLO7e/ZIz5ezv/njPG/Jox5vLOP79mjMnt\n/OyHjTEXjTE/Z4y5vtMEe3e7/9sAAID+RcgEAAD6wQ9Kykv64zh33glW/ldJF6y1N9u9MdbaVUlv\nknTZWju+88/lBh5/n3ucpA9K+p6kb+/8+BFJ90ia3bnt93ce88mdf/+Vncf+/ZCn/kVJr5V0v6T7\nJD0o6UO+n89JmpR0WNJPS/r3xpi9cbcbAAAMNkImAADQD/ZJummt3apzv58wxixIuiDpByQ9nPiW\ntWBnPamPSvqfrLVLkmSt/S1r7bK1dlPShyXdt9PkiuNtkn7ZWnvdWntD0kckvcP389LOz0vW2i9J\nWpH08jb9OgAAoM8Nd3sDAAAA2mBe0n5jzHCdoOkPrbVvD7l9S9KI/wZjjPtzKeK5ysHH7Pw56v4N\nMcYclfSHkt5lrT27c9uQpI9J+l+0va5UZefu+yUtxnjaQ5LO+f58buc2Zz7w329N0nhTvwAAABg4\nNJkAAEA/+G+SNiX9gyYff17SicBtd2k7fLrU4GNciGOb3BYZY0Yl/RdJv2atfcT3o5/S9kLmf0/b\nY23u9d3i5fVe87Kk474/H9u5DQAAoGWETAAAoOdZaxcl/UttryH0D4wxBWPMiDHmTcaYX4nxFH8m\n6RXGmHfsPG5a21ep+2yNZtR/lvQhY8wRY0xmZ3Htvy/pj3Z+fk3SvgZG2fx+S9Iz1trgtk9oO0yb\nl1TY2Ua/a5LurvG8n97Z5hljzH5t/zcLXYgcAACgUYRMAACgL1hr/19tL5L9IUk3tL3u0vu13Qiq\n99jr2l6o+3+TdF3SaUkLkn6mxsN+WdI3JT0q6bakX5H0Nmvt6Z3nfEbboc4LxpgFY8yhyGfa7a2S\nHg5cYe51kn5X202pS5KekvRXgcf9pqRX7rxe2O/9UUmPS/obSd/V9sLhH21guwAAACIZa5tucgMA\nAAAAAACSaDIBAAAAAACgDQiZAAAAAAAA0DJCJgAAAAAAALSMkAkAAAAAAAAtI2QCAAAAAABAy4a7\nvQHttH//fnvixIlubwYAAAAAAEDfeOKJJ25aa2fq3a+vQqYTJ07o8ccf7/ZmAAAAAAAA9A1jzLk4\n92NcDgAAAAAAAC0jZAIAAAAAAEDLCJkAAAAAAADQMkImAAAAAAAAtIyQCQAAAAAAAC0jZAIAAAAA\nAEDLCJkAAAAAAADQMkImAAAAAAAAtIyQCQAAAAAAAC0jZAIAAAAAAEDLCJkAAAAAAADQMkImAAAA\nAAAAtIyQCQAAAAAAAC0jZAIAAAAAAEDLCJkAAAAAAADQMkImAAAAAAAAtIyQCQAAAIAkyVrb7U0A\nAPQwQiYAAAAAeuSRR7R3715dv36925sCAOhRhEwAAAAA9G//7b/V4uKinn322W5vCgCgRxEyAQAA\nAAPub/7mb/T1r39dknTjxo0ubw0AoFcRMgEAAAAD7uMf/7gyme1TA8blAADNImQCAAAABlipVNLv\n/d7v6ad+6qckETIBAJpHyAQAAAAMsPX1da2vr+v+++/X5OQkIRMAoGmETAAAAMAAK5VKkqSRkRHN\nzs6yJhMAoGmJhUzGmKPGmK8ZY54yxpwxxvzTkPv8sDFm0RjznZ1//qXvZz9qjPmeMeY5Y8z/kdR2\nAgAAAIPMHzLNzMzQZAIANG04wefekvRz1tpvG2MmJD1hjPmKtfapwP2+Ya19i/8GY8yQpH8v6X+Q\ndFHSXxtjvhDyWAAAAAAtcCFTNpvV7OysnnvuuS5vEQCgVyXWZLLWXrHWfnvn35clPS3pcMyHPyjp\nOWvtC9baoqQ/kPTjyWwpAAAAMLgYlwMAtEtH1mQyxpyQ9BpJ3wr58Q8aY540xjxijDm1c9thSRd8\n97mo+AEVAAAAgJiC43I3btxQpVLp8lYBAHpR4iGTMWZc0mcl/TNr7VLgx9+WdNxae5+kX5f0X5p4\n/vcaYx43xjzOty4AAABAY4rFoqQ7TaZKpaJbt251easAAL0o0ZDJGDOi7YDp9621nwv+3Fq7ZK1d\n2fn3L0kaMcbsl3RJ0lHfXY/s3LaLtfaT1toHrLUPzMzMtP13AAAAAPpZcFxOEot/AwCakuTV5Yyk\n35T0tLX2VyPuM7dzPxljHtzZnnlJfy3pHmPMXcaYrKS3SvpCUtsKAAAAdEraRtGC43KSEluXqVwu\nJ/K8AIB0SLLJ9HckvUPS640x39n5583GmPcZY963c5//WdJpY8yTkv6dpLfabVuS3i/py9peMPwP\nrbVnEtxWAAAAIHF/+Zd/qfHxcV24cKH+nTukU02mX/qlX9Lf/tt/u+3PCwBIj+Gkntha+6gkU+c+\nH5f08YiffUnSlxLYNAAAAKAr/vAP/1Dr6+u6cOGCjh49Wv8BHdCpkOn555/XY489pueff14ve9nL\n2v78AIDu68jV5QAAAABIjzzyiCRpY2Ojy1tyhz9k2rdvn6RkxuXcAuN/9md/1vbnBgCkAyETAAAA\n0AHPP/+8nn32WUnpDZmGh4e1b9++RJpM7nUImQCgfxEyAQAAAB3w5S9/2fv3tIZMkjQ7O5toyPTV\nr35Vm5ubbX9+AED3ETIBAAAAHfDII48ol8tJUqpClmDINDMzk0jIVCwWlclktLa2pm984xttf34A\nQPcRMgEAAAAd8LWvfU0/8iM/IindTaaZmZlE1mQqlUr6gR/4AWWzWX3lK19p+/MDALqPkAkAAABI\nWKVS0erqqk6cOCEp3SHT+Pi4VldXG36eSqVS93WmpqZ06tQpPfnkk41vKAAg9QiZAAAAgISVy2VJ\n0tjYmKR0h0yjo6MNb9/i4qKmp6f1pS99qebrjIyM6NSpUzpz5kzzGwwASC1CJgAAACBhW1tbku6E\nTGlek2l0dFTr6+sNPcf58+e1uLio5557LvI+xWJRIyMjetWrXqWLFy9qYWGh+Y0GAKQSIRMAAACQ\nsF5qMuXz+YZDJrdQeK3HlUolZbNZnTp1SpL01FNPNbO5AIAUI2QCAAAAEuaaTCMjI8pms6kOmUZH\nR1Uul71tjiNuyOSaTJIYmQOAPkTIBAAAACTMBTbDw8PK5XKpD5mk2oFRkAuZav1eblzu2LFjGhsb\n0+nTp5vdZABAShEyAQAAAAlz43JDQ0PK5/OpXpMpn89LaixkunHjRt3HuCZTJpPRK1/5Sp05c0bW\n2lT9twAAtIaQCQAAAEiYv8mUz+dT12QyxmhoaEjSnSZTI9vYyJpMkvSqV71Kp0+f1tve9jZvfA4A\n0PsImQAAAICEBZtMnQyZrLXe64dxY2zGGEnJj8tJ0qlTp3Tt2jV9+tOf1ksvvRT7dQAA6UbIBAAA\nACSsm2syfepTn9Jdd90la23oz90Ym5P0uJwk3XfffZKkqakpbW1tNbTIOAAgvQiZAAAAgIS5JpEb\nl+vkOkTPPPOMLly4EBnkBEOmTozLvf71r9ef/umf6hd+4Rcafi0AQHoRMgEAAAAJcwFPN8bllpaW\nJEUHOVEhUzPjclGPsdZqa2vLe51MJqM3v/nNmpiYaPi1AADpRcgEAAAAJCzYZOpkyLS8vCxJke2p\nVsflNjc3YwVZkqpex/9aNJkAoD8QMgEAAAAJ8zeZcrlcR8flmm0yxQ1+3HpMUnQwFRUyNdOaAgCk\nFyETAAAAkDD/wt9pbzI1Gvy4UblsNls3ZHJrMjX7WgCAdCNkAgAAABLmxuX6cU0mFzIdPXo08jWK\nxaIkxuUAoN8RMgEAAAAJ66UmU6PBjxuXO3bsGONyADDgCJkAAACAhPkX/u6VNZkabTIdP36ccTkA\nGHCETAAAAEDC/At/d7LJZK1N/Opy169fVzab1YEDBxiXA4ABR8gEAAAAJMzfZOpkyLS5uem1iOI2\nmYaHhzU8PBx7G69fv66ZmRmNjo6qWCx6v2vwNSTG5QCg3xEyAQAAAAkLNpnK5bJ3W5LcqJwUv8kk\nbYc/cYOfGzduaHZ21guMwsIpxuUAYDAQMgEAAAAJC67JJEWHPu3kRuWk+E0mqbGQ6ebNm9q/f3/N\n0beocTlCJgDoL4RMAAAAQMKCTSapM+sQNdtkyufzsYOfjY0NjY6O1gyMosblWJMJQCdsbW15+yEk\ni5AJAAAASJgLmdyaTFJnghV/k6nRcbm42+ce30zIRJMJQCe8//3v18MPP9ztzRgIw93eAAAAAKDf\nBRf+ljrfZEpqXM49vtbvFbUmk1tknJAJQJLOnTun559/vtubMRBoMgEAAAAJCxuX6/SaTEkt/L21\ntaXh4eGaraSoNZkkdfRqewAGU6lU0srKSrc3YyAQMgEAAAAJC1v4Oy1NpmKxGLpWUifG5aTGAi0A\nrdva2vKC30FRKpWqQnckh5AJAAAASFjaF/4OjrF1alyu0dcC0LoPfvCDestb3tLtzego12SqVCrd\n3pS+R8gEAAAAJKxbazItLy/LGFNzIW/G5YDBcv78eb344ovd3oyOckH36upql7ek/xEyAQAAAAnr\n1ppMS0tLmpiYUD6fb2hNJsblgP5VLpc7sv9JE7cPZl2m5BEyAQAAAAnr1ppMy8vL2rNnT83QqJtX\nl2v0tQC0bmtra+Dag24fxLpMySNkAgAAABLWzTWZJiYmlMvlEru6XJwmU71xOUImoHMImZAkQiYA\nAPoQaw4A6eJCpm6syVSryWStVblcbnpczloba02meuNyg3bCC3RTuVweuPccIVPnEDIBANBnvv71\nr2t6elpXr17t9qYA2BG28Hcn12SKajJFhT8u+LHW1nx+93vFHZdjTSag+7a2tlQqlQbqSmtuH8Sa\nTMkjZAIQ28bGhld3B5Be58+fV7FYJGQCUsQ/LtfJNZmWlpZqNplqhUxxttH/+JGREWUymZpNJtZk\nArrPhcODtPg3TabOIWQCENtb3/pW/fRP/3S3NwNAHe5kdtCq8ECahTWZOjUu12yTKc42uv3NyMiI\njDGRgVG9NZnYXwGdM4jHCe53JmRKXmIhkzHmqDHma8aYp4wxZ4wx/zTkPm8zxvyNMea7xphvGmPu\n8/3spZ3bv2OMeTyp7QQQ3xNPPKHz5893ezMA1OFOGgfp4BFIO3eCk8lkeqLJ5IKw9fX1midl7vHD\nw8Pe46JeZ2hoSMaYXT+jyQR0lgu9B+k4gSZT5yTZZNqS9HPW2ldKeq2knzXGvDJwnxcl/V1r7fdJ\n+leSPhn4+Y9Ya++31j6Q4HYCiKFUKuny5cuMywE9YBC/oQTSrlwue0FMJpNRNptNfFTFWttyk+mb\n3/ympqam9Mwzz4S+RvDxUYFRqVQKHZWr9RgAyRjE4wTWZOqcxEIma+0Va+23d/59WdLTkg4H7vNN\na+3tnT/+laQjSW0PgNZcvHhRlUqFkAnoATSZgPTZ2trS0NCQ9+dcLpf4e3R9fV3lcrmlNZm+8Y1v\nqFKp6NKlS6GvETdkKhaLoaNy0p32U71FxgG0B2syIUkdWZPJGHNC0mskfavG3X5a0iO+P1tJf26M\necIY897ktg5AHOfOnZM0WB9GQK8axG8ogbTb2trymkxSZ9YhcidTzTSZ3Ljcd7/7XUnRn/9ufxNn\nXC4qZHKBFscYQGcM2nGCtZY1mTpouP5dWmOMGZf0WUn/zFq7FHGfH9F2yPRDvpt/yFp7yRgzK+kr\nxphnrLVfD3nseyW9V5KOHTvW9u0HsM2FTDSZgPSjyQSkj39cTupMyLS0tH3o3UqTyYVMUZ//jYzL\n1QuZ1tfXvXALQHIGLWRyv69EyNQJiTaZjDEj2g6Yft9a+7mI+7xa0n+Q9OPW2nl3u7X20s7/Xpf0\nx5IeDHu8tfaT1toHrLUPzMzMtPtXALCDJhPQOwiZgPQJjsvl8/nEP1MXFxclbYdMza7JdPPmTUnR\nn/+NjMtFrcnUyavtARi8hb/9IRNrMiUvyavLGUm/Kelpa+2vRtznmKTPSXqHtfas7/YxY8yE+3dJ\nb5R0OqltBVAfTSagdwzaN5RALwg2meKsybS4uNjSOkUXLlyQJB0+fDgy1Ko3LudEff67/Y17fCvj\nciz+DXSGe98OypfHbj8n0WTqhCSbTH9H0jskvd4Y852df95sjHmfMeZ9O/f5l5L2SfrEzs8f37n9\ngKRHjTFPSnpM0p9aa/8swW0FUAchE9A7aDIB6RPWZKr1Hr127ZoOHDigP//zP2/6Nd1n94kTJyJD\nrXpNJqdek8kFaK2OywFI3qA1mQiZOiuxNZmstY9KMnXu8x5J7wm5/QVJ9yW0aQCawLgc0DtoMgHp\n0+iaTC+++KI2Nzf10ksvNf2a586d09jYmKanp5XP51Uul3ctQO6+PKoXMrW6JlOccTlCJqAzBu04\ngZCpszpydTkAva1Sqej8+fOSaDIBvYAmE5A+ja7JdP36dUnS6upq06/50ksv6fjx4zLGKJfLSdr9\nZVG7mkztGJdjnwV0xqA2mYwxrMnUAYRMAOq6du2aisWiZmdnVSqVVKlUur1JAGoYtG8ogV7Q6JpM\nN27ckNRayHTu3DkdP35c0p22UFTIFGwZuftnMpnQxznBNZkYlwPSb1DXZJqamqLJ1AGETADqcqNy\n99xzj6TqyimA9KHJBKRPcEyt3rhcO5pM/pDJNZmCr1mvyXT33XdLqj8uF2dNJsblgHQYtCaTC9Wm\np6e1srLS0gUVUB8hE4C6XMh08uRJSYzMAWlHkwlIn0YX/m41ZFpZWdGtW7diN5mCIVM2m5UxRi9/\n+cs1NDTU0Ljc+vr6rpO4YrHIuByQEoN2nOD2U9PT07LWthTeoz5CJgB1ufWYXJNpUKq1QK+iyQSk\nT9jC33HWZFpbW2vq9dwXRM02mYwx2r9/v06dOqVsNhv5BVPYuJy1dlfrmXE5ID0GOWSSxLpMCSNk\nAlDXlStXNDY2ppmZGUk0mYC0G7SDR6AXNNpkanVNpmDI1GiTSZIeffRR/eIv/qJyuVzdJpN/XE7a\nHRi1EjItLCywHiTQRoM2Luf2U3v37pXEFeaSRsgEoK6rV69qbm7OW0uBJhOQbu5gilYAkB6NLvzd\n6rhcq00mSfpbf+tvac+ePcpms7HH5VxgFGxgFYvFumsyhf33WFlZ0ZEjR/RHf/RHoY8F0JhKpeKN\nsw7KMT0hU2cRMgGoKxgy0WQC0q3RJlO5XNbCwkKSmwQMvE6vyXTu3DmNjIzo4MGDku6ETJubm5qf\nn/dOMmuFTE4ul6u78Ld7/MTEhKTdJ3HNNplu3bql1dVVb3QfQGtci0kavCaTG5cjZEoWIROAulzI\n5A5QCZmAdGt0TaZPfepTOnnyZNWBJ4D2CluTqVwue6Gwn7W2LeNyR48eVSaT8V5P2l5n8fDhw/qT\nP/kTSfFDpqjGQ3BNpsnJSUnS0tJS1f1qhUzu+CIsZHK3Nbs2FYBq/n3OoIRM/qvLSYRMSSNkAlAX\n43JAb2m0yfTcc89pfn6e8TogQWFNJin8M3VhYcF7H7cSMrlROelOkPPkk09qc3PTG6eLEzLVWvg7\nuCbTnj17JEmLi4tV96s1LmeMiWx2uXCJkAloj0FuMrlxORb+ThYhE4CaNjc3dfv2bR08eJAmE9Aj\nGm0y3b59u6H7A2hc2JpMUvj7zo3KjYyMNBWuWGv1wgsv6MSJE95tLtQ6e/aspDuhTatNpuDjm2ky\nSdsjczSZgOT5m0yD8sUx43KdRcgEoKarV69KEmsyAT2k0SYTIROQvK2trV3jclLtkOnYsWNNNZku\nXbqka9eu6fu///u921yo9b3vfU9SYyFTrSZTcFwuqsnUbMhEkwloL5pMhExJI2QCUFNYyDQo33oA\nvarRJpNb9JtxOSA5jYzLufWYTpw40VTI9K1vfUuS9OCDD+56vRdeeEHSnTG8tDSZ8vl8zSYT+yeg\nPQZxTSZCps4iZAJQkz9kYlwO6A00mYD0CVv4W6rdZLrrrru0trbmXQnOsdbq5s2bka/12GOPaWRk\nRPfdd593m/sMd/sHf5Mpk8l4C4SHiRMytbImkyQVCoVYTab19XXWUwECSqWS91lezyA2mdx+L5fL\nKZvNDszv3S2ETABqoskE9J5m12SiKQAkJ9hkirMm0/Hjx2Wt3fXe/PKXv6zDhw979wt67LHHdP/9\n93uvId0JtRx/yFSrYSTFW/jbPcfIyIhGR0ermkzW2ratyfSzP/uz+of/8B/W3F5g0Pzqr/6qTp06\nFeu+g7wmk9s/cbyTLEImADW5kGl2dpYmE9Aj3AFksVhUpVKpe3+aTEDyGmky3bhxQ3v37tXU1JSk\n7dG2lZUVb8Tt/PnzKhaL3md08HUef/xxPfTQQ1W3+wMn95xSvJCpVpNpa2trVxNqz549VU0m15yo\n9TqFQsELkra2tjQ/Py9pd5Pp3LlzOn/+fM3tBfqVG6UNevLJJ3XlypVYn+ODPC43MjISOZqL9iFk\nAlDT1atXtX//fo2MjLDwN9Aj3MGUVP9bynK57DUOBuVgE+iGRtZkun79umZnZ1UoFCRtB0LvfOc7\n9a53vUtS7SuuPf3001pZWalaj0naPrkyxnh/bmeTyR+eSdvrMvmbTO6xtcbl/O2C3/7t39bJkydV\nLBZ3/a4rKyssAo6B9M1vflNzc3Peump+586dk3RnjcVaBnFcLthkGpTfu1sImQDUdPXqVc3NzUkS\n43JAj2jkW0p/24Bv9oDk1Gsy+UffXMg0NjYmaTtgOXv2rC5cuOD9WVLoouCPPfaYJO0KmYwxVW0m\n9xzFYrGlJlNYSLVnz56qkCnO4uL+JtP58+e1sLCg5eXlXU0m/23AIDl//rwqlYouX76862cuZAqu\nhRbGHSMUCoWBCVsYl+ssQiYANV29elUHDx6UJMblgB7hbzLVO4D0LxQ6KAebQDdsbW1VhUz+NZnO\nnj2rubk5Pf7445Kkmzdvav/+/V7ItLq6qvn5+arFr93tQd/5znc0Pj6ue+65Z9fPXLA1NzfX0Lhc\nNputOS4XfPzk5GTVyW6ckMl/4udvLYXd1swV94BeFwxcnWKx6AVPjTSZxsbGBuaLY/8FChiXSx4h\nE4Carly5QpMJ6DH+sZx6wZH/gJSQCUhOuVwOHZfb2NjQxYsXZa3VxYsXJW2fRI6NjXkh08rKim7e\nvLnrJDMsbFlYWNC+fftCrxbngq177723oXG5XC5Xc1yuXpMpzric/+pyYaNx/ts2NjZirTcH9BP3\nfg+GTG7/ITXWZBobGxuYz333OzMu1xmETAAiWWurxuVoMgG9oVQqaXx8XFJjTSa+2QOSE2wy+ddk\ncieN7v26sbGhfD7vhUxXrlzR1tZWrCaTC6jC5PN57dmzR4cOHWo4ZKo1Lhe2JlMzTaZgeOZvMrn/\nXVlZ8X5PYJBENZncqJzUeJNpUMIWxuU6i5AJQKTFxUVtbm56IZM7OCRkAtJta2tLExMTkhiXA9Ii\nauHvjY0NL1TxByqjo6NeWOSuphanybS6uhoZMuVyOR0/flxjY2NV43K1GkZS/YW/27EmU9i43PLy\nctVtm5ub3nMRMmHQxAmZGmkyjY+Pq1QqVS0E3q/cfmNoaIhxuQ4gZAIQ6dq1a5KkAwcOSNpeNHRk\nZIRxOSDlmm0yETIByQku/O1fk6lek8mdRMZpMtUKmWZmZnTvvfdWLbIdt8m0tbUVOqIWtSbT0tKS\nd38XUNVb+LtYLKpcLlc1mdx2Wms1Pz/v3Z+QCYMmGEY7rTSZpMFYBsPt54wxNJk6gJAJQCT3bcjU\n1JR3W611GQCkQyNNJv8BKQddQHJqNZn8IZO11guZCoWCpDtNpq2tLZVKpV2NH79aIdNnPvMZfeIT\nn/BCJmtt7IW/pfCT0agmk7W2qi3lf54wo6Ojkrb3Q2ELf0vVV+Bj8W8MmlpNprm5OQ0NDTW8JpM0\nWCGTJNZk6oDh+ncBMKjcB9Xk5KR3W60rzABIh0abTCMjI8pkMhx0AQmKajJtbm56i3Svr6+rWCzK\nWls1LudvKvhDmEabTO5qsWNjYyqXyyoWiyoWi3XH5fxrMrowyIlak0naPo6YmJiINS7nArW1tbXQ\nhb+l6pCJJhMGTa2Q6cSJEyoWi7GaTP5xOWkwWsz+/RTjcsmjyQQgkltPYc+ePd5ttdZlANB9rpnQ\nyJpMe/fu5Zs9IGHBhb8zmYyy2eyuJpN7H+bzeS/Q8YdMa2trTY/LOf5AZ3FxserLpDD+QCzs9wpr\nMkl3jiPirskkbYdoYQt/S4RMGGxRV5dzIVNwwf0owXG5Qfjs9++nGJdLHiETgEhhTSbG5YB0c2ug\nNDIuNzU1xTd7QMLK5XLVuJy0HSQFQyb3Pszn88pkMioUCt4V1aTqpk/U1eVciBTFnVyurq7q9u3b\nVWPxYVzTKezzP2xczt9k8j/5gO3dAAAgAElEQVSuVmPKbXNwXG5tbU3GGEmMy2GwhTWZKpWKLly4\noOPHj2tqaqqhJtMghUyMy3UWIROASFFNJsblgPRyjYFGm0zuZBdA+1UqFVlrd42V5XK5XVeXc+9D\n1+wJtpLa3WRy+4BaajWZwsblWmkyBcfl1tfXNT09LYkmEwZbWMh09epVFYtFHT9+vOkm0yAc1wdD\nps3NzdALGaA9CJkARHIfVP6QiSYTkG7uG8pmxuVoMgHJcCd1YU2mzc3NyHE5KTxkimoylctlbW5u\nxg6ZVlZWtLi4WDdkarXJ1MiaTMFxubW1Ne3bt0+SdOPGDe/+hEwYNGHjci+++KIkNdVkGrQ1mdz+\nx3/RBSSDkAlApKWlJY2NjVUdFNNkAtLNncw1svA3TSYgWe6kLtj4ce87d/IYHJeT7oRMbnHwWk0m\n9+d6IZP7+bVr11SpVJpqMl2+fFnW2lhrMrlwKk6TaXV1dVeTyYVM165d8+7PuBwGjXtf+L8Qeuqp\npyRJr3zlK1mTqYZgk0kajN+7WwiZAEQKWwyUhb+BdGu0yeRfk4kDLiAZ7n1Zb02mWuNy7spwtZpM\ncUMm1xq6ePGiJNVdkykYMp07d05Hjx7VX/zFX8RqMrnHueeptU23b9/2bgs2mRiXwyALG5c7ffq0\nxsbGdOzYMdZkqsE/1uu/yACSQcgEINLS0lLVqJzEuByQdq7JVCgUZIypefBorWVcDugA1xyIWpOp\n1ricC1+OHTsmaTtIcu/VYNDSaMh0+fJlSWp4XM41oC5cuBC6JtP4+LiMMV6TyYVDs7Ozka/hTvxu\n3rzp3ba0tKTNzU3t37+/6nmk+CHT7du3aT2hZ62srHjBUdi43JkzZ/TKV75SmUxGk5OTWl5errvW\nkNsfucbzIEwo+BuXbt/KMU9yCJkARIpqMg3ChxHQq9w3lCMjI3XbSSsrKyqXy4zLAQmrNS63ublZ\ntfB31LicC5kWFxe9k8hWx+UuXbokqX7IFGwyuf9dWVkJHZfLZDKamJjwmkxXr17V0NCQ10gKExYy\nuTWY/E2m0dFRZbPZ2MHRj/3Yj+mDH/xgrPsCafOBD3xADz/8sKToJtOrXvUqSduNRGutF+5GGdQm\nE+NynUPIBCASTSag97gm0/DwcN3gyH07yrgckKxaC39HNZmC43JHjx6VJM3Pz0uSjDG7ghb3PK6p\nFKXRcblgk8lt4+rqaui4nLS9LpM72b169apmZ2d3/f5h2+R+P+lOyOSaTOvr6xofH9fY2FjsJtOL\nL77o/Z5Ar7l06ZJefPFFWWt3hUw3b97UtWvXdOrUKUl3xlTrjcwRMjEulzRCJgCRaDIBvaeRJpM/\nZGJcDkhOvYW/41xdzjWZXAgzPT2t1dVVWWu950tqXK5WkykqZPIvQnz16lXNzc3VfI1gk2nv3r3e\nv09PT3v3Gx8fV6FQiB0yLS4uamVlJdZ9gbRZX1/X7du3tbm56TUY3d/9M2fOSFJVk0lS3cW/B33h\nb8blkkfIBCBSWJOJhb+BdAs2mWodRPlbDzSZgPa6fPmydzIX1WRyazLFGZdzTSYXvMzMzKhcLld9\nJnd6XM41mYLhmVTdZLpy5UrDIdPs7GzV2jFuG1zIFGdcrlgsan19nTWZ0LPW19e1tLSk5eXlqtuk\nOyFTs02mQVqTiSZTZxEyAYgU1mRiXA5It0aaTP6xnNHRUUImoE2Wl5d18uRJffrTn5ZUf02mOONy\nBw8e1PDwsNdkciNk/gAlbsiUy+VkjNHNmzeVyWS8k80owXE5f8gUtiaTtB1c3bp1S1K8JtPw8LBG\nRkaqQiZndHTUa181Mi7nGh00mdCrXBBy5coVSdutPvd3//Tp05qcnNThw4cl0WSqJezqcoPwe3cL\nIRPQx1566aW6V5iIUi6XtbKyEtpkGoRvPIBeVW9NpvX1de8KTe7gdXR0tG7rCUB88/PzWl9f1/nz\n5yXVXpPJ37SpNS63f/9+FQoFL4RpJWQyxnihzdTUlDKZ2qcEzYzLnThxQs8//7wqlYquXbumgwcP\n1nwNSVW/X62QKW6TKXhVLqDXuM9l1zrcv3+/NjY2VKlUdObMGZ06dUrGGEmsyVQLV5frLEImoE8t\nLCzo5MmTeve73121XkNcrpYbtiYTTSYgveo1mX7lV35Fr33tayWpaizH3beZ/QWAaq454z5LazWZ\nlpaWvC+EwsblDh06pHw+rwMHDqhQKOxqMvkbPXFDJv996o3KSfUX/g4blzt58qQWFxd19uxZlcvl\nuk0maTtMciHTgQMHvNsLhcKukKmRJhMhE3qV2x+4xetnZma825955hnde++93n0bbTJls1kNDw8P\nRNjCuFxnETIBfWpxcVHlclm/+7u/q3/zb/5Nw4936yhwdTmgt9RrMl25csVb7Dc4Lmet5f0NtEFU\nyBS2JpO7bzab9ZpMQ0ND3gnRO9/5Tj399NNeuOJfk0mqDlBc8BInZHKhTZyQqVaTKWpc7uTJk5Kk\nRx99VJJihUyFQsE78WvHuJxrdDAuh17l3g/uc3vfvn2Stv9O37x5s6oh2GiTaXh4WBMTEwPx/ggL\nmQahwdUthExAn3InirOzs/rQhz7krYsQl/sWhKvLAb2lXpNpc3NTm5ubKpfLu8blJA66gHZwJ23u\nf11zIKzJ5Ozbt8+70pz/9pGREZ04cULS9nv19u3bkqLH5fwBVS3+cbl6XJMpauHvsNe75557JDUW\nMrmTP6k6ZAprMsVpJ7ljmVKpRICOnhQ2Lidth06VSsX7s7S9rxgdHY3dZBoeHq5aoL+fcXW5zkos\nZDLGHDXGfM0Y85Qx5owx5p+G3McYY/6dMeY5Y8zfGGO+3/ezdxljnt35511JbSfQr9zB1IMPPihr\nrXdQGletJlOpVGKkBkipek0md3K4sbGxa1zO3Q6gNY2MyznT09OStoMR/+1+hULBG62LCpnGxsa8\nNVpqaWRczjWZggt/11qT6a677pIxpumQyT8u528yTUxMxB6X8zc6GJlDr/FfPTI4LufWe/OHTNJ2\naBy3yTQ0NKSJiYmmQ6bFxcWGzy+6hXG5zto9QN0+W5J+zlr7bWPMhKQnjDFfsdY+5bvPmyTds/PP\nQ5L+P0kPGWOmJf3fkh6QZHce+wVrbW/8LQZSwH0ouSZSnIMxv1pNJvf87qATQHr4m0yjo6O73vvu\n5HBtba2qycRBF9A+wZCp1sLfjhuDWVhYqApb/FzQIoWPy7mQKY5GxuUymYyGh4erQmpp+/ez1oau\nyZTL5XTs2DE9//zzkuKPy0nb/51c6OZud/9NxsfHvcZXPf5Gx+rqaqzfFUgL/+exG5dzodKFCxck\n3dlvOJOTk3WbTO44IZPJaM+ePd5+qlHvec97tL6+rj/5kz9p6vGd5F87bmRkRJlMhi/VEpRYk8la\ne8Va++2df1+W9LSkw4G7/bik37Xb/krSlDHmoKT/UdJXrLW3doKlr0j60aS2FehH7kDQ1eAbPXGM\najIFF/8EkC6uyTQyMhJag3f7hvX19ao1mWgyAe0Tt8nk/7LGnSzevn27ZpPJqdVkisPdL864nFR9\n4Q+3H3GNiajxPLcuU6FQ0Pj4eN3XcEFSoVDQxMRE1e2tXF1OYl0m9B7/sXtwXC6qyRRnjaVyuayh\noSEZY1oal7t8+bIXdqWdf+04YwxX1E1YR9ZkMsackPQaSd8K/OiwJP/fzIs7t0XdDiCmpJpMwco8\ngHTxn8xOTU1pcXGxarw12GQaGhryRuskQiagHaLWZKrVZHLNnbghUyebTNL2539wTaa4IdPc3Fys\nET63TWNjY1WhVNiaTKVSyQvVowSbTEAv8YcgwQX/XbgTDJnGx8frhkxbW1te4D0xMdF0k2l9fb3p\nx3ZacKx3dHSUkClBiYdMxphxSZ+V9M+stW1fVcwY815jzOPGmMdv3LjR7qcHepYLgZJqMrH4N5BO\n/ibT5OSkisViVXDkbzKtr697zQHG5YD2aWZNpkbH5Vwo1amQKazJ5NaHihMyxeFvMrmQyS1kHry6\nnFR/f8WaTOhlYX+/6zWZ4oRMrskkqaUmEyEToiQaMhljRrQdMP2+tfZzIXe5JOmo789Hdm6Lun0X\na+0nrbUPWGsfcMkugN0hUzNNpkwms+tglSYTkG7BJpNU/W2+v8m0sbHhndTRZALaJypkirMmU60m\nkz8Udp/P/s/3tbW1hsflmmkyBfcTYWsySXdCJv9l1mtxQZI/ZPIHT9KdJpNUPzjy7/sYl0OvCYYg\nmUzG+1w/f/68stnsrvd7p5tMvfK+CoZMYRdGQfskeXU5I+k3JT1trf3ViLt9QdI7d64y91pJi9ba\nK5K+LOmNxpi9xpi9kt64cxuAmNrRZNqzZ8+uejtNJiDdgk0mqfrb/GCTyZ3MuhM5DrqA1kUt/F1r\nTSb/1eXqNZlGR0c1NDSkXC63q8nkbzvV4u4Xd02msHE5p91NprGxMe/k2R88SdUhU70v0BYWFkIb\nX0AvcMfumcz2Kbv/fXH58mXt379/13F63CaT2xe5hb9dK7HR7dvY2PBC9LSy1latySTRZEpakk2m\nvyPpHZJeb4z5zs4/bzbGvM8Y876d+3xJ0guSnpP0KUn/uyRZa29J+leS/nrnn1/euQ1ATO4A0J1k\nNrojXVxc3LUek8TC30DaxW0yBcflXNjEQRfQOneSVyqVtLm52dC4XPB2v2DgMjY21tVxOScqZHrZ\ny16m8fFxL2yKu02FQsFbKy440usfl6sXMi0uLurw4e1lXXulcQE47vP4wIEDkqrXJqtUKrtG5aT4\nTSbXqnQL7Dfz/nDbl/aRubD9LyFTssK7rW1grX1UUs0V/uz2SqQ/G/Gz35L0WwlsGjAQWh2Xc02m\nIMblgHSL22RiXA5Ijv+EbWVlJdbC342ETP7GT6tXl2tl4W8nalxudHRUTz/9tGZnZ2O9Rq3RuGbG\n5RYWFvSKV7xC3/3ud2kyoee4EOTQoUO6cuWKCoVCVcvRv89wxsfHtbq6qkql4jWggoJNJmk7KAo7\n7o+zfcvLy7H3I93gQibG5TqnI1eXA9B5rY7L1WsyMS4HpFOjTabguBzf7AGt84dMy8vLdZtMxpiq\nsbV643LtaDIdOnRI+Xw+dgDkbzIFT86imkySdOTIEe/YoR7/7yVtnzC7/xaHDx/WyMiIZmZmYo/L\n0WRCL3Ofx+7v8NjYWFUAHdVkstbW/Cz3N5lcsNTo4t+lUsnbr6W9yeT/8s2hyZQsQiagT7kDQffh\nQZMJGAyNNJnCxuX4Zg9oXTBkqtdkCjYUmmkyWWsbCpl+8id/UmfPno3dXgg2mfzBUa2QqRG1mkwP\nP/ywnnvuOe3fvz/WuJy1VouLi5qbm5MxhiYTeo4LQdzC+YVCQcYY7z0RFjLFGX/zN5nc/RsNivwB\nTdoDXEKmziNkAvqUC4FyuVxTO9KFhQWaTEAPcgdTcZpMjMsByVhZWfGujlaryeS+uAk2FJpZk6lY\nLKpSqcQOmYaHh3X06NH6d/Rtqz9k8o/qJBUyHTlyRIcOHZK0vfjxsWPHqn5eKzhaWVlRpVLR1NTU\nrsYX0Av843LS7vd/VJNJqh38tKPJ5D+v6MUmE+NyyUpsTSYA3eUOBLPZrEZHRxtuMt24cUMzMzO7\nbmfhbyDd/GsP5HI5DQ0NxWoyMS4HtM/y8rLm5ub03HPPxW4y+YOlqHG54Pu1UChofn5e0p3AJW7I\n1Kjgwt/T09O6cuWKpOg1mRoVHJf7T//pP4WuKxNnXM7t9yYnJ2MthgykTTBkCl5xMWpNJql28LO1\ntdXWJlMvhkw0mZJFkwnoU+5AMJvNqlAoNLQj3dzc1NLSUug6DYzLAenmDqYymYy3zos72apUKt7P\ng2syDQ8PK5PJ8M0e0AYrKyveiMvKykrdNZkaHZcLazK5/3U/azd/k2ljY6MjTaa9e/eGtqrjNJlc\ng5MmE3pVUk2mcrk8kE0mri7XOYRMQJ8qFosyxmh4eLjhHemNGzckqWaTiXE5IJ22trY0MjIiY7Yv\n8Do5OemdbPnD4WCTyRhDfRxoE3/IFGfh70bH5cLWZOp0kymJkCl4Eh0lzppMNJnQ69yx+9zcnKT2\njssNUpOJq8t1HiET0KeKxaKy2ay3QGAj43LXr1+XpNAmE+NyQLqVSqWqAyl/k8kfDgfXZJL4Zg9o\nh2KxqGKxWBUyRY3LuXZwoVDQ8PCwd+JX7+py3QiZgmsyTU9Pez9rd5Op3u/g7lfrRNrt92gyoVe5\ntvHevXsl7R6Xa6XJ5PY17WgypT3ArTUuZ63t1mb1NUImoE+5kElq/MSxVsjkDohpMgHp5P+GUqpu\nMgVDJv+4nNT/3+xduXIl9d+4ove5MMO1D+Is/O1OGt37sZVxuU6FTBMTE97v0+41meo1mTKZjPbs\n2VN1UYMg9zPXZCJkQq9xbWMXMgXfH7XWZIq78Hcul1M2mx2IcblgyORfQgDtRcgE9Cn/5YUbbTK5\ncTlCJqD3xG0yra6uVo3LSf0fMr3hDW/Qhz/84W5vBvqcO7nbt2+fhoeHtbKyEtlkymQyymazXjAU\nN2TyN37W19dVqVQ6EjK5/cPm5qby+bx3QtuuJtOBAweUyWR0+PDhuvfdu3evbt++HfnzYJMp7W0L\nIMh9Ru/Zs0d79+713hftbDJJ2yNz/TwuF3V1OYmLnSSFq8sBfSrYZPJfXaoe12QKW5MpzhVdAHRP\n3CaTu22QxuWuX7+uCxcudHsz0Ofcyd3ExIR38uZGy8IaP/l8fld4VO/qcsGrsK2trXkhkzvJbLeJ\niQmtrKyoUqmoWCwql8tpbGxMCwsLbQuZjhw5opdeeklHjhype996IZO/ycS4HHqRC5kymYyeeuop\nbz8yOjrqvf+CGm0ySdsjc4PYZJK2L2IQdnEBtIaQCehT7gBQarzJdP36dWWzWW9O2y+fz8sYw8Ea\nkFJxm0y3bt2SpF2XTe/nAHlzc7OhwB1ohju5Gx8f90KmqCaTtH3lKNdQqNdkcoFJsNGwurpa9bpJ\nmJiYUKVS8d5DuVzOe612jctJ0tGjR2Pdr17ItLS0pGw26zWuaDKh1/jbxm78VtoOY1/2spd5F/jw\ny+fzymQyHWsy5XK5ngmZgleXk2gyJYWQCehTra7JNDs7G/rhZYzhG0EgxcKaTO4k1x8yzc/PS6pu\nTExOTjb8bWYvKRaLNddwAdrBH/aMj4/XXJNJkr7xjW80NC737LPPek1jf5Mp6ZDJffHkRur9TYp2\nNZkaMTU1pbNnz0b+3I30SeK4BT1pbW0ttNX4kY98RP/iX/yL0McYY+qGqltbW1XP20qTaXZ2NvUB\nbtTV5SRCpqQQMgF9qpWQ6caNG6Gjck6hUOBgDUipsCaTtP2tvguZRkdHvSZTMGS6dOlSB7e2c6y1\nKhaLNJmQuLBxuVpNJv+6KvXG5SR5V62T7oRMnWoySXdCpiTWZGpEvSaTf23K8fFxra2tqVKpKJNh\nSVr0huC6ic7o6GjNfUSckMkfeO/Zs8dbKqORbZO2Q6ZeaTKFjcsRMiWDvSzQp1pZ+Ns1maLwjSCQ\nXsGDRxcyLS4ueiHT1NSUdwDqb0xMTU31bdPHHWT26++H9AiOy62srGhra0vGmLoBR70mU5A/ZFpe\nXtbw8LA3Kt9uaWsy1QuZ/F+2+RtfQK+ICpnqqRcyhY3LtdJk6sWQiX1CsgiZgD4V1mSy1sZ6LCET\n0LuCTSa3oOXCwoJ3ZSh3OWRpd5OpX5s+xWJRkvr290N6hK3JFAx/o7QSMq2srGh8fDx01L0dXMh0\n8+ZNSdUhUzvXZIprampK6+vrkVe73dzc9AI317ji2AW9pNmQyYXbUcIW/m5mTaZMJqPp6emeDpnY\nJySDkAnoU8GFv8vlsreTrafeuNzY2BjJP5BScZtMjv8AdmpqSmtra7H3Fb3E/e6bm5te2AYkIWxN\npnK5HDoqFxRnXM4vLGRKSnBczr/wd7eaTFJ0cBzWZEr72jGAJD377LMqlUqpbzKNjo42tWh4pxEy\ndR4hE9Cngk0mKd7c8erqqtbW1mgyAT2qVpMpLGTyNybcfftxpMw1maT+/P2QHu7kbmxsrCtNpqQE\nx+Xy+XzXx+UkRY7M+b9so8mEXrG4uKhXvepV+p3f+Z3EQqawJtPq6qq3dlwc/pAp7eFt2NXl/Ffm\nRPsRMgF9yh8yuR1pnPaRW/gvbsh069YtXb16tdXNBdAmcZpMUeNy/vv2G0ImdMrKyory+byGh4er\nFv6O02RqNGTynyjRZKrmX5uSJhN6xY0bN1QsFvXUU09pfX3de483opkmk9TY+8MfMm1sbHhXcEuj\nsKvL0WRKFiET0Kf8B1eNNJlcyFRvXM7tlD/wgQ/oH/2jf9Tq5gJok0abTME1mdx9+41/3ZZ+/P2Q\nHv6wZ2JiQqVSSWtra7GaTM2Oy62trXWsyeRfk+nYsWPau3dvV0Imtx+r1WQKhkycUCLt3OfTuXPn\nOtpkktTQyJzbNrfPSfPInPuSiZCpcwiZgD4V1mSKEzK5byjjNpkuXbqkCxcutLq5ANok2GTyj8CF\nNZmCV5dz961lYWFBFy9ebNs2dwJNJnSKP+xx/7uwsNBQkynuFeI6OS43OjqqoaGhqibTP/7H/1jf\n+9736l41Lwn1xuXCFv6myYS0cyHTSy+9pI2NjY6syeRCpkaCIn+TqdHHdpo7//G3wri6XLIImYA+\n5V+LwH1AtWtcrlAoeCHT4uJizUsIA+isYJNpeHhYY2NjbW0y/dIv/ZJ+9Ed/tJ2bnTiaTOgUf9iz\nb98+SdL58+djNZkOHz6subm5WIGUtB1KGWM6EjIZYzQxMVG1JtPIyEjN5nOSGln4251E895H2rkv\nQc6ePSspfqvRz11wIOqq0lFNpka+gFlbW6sKmdIc4LqQyf/fcnh4WNlsliZTQgiZgD7VbJMp7ric\nC6yWlpa0srKS6llsYJBsbW3tGl2ZnJzU0tJS29Zkun79es81GP1NJk40kSR/2PO6171OkvTXf/3X\nsUKmf/JP/olOnz4d+7WMMV67OOmQSdo+GfU3mbqpkXG5I0eOKJPJ6IUXXujY9gHNcJ9PLrRpNmSq\nVCqRV1KNWruxkc/GXmoyuXOW4Fp3XMgoOYRMQJ8Ku7pcnCbTzZs3q64YE2ZsbEylUkmlUsk7GeWk\nDUiHUqm062R2z549VeNyrrEkhV9drt77eXNzU0tLSw1diabbGJdDp/jDnuPHj+vee+9VpVKJ1U7K\nZrNe+ymuToZMbpFfqfshUy6X0+joaKxxuWw2q+PHj+u5557r5CYCDQt+PjUbMknR7aLguFy9wDZM\nL4VMbluNMVW3EzIlh5AJ6FP+hb8baTKtra3VPUj1rwHhFglkZA5Ih3pNpuHh4ar3uD9kiluZdyeZ\nte53+vTpyKp+NzAuh05ZWVmp+qLmTW96kyTFajI1o9NNJqfbIZO03cqMMy4nSffccw8hE1Iv+Pc5\niZApOC5Xb/Q0TC+GTEGETMkhZAL6VLNrMq2trdW9XKo7eJ6fn1epVJLESRuQFvWaTO7bf+nOei7O\n0NCQJiYmYjWZpOhw+dy5c/q+7/s+ffazn23lV2krmkzolNXV1aqQya1fFnedpUYVCgXdvHlTlUql\nI00mJzh60g179+6tOS7nD8JOnjypZ599NlXhNxDUjSZTvUX0w/TS1eWizm38a8yivQiZgD5krQ0d\nl4vbZIobMl25csW7jSYTkA5hTaY9e/Z4TaZcLue9x8NOEqempmI3maLe9+4S50888UTD258Umkzo\nlLW1taqQ6XWve50KhUKiTaZr165J0sA1maampmqOy/mbTCdPntTi4qJu3brVqc0DGrawsKAjR454\n+4tONJmy2awKhUJL43JpX/ibJlNnETIBfahcLsta2/S4XNyQ6fLly95thExAOoQ1mSYnJ0ObTGEH\nXZOTk7GbTFH3cyFUIwsYJ801mUZHR2kyIVHBJlM+n9eP/diP1bxqaysGOWRqZFzu5MmTksTIHFJt\ncXFR09PTOnLkiKTONJmk2oFtGBfcxF3LsZuizm38FzJCexEyAX3InUw1s/B3nJDJ/dzfZErzhwsw\nSBppMoUdvLajyeR+fubMmYa3Pyluvzg7O8v+Comx1mp1dXXX5+hv//Zv64//+I8Tec2xsTHvyrCd\nGpczxiTWzGpErXE5/8Lf0vaaTJL07LPPdmTbgGYsLCxoampKJ06ckNRcyFSvXRRsMkm1A9swLmTK\n5/Oampqq+uI5bWgydR4hE9CHXMvAhUxuJIZxOaD/RTWZlpeXtb6+vmtNpqBGmkxR73u3r3nxxRdT\nU6F32zw7O0uTCYkpFosql8u7rtA6NjZW1QJqp7GxMe9Kj51qMgXXc+uWWu2LYJPprrvukjGGJhNS\nbXFxUZOTkzp+/Lik5kIm9z4Ne29UKhVZa3cdJ9QKbIPK5bKKxaK3bYcPH9alS5ca3s5OqdVkImRK\nBiET0IfcN/buG7xMJqN8Pt/2hb8JmYD0KZVKoU0maXutpHrjco00meqNy0nS008/HX/jE0STCZ3g\nTliCIVOS/K/VqSZTGkblpO0T48XFRS9kc8rlssrlclXIlMvldOzYMUImpJprMrUSMh05ckRDQ0N6\n4YUXdv3MvVdaGZdzn/G9EjLRZOo8QiagDwXH5aTtEbc4TaaoHbFf2JpMnLQB6bC1tRXaZJKkGzdu\n1B2Xa0eTyR8ypWVkjiYTOqHfQyYXWKcpZJKkpaWlqtuDX7Y5J0+eJGRCqrkm03333adcLqf9+/c3\n/BwjIyM6ceJE6N91FzK1Mi7nzicImRCFkAnoQ2Eh0+joaGJNpv3799NkAlKiVpPp+vXryuVyGhkZ\n0dDQUM2ry9W6zHe9NZn8gXZaFv/2N5mWlpZUqVS6vEXoR90Imfyf2YPYZJJ274vCjoMkQiakm7VW\ni4uLmpqa0sMPP6wLFy5o3759TT3XyZMnQ9cf29rakrS7ydTIuFxYyHT16lXvudMm6tymUChobW2N\n44EEEDIBfaiVJlMzV2KDtH0AACAASURBVJc7fvw4IROQAtba0KvGuCbT/Py8d3JYKBQim0zlcrnm\nt3txm0xHjhxJTZPJ7RdnZmZkrdXy8nKXtwj9aFCaTGEBdTdMTU1J2r0vcvuoYBh29913a35+nvc/\nUmllZUWVSkWTk5MyxmhmZqbp53KBavALIxcEhTWZwkZPw4SFTJVKxbvKZdrUajJJ1e1rtAchE9CH\nggt/S9sfBO0KmdzPb9++rXw+zxonQEq4g8eoJpO11jvpGh0djVyTSVLkSFm5XPZep96aTA888EBq\nmkybm5saGRnxfj/2WUiCawzX+xxtp0Eel4vaX0U1maanpyXx/kc6ub+X7u91K06ePKmlpSXdvHmz\n6vZaazJJ0Z/9fmEhkyRdvHixtY1OSK2FvyUxMpcAQiagD4WtReAqobVsbW2pWCzWPTgeGRnxTmIn\nJycbqtgCSE5UDd41maQ7+4Vjx47p6NGju56jXgjjQmyp/rjca17zGl28eDFWwJ00d6WpRg6kgUZ1\ns8lkjEk83ErbuJzbt8UNmQiZkWbu77H/M7tZ99xzjyTtGg+t1WSS4r03giHTkSNHJCmV6zJZa+s2\nmQiZ2o+QCehDUWsy1TvRcz+Pc5Dqdsx79uyJDJleeOEFDuSADiqVSpKim0zSnZPDr371q/rYxz62\n6zmiTtocf6281rjc8PCwV/VPw35gc3NTuVzO+/3SsE3oH9/5zndUqVS6GjKNj4/LGJPoa6W1yRR8\nP0eNy9XbvwHd1O4mk7Q7ZIpqMkWtbxYmeL7gmkxpDJlKpZLK5TJNpg4jZAL6UNSaTPV2oo3U/N2O\neXJyUlNTU1pYWNg19/2GN7xBH/nIRxradgDNayRkmpiYCD1RjNtkGhoaqjkul8/nvRO64JWfusE1\nmTjJRLudP39er3nNa/TFL36x6yFT0lyTKS1rMkWFxjSZ0Iva2WQ6ceKEMpnMrsW/o5pMUeubhQk2\nmfbv36+RkZFUhkzBbfUjZEoOIRPQh8IOriYnJ+ueVDUTMrkmU6VS2bWQ5o0bN3Tu3LmGth1A86JC\nJn/DoV4DIW6T6cCBA7p9+3boVehcNd2FW2kIdFzI5E6SWfgX7TI/Py9p+1v8fg+Z0tZkitrHRIVM\nhMxIs3Y2mXK5nI4dO5Zok8kFN5lMRocOHRr4kOm73/0uxxY7CJmAPhS28Le7LHktzYzLuTWZpOoP\nJmut1tbWdP369cY2HkDTokImY0zsk8O4TaaDBw+qXC5rZWVl133S2GRy43KETGg3F7zevn27KyGT\n+8zuRMiUy+U0MjKSmpBpaGhIExMTscflaDIhzdrZZJLuXGHOL2rtxlbWZJK2R+bSGDLV+gLd3dau\nkOkHf/AH9cY3vpGr1YmQCehLYQt/T05Oho60+bkdcVjaH+RvMoUdtG1ubspaS8gEdFDUwaN056C1\nXU2mubk5SeEHpBsbG1VNpjSETMEmU1g4BjTDnXD5Q6ZuXF2uEyGTMSZy1LZbwr5Eo8mEXuQ+T9sV\nMt1zzz2RTaaohb+baTJJ6Q2Z4jSZ6l0YKY6trS2trq7qr/7qr/Tud7+75vnWICBkAvpQ2MHV1NSU\ntra2ai7+3eyaTGEfTO65bty40eDWA2hWVJNJij/mks/nlc1m6zaZXMgUdkC6vr5e1WRKwwmdazK5\nfRdNJrSLC14XFha0urqqXC636wQuSZ0MmSTp7rvvDr0yZbe4dSH9oppMuVxO+XyeJhNSaXFx0fs7\n2g533323bt++XfX3PerLqEKhoOHh4VghU9iX0i5kSlu4Uuvcpp3jcm6fc+zYMf3BH/yB/vt//+8t\nP2cvSyxkMsb8ljHmujHmdMTPf94Y852df04bY8rGmOmdn71kjPnuzs8eT2obgX4VtSaTVLsG28qa\nTFJ4yLSwsOBtD4Bk1QqZ4jaZjDFe8zFMsMkUdkDqxuXS2GQaGhpSoVAgZELb+Mfl1tbWOjoqJ3U+\nZPra176mj370ox15rTjC1pyMajJF3R9Ig4WFhba1mCTp0KFDkqQrV654t0Ut/G2M0d69e1sal1td\nXU3de6tTazK5fc7rXvc6Sem80l4nJdlk+o+SfjTqh9ba/8dae7+19n5J/6ekv7DW3vLd5Ud2fv5A\ngtsI9KWoJpNUu1HQSMjk7uOuLieFh0wSbSagU9rRZJJqr+HmX5NJijcul4aDThcySdtXyCJkQrsE\nx+X6PWQaHx8PDW+6JazJVCtkCrs/kAaLi4ttWfTbcV8GXb161bstauFvaXtkrpFxOX/jKizQSoNO\nN5lcy3PQlwtJLGSy1n5d0q26d9z2k5I+ndS2AIMmrCbeiSaT/7n9IdOg72iBTmlHk8ndt5UmkxuX\nGx4eVqFQSEWTyY3LSdshk1uT6dy5c7p27Vo3Nw09Ljgu1+8hU9qENZOixuWi7g+kQbubTO7LIH/I\nFNVkkhoLmfL5vHfVWvdYKR1fKvnVajKNjo7KGNPWJtPhw4clce7T9TWZjDEFbTeePuu72Ur6c2PM\nE8aY99Z5/HuNMY8bYx6nLQFsq9VkanfINDk5qYmJCRljIkMm3ptAZ3SyyRRnXE5KzwldVJPpJ37i\nJ/TP//k/7+amoccFry7X6ZBpeHhYR44c0V133dXR100LmkzoF0tLS95ndTs02mSampqKHTIFQ5s4\nX2Z3Q62QyRijQqHQ1ibT1NSUxsfHB/7cZ/ffrs77+5L+MjAq90PW2kvGmFlJXzHGPLPTjNrFWvtJ\nSZ+UpAceeCBdK40BXVJrTaawk72zZ89qdna26SZTJpPR+Ph41fiJf4HxQU/zgU5px9Xl3H2j1hNw\nJ9Szs7O7wmX/fdwB3Z49e1LRZPKHTP791aVLlzp6JTD0n26Py0nSU089FevKsP3IBdnWWq9ZUa/J\ndP78+Y5uIxDH+vq69u/f37bnm5qaUjabDW0yRY3LvfDCC7G2M7i/ibMsRzfUO7cZGxtry9Xl/Ff2\nnp2dHfhzn643mSS9VYFROWvtpZ3/vS7pjyU92IXtAnqW29H52wy1mkyvf/3r9bGPfcw7UG60ySTt\nXuOEcTmg8zrZZBodHdWBAwd0+vTu63u4Kr2UniZTcFzO7a8WFhZSEYKhd7ngdWlpScvLy10JLScm\nJkJPGgfB1NSUyuVyVRuBJhN6kb8F3A7GGM3NzYU2maLG5W7dqr/aTa2QKW3vrVpNJkltbzJls1lC\nJnU5ZDLGTEr6u5I+77ttzBgz4f5d0hslhV6hDkC4YrGokZGRqlnpWk2m+fl5nT9/XmtrazLGxFrQ\n099kkmqHTL1cGT1//nzVhzOQZp1ckymXy+ntb3+7Pv/5z+9qPfkPlNPYZHJrMpVKpVReDQe9xb0n\nrLW6cuVKV5pMgyzs+Iary6FbTp8+3XRoERbetCoYMtVqMk1PT+v27duqVCoNb2et84xuitNkamfI\nlMvlNDMzQ8iU1BMbYz4t6b9Jerkx5qIx5qeNMe8zxrzPd7eHJf25tdb//+wBSY8aY56U9JikP7XW\n/llS2wn0I/839s7o6KiGh4d3nThaa7WxsaHr169rbW1NhUKhKpyKctddd2l0dNS7mkRUyGSM6ekd\n7Tve8Q594AMf6PZmALG0s8m0trbmPZ+fO5DK5/P6mZ/5GVUqFf3Gb/xG1X3843JpOaELazK5tSfS\nEIKhd/nHw69evUrI1GFhDYpa43JTU1NaX1/37gO0y9bWlh588EF94hOfaOrx7W4ySbtDplpNpunp\naVUqlbpXXw0LmQqFQuh5RreFXQnPr10hkz/Ynp2d7ekv2NshyavL/aS19qC1dsRae8Ra+5vW2t+w\n1v6G7z7/0Vr71sDjXrDW3rfzzylr7ceS2kagX/m/sXeMMaEjMG6n6A+Z4njzm9+sq1evanp6WtL2\nGifuak3SnZDp0KFDbQ+Znn32Wc3Pz7f1OaPMz8/3dEiGwdKukKnWN5L+JtPdd9+tt7zlLfrkJz9Z\ndcLmH5eL02SqVCp67LHH6m5XK8IW/nYhUxpCMPQu956Qtr+4IWTqrLAFh92xTdTixhLve7Tf+vq6\n1tfXI9c0rCeJkOngwYO6cuWKJOnxxx/3jtWjmkyS6o7MhYVMxpiaLehuWVtbUz6fVyYTHnsk0WRy\n43LWDu5y0WlYkwlAm4WFTFL4CIxL+G/cuNFQyGSMqboCRlST6fjx420Pad785jfrwx/+cFufM8rG\nxkZbPnyATnAhU9jB48te9jJlMhkdOXKk7vPUOgnb3NyUMcYLsj7wgQ/o+vXr+sxnPiNp+5vcra2t\nhtZk+trXvqaHHnpIZ86cqbttzQou/L2ysuIdSBeLRVoNaJo/ZJJEyNRhYfsr934Pa2andawHvc/t\nC+KsaxQmqXG5mzdv6uLFi3rooYf0oQ99SFJ0k0lqLmSSaq/n2C31/psm0WSamZnR1tZW6gK3TiJk\nAvpQVMgUtvN3H4g3b95sacHSWiFTuyujt2/f1rVr19r6nFE2NzcJmdAz3FoLYU2mV7/61bp9+7bu\nvffeus9T61LEGxsbyuVy3snbG97wBr385S/Xr//6r0uqXhhc2m4yLS8v11zjwTUTL1++XHfbmhUc\nl5NU9W1z2g6M0Tv843ISIVOnhe2vwpYNcNK6QDF6n9sXNBMyVSoVFYvFRMblrLX64he/qEqlou99\n73uSwr+M2rdvn6TmQ6Y0Npk6FTIFm0zSYF/4iJAJ6EONNJn8C5ZeuHChrSFTPp/X3Nxc23eypVKp\nY2uo0GRCL6k1Liepqn1YS70mk/8gOJPJ6P3vf78ee+wxPfbYY7vWP3AngP5x2rDnlOSNr7WbtXbX\nuJykqsuYsy4TmrWxsaG9e/d6f+7G1eUGWa0mUxiaTEhKK02m4Bc07TI3NydJ+sIXvlB1+6A0mepN\naQSX+2iWazL5Q6ZBXpeJkAnoQ1Hf4NVqMknSuXPn2hYyuQ+g2dlZra6uVl1trlXFYrHuooTtsrm5\n2dZtB5JUL2SKK06Tye+d73ynxsfH9fGPf9zbp/jXZJJqn9C5g+ukvgF1/12CIdOFCxe8+6TtwBi9\nY319XQcPHvT+TJOps2gyIS1aCZnqLVDdLBcyffWrX9X999+vV7/61ZJqr8lUb93Tfmoy7d27ty1f\ncLnjGDcuJ9FkAtBnmmkySduJe7Mh0/j4uNbX172rVrhvDpJI82kyAeHaFTI10mSStoOkt771rfrc\n5z7n7VP843JS7aaQe0xSTSb/N4wSTSa018bGhvbt2+edtBEydVY+n1c2m6XJhK5zQVEzF6cJfkHT\nLi5kKhaLeuihh/TzP//zGhkZ8QIlP9fIHKQm0759+7wF21vBuFw1QiagDzWzJpPTSpNJujMS43bq\n7U7zK5WKyuVyR5pMlUpFpVJJGxsbXngGpFm3mkzS9sLiq6ur3sF1cFwuTpMp6ZDJv/C3RJMJ7bGx\nsaHR0VEvnCVk6qywq1rVCploMiEp/iZTrXUIw7iQI6lxOUl66KGH9Pa3v103b97U/v37d903m81q\nfHx8oNZkcmFbq8cf/uMM99+WkAlAX6nVZFpZWfEWB5Z2h0zNfri5kMmFP8GQqV1NJncS3YnWgf9q\nU4zMoRfUurpcI2qNuIU1mSR5B1UXL16UtHtcrtZ7NulxOf83jBJNJrSXO4lxLQBCps4LfolWa1xu\nfHxcxhiCZbSdO6auVCoNfxmaVJMpn897weqDDz4oqfb6jNPT0zVDJmttzSZT8Dyj2+o1meKuQ1WP\n/zgjm81qamqKNZkA9JdaTSap+mSq3U2mYMjkDrrjfkNQKpX0rW99q+bPpe3fwVrb1LbG5Q+ZGJlD\nL6h1dblGDA0NaWJioqEmUzBkcgegaWwyuf3VtWvXvCCcE040a2NjQ/l8npCpixppMmUymVQ2LtD7\n/CNXjYYWSYVM0nabaWJiQq94xSvq3rdeyFRrgXL3eZ+GL21eeuklXbhwIXaTqZkRR7/gccbs7CxN\nJgD9ZXV1tebO339glbaQ6fOf/7xe+9rXVjUM/NxOvFwu79r2diNkQq9p17icFL22QhJNpqTXZPIv\nyCnd2V9J0vHjx+tuH1CLC5kYl+uesCZTVMgkbR8PESzj/2fvzaPjqM407t9ttaSWtS+WtcuyJG+S\nwQa7jQmLAWPkAGHJJCGTEGBCWA6QCWT9JsnMJBnmnMkMh++LGTIngUxCQsIkmTEkBAsTAmEzNjZg\nLMmrbMuWZNmWbMu2lpbUXd8f7Sq1Wr3v3Xp/5+iAu6u6rpeuuve5z/O+kcZ1XhqsyBStuBxAc3Mz\n11xzjceOcu74E5n0cXpaL/iq5xhr7rzzTm677baARaZIOZlEZHIiIpMgpCC9vb1UVFRMe91THQL9\ngagvSsMp/A3TazLpIlOgO4b6Td7bjVlfREP0F4WukwWJywnJwPj4OEqpgCaS/igoKAjKyVRcXAxM\nF5kSycnkHpcDmDNnDhaLJSaT4u7ubg4dOhT16wixxT0uF+pzVAgdT04mb3E58H5/E4RwCEdkiqaT\n6dlnn+W5554L6NhARaZAN7PjxcDAAJs3b+b48eMxicvp7kmlFOAUmTo7O3n22Wd9JjRSFRGZBCHF\nGBsb4/jx41RWVk57z9NiT3+oVVVVAZF1MmVlZZGenk52dnbAi0d/tVn0xaLrtaKFOJmEZGN8fDwi\nLibwvtPvz8mkF9PWJ6DZ2dkopeJak8ndxu7qNCksLCQvLy8mTqaHHnqIO+64I+rXEWKLxOXiT3Fx\n8ZT6J77iciAikxAdEjUul5GR4VN0dSUckSmRnExDQ0NomuY13aETSSeT6z2nsbGRI0eO8PnPf56f\n/exnYX12MiIikyCkCG+//TYOh4OjR48CeBSZfDmZampqgMjH5fTrBisyeXtAxcvJJCKTkAyMj4+H\nXfRbJ1gnU2FhIUqpaU4mk8lEXl5eXJ1M7jb2tLQ04/5UWFgYs+jMyZMnZ3Qh0FRF4nLxZ968efT3\n9xvzAl+Fv8EpSoVbg0UQ3EnUuFwwFBcXc/LkSa91T3Vnf6I7mVwTCL7WNtnZ2aSnp0dEZHK95zz6\n6KPs27ePvXv38v3vfz+sz05GRGQShBRg//79XHbZZWzYsMFY4AXrZIq0yDQyMjJlERfoA8efo8FV\nZBInkyBMJZ5OJrPZTGFhIb29vcDU3Vh/TiH9PnT69OmoFPR3j8vB5D2roKAgZk6m0dFRuZekGHa7\nnbGxMbKysli4cCHFxcU+OzcJ0aGhoQGAzs5OwL+TqaSkhP7+/piMTZg5JKqTKRiKiooYHx/3+qxK\nFieTq8jkS7hTSvl1bwWC+z0nLS2NhoYGGhsbmTNnTlifnYyIyCQIKYB+M+/o6KCnpwcI3slUXV0N\nhC8yuddkAqfIFI24nDiZBGEqkRSZgnUygXMHVBeCXSd1+fn5AcXl7HZ7VMRjdycTTN6zYulkGhkZ\nMe6RQmqg/9uyWCzcfvvtHDlyxKe4IUQHXWTav38/4L/wty4yRbtLrZCaHDhwwIiGuzI6OopSilmz\nZoUsMsXbyeQvPpYMNZn0mFyga5tIiEz+3JMzDRGZBCEF0NuW79u3z6fIpO+uRkNkmjVrFkopzp49\ni6ZpKRGXEyeTkGxMTExE3MnkvgjzNZHS6zLBdCeTr0mn63ctGpNTT04mvVlBLGsyiZMp9dAXXBaL\nBZPJFPcF4kylvr4ecM6DwH/h7+LiYux2e0I4LoTk44477uDee++d9roendUjZ8Hgei+JJ5EQmeL9\nvRobG8PhcHDrrbeSm5trdJH1Rih/X56uKRsMk4jIJAgpgC4y7d+/n56enikFSF0xm83k5uZOE5ky\nMzMNK2eoE2SlFDk5OZw9e9YQrqLtZIp2XE6cTEKyEWknk91un/ZvX59Ee8JVZHJd4Lm3F3fHVWSK\nRl0m98LfED8nk81mM+7ZQvKTKO6DmU5OTg7l5eWGkymQuBwgdZmEkOjv76ejo2Pa63qnyVBEi0SK\ny4H374YvkclsNpOdnR13J5Melaurq6Ovr49PfvKTPo8vKioK+14gTqapiMgkCCmA7u7RRabKykqj\nhaY77oKPvmBctGgRZrOZuXPnhjyO3Nxczp49a9zcw6nJlGhOJtdstyAkKpEWmWC66ONrIlVcXAw4\nBSaTaXKK4U/EGR0dNY6PhsjkKy4X65pMIKJ1KpEoC0PBGZkLJi4HSF0mISSGhoY4fPjwlHkiTM6p\nQxEtEuVeEo6TCRKjc6P+jJ01a5aRtPBFpGoyicg0SVAik1KqXim1JFqDEQQhNPRd8RMnTrBr1y6q\nqqq8HuseXdMfiAsXLuTMmTM0NzeHPA53kUl/ABUUFHDmzBnsdrvfzxAnkyCETiS7y82ePRtgSjc0\nh8PB+Pi4XyeT+/v+Jp02m824Xqzicq5OJl1kinZ9FhGZUo9EibgIU0Umfws+EZmEcBgaGkLTNA4e\nPDjldVeRKZS4XHp6OmlpaZEcatCEKzLFyhnsC/fNbn9EqiaTxOUmCVhkUkr9A/Bt4O+VUr+M3pAE\nQQgW1+jFRx995LEek467q8g1+hKu3T8nJ4dz5855dDJBYIvHRHUyyaJQSAYi6WQqLS0F4Pjx48Zr\n+nfCX00m9wW3t/pOrp9bXl4OxN7JpMflHA5H1L/n+uRcin+nDhKXSxwaGho4evQoQ0NDfuNyuutS\nRCYhFPRnhS5q6uhxuVBEC19R9Fiiz9mT2cmkr0Oys7MDOr6oqIihoaFpzrRgkLjcVLyKTEqpLyul\nXKXUCzVN+ztN0+4GLoz+0ARBCBRX4UXTNL8ikycnUyTwFZeD4EQmb8fGUmTSFw8mk0lEJiEpiIbI\n5Opk8mfn10Um98lnQUEB4+PjU9o7u2Kz2SgrKwNiV5PJvfA3RPeeMjExYbg55X6SOiRKxEWY7DC3\nb98+JiYmAnIySU0mIVjsdrsxV3UXmdydTMG4Y0dHRxNCrM7KyiIrKysskSneTibXuFwg6O6tcOYf\nUvh7Kr6cTANAq1LqE+d/vUkp1aqU2gS8HP2hCYIQKO5FZOMtMukPINfuchDYzdufkymWcTl9LIWF\nhbIoFJKCSHaX0+NrwTiZdHeAJycTeP9ej46OMnv2bJRSURWZXMc9f/58Kisryc7OjklHHNf4rTiZ\nUgeJyyUOjY2NAEZBZl8Lvry8PMxmsziZhKBxrdGpdzPUcRWZxsfHg5o7joyMJMx9pKSkZMoGkyv+\nRKaioqK4f69CcTKBd/dWIIiTaSpeRSZN054FbgQuUEr9AdgO3Ap8StO0r8dofIIgBEAwIpO7jTWW\nTqZgRCZ/Tqb8/PyYOZmKi4tFZBKSgkg6mfLy8sjIyJgiMgXqZPJUkwm8f69tNhsWiyVqNntPcbl7\n772XAwcOoJSKiZPJ1cUl95PUQeJyiUN9fT0A7e3tgG+RSSlFSUlJ3BfDQvLhev/2FZeD4ESLRInL\nAVRUVNDb2+vxPX+1o6qrq+np6QmoDmu0CKUmE4QnMomTaSr+ajLVA78F7gEeAP4/QJ6igpBg6MLL\nnDlzAP9OpqGhIeOcRI3LnTlzBofDMe193ZFQXFwcUyeTdJcTkoFIFv5WSlFaWhpSTSb3Bbc/p5Cr\nyBSruJzJZDJ+HWsnk4hMqYPE5RKHvLw8Kioq2Lp1K+D9PqVTXFwsIpMQNPr922QyeY3L6c9C1+en\nP3SBKhGorKykp6fH43v+xllbW8vExIRXkSoWhBqXEydT5PBVk+nnwFeAfwIe0TTtS8CTwE+VUv8Y\nm+EJghAIupNp4cKFgH+RCSZdRZEUmbwV/g4lLudwODxGSnRxrLi4OCZOpoyMDHJycmRRKCQFkXQy\ngTMyF0pNplCcTJmZmdPivJFibGwMs9mMyeR52hMLJ5PE5VITicslFtdccw1//etfAd9OJnDer6Qm\nkxAs+nxwwYIFHDp0aEoZB31OXVNTA8Dhw4cD/txEcjKFKzIBdHV1RWVsgRBqXC6c+4G/jpYzDV9O\npmWapn1J07TPAdcCaJr2gaZpNwI7YjI6QRACQheZLr/8ckpLS40uTZ5wF3wi7WQaHh42HEb6QyiU\nuBx4dhW4Opli0V3OYrGQnZ0tIpOQFERaZArWyVRYWIhSymPhb/BdkymaIpO/1sIVFRWYzWaefvrp\nafHjSCFxudRE4nKJRUtLi7EZ5W/BJ3E5IRT0+/fSpUtxOBxTxBRdgAlFaEmUwt/gFJkGBwc9bogk\nk8gUqJNJrycZrpNJ4nKT+BKZNiqlXlZK/QX4tesbmqa9EN1hCYIQDPqE6r777uPIkSM+F5nu0bVI\ni0wwaQ/Wb+6zZs0iPT094Lic7jbwdLyrkynacTl94Ssik5AsRFtk8udkSktLo7Cw0Gvhb0/f6YmJ\nCRwOhyEyRaMmk78dxuLiYtavX09raytf/epXI359ECdTqiJOpsRi7dq1KKWAwJxMIjIJwaLPBy+8\n0Nls3TUyp8+pCwsLycnJCUpoSaTC33oiwpObyZ/IpLu44ikyBRuXy83NJS0tbZrI1N7ezpEjRwL6\nDInLTcVX4e9vAZ8CPqFp2r/HbkiCIASLvvOenp7ud1IVzbicLjIdO3YMmLy5K6UCrrVis9mMyI0n\n14O7yBRMe9hgESeTkGxEsrscTI/L+XMyATQ3NzNv3rwpr/lyMumfabFYmDt3Lnv37uUvf/lL2GN3\nv4a/e+N9993HPffcw49+9KOwdjO9IU6m1ERqMiUWJSUlrFixAvAvMhUXFzMwMBDVeYSQeugumSVL\nlgDQ2dlpvKfPqZVS1NbWBu1kSpT7SDgiU3Z2NiUlJXF3MplMpoBFH6UURUVFU+JyIyMjXHHFFXzt\na18L6DOk8PdUfBb+1jTtjKZpst0mCAmOq8jkD08iU6Tsue5OJtfPDTQGY7PZKC0tBTy7Hlzjcg6H\nI6oFucXJJCQb0XAyDQ8PG//+A1lQv/rqq/zbv/3blNeysrIwm80ev9OuwtV3vvMdFixYwCc/+Un2\n7t0bqd9GwJP3yy+/HCAq7gYp/J2aiMiUeKxbtw4ILC5nt9ujWvBfSD30+3ddXR3p6elThBhXASYU\nkSmR4nIQmsgEcpu8bQAAIABJREFUzt97MPWoIs3w8DCzZs0yXI2B4F6j7de//jUnT57k0KFDfs/V\nNE2cTG746y4nCEISoLt7Aukq5V6AN5I7J7pFdtOmTVgslilFdgONwdhsNqNLnj8nE0S3UK+7k0l2\nO4VEJ5Ld5QBD8NWFY/07rAvKnvBUYFt3M/pyMmVmZpKfn8+f/vQnxsfHefzxxyPye9CvEch9LphO\nmMEicbnUZGRkhIyMDK9F5YXYc+utt5Kenm7MSbyhu6YlMicEgy4y5eTkUF5ebggxmqZNmVMHKzKl\nSlwOgv+9R5qhoaGAo3I6rt0mNU3jiSeeADz/Gbhjt9vRNE2cTC7IE1EQUgDdyRTI4tLdyRTJh9ql\nl17Kgw8+yKlTp6bd3IOJy/lzMplMJkMsi2ZdJt3JNGvWLOx2uyFwCUKiEo3ucoARmevo6CA9PX1a\nHC4Q8vPzPX6ndfFF3wGcO3cu8+fPj+gENVAxPZhOmMEicbnUJJEiLoKTCy64gHPnznHBBRf4PM5d\nZDp06BBPP/00P//5z0V4Eryi37+zs7OpqqoyRAjdae8qMp08eTLgeWoi3Uuys7MpKCgIW2TSN2eP\nHz/O+++/H5WxemJ4eDjgznI6rk6mt99+mw8//JDq6mr6+vqw2+0+zw2klMBMw6vIpJS61e3nFqXU\n5Uop79uXgiDEhWDichaLBYvFwqlTp3A4HIyNjUX0ofb4449zww03GN0ldEKJy3lzMmVkZBhOilg5\nmUAWhkLiE424HEw6mdra2pg/f35I1wjEyaTjOnGPBLpg7I9gOmGGMgZw7n6Lkyl1SKSIizBJII4C\n3RHd399PV1cXK1eu5O677+auu+7i6quvjnpzESE5cRWZKisr6e7uBiY3ElzjchB4AexEu5e4/t5c\nCVRkGh4eNkSb733ve1x55ZUx26zV43LB4NoI4PnnnyczM5O///u/x263G7VmvSEi03R8OZludPv5\nBPA14COl1NUxGJsgCAGi37TT0tICOl53FbkW3I0UZrOZF154gc2bN095PZC4nKZpjI2NkZeXh8Vi\n8epkSk9PJy8vD4iuyORakwlEZBISn2iLTO3t7TQ3N4f0Wd6cTJ7uQ5WVlREXmRIlLldSUiL3khQi\nkSIuQnDoTqbnn3+eG264AZvNxubNm9mwYQMdHR3cdttthoPhgw8+4OjRo/EcrpAgDA0NkZaWRkZG\nhvGs0qNyMNXJBIGLTIl2L/H2HA5EwHH/ve/evZtz587R3t4e+YEC27dv56mnnuJXv/oVo6OjYcXl\nNE2jt7eXyspKGhsbAf+ROd3FJnG5SbxmazRNu8vT60qpWuC3wMpoDUoQhOCYmJggLS0t4AJ3uuAT\nrYKlnjo6FBUVGe4pb7Ur9Ju0XpvFm5MpViKTzWYjPz9fRCYhaYhGdzlwikxDQ0McPHiQu+7yOD3w\nS0FBAXv27Jn2uqcdwMrKSgYGBiIWH7DZbMY9wxfRdDLpu9wlJSXiZEohEiniIgRHWVkZeXl5PP30\n02RmZvLiiy9yySWXAE5X9pe//GVeeeUVrr76alavXs1nPvMZfvKTn8R51EK8GRoaIjs7G6UUlZWV\nDA0NcebMGeMeH4rINDExgd1uT6h7SWVlJW1tbdNeD9TJBM7f+8UXX8y+ffsA2Lp1K0uXLo34WP/2\nb//WaBaSkZERclxufHycs2fP0tfXR1lZ2ZTaVHrXSk+Ik2k6Qddk0jStC4jcDFYQhLAJdmGpR9di\n2RWnrKwMu90+pXODO6436YKCAo9uAj0ul5+fD3iO1EUKcTIJyUakC39nZ2cza9YsTpw4QUdHBwBN\nTU0hfZY34di9JhNMFh3t7e0N6VqerhHIfc5isZCZmRnVuFxxcbHcS1KIRIu4CIEza9Ysuru7OXLk\nCMePH2fNmjXGe3fffTcWi4XW1lbefvttzpw5E1CXKSH1cRUwXEUI/R6v3w/KysrIyMgISGRyPzcR\nqKyspK+vzyjJoROsyDQyMsKRI0cAp8ik09/fz9NPP81Pf/rTsLvJDg4O8olPfAKA7u7ukONyAAMD\nA/T19VFeXk5VVRUgTqZQCHomqpRaANiiMBZBEEIk2IVlYWEhvb29MReZAI4ePWq4I9xx7zLlaUGq\nx+Xcu+RFA6nJJCQbkY7LgTMyd/z4ccPmHmpczptw7M3JBM7JYihFxt0JtCYTBN4JM5QxgFNk2r9/\nf8Q/X4gPiRZxEYIjNzfXY7fMrKwsVq9eTWtrq3HviGSEV0heXKNYriKTLlLo9wOTyUR1dXVAIpO7\nCyoRqKysxOFwcOzYMeP3qWlaQCJTYWEh+fn57N27l4MHDwLOkh6uItM3vvEN/vu//xtwNg56++23\nQx7ryMgIdXV1ZGZm0tfXF1JczrURQF9fH1dffTWzZ88mPT3dY20qV8TJNB1fhb//qJT6g9vPW8BL\nwCOxG6IgCP6YmJgISmTSF3vxEJn6+vq8HhOMk0mPvsTSyTQ8PBy1awlCuGiaFvG4HDgjc7rIlJmZ\nSX19fUifk5+fz7lz56btinqryQSRW9QFE2kKtElBsOhihBT+Ti0kLpe6tLS0sGfPHp555hlARCbB\niR6Xg6nPKk9Ckd5lzR+J6mSCqf/ux8fHcTgcfseplGL58uVs3brV2FRZu3Yt7e3tnDt3jv7+fn79\n61/zd3/3d3zta1/j3Xff5eTJkyGPVXculZWV0dfXF1JcTm8E0NPTw6lTpygrK8NkMlFeXi5OphDw\nFZf7D+Axl5//AO4FFmmattnHeYIgxJhkictB4CJTUVGRxxbCupMpPT2d7OxscTIJwnmC6TIZDPPn\nz+fNN9/kxRdfZOHChQE3GHBHdx+611Hz5WSK1KJO/y4Hgt4YIdLoYkROTo7cS1IIiculLuvWrQOc\n85bS0lIGBwfluytMEZkqKioAz3E5gLq6Ojo7O/1+Zizn44HiKSrm3kHPF1arlY8++oidO3cCzrpJ\nDoeD7du38/TTT2Oz2XjkkUe49dZbcTgc/PnPfw5pnBMTE0xMTJCVlTVFZArVyaS7tvV1SyCNSMTJ\nNB2vIpOmaX8FCoEVgEXTtDc0TWvXNG0sZqMTBCEgQonLDQ4OGs6cRBSZqqurOXLkCA6HY8oxupMJ\nvNd4iRS6k0l/UMnkUkhk9C6TkRaZ/uM//oPZs2eze/fukKNygNc6ap5qMukF91PNyZSVlUV2djZD\nQ0NomhbxawjRx2638+yzz/KTn/yEn/zkJ/T29ibUwlCIHI2NjdTV1QFwxx13AOJmEqaKTFlZWRQX\nF9Pd3e1RKFq8eDEnTpzgxIkTPj8zUeNywJSoWLAi08TEBL/73e8oKiqipaUFgP/6r//iP//zP7nq\nqqtoamrCarVSWFjIxo0bQxqnPiZXJ1M4cTlvItPZs2f5y1/+4vFcEZmm4ysu9yTwMFAM/EAp9d2Y\njUoQhKAIJS6naZrRljwWD7WcnByys7MDFplqa2sZGxvj2LFjU45xrTnjLVIXKXT3Q05ODoBEXISE\nJlpOprKyMl588UUKCgr42Mc+FvLneKuj5mlypnftiaTIlAg1mXRnpF7XQkg+nn32WT7/+c9z7733\ncu+999LT02MUuRVSC6UUn/nMZ1i0aJGxQPZXm0VIfVxFJpgUITwJRfrGjC5ceCMR43IlJSWkp6dP\neQ7rTmR9XuyLlSudjeh37NhBQ0MDJSUlLF26lOeee44jR47w1a9+FXDWalq7di2tra0hbb7oG+a6\nk6m3tzekuFx+fj4mk8noqOcuMn3zm99kzZo1HhsYSVxuOr7iclcAV2ua9v8Aq4GbYzIiQRCCJpS4\nHDiLcEPsdk70HQZvuItMML31qx6Xg+g6mTRNw2azkZmZaRQFPXv2bFSuJQiRQHcyRbK7nM6SJUvo\n6+vj/vvvD/kzvDmZPNVkgsAs6oGgaVpCOJlc43IgzshkRNM01q9fz8KFC+nu7qanp4eenh4ee+yx\neA9NiBKPPvooH330UcBdpoTUx13A0J9VnoQivRurP5EpEZ1MJpOJioqKKf/mDx8+DEBNTY3f8127\nszU0NACwefNmenp6OHHiBNdff71xbEtLC319fXz00UdBj9PVXVVeXm6IQME6mUwmE8XFxezevRuY\nFJmqqqo4d+4c//3f/42maVMad9hsNv785z+Lk8kDvkSmMU3T7ACapg0DKjZDEgQhWIKNy+nd3fSO\nD4koMs2dOxeYLjK5xuUKCgqiJjLpuxIWi4VZs2ZhMplEZBISmmjF5XTCnTwF42SCyIlMExMTaJoW\nVE2m06dPT4vqhotrXA7EGZmMbN26lW3btvHggw9SWVlJRUUFFRUVmEy+ptNCMmMymTCbzRGvEyck\nL96cTJ7ichUVFeTn5xvuGG8kYk0mmP4cPnToEEDA7k3dzaSLTBaLhYqKCiOaprN27VoAXn311aDH\nqDuZ9LicTrAiEzjdW/pcas6cOcBkbFD/O3IVmZ599lmuvfZadu3aBYiTyRVfT8WFSqmPzv/sdPn1\nTqWUX5lRKfUzpdRxpZTHb5VSarVSalAp9eH5n390ea9FKbVHKbVfKfWt4H9bgjCzCDYut2jRIgDe\nf/99IHYPtfLy8og7maIVl3OtE6OUIjc3d1rBYkFIJKItMoVLMDWZYHJyG67YE+zkvbCwEE3TIi4q\ni5Mp+Vm/fj25ubl84QtfiPdQhBiTnZ1Nfn6+iEzCtHo/lZWVHD9+3Jgjuj5rlFI0NzcnZVwOpotM\nXV1dmEwmQ3jxh9VqBSZFJm9UVFRQU1PD1q1bgx6jq5PJVWQKNi4Hk3WZ9KggTIpMF198MUqpKSKT\n/v+6yCROpkl8iUyLgBvP/9zg8usbzv/XHz8HWvwc86amaUvP/3wfQCmVBvwnsA5YDHxWKbU4gOsJ\nwozFtU5RINTV1ZGVlRVzkamsrMyI6HnCVWTKzc2lsLAwbk4m9whPXl6eiExCQpPoIpM+eXOvaeLL\nyTQxMeG3YKo/vIlY3tDjxJGOzLnWZAJxMiUbw8PD/P73v+f22283ItTCzCKSdeKE5ETTtGlOprlz\n56JpGh0dHcB0oaipqYn29naf9YYSMS4Hk//m9bF3dXVRWVkZ8Dzj2muvJTMzkxUrVvg9duXKlSGJ\nTJF0MhUXFwNM+ZyFCxcya9YsvvOd71BTU8O+ffuM9/Q1yt69ewFxMrniS2RKB6o0Tety/QGqAL+W\nCU3T3gBOhjAmK7Bf07QD5zvZPQfcFMLnCMKMIVgnk8lkYvHixYYLKJYi0+nTp41Fnzvui83a2lqf\nTiY91hKNLk3uC9O8vDyJywkJTaKLTHl5eTQ2NrJt27Ypr9tsNsxm87TIUaTiKcE6mfRYX6RFJj0u\nJ06m5OT111/HZrNx000yJZ2piMgkjI2NYbfbp4hMy5cvB+DNN98Epj9rmpubOXnyJEeOHOGFF14w\nmnS4kshxuaGhIWNDt6urK6hGB8uWLWNoaIiFCxf6PdZqtXLw4MGgN5a8OZlCjcvBVJGptLSUwcFB\nbr75ZhoaGqY4mfQ1ii48iZNpEl8i0/8LeNq2P3P+vUiwSim1Qym1USnVdP61SuCIyzHd51/ziFLq\nHqXUNqXUtnB3OwUhWQlWZILJYoQQW5EJmNYxTkevg+RLZHJ1beXn5zM+Pu5VtAoHdyeTxOWEREef\nuEaj8HeksFqt03Yq9S6O7kSq0G4ocTmYXjsqXNydTCIyJRetra1kZWVxxRVXxHsoQpwQkUnQ79uu\nItOiRYvIzs5mz549pKWlTXsG6/Ptm2++mZtvvpnXXntt2ucmalzO/TkcrMgEzu5xgaBH64J1M+ki\n06xZs4w6ShBeXM5VZILJeZU3kUnXIERkmsSXyDRH07Sd7i+ef21uBK79PlCradqFwHrg+VA+RNO0\nn2iatlzTtOV6MWNBmGkEG5eDybaqEHuRyVtdJm9OJlenkntcDiK/GARxMgnJR6I7mcA5iezt7Z2y\nUBsdHfU4MYuUk8lb9zpvSFxO8MTGjRu56qqrEs5pIMSOyspK+vr6DEF/586dRrctYWagR7NcBYy0\ntDTDzeRJJNJFpg8++ACYXmsUEjsuB87n8MTEBN3d3UGLTIFy8cUXYzKZ2Lp1K/v27TPih/7Q/06y\nsrKwWCzG2iBScTlXGhsbGRgY4NSpU4yPj9Pb2zvlfYnLTeJLZCrw8V7YMqumaWc0TTt3/v9fAtKV\nUiVAD1DtcmjV+dcEQfBCuE6mWN0UQxGZzp49O0VEci/8DdMLCUcCcTIJyUYyiEx6p5ktW7YYr9ls\nNo8i05w5czCZTBFzMsW7JpPE5ZKX/fv3s3//flpa/JUaFVKZyspK7HY7x44d45133mH58uVSBH6G\n4cnJBJMuHE8iUWlpKfPnz+czn/kM4HnjpLu7m4yMjJDcN9HEVWTq7e3FbrdHTWTKzs6mubmZDRs2\nsGLFCtasWWMkHHzhGpeDybVGpOJyrugFzDs7O+nu7sbhcExZf4mTaRJfItM2pdSX3F9USt0NbA/3\nwkqpMqWUOv//1vNjGQDeAxqVUnVKqQzgNuAP4V5PEFKZUEQm3clksVg4/1WMOqGITDB110ecTILg\nmWQQmS688ELS09On2OG9iUxms5mysrKUqckkTqbk5eWXXwZg3bp1cR6JEE/0BfePfvQjbr75ZsbG\nxnjrrbei1oBESDy8iUz6BoonJ5NSira2Nn7zm99QWlrq8Zm2adMmLr/88oR7fldUVABOkUmfi0dL\nZALnn+POnTsZGxvj6NGj/N///Z/fc1wLf8PkWiOcuFx5ebnH93WRaf/+/cafx8UXX2y8n2h/f/HE\nl8j0FeAupdTrSqnHzv/8Ffgi8Pf+Plgp9RtgM7BAKdWtlPqiUuo+pdR95w/5G6BNKbUD+BFwm+Zk\nAngQeBnYBfxW0zTffR8FYYYTSlyuurqa3NzcmOa/S0tLgfBEJnEyCYJnkkFkslgsXHjhhdNEJm8C\nUGVl5bRudMESrMiUm5tLWlpaVGoyuTqZRLROHrZt20ZZWZnfNtxCatPU1ITZbOaHP/whSimeeuop\n7HY7r776aryHJsQIXWRyd8n4cjKB87mslPJY16u7u5u2traEdEpaLBaKi4tjJjJde+215OTk8Oc/\n/5n6+nrWr1/v9xx3J5MuEIXiZFq0aBEWi4ULLrjA4/vz5s0DnIW+9T+PK6+8EnCmQmK1aZ8MeBWZ\nNE07pmnapcD3gEPnf76nadoqTdM8rxCnnv9ZTdPKNU1L1zStStO0pzVN+y9N0/7r/PtPaJrWpGna\nhZqmXaJp2jsu576kadp8TdPqNU17NNzfpCCkOqE4mZRSNDU1xTT/nZ6eTklJSdhOJtfuchBbJ1M0\nOtkJQiRIBpEJnJPxbdu2YbfbAe81mSAyhXaDrcmklKKgoCCiTiZN0xgZGcFisWA2m8nJyYnKfUuI\nDjabjdzc3HgPQ4gz9fX1nDp1iuPHj3P48GHuuOMO8vPz2bhxY7yHJsQIb06mqqoqysrK/D5nPD3T\ndKdkIopMMDlmfS5eU1MTtWt96lOf4uTJk1x66aU88MADvPPOO7z//vs+z3GtyQThxeXq6+sZGRmZ\nUrfWlaysLKqrq6c4mS6//HJA6jG548vJBICmaa9pmrb+/M9fYjEoQRCCIxSRCeDqq69m/vz5URiR\ndyoqKrwuGm02GyaTyfi9lJSUkJWVNaWw5tjYmHEjj7WTyeFwGA8zQUg0kqG7HMCqVas4e/YsO3bs\nALzH5SAyIlMoraEjLTLpdSX0MRQWFkY8jidED9fnjjCzycnJYfbs2WRmZmI2m1mzZg2tra2yATVD\n8CYyKaW4/vrr/c6pPT3TNm7cSFVV1ZRaqYmE7iju6upi9uzZIYk3waBvlN11112kpaX5jcyNjIyQ\nkZFhdLG7+OKLqaqqMlzDkaa5uZk33niDgwcPUlZWZvydSz2mqfgVmQRBSHxCicsB/Mu//Auvv/56\n5Afkg5qaGo+dNWD6YlMpNU2UiqeTCZDInJCwJIuTac2aNYCzJTz4FpmqqqoYHBwMq0h2sIW/wSkC\nRfK+4m7nLygoECdTEiEik+CNlpYWuru7aW+Xyh4zAU/d5XR++tOf8vvf/97n+ZWVlfT39zM6Osrm\nzZt54okneOWVV2hpaUnYqFVlZSUHDhzgnXfeYe7cuTG7bkFBAfPnz6etrc3ncSMjI1OEr8997nMc\nOXIkahtud911F4cOHeL3v/89tbW1hrNLRKapiMgkCClAqE6meDzQamtrAxaZwLnI1EUmTdOYmJgw\nJvuzZs0iLS0tqk4md5FJ6qgIiUqyiExlZWUsW7YsIJHJtbNNqITiZCopKeHYsWMhX9PfGMTJlFyI\nyCR44+qrrwbg3XffjfNIhFjgzckEgc2p9Wdab28vt956Kw899BBnzpzhk5/8ZGQHGkEuuugiBgcH\naW9vn1LkOhY0NTX5FXCHh4djWl/25ptvprKyknPnzlFbW4vFYmHOnDnyjHBDRCZBSAFCFZniQW1t\nLYODg1OEoV27drFr1y6Pi01Xa7H7IlqvnRJNJ5NrXA7EySQkLskiMoGzS9c777zD6dOnja5rnoiE\nyBRsTSZw1mXo7OyMWARGRKbkJlS3sJD66Peoo0ePxnkkQjTRNI1f/vKXbNq0CQitcxk4N04BNm/e\nTF9fHz/84Q85ffp0wtZjArj//vsZGBjgxIkTPPnkkzG9dnNzM52dnT5LVYyMjMRUZEpPT+f+++8H\nJmvH1tbWipPJDRGZBCEFSKYJsKdi3l/60pe49957fYpMmqYZi2jX3YL8/PyYOplEZBISlWQSmVpa\nWoyuTIE4mcLpMBeKk6mhoYHBwUEGBgZCvq4rEpdLbsTJJHgjMzOToqIirw1NhNRg+/btfOELX2DD\nhg2Ul5eHXJdIf6bpdYauuuoqo75oIlNUVERJSUnMExBNTU1omsbu3bu9HjM8PBz1OlHufOlLX6Kk\npIQVK1YAcOmll7JgwYKYjiHRSQ7rgyAIPkk2JxM4RSa9RWhnZycZGRlUVlZ6FJlsNhsDAwNGUT/X\nRXSsnUwSlxMSFV1kSoZ7wapVq8jPz6e1tTVmcblgdhkbGxsB2L9/PyUlJSFf230M4mRKTsbGxqJW\nRFZIfsrLy0VkSnH27t0LwDvvvMNFF11kzEeDRX+mtba2kpGRYcyDBc/oxdDb2tq46KKLPB4TaycT\nQGlpKceOHcNkcvp1Hn/88ZhePxkQJ5MgpADJKjKBc/HV19dHb28vIyMjHkUmcC4yPTk1xMkkCE70\n7nLJ4GQym820tLSwYcMGzpw541UAysnJIS8vLyIiUzBOlIaGBsApMkUCTyLT2bNnjb8zIbFJJrew\nEHvKyspEZEpx9u/fj1KKZcuWhRWLys/PZ9asWQwPD7Ns2TJxSPqhoaGBjIwMn3WZ4uFkAgyBSfCM\n/OkIQgqQTBPg0tJSMjMzDZHpyJEjgHOB3N3d7VNk0tuAuz6Uo+VkstlsmM1m4yEiTiYh0UmmuBzA\nPffcw8DAAP39/T6jbHrx/7ffftvYTQ4Gm82GxWIJyuY/d+5cTCYT+/btC/p6nnCPyxUWFgLR6Ywp\nRB6Jywm+EJEp9dm/fz9VVVVBxa49oZQy5rUrV66MxNBSmvT0dBYsWOBTZIqHk0nwj4hMgpACJJOT\nyWQyUVNTY4hMrrWZDhw4kDBOJvdFhTiZhEQn2USmq666isWLFwO+o2yVlZW8/fbbrF69mkceeSTo\n6/gqLO6NzMxMampqouZkKigoAERkShZEZBJ8oYtMkWoUICQe+/btMxyu4aIX/7ZarRH5vFSnubmZ\ntrY2r++LyJSYiMgkCClAMolM4IzMeRKZTp06NW2xWV5ejlJqisgUKyeT61gsFgtpaWniZBISlmQT\nmZRSPPjgg4B/ken48eNMTEywc+fOoK8zOjoaUryhoaEh4iKTu5NJ6jIlByIyCb4oKytjeHiYc+fO\nxXsoQgRwOBz86U9/MsomgNPJFCmRSZxMwdHU1ERXV5fX+Xe84nKCb0RkEoQkR++6liwLS/AuMsH0\nxWZ6ejqlpaV0d3cbcTnX32tDQwNnz57l6aefjugYx8bGpoxFKUVeXp44mYSEJdlEJoDbb7+dmpoa\n5s+f7/WYiy++mIqKCr74xS9y+PDhoIXeUJxMEFmRSY/LudZkAhGZkoVke8YKsaWsrAxAInMpwu9+\n9ztuuOEG7r77bjRN4/Tp0/T39xsNIcLFarWycOFC6uvrI/J5qc6iRYsAvMblxcmUmIjIJAhJjsPh\nAJKjo5RObW0tx44dY3R0lK6uLsrLy41OHZ4cB3pNFk+L6HvvvZe1a9dy33338frrr0dsjDabbdrO\ntYhMQrTZtGkT3d3dIZ2bTN3ldHJycjh48CB33XWX12MefPBBDh8+zI033ghAR0dHUNfQazIFS2Nj\nIydPnuTkyZNBn+vKc889xx//+EdA4nLJijiZBF/oItPRo0fjPBIhEmzcuBGlFL/61a/413/9Vzo7\nOwEi5mR66KGH2LVrV1B1Amcyc+fOBaZvSuuIkykxSZ6ZqCAIHtG7EyXTwlLvMHf48GG6urqYN28e\nJpOJnp4ejyJTZWUlBw8e9Fj422w289vf/pbm5mYee+wxVq9eHZExemqrnpubK3E5IWrY7XZuvPFG\nampqePfddykuLg7qfP1eEGpr5XgRSIeWtLS0Ka2Mg4kZhONkAujs7KSoqCjo88FZS+6zn/0s4HQv\n6X+n4mRKLkRkEnwhTqbUweFw0Nrayqc//WkA/umf/slwyURKZBKCw70rtTviZEpMxMkkCElOMkZk\nXB8YXV1d1NbWGhl1byKTNycTOIt/X3jhhfT29kZsjJ4WFeJkEqJJf38/Y2Nj7N+/n1tvvdX49x4o\neqQnVXdH6+rqyMrK8tllxhPh1GQCwuowNzAwAMAzzzzD0aNHyc7OBkRkSjbGxsaS6hkrxBYRmVKH\nHTt2cOzYMdatW8ejjz6Kw+Hg0UcfBWDevHlxHt3MpKioiOzsbI8ik91uZ2xsTJxMCYiITIKQ5CSj\nk2nBggXC0trrAAAgAElEQVQopXjttdfo7u4OSGQ6efKkIfB42lGOdAthcTIJsUb/93v99dfzxhtv\n8Je//CWo81O9bkxaWhqLFi3y2WXGE6E6mXSH5Z49e4I+V0fvfFlRUTHlfpKVlUVmZqbE5ZKE8fFx\ncTIJXikqKsJsNovIlAK0trYCcN1111FfX8/HP/5xTp48SUVFhbFJIMQWpRRz5871KDLp9Q7FyZR4\niMgkCElOMopMZWVlXH/99fzoRz9iYmIiIJEJ4NChQ4Bn11ZZWRnHjh0zalSFiziZhFijL1AeeOAB\nlFJs2bIlqPNTXWQCZytjf06mvXv3TvmzC1Vkslgs1NfXB+2cckUXkfLz86e9V1BQIE6mJMBut2O3\n20VkErxiMpkivtElxIeNGzeybNkyw5320EMPARKVizeuDYNcEZEpcRGRSRCSnGSMy4HzwT00NAQ4\nHx5VVVWA98LfAAcOHAC8O5nsdrsRTwkXcTIJsUZfoMyfP59FixaxdevWoM4fHx9PKrE5FJqamujt\n7fUpzjz88MNcd911xv0l1MLf+vXCEZl0J5Ne6NuVwsJCEZmSAP0ZKyKT4AsRmZKfX/3qV7z55pvc\neuutxmvXXnstK1as4IorrojjyITa2lpjo9mV4eFhAInLJSAiMglCkpOMTiaANWvWGG3L/TmZ9BpO\nejtxb04miFx3l7GxsWljESeTEE30BcqcOXOwWq1s3boVTdMCPn+mOJkAn8LPRx99xODgIM8++ywQ\nek0m/Xr79u3DZrOFdL4vJ5OITMlBsm7kCLFFRKbkZvPmzXzxi19k9erVfOMb3zBeN5lMbNmyhR/8\n4AdxHJ1QW1vLqVOnpm30ipMpcRGRSRCSHF1kSrYJsMlk4h/+4R8oLy+nrq7Op8hUXV0NTBbg9SUy\nRWqSZ7PZpu1c606mSEXyBMGVo0ePkpOTQ05ODitXruTEiRMed+68MTExkXT3gWBZvHgxAB0dHR7f\nP336NN3d3QCsX78eTdNCjsuB08lkt9tDrsukO5m8xeWkJlPi46mrqSC4U1ZWFrFNLiH2PP744xQU\nFPC///u/077rqdpMI5nw1mFOnEyJi4hMgpDk6LusyeZkArjjjjvo6enBYrH4FJksFgtlZWV0dnYC\n3uNyEFmRyZOTCTBiOIIQSfr6+ox/x1arFSCoyNxMcDJVV1eTkZFh3Avc0cWnW265hba2Nt54442w\nRKZAnFO+OH36NFlZWR7vWeJkSg5EZBICoaysjOPHj2O32+M9FCEEDh8+zJIlSygqKor3UAQPeBOZ\nxMmUuIjIJAhJTrLG5XT0HaKamhrq6upYtGiRx+Nqa2uNyEosnEyeCn/Pnj0bgJ6enohcQxBccRWZ\nlixZgsViEZHJjbS0NObNm2dEZ93RxaB/+Zd/ISsri+effz6smkzz58/HbDYH3dFOZ3Bw0KOLCURk\nShZ0kSnVv1tCeFRWVuJwOGR+kKT09PQYm51C4iFOpuRDRCZBSHKSNS7njsVi4cCBA9x0000e39cf\nMOB5RzknJ4fs7OyoOpkuvvhiAN57772IXEMQXOnr66O8vBxwfp8vuugiXnzxRf793//dq6jiykwQ\nmcDZ5UePzrrT1tZGdnY2CxcupLGxkf3794flZMrIyKCxsTEsJ5Onot8wGZcLpu6WEHuk8LcQCP6i\nvELiYrfbOXr0qNFkRkg8ysrKyMjIMEQmu93Oc889x7lz5wBxMiUiIjIJQpKTzHG5YHAVmbwtpMvL\ny6PqZFq0aBE5OTlBd/0ShEBwdTIBfPzjH2fv3r184xvf4J//+Z/9nj8TusuBU2Tav3+/R3Gmvb2d\nxYsXYzKZDDEqnMLf4IzMhepkOn36tE8nk8PhkI6VCY7E5YRAaGpqAgj5XiHEDz3mKE6mxMVkMlFd\nXW2ITJs2beKzn/0szzzzDCAiUyIiIpMgJDnJHpcLlEBEpkh2d/HkZEpLS2P58uVs2bIlItcQBJ2R\nkREGBweniEzf/va3GRoa4uqrr/bq3HFlpjiZGhsbGRkZ8Vhkt62tzaij1NDQQGdnJ5qmhexkAufi\n8cCBA4YtPxgGBwe9OpkKCwsBJDKX4IjIJARCcXExZWVlIbsehfihRxxFZEpsamtrDZHpo48+AqC1\ntRWQuFwiIiKTICQ5M6W9sr+4HERWZBobG/PofrBarXz44YchtzQXBE8cO3YMYIrIBM6J04IFCwKK\ny/X09BjCRSrT0NAAMO3PpL+/n2PHjhmOgoaGBkOED0dkWrRoEZqmBST0uePLyVRcXAw4xy0kLlKT\nSQiUcFyPQvwQkSk5qK+vZ8+ePWiaZoi5o6OjgDiZEhERmQQhyREn0ySRbCFss9k8illWq5Xx8XF2\n7NgRkesIAkwWrHcXmcAplpw8eZKTJ096Pb+np4e2tjauueaaqI0xUfAmMumTTlcnk044ItPcuXOB\n6QVHA8GXk6miogKQRgKJjtRkEgKlqamJjo4OHA5HvIciBIGITMnB8uXLOXXqFJ2dnbS3t09Z94iT\nKfEQkUkQkpyZJjIppUhLS/N4TFlZGadPnzZ2NkLFbrdjt9s9OplWrlwJBNdaXhD84U9kgumiiisv\nv/wyAC0tLVEYXWJRU1OD2Wye8udhs9n47ne/S2ZmJsuWLQOcsTqdcGoyeetqEwi+nEz6gkZEpsRG\n4nJCoDQ3NzM8PMyhQ4fiPRQhCHp6ejCbzZSWlsZ7KIIP9Pn35s2b6ejo4NOf/rTxnjiZEg8RmQQh\nyZkpcbm8vDwKCgpIT09HKeXxGH2BrkePQsXXoqKyspLy8nKpyyREFN2B50lk0sUSXyLTxo0bqaio\nYMmSJdEZYAJhNpuZN2+eEV/TNI17772XN998k5///OfGQqGiosJwMIXjZCotLcVisQQtMo2OjmKz\n2bw6mebMmUNaWpqITAmOxOWEQNGjulKXKbno6emhvLzc6wamkBg0NTWRlZXF//zP/zA6Oso111zD\nsmXLSE9PT/mN9mRERCZBSHJmipMJnI4CXxN9fYEebl0mvd6SJ/eDUoqlS5dK3QUhovT19aGUYvbs\n2dPeq6urQynlVWSamJjglVdeoaWlxasAm2roHeYAtmzZwi9+8Qu+/e1vc9tttxnHmEwm6uvrgfBE\nJqUUNTU1QYtMg4ODAF6dTGlpaZSXl4vIlOBIXE4IFBGZkpPu7m6JyiUBZrOZiy++mI0bNwJO5+AX\nvvAFli5dGueRCZ4QkUkQkpyZJjL5muhHSmTyF48oKyvjxIkTYV1DEFzp6+ujpKTEo4hqsViorq72\nKjK9++67DA4Osm7dumgPM2HQRSZN01i/fj15eXl861vf8ngchCcywdSuNoGii0zenEzgdEaKyJTY\nSFxOCJS8vDyqq6tlEyrJ6OnpEZEpSVi5cqVR82zx4sV85StfkfIVCYqITIKQ5MyUuBzAlVdeadRb\n8URVVRUQWu0UV3w5mcAZnzl+/DiapoV1HUHQGRgYoKSkxOv7DQ0NHrubDQ0N8eUvf5nc3FzWrFkT\nzSEmFFarlXPnzvHVr36V3/3ud9x5553k5ORMO04XmcKpyQShiUynT58GvDuZQESmZEBEJiEYlixZ\nwocffhjvYQhBICJT8mC1WgFnQw5Pz3whcRCRSRCSnJnkZHrkkUd49dVXvb5fWlpKUVFR2FZ1fVHh\nS2QaHx83nAqCEC6jo6M+C1e6xsN0NE3j85//PDt27OC5557z6ZhJNf72b/+Wz372szz++OOMj4/z\nwAMPeDwuUk6muXPncvz4cUZGRvwee+zYMf74xz8G7GTq7u4Oa2xCdJGaTEIwWK1WOjo6OHv2bLyH\nIgTA2bNnOXv2rLFJKSQ2evFvPZoqJC4iMglCkjOTRCZ/KKVoamoKW2TSnUzedq71wsISmRMixejo\nqE8hpKGhgf7+fsMdA7Bz506ef/55fvCDH/Dxj388FsNMGJRS/OxnP+O6667j85//PPPnz/d43GWX\nXcacOXOoq6sL63p6h7nDhw/7Pfb73/8+n/jEJ+js7AT8O5nOnDnDuXPnwhqfED2kJpMQDFarFU3T\n2L59e7yHIgSA7iQVJ1NyUFNTw/Lly7nuuuviPRTBDyIyCUKSM5PicoHQ3NxMW1tbWFE2f04mvTjz\n8ePHQ76GILhis9l8Rro8dZjT6xC4tvGdSVgsFlpbW3nmmWe8HtPc3ExfX1/Yu9S6yOQvMqdpGi+9\n9BIAr7zyCuDfyQRIZC6BkbicEAwrVqwAkDoxSYKITMmFUor33nuPhx56KN5DEfwgIpMgJDniZJpK\nU1MTg4OD9Pb2hvwZgTqZRGQSIoU/J9OyZcswm8185zvfMb7zW7ZsoaioyOigNlOJRUe9QEWmffv2\ncejQIQAj2uvPyQQiMiUyEpcTgqGkpIT6+noRmZIEvdbh3Llz4zsQQUgxRGQShCRHRKapNDc3A4TV\n3SWQwt8gIpMQOfw5mWpra3nyySd5+eWXefjhhwHnTrnVao2JyDLTqaioIC0tbZrIdOjQIf785z8b\nv9ZbK8+ePZvBwUFMJpPP4qS6w0pEpsRFnExCsFitVrZs2RLvYQgBsHXrVkpKSqipqYn3UAQhpRCR\nSRCSHInLTUUvBhhOXSZ/iwo9Lic1mYRI4c/JBPClL32JL3/5yzzxxBO89957tLW1GZ1WhOhiNpup\nqqqaJjJ973vf44YbbjDuGa2trSxYsIAbb7wRcLY0N5m8T7XEyZT4SE0mIVisVivd3d1hOaqF2LB1\n61ZWrlwpmzWCEGFEZBKEJEecTFMpKSlhzpw5UXUyZWRkkJ+fL04mIWL4czLpfOc73yEzM5N77rkH\nh8MhIlMMqa2tnSYy7dy5E5vNxkcffcTIyAivv/46LS0txt+Lv45/s2bNoqCgQDrMJTASlxOCRe+A\n9d5778V5JIInPvjgA959913Onj1LR0eHPEcFIQqIyCQISY6ITNMJt8Ocv8Lf4IzMicgkRIpAnEzg\ndNHddtttfPjhhwAyOY4h8+bNm1J43eFwsGvXLsBZH+uvf/0ro6OjrFu3zvh78VWPSaeyslKcTAnM\n2NgYZrNZnA5CwCxduhSllHGfFhKLhx9+mJtuuom3334bTdPkOSoIUUBEJkFIciQuN53m5mba29tx\nOBwhne+v8Dc4RSaJywmRIlAnE8CDDz4IQF1dnRHdFKLP4sWLOXr0KKdOnQKc9ZiGh4cBZ+SitbUV\ni8XCFVdcQXNzM1lZWX6dTCAiU6IzPj4uUTkhKLKysqiurp4iSguJw+HDhzl+/Djf+ta3gMmOgIIg\nRA4RmQQhydGdTGlpaXEeSeKwdOlShoaGQnYziZNJiDWBOpkAli9fzvXXX88tt9wS5VEJrrjXe9Mj\nuWVlZWzdupWNGzeyevVqsrKySE9P55Zbbgloh7y+vp7du3cbGwZCYjE2NiYikxA0DQ0NIjIlIJqm\nGbWyduzYQX19PcXFxXEelSCkHlETmZRSP1NKHVdKeSyMopT6nFLqI6XUTqXUO0qpC13eO3T+9Q+V\nUtuiNUZBSAUmJiZIS0sTK78La9asAeDll18O6fxAnEyzZ88WkUmICJqmBeVkAnjxxRd57LHHojgq\nwR33zpW62PSFL3yB3bt3s3fvXtatW2cc/+yzz/LDH/7Q7+dee+21nD17lnfeeScKoxbCZWxsTJzC\nQtA0NjYaIlNHRwdvvPFGnEckAAwMDGCz2ViwYAEwWT9LEITIEk0n08+BFh/vHwSu1DRtCfAD4Cdu\n71+ladpSTdOWR2l8gpASjI+PywTYjerqapqammhtbQ3pfH+Fv8HpZOrv7w85kicIOrpzLlAnkxAf\nqquryc3NNcSl9vZ2qqurDVEboKXF17THM9dccw1msznk+5UQXcTJJIRCQ0MD/f39nD59mocffpjb\nb7893kMSmOzk+Y1vfIOGhgajE6ggCJElaiKTpmlvACd9vP+Opmmnzv/yXaAqWmMRhFRmYmJCin57\nYN26dbz55pucO3cu6HP1Rb+/mkwOh4OTJ73e5gQhIAIRNYX4o5SiqanJcDK1tbXR3NzM8uXOvbB5\n8+bR2NgY9Ofm5eXxsY99TESmBEVqMgmh0NDQAMC+ffvYunUrhw8fZmRkJM6jEnSRadGiRezbt4/b\nbrstziMShNQkUWoyfRHY6PJrDdiklNqulLrH14lKqXuUUtuUUtukCK8wExGRyTMtLS2MjY3x2muv\nBX1uIIt+veCyROaEcBkdHQXEyZQM6J0r7XY7u3fvpqmpicLCQtauXcudd94Zcmy5paWFDz/8kKNH\nj0Z4xEK4iJNJCAVdZHrppZc4ffo0AAcPHoznkAQmRabKyso4j0QQUpu4i0xKqatwikzfdHn5Mk3T\nLgLWAQ8opa7wdr6maT/RNG25pmnLpcuOMBORuJxnLrvsMrKzs0NyBwTqZAKkw5wQNuJkSh6ampo4\nceIEmzdvxmazGXWaXn75Zb773e+G/Ll6LadQ68gJ0UNqMgmhMG/ePAB+/etfG6/t27cvXsMRztPT\n04NSivLy8ngPRRBSmriKTEqpC4CngJs0TRvQX9c0ref8f48DGwD/7VkEYYYiTibPZGZmcuWVV4bs\nZDKbzZhM3m+RusgkTiYhXMTJlDzootJdd91FWloaq1atisjnXnDBBZSWloZ0vxKii8TlhFCYNWsW\nlZWV7N2719hAkG5z8ae7u5vS0lIRjgUhysRNZFJK1QD/B9yuadpel9ezlVK5+v8DawGPHeoEQRCR\nyReXXHIJu3fvZnBwMKjzxsbG/LpKRGQSIoU4mZKHpqYmwLlYXL9+PfPnz4/I5yqlWLlyJVu3bgWc\nC6E//OEPEflsITwkLieEih6ZW7VqFUVFRVNEps7OTqnDFgd6enokKicIMSBqIpNS6jfAZmCBUqpb\nKfVFpdR9Sqn7zh/yj0Ax8KRS6kOl1Lbzr88B3lJK7QC2An/SNE3uwoLgBYnLeWflypVomsb27duD\nOs9ms/ldVBQXF5OZmcmBAwfCGaIgiJMpiSgvL2fZsmV885vf5P7774/oZ1utVkMU/9rXvsZNN93E\nU089FdFrCMEjcTkhVPRGAFarlYaGhiki07/+679yyy23YLfb4zW8GYmITIIQG6Jmf9A07bN+3r8b\nuNvD6weAC6M1LkFIdiYmJvjFL37BHXfcgdlsFieTD/SuT1u2bOHqq68O+DybzebXVZKWlsZFF13E\ne++9F9YYBUGcTMmDUor3338/Kp+9cuVKwHm/2rRpE2azmfvvv5+GhgZWr14dlWsK/hkbGyMrKyve\nwxCSEN3JZLVa6enp4a233jLe27t3L6Ojo3R2dkbMESn4p6enh8suuyzewxCElCfuhb8FQQiO1157\njbvvvtuwWYvI5J2ioiIaGxuNCEqgBBqPsFqtbN++nYmJiVCHKAjiZBKASVH8iSee4NSpUzz55JPM\nnj2b9evXx3lkMxupySSEyurVq5k7dy5XXHEFDQ0NHD582NhU0F1N7e3t8RzijGJkZISTJ0+Kk0kQ\nYoCITIKQZOg1gNranKXKJC7nG9c6J4ESiJMJnCLT8PCwTBKFsBAnkwBQWFjI/Pnz+eMf/4jJZOKT\nn/wkF1xwAYcOHZpy3ObNm4OOAAuhIzWZhFBZuXIlBw8eZPbs2TQ0NKBpGgcPHuTcuXP09fUBIjLF\nkt7eXgARmQQhBojIJAhJRn9/PzA5MREnk2+sViu9vb309PQEfE4ghb9hMt4SrIglCK6Ik0nQsVqd\nzXRXrlxJUVERtbW1dHV1TTnm/vvv56GHHorH8GYkUpNJiAR6dG7//v10dnYar+sbhkL00eeBIjIJ\nQvQRkUkQkgxdZNInJiIy+UZftG3ZsiXgcwIp/A0wb948ioqKgvpsQXBHnEyCji5ct7S0AFBbW8vA\nwABDQ0PGMQcPHqS9vR1N0+IyxpmGOJmESKAXAd+/f78RlauqqhInUwzp7u4GRGQShFggIpMgJBm6\nyLR7927sdrvE5fywdOlScnNz2bBhQ8DnBOpkUkphtVrFySSEhe5kEpFJuO6666ipqeFTn/oU4BSZ\nAMPNdPr0ac6cOcOZM2eMBZMQXaQmkxAJioqKKC0tZdu2bYbIdNNNN7Fnzx7Gx8fjPLqZwcGDBwGo\nrq6O80gEIfURkUkQkoyBgQHAuTA9cOCAOJn8kJmZyZ133slvf/tbjh07FtA5gTqZwOk8aG9v59y5\ncyGP8fTp0zzzzDPiTJih6E4micsJjY2NdHV1sWjRImBSZDp8+DDAlOicxGxig8TlhEiglGLt2rW8\n/PLL7N27lzlz5nDJJZcwPj7Ovn374j28GUF7ezs1NTXk5ubGeyiCkPKIyCQISUZ/fz/Z2dmAc5Ex\nPj4uIpMfHnjgAcbGxvjpT38a0PGBFv4GWLVqFQ6Hg7fffjvk8f3qV7/ijjvuYO/evSF/hpC8iJNJ\n8Ia7k8lVZJKYTWyQuJwQKVpaWujv7+eFF16goaGB5uZmQATjWNHe3m78mQuCEF1EZBKEJKO/v59V\nq1YBzgfmxMSE7LL6YcGCBaxdu5Yf//jHAdnSg1lUXHHFFVgsFlpbW0Men27hlt3MmYk4mQRvVFRU\nYDabp4lMWVlZIjLFCInLCZFi7dq1KKUYGBigsbGRhQsXYjKZ5LscAyYmJti9ezdNTU3xHoogzAhE\nZBKEJGNgYIDa2lrq6upoa2uTuFyA3HffffT29vLGG2/4PTYYJ1NWVhZXXnklGzduDHls+sJRr9Mg\nzCzEySR4Iy0tjaqqqikik8Vi4dJLLxX3Q4yQuJwQKWbPns3y5csBZ7c5i8XC/Pnz+fDDD+M8stRn\n//79jI2NiZNJEGKEiEyCkERomkZ/fz8lJSU0NTVJXC4Irr32WjIyMqY4jkZHR3nyySeNRb5OoIW/\nddatW8eePXsMR1KwiMg0s7HZbJjNZtLS0uI9FCEBqa2tnSIy1dTU0NzcTEdHBw6HI86jS200TZO4\nnBBR1q1bBzhFJoAVK1awZcsWqckYZXRRXpxMghAbRGQShCTi3LlzjI2NUVJSwpVXXkl7ezt79uyR\nXdYAyMnJ4fLLL58iMv3P//wPDzzwAE8//fSUY4Mp/A2T7cZDjczpC0iJy81MgnHOCTOPuXPnThGZ\namtraW5uZnh4mEOHDsV3cCmO3W5H0zQRmYSI8ZnPfIa6ujouueQSwNk85NixY9ItMsq0t7ejlDKa\nKgiCEF1EZBKEJKK/vx+AkpISvvKVr7Bu3TqJywVBS0sLbW1tHDlyBJgUhZ544okpu4jBOpnmz59P\nXV1dSJG54eFhTpw4AYiTaaYyOjoq9ZgEr9TW1tLb28v4+LghMum78VLLJbroNfxEZBIixeLFizlw\n4IBR1N9qtQKwZcuWeA4r5Wlra2PevHnMmjUr3kMRhBmBiEyCkEQMDAwAUFxcjNls5rnnnuNjH/sY\nS5cujfPIkgPdpv7yyy9jt9vZtGkTc+bMYffu3bz66qvGccE6mZRS3HjjjWzatMkQjAJFb01eV1fH\noUOHGBsbC+p8IfkRJ5Pgi9raWhwOB/v27eP48eMiMsUQ/X4sbmEhWlxwwQVkZGSwdevWeA8lpWlv\nb5eonCDEEBGZkpSRkRGefPJJWZDOMFydTAB5eXm89dZbfP3rX4/nsJKGxYsXU1VVxUsvvcR7773H\nyZMn+bd/+zdmz57N+vXrjeNCWfTfd9992Gw2nnrqqaDO02Mw11xzDQ6HY0qLcmFmIE4mwRe640Fv\nWlBbW0teXh7V1dVS/DvK6HMscTIJ0SIzM5Nly5aJyBRFbDYb+/btk6LfghBDRGRKUl566SUeeOAB\nfvGLX8R7KEIMcReZhOBQSvHpT3+aDRs28PWvfx2TycQNN9zAnXfeyZ/+9CcGBwcBQir0umjRIq65\n5hp+/OMfMzExEfB5riITSGRuJiJOJsEXzc3NWCwW/vEf/xGYFJ2am5vFyRRlRGQSYoHVamXbtm3Y\n7fZ4DyUl6ejoYGJigiVLlsR7KIIwYxCRKcF46623eOSRR/x2mdCLfa5fv146Uswg9LiciEyh8+ij\nj7Jq1SreeustrFYrxcXF3Hjjjdjtdl599VXsdjt2uz2kRf+DDz7IkSNHeOGFFwI+p6urC7PZzBVX\nXAGIyDQTESeT4Is5c+bwy1/+0oji6iJTU1MTu3btkoVpFNFrMklcTogmVquVoaEhOjo64j2UlER3\nien1rwRBiD4iMiUYbW1tPP74434jM/r7O3fu5M0334zF0IQEoL+/H5PJRH5+fryHkrRYLBaef/55\nVq5cyX333QfAJZdcQl5eHq2trcbOdSgi04033khFRQW/+c1vAj6nq6uLqqoqysvLyc3NlQ5zMxBx\nMgn++Ju/+Rsee+wxLrjgAiorKwGnyGSz2ejs7Izz6FIXcTIJsUAXPyQyFx22bNlCSUkJdXV18R6K\nIMwYRGRKMALtMtHV1UVDQwNFRUVTaskIqU1/fz/FxcWYTPLVDYfS0lLeffdd7rjjDsC5S71mzRpa\nW1ux2WxAaIuKtLQ01q1bxyuvvGLsgPtD7xallKKhoUGcTDMQcTIJgfDII4+wY8cOo5uoXl9EInPR\nQ0QmIRY0NjZSUFAgIlOU2Lp1K1arFaVUvIciCDMGWakmGEuWLMFisfh90HR1dbFgwQI+97nP8eKL\nLwa8oBWSm/7+fonKRYl169Zx5MgRPvjgAyA0JxNAS0sLZ86cCbgdsS4yAcyfP5/du3eHdF0heREn\nkxAKixYtApDi31FEn1uJyCREE6UUVqtVRKYocPbsWTo6OiQqJwgxRkSmBCM9PZ2LLrooIJGptraW\nyy67jNHRUXbu3BmjEQrxZGBgQESmKHHdddcBsGHDBiD0RcWaNWtIS0tj48aNfo8dHx+np6dnSo2V\ngwcPMjQ0FNK1heREnExCKGRnZzNv3jxxMkUR3ckkNZmEaGO1Wtm5cyfDw8PxHkpKsX37djRNE5FJ\nEGKMiEwJiNVqZfv27V7dSWfOnOH06dPU1tZKjnuGocflhMhTXV3NpZdeyo9//GMgdCdTQUEBq1at\nooajIIMAACAASURBVLW11e+xPT09OByOKSITwK5du0K6tpCciJNJCJWmpiZxMkURicsJsWLlypXY\n7Xbef//9eA8lpdBd5SIyCUJsEZEpAbFarYyMjHjdndSLftfW1lJbW8vs2bMDjuYIyY3E5aLLb37z\nG0PEC2dRsW7dOt5//32OHTvm8zjX7zJIjZWZijiZhFBpbm5mz549hhgiRBYRmYRYsWLFCkA2jSPN\n1q1bqa+vlw1aQYgxIjIlIP7cSa4LU6UUK1eulIfSDEDTNAYGBuRBGUVqamr4wx/+QGNjIwsXLgz5\nc6699loA/vrXv/o8zl1kqq+vJzMzU5wJMwxxMgmhYrVamZiY4JVXXon3UFIS3VEucTkh2syZM4fa\n2lrZNI4gDoeDN998k1WrVsV7KIIw4xCRKQGZN28excXFbN682eP77gtTq9XKrl27OHPmTMzGKMSe\n4eFhxsbGRGSKMlarlb1793LhhReG/BkXXnghmZmZvPfee8ZrDoeD9evXc/r/Z+/e46Iq8z+Af54Z\nBkERAUFRFLl7GbykNLRqahdkSMrSykuut1wVAa22THO3Vndru7zKX4GmtpldzUtmXgJ1S221BPGG\noKmjgooid0UBuZ3fHzATCCjIzJwZ+LxfL17JOWcOX/bsMGc+832ep6DAsE3/XO7evTuAqtXpevXq\nxU6mVoadTHSvRo0aha5du3KVWRNhJxOZEyf/Nq7Dhw8jOzsbWq1W7lKIWh2GTBZICIGwsDB89dVX\n2LNnT5396enpsLW1RefOnQFUvShJkoSkpCQzV0rmlJeXBwBwcXGRuRK6G1tbW9x33321PpFMSEjA\n3Llz8e677xq2paenw93dvVbAEBgYyE6mVoadTHSvVCoVZs+ejR07duD06dNyl9PiXLlyBQDg7Ows\ncyXUGgQFBSEtLQ35+flyl9IixMXFQQiBkSNHyl0KUavDkMlCxcTEwN/fH2PGjKlz45ieng5PT08o\nFFWXj+O4WweGTNZFP4F/eXk5gD+WGf/kk09QUlIC4I9VImtSq9W4ePGioTPx+PHj2Lp1qxkrJ3OS\nJImdTNQsM2fOhEqlwrJly+QupcU5ePAgXFxc4O3tLXcp1ApwXkbjio+Px6BBg+Dm5iZ3KUStDkMm\nC+Xk5IRt27ZBqVQiPDzcEDAAdd+Yuri4oFevXvV2PVHLwZDJumg0GhQVFeHEiRMA/giZcnJy8O23\n3wJoOGQC/rjJXLx4MZ577jlIkmSu0smMysvLIUkSO5nonnXu3BnPPvssPvvsMxQWFspdTouSkJAA\njUYDIYTcpVArwJDJePLz83HgwAEOlSOSCUMmC+bj44PNmzcjPT0doaGhePnll/Hyyy/j5MmTdd6Y\nhoaGYu/evSguLpapWjI1hkzWJTg4GMAfHYapqakICgpCnz59EBMTg8rKSly4cKHOc/n2m8yUlBQU\nFhbi4sWLZqyezEXf1cZOJmqO6OhoFBYW4ssvv6yzb9OmTTh58qQMVVm3wsJCpKamGv6WE5la9+7d\n0b59e6SkpECSJCxfvhw5OTkAgF9//RW7d++WuULrsWvXLlRWViIsLEzuUohaJYZMFm7IkCH44osv\ncP78eaxYsQIrVqyAJEl4+OGHax2n1WpRUlJy19WsyHrl5uYCYMhkLXx9feHs7GyYlyklJQV9+/bF\nzJkzcfjwYezfvx+3bt2qEzJ5eXnBwcEBR44cQUlJCc6cOQOAn2y2VLdu3QIAdjJRs2g0GgQFBSE2\nNrZW12NlZSWee+45/OMf/5CvOCt1+PBhSJJkWPGXyNSEEFCr1UhNTcWBAwcQGRmJNWvWAABeeukl\nzJs3T94CrchXX30FNzc3Pn+JZMKQyQqMGzcOOTk5uHHjBm7cuIHr16/jueeeq3XM8OHDYWdnh/j4\neJmqJFNjJ5N1EUJAo9EgISEBOTk5uHr1KtRqNcLDwwEAK1euBIA6IZNCoUBQUBASExNx6tQpVFZW\nAmDI1FKxk4mMQQiB6OhonDx5Ej/99JNhe0ZGBkpKSmqtdEmNo/+AQD/vJZE5qNVqpKSkGO7n9V1N\nqampSEtL49D5Rjh//jy2bduGmTNnwsbGRu5yiFolhkwthL29PUaMGMGQqQXLy8uDnZ0d7O3t5S6F\nGmn48OE4fvw4Nm/eDKDq5tHX1xf+/v7YuHEjgLohE1A11O7YsWM4dOgQAECpVHLFuRaKnUxkLOPG\njUOHDh0Mc74BMHRCnj9/HtnZ2XKVZpUSExPh4+PDSYPJrNRqNbKzs/H1118DqPqA6cKFC7hx4wYK\nCwtRUFAgc4WWb/ny5VAoFJg9e7bcpRC1WgyZWhCtVotTp07h/PnzcpdCJpCXl8cuJiszbdo0qFQq\nvPbaawD+mG9Jq9UawoX6QiaNRoOysjJ8/fXXsLGxwdChQ9nJ1EKxk4mMpU2bNggJCUF8fLyh20Gn\n0xn2cwXapklMTORQGzI7/X3C2bNnYWdnhxMnTiA5OdmwPz09Xa7SrEJRURE+/fRTPPXUU+jWrZvc\n5RC1WgyZWpDHH38cQNU4ZGp5GDJZH3d3dzzzzDPIzs6Go6MjPDw8AMAwEaWTkxMcHR3rPE7/xubn\nn39Gz549cd999+HEiROGoXPUcrCTiYwpLCwMGRkZhs5HnU4HlUoFhULBkKkJEhMTcfHiRQwfPlzu\nUqiV0a8wCwCTJ09GUVERtm/fbtjGkOnOdu7cifz8fMyaNUvuUohaNYZMLYiPjw9CQ0OxYsUKlJWV\nyV0OGVleXh46duwodxnURNHR0QCqPp3UL4M9fPhwtGnTpt4uJgDo1q0bunbtCqDqhlOtVqOoqAhp\naWlmqZnMh51MZEyhoaEAYBg6r9Pp4Ofnh8DAQIZMTRAbGwsHBwdMnDhR7lKolenSpQucnZ3h6uqK\nyZMnAwC+++47tGvXDgBDpruJj49H+/btMWzYMLlLIWrVGDK1MNHR0bh8+TI2bdokdylkZOxksk7B\nwcF4+umnMWbMGMO2tm3b4i9/+Yuh+7A++m6mwMBAQ/s852VqedjJRMbk4eGBvn37Ii4uDsAfIZNG\no0FiYiInDW6ErKwsrFu3DlOnTq2305TIlIQQmDBhAiIiItC3b18AQE5ODgYPHgx7e3uGTHcgSRLi\n4uLwyCOPwNbWVu5yiFo1hkwtTFhYGHx8fPDhhx/yZrKFYchknYQQ2LBhA/7617/W2h4TE4N//vOf\nDT5OHzKp1Wr06dMHAFeYa4nYyUTGFhYWhn379uH69evQ6XTw9/eHRqNBXl4ezp49K3d5Fu+TTz5B\naWkpIiMj5S6FWqlly5ZhyZIlcHR0RPfu3QEAffv2haenJ0OmO/j9999x4cIFw5QERCQfhkwtjEKh\nwCuvvILffvsN//rXv+Quh4woNzeXIVMr8sQTT6Bv374YMmQIHB0d4eXlhSNHjshdFhkZO5nI2J54\n4gmUlZXh//7v/1BcXAw/Pz8EBQUBAA4fPixzdZatrKwMH3/8MUJCQtCrVy+5yyEydDKr1Wr06NGD\nIdMd6Ds4tVqtzJUQEUOmFmjWrFmYPHkyXn/9dWzYsEHucsgIiouLUVJSwpCpFVGr1UhOTkbnzp0B\nwDDchVqW4uJiAOxkIuMZPHgw+vbti3feeQcA4Ofnh969e0OhULAb8i5++OEHZGRkICoqSu5SiAD8\nMRE4Q6a72759O/r06QNPT0+5SyFq9RgytUBCCKxatQqDBg3C/PnzUVFRIXdJ1Ex5eXkAwJCpFdNo\nNEhPT8fVq1flLoWMpLCwEP/+97/h6OhomOidqLmEEIiOjkZRUREAwN/fH3Z2dvD19WXIdBcxMTHw\n8vLCqFGj5C6FCAAQHh4OjUaDvn37okePHsjOzjY8t+kPn3zyCX7++WeMHz9e7lKICAyZWqw2bdpg\n4cKFSEtLq7X0KVknhkwUHBwMADh48KDMlZAxSJKESZMm4cSJE1i/fj06dOggd0nUgkycOBFOTk5Q\nqVSGOV0CAwO5eEA9Kisr8dZbb2HWrFn45ZdfEBkZCaVSKXdZRACqVqNNSEhA27ZtDSvSXrhwQeaq\nLMONGzewcOFCREREYM6cOdBqtVi4cKHcZRERTBwyCSFWCyGyhBD13tWIKh8JIXRCiGQhxMAa+6YI\nIc5Uf00xZZ0t1ejRo9GtWzfExMTIXQo1E0Mmuu+++6BUKpGQkCB3KWQE2dnZ2LJlCxYsWGBYdp7I\nWNq1a4e//e1vePrppw2BiVqthk6nM0w2T1UOHjyIRYsWYe3atejZsyemT58ud0lE9dKHTBwyV+W/\n//0v3n77bXzzzTcYOnQo1q1bBxsbG7nLIiIApn4mrgEQC+CLBvaHAfCv/goG8DGAYCGEC4A3AAQB\nkAAcEkJskSQp38T1tig2NjaIiIjAokWLkJKSYpg8kKwPQyZq164dAgMDOS9TC5GVlQUAhiWqiYzt\n9hUt1Wo1KioqcOrUKfTv31+mqixPfHw8hBA4f/48OnbsKHc5RA1iyFTbpUuXAABnzpxBp06dZK6G\niGoyaSeTJEm/AMi7wyGjAXwhVTkAwEkI0QVAKIBdkiTlVQdLuwBwqYB78Je//AVOTk4YP348rl27\nJnc5dI8YMhFQNWQuMTERkiTJXQo1U3Z2NgDwxpjMRv9BE+dlqi0+Ph4ajYYBE1k8Dw8PqFQqnDt3\nTu5SLEJGRgZUKhVcXV3lLoWIbiP3nEweAC7W+P5S9baGtlMTubm5YePGjTh16hTGjRuH8vJyuUui\ne8CQiYCqyb8LCgpw5swZuUuhZtJ3MjFkInMJCAiAjY0N52WqITc3FwkJCVzynKyCUqmEt7c3zp49\nW2dfUVERFi5ciOjoaPznP/+RoTrzy8jIQNeuXaFQyP12lohuZ/XPSiHETCFEkhAiSf/JMNX2yCOP\n4OOPP8aOHTvwwgsvyF0O3YPc3FyoVCq0a9dO7lJIRoMHDwYA7N27V+ZKqLkYMpG52draIiAggJ1M\nNezatQuSJCEsLEzuUogaxc/PDzqdrs72ffv24e2338bKlSsxZ86cVrGydEZGBjw82INAZInkDpky\nAHSv8X236m0Nba9DkqRVkiQFSZIU5ObmZrJCrd2MGTPw8ssvY9myZZwI3Arl5eXBxcUFQgi5SyEZ\n9erVC927d0dcXNwdj5MkCTExMYb5CsjyZGVlQQjB7kQyK7VazU6mGuLi4tCxY0cEBQXJXQpRo+hD\nptuHzRcUFAAAZs+ejbKyMly5ckWO8szq0qVLDJmILJTcIdMWAJOrV5l7AMA1SZKuANgBYKQQwlkI\n4QxgZPU2aoa3334bTz75JF544QVs375d7nKoCVJTUw0TPlLrJYRAWFgY/vvf/6KsrKzB4y5evIi5\nc+fi/fffN2N11BTZ2dlwdXXlUulkVv369cO5c+c4R2O1Y8eO4YEHHuDzkKyGn58fbty4YeiG1dM/\np/v16weg5U8OLkkSO5mILJhJQyYhxFoAvwHoKYS4JIR4XggxWwgxu/qQHwGcA6AD8AmAOQAgSVIe\ngH8COFj9taR6GzWDUqnEV199hQEDBmD8+PFITk6WuyRqhPz8fBw4cIDLnBMAQKvVorCwEL/99luD\nx+jnbNJ3PO3duxebN282S33UOFlZWRwqR2an0WgAAElJSTJXYhlyc3PBLniyJv7+/gBQZ25GfSeT\nfuXIlh4yXb9+HTdv3mTIRGShTL263ARJkrpIkqSSJKmbJEmfSpK0QpKkFdX7JUmSIiVJ8pUkqa8k\nSUk1HrtakiS/6q/PTFlna9KuXTts2bIFjo6OCA8PR2Zmptwl0V3s2rULlZWVnJiUAFTNsWZjY3PH\nIXP6+RpOnTqFs2fPYsqUKZg5cyZXpbMgDJlIDvphYQkJCTJXYhn0Q9GJrIWfnx8A1JmX6dq1a1Ao\nFOjTpw+Alh8yZWRUzaLCkInIMsk9XI5k4OHhga1btyI3NxejR49GaWmp3CXRbSoqKrB06VKcPHkS\n8fHxcHJyMnwCTa2bo6MjhgwZgvj4+AaP0el0hvm7oqOjkZ6ejuzsbFy4cMFcZdJdZGdns4OCzM7F\nxQX+/v5ITEyUuxTZlZSUoKioiCETWZUePXpAqVTWCZkKCgrQoUMHtGvXDq6urgyZiEhWDJlaqYED\nB2L16tVITEzE+vXr5S6HbjN//ny89NJLCAkJwfbt2xESEgIbGxu5yyILodVqcfTo0QYn9tTpdOjV\nqxe8vLwQFxcHOzs7AOxesCTsZCK5BAcHIyEhodV3Nubn5wMAQyayKiqVCl5eXvV2Mjk5OQGoCqJa\nesikX9ikW7duMldCRPVhyNSKPfPMM+jZsydiY2PlLoVq+Oyzz/DBBx/gmWeeQUFBAbKysri8MtWi\n///Djh31r4dw5swZ+Pv7G45bsGAB2rRpw+4FC1FaWoqCggKGTCQLjUaDzMxMQydAa5WXVzXVZ8eO\nHWWuhKhp9CvM1aTvZAJaR8ik//vVtWtXmSshovowZGrFFAoFIiMjkZCQgIMHD8pdDlVbs2YN+vbt\ni2+++Qbr16/HsGHD8Pjjj8tdFlmQfv36wd3dvd4hc5WVlTh79iz8/PwwZcoUBAUFITIyEgMHDmTI\nZCGys7MBgCETyUI/9Lq1dzbqQyZ2MpG18ff3h06nq9WNWF8nU0vuVszIyEDHjh0NndpEZFkYMrVy\nU6ZMgYODA7uZLEhOTg4CAgJgY2ODxx57DHv37oWrq6vcZZEFEUJAq9Vi586dKC8vr7Xv8uXLKCkp\ngb+/P4KDg3Hw4EG4urpCo9Hg0KFDdY4n89OHTJyTieQwYMAAqFSqRoVM+/fvx9atW81QlfkxZCJr\n5efnh2vXriEnJ8ew7fZOpqKiIuTm5spVosllZGRwPiYiC8aQqZVzdHTElClT8O233yIrK0vucghV\nIRNDJbqbsLAw5Ofn1+lC1LfQ61eg0dNoNCgqKkJqaqrZaqT66f/WspOJ5NCmTRsEBQVh7969dz32\nrbfewrx588xQlfkxZCJr1atXLwDA8ePHDdtu72QCWvYKcwyZiCwbQyZCVFQUSktL8Z///EfuUlo9\nSZKQm5vLOSLorh599FEoFAps27at1vYzZ84AqD9kAjhExhIwZCK5hYaG4uDBg7U6IeqTk5ODixcv\noqKiwrDtyJEjWLt2ralLNDmGTGSt7r//fgCoNQT+9k4moOWGTJIk4eLFiwyZiCwYQyZCr1698Oij\nj+Ljjz/mUBqZXbt2DRUVFexkortycXHBY489hvfffx+//fabYbtOp4OtrS26d+9e63hfX1906tSp\nUd0LZFqck4nkFhYWBkmSsGvXrjsel5OTg/Lycly+fNmwbenSpZg5c6bVz/eSl5cHpVKJ9u3by10K\nUZO4uLjAz8/PEDJVVlaisLCw1XQyLV68GNnZ2Rg8eLDcpRBRAxgyEQAgOjoaly5dwnfffSd3Ka2a\n/lNlhkzUGJ999hm6deuG0aNHY9asWZg1axY2bdoEHx8fKJXKWscKIRAaGoodO3bU6kog88vKyoJK\npTJ86kxkboMGDULHjh0RFxd3x+P0r0k136xeuXIFN27cQH5+vklrNLW8vDy4uLhACCF3KURNFhwc\nbAiZrl+/DkmSDK8pzs7OcHBwaJEh04YNG7B48WJMmzYNU6dOlbscImoAQyYCAIwaNQqBgYGYM2eO\nYbgNmR9DJmoKV1dXbN++He7u7tiyZQu2bNmCGzduYMyYMfUer9VqkZubi8OHD5u5UqopKysLbm5u\nfHNLslEqlYbQubKyst5jysrKcP36dQC1Q6bMzMw626yRPmQiskYajQYZGRnIyMjAtWvXAMDQySSE\ngI+PT4u8n4+JiUHv3r2xYsUKvoYSWTCGTASg6oZz8+bNEEIgPDzccGNJ5qUPmTgnEzVWz549kZyc\njCtXrhi+3nzzzXqPHTlyJIQQd+1eINPKysriUDmSnVarRVZWFo4cOVLv/porU7XEkCk3N5chE1kt\n/TyLiYmJKCgoAIBa3bFqtbrFLfRRXl6OQ4cOISQkBLa2tnKXQ0R3wJCJDHx9fbFx40acPn2ak4DL\nRH9Tz04mMgVXV1fcf//9iI+Pl7uUVquoqAj79+9H79695S6FWrmQkBAAwC+//FLv/pqTgusDpbKy\nsnqH0FkjdjKRNRswYABUKhUSExPrdDIBQGBgINLT01FYWChXiUZ34sQJFBUVGQI2IrJcDJmolhEj\nRmDo0KFYtmxZgy30ZDocLkemptVqkZCQgBkzZmD58uW1Ju/9/fffsXLlShmra/nWrl2L/Px8zJo1\nS+5SqJVzd3eHp6dngytO1hcy6VdGrLnNWjFkImtmZ2eH/v371+pkqhkyqdVqAFXBTEuh/1vFkInI\n8jFkojqioqJw7tw5DqmRQU5ODlQqFVe7IZMZP348vL29sWXLFkRGRuLDDz807Pvwww8xe/Zsww0r\nGZckSYiJiUHfvn0xbNgwucshgkajqbUMek36zlo/Pz9DoKQfKgcwZCKS26BBg3D48OEGh8sBaFFD\n5hITE+Hs7Aw/Pz+5SyGiu2DIRHWMGTMGXbp0QUxMjNyltDo5OTno2LEjJzMkk+nduzd0Oh0yMzMx\nZswYvPTSS4bhc/qb0Zb0yacl2b9/P44dO4aoqCg+x8kiaDQanD9/HtnZ2XX26TuZBg0ahPT0dEiS\nZAiZXFxcrDpkKisrQ2FhIec/JKsWGBiIgoIC/P777wBqdzJ5e3vD3t4eKSkpcpVnFJIk4Z133sGJ\nEyeQmJgIjUbD108iK8CQiepQqVSYPXs2duzYgdOnT8tdTquSm5vLoXJkFgqFAl9++SW6d++Ojz/+\nGJIkGUIma78ptVQxMTFwcnLCc889J3cpRACqlkEHgIMHD9bZVzNkKi4uRk5OjiFkCg4OtuqQKT8/\nHwDYyURWTd+ttH//fgC1O5mUSiV69+5t9Z1MOTk5WLBgAUaOHImUlBQOlSOyEgyZqF4zZ86ESqXC\nsmXL6t1fWVmJt956CxkZGWaurGXLyclhyERm07ZtWwwfPhwJCQnIzMxEXl4egJbVXm8pMjIysGnT\nJkyfPh3t2rWTuxwiAMDAgQOhUCjqHTKXk5MDBwcH+Pv7A6gaHnflyhUAwP3334+cnBzcvHnTrPUa\ni/5vHUMmsmaBgYEAqoaRtW3bFiqVqs5+a38914fdGRkZqKysZMhEZCUYMlG93N3d8eyzz2LNmjX1\nrkxx+PBhLFq0CLGxsTJU13IxZCJzCw4OxtWrVw1D5lQqldXflFqilStXoqKiApGRkXKXQmTg4OAA\ntVpd7+Tf+s7aHj16AKgKmTIzM+Hs7IyAgAAAwIULF8xar7EwZKKWwM3NDW5ubigpKanVxaSnVquR\nkZFh1fMs6ueGe+GFFxAcHIyhQ4fKXBERNQZDJmpQVFQUrl+/jrFjx2Lu3Lm1upb0n3pyKXTj0s/J\nRGQu+k8FV69eDQCGlnQynlu3bmHlypUYNWoUfHx85C6HqBb95N81V5oE/vjQ4/aQyd3dvdY2a8SQ\niVoKfTdTzfmY9PTD6Wq+pkuShHfffddqRiLoO5kmT56MAwcO1Pt7EpHlYchEDQoODsazzz6LkydP\nGt4g3bhxA8AfIdPRo0cN7fPUPJWVlcjLy2MnE5lVv379YGtri3379sHV1RUPPfQQrl69Wmv5cmqe\njRs3IisrC1FRUXKXQlTH4MGDkZeXVydc1odMzs7O6Ny5M5KSkhgyEVkYfZBUXydT//79AVTdq+ud\nP38er776Kr744gvzFNhM+nsRfgBLZF0YMlGDhBBYt24dLl68iB9++AHHjx/HpEmTIEkSEhMT4e3t\nDQDYsWOHzJW2DNeuXUNFRQVDJjKrNm3aYMCAAQCqblb1n4pyyJzxxMbGIiAgACEhIXKXQlRHaGgo\nACAuLq7W9pqrnY4cORI7d+5ERkYG3N3d0bVrV9jY2DBkIpLZnTqZPDw80KVLl1pzruk7mHQ6nXkK\nbCb9cDneGxNZF4ZM1CharRZvvfUWfvjhB8THx+P333/HtGnT4O7uziFzRqL/tIYvpGRu+hWmAgMD\nDZ+KMmQyjqSkJBw4cACRkZFQKPiSS5bHw8MD/fr1q/NaXnO107CwMOTm5iItLQ3u7u5QKpXw9PTE\nuXPn5Ci52ZKTk+Hk5FRv9weRNblTJ5MQAhqNptaca9YWMuXk5MDe3h5t27aVuxQiagLe8VKjRUZG\nokOHDpgzZw4kSUJwcDC0Wi127tyJ8vJyucuzemwJJrno52VSq9Xw8PCAo6Mj52UyktjYWDg4OGDq\n1Klyl0LUIK1Wi3379hkW+igtLcX169cNIVNISAiEEACqFgYBAD8/P6t5o1qTJEmIj4/HyJEjGfyS\n1dOHTA3NVaTRaHD69Gnk5+cDsM6QiR++ElkfvrpSozk4OGD69OlIS0sDULWE8ejRo5Gfn4/t27fL\nW1wLwJZgkktISAiGDh2K0NBQCCEwePBgbN26leFxM5WVlWHTpk0YN24cHB0d5S6HqEFhYWEoKyvD\nzz//DKDu65Grq6shjO7SpQsAwN/fHzqdrs6E4ZYuOTkZV65cgVarlbsUomZzdnbGpEmTGhyOre9U\nPnjwIADg0qVLAIDLly/j5s2b5imyGbggDpF1YshETTJnzhwIIRAQEABnZ2eEh4eje/fuiImJkbs0\nq3f16lUADJnI/Dp37oz//e9/hpXPZs+ejUuXLmHz5s0yV2bdfv31VxQWFmLUqFFyl0J0R4MHD4aD\ngwO2bt0KoP7OWn0oU7OT6dq1a4ZAylrohwXq56IisnZffvklxo4dW+++oKAgAH8s2FNzVTlrGO5a\nc9guEVkPhkzUJH5+fpg3bx5mzJgBALCxsUFERAR++uknnDhxQubqrFdmZiYWL16Mbt26wcPDQ+5y\nqJULDw+Hl5cXYmNj5S7FqsXHx8PGxgaPPPKI3KUQ3ZGtrS3Gjx+P1atXY+vWrfV21k6aNAkPPvgg\n7rvvPgBV9wOA9Qy70YuPj0e/fv3QtWtXuUshMrkOHTqgV69etUImZ2dnANbx3OVwOSLrxJCJuh9I\n3gAAIABJREFUmmzp0qV45ZVXDN/PmDEDbdq0wbJly2SsynpVVFRg9OjRyM3NxQ8//ABbW1u5S6JW\nTqlUYs6cOdi7dy+Sk5PlLsfiHThwAKtWraqzPS4uDkOGDOFQObIKH374IQYNGoQJEyZgyZIlAGqH\nTH5+fvjll18M2/Qh05kzZ8xf7D26fv069u3bh7CwMLlLITIb/eTfkiQhIyMDDz74IADreO4yZCKy\nTgyZqNnc3Nzw1FNPYcOGDaisrJS7HKtz4sQJJCYm4r333sPAgQPlLocIADBt2jQoFAps2LBB7lIs\n3kcffYTZs2fXGnpw+fJlHDt2jPO+kNVo27YttmzZgoEDB+L8+fPQaDSGIbT18fb2hkKhsIpuCL21\na9eivLwco0ePlrsUIrMJDg5GVlYW0tLScPnyZfTu3Rtubm4W/9wtLy9Hfn4+52QiskIMmcgoRo0a\nhezsbBw5ckTuUqyO/kVePzkjkSVwdXXFAw88UGdZc6orIyMDkiRh+fLlhm36xRDYMUHWpEuXLvjl\nl19w/vx5JCQkoF27dg0e26ZNG3h6elr8G1U9SZIQExODAQMG4IEHHpC7HCKz0U/a/+OPP6KsrAwe\nHh51VodcunQpTp48KVeJ9dKviMdOJiLrw5CJjGLkyJEAqoaHUNPoX+R9fX1lroSotrCwMCQlJSEr\nK0vuUiyafrWeTz/9FDdv3sSpU6cwf/589O3bF/369ZO5OiLTuf2NqiXbu3cvUlNTER0dDSGE3OUQ\nmU2/fv3Qpk0bbNq0CQDQrVu3Ws/drKwsvPTSS/j444/lLLMO/QIEDJmIrA9DJjKKTp06ISgoiF0P\n90Cn08HV1RVOTk5yl0JUi36o186dO2WuxHLp57gIDg5GQUEBnnzySYSGhkKlUuGHH37gm1lq0fz8\n/KxiXhcAiI2NhYuLCyZMmCB3KURmZWtri/vuuw979+4FAEMn08WLF1FcXIzU1FQAMPzXUjBkIrJe\nDJnIaLRaLX777TdDeys1zpkzZwwTqBJZkoEDB8LNzY3h8R3k5eXh1q1bGDduHJ555hmcPXsWHTp0\nwA8//ABvb2+5yyMyKT8/P+Tn5yMvL0/uUu7o5s2b2Lp1KyZNmgR7e3u5yyEyO41Gg4qKCgBVIVPv\n3r0BVAVLKSkpAGD4r6XQh0yck4nI+jBkIqPRarWorKzErl275C7Fquh0Ovj7+8tdBlEdCoUCoaGh\n2LFjh+HmlGrLyMgAUDX8YP369Th37hyOHTuGP/3pTzJXRmR61rLC3J49e1BaWorw8HC5SyGShX5e\nJoVCgc6dOxu+T0xMNHQwZWVlITs7W7Yab5ebmwuAnUxE1oghExlNcHAwOnfujM8//1zuUqxGcXEx\nLl68yE4mslhPPvkkcnJyON9aA/Qhk4eHh8yVEJlf//79AQAJCQkyV3Jn8fHxaNu2rWHpdqLWRh8q\nubu7w8bGBp6enujcuTMSEhKQmpoKlUoFwLKGzLGTich6MWQio7GxscGsWbMQFxdnNROByu38+fMA\nwJCJLNYTTzyBrl27IjY2Vu5SLBJDJmrNvLy8EBAQYPFDauPj4/HQQw/Bzs5O7lKIZOHn5wdnZ2fD\na5UQAhqNBgkJCUhJSTHMwWhpIVPbtm3Rtm1buUshoiZiyERGNWvWLCiVylpLeVPD9GEcQyayVCqV\nCrNnz8aOHTtw6tQpucuxOPqV5bp06SJzJUTy0Gq12L17N4qLi+UupV46nQ46nc7wJpqoNRJCYO7c\nubUmvtdoNDh16hQKCgowcuRIdOjQweJCJg6VI7JODJnIqLp27YqxY8di9erVKCgokLsci8eQiazB\nzJkzoVKpMHHiREyZMgVHjx41+c+srKzEW2+9hcTERJP/rObIyMhA586dYWtrK3cpRLIICwtDSUkJ\nfvnlF9lqyM7OxmuvvVZv0KUf6hsWFmbusogsyj/+8Q+8+OKLhu+Dg4MN/w4MDIRarbaoyb9zc3M5\nVI7ISjFkIqN75ZVXcPPmTYwbNw7l5eVyl2PRdDodXFxc4OLiIncpRA3q3LkzXn31VVy/fh2bN2+G\nVqtFenq6SX/m66+/jkWLFmHZsmUm/TnNlZGRwaFy1KoNHz4cdnZ2sg6Z27ZtG/7973/jq6++qrVd\nkiR8/vnnUKvV8PX1lak6IssUFBRk+LdarUZgYCBSU1MhSZKMVVWRJAlHjx7l85bISjFkIqMbNGgQ\nVq5ciZ07d+Kvf/2r3OVYtJMnT7KLiazCP//5T5w5cwYHDhxASUkJHn/88Xq7BhISEpo9XHbdunV4\n8803oVQqLepT1fowZKLWzt7eHsOHD5d1cYDMzEwAQExMTK03yAkJCTh06BAiIyPlKo3IYjk7OyMg\nIACdOnWCm5sb1Go18vLyDM8nc1q9erWhWzotLQ0nTpzApUuXEBoaavZaiKj5GDKRSUyfPh0RERFY\ntmwZLl68KHc5Fumzzz7Dnj17EBISIncpRI3Wu3dvfPnllzh+/DjWrl1bZ/8HH3yAuXPnoqio6J5/\nxsqVK9G7d2/MmTMHJ0+eREVFRXNKNimGTERVQ9FOnTplWMzC3PRvio8fP15r2F5MTAwcHR3x5z//\nWZa6iCzdnDlzMGvWLAB/rBZ55MgRs9exZMkSbN++Hd988w3eeustQ2jNudSIrBNDJjKZ+fPnQ5Ik\nrFixQu5SLM7u3bsxc+ZMhISE4I033pC7HKImCQ8PR2BgYJ2uAaBqZZqKigocPnz4ns5dUVGBpKQk\nPPzwwxgwYACKi4tle+N6NyUlJcjNzWXIRK2e/o3gjh07THL+L774Aj/++GOD+zMzM+Hp6QkXFxfM\nnj0bEyZMwIQJE7BhwwZMmzYNDg4OJqmLyNrNmzcPS5YsAVA1EkGhUJh9LsTKykpcvnwZc+bMwdSp\nU/HVV19h3bp1CAwMRLdu3cxaCxEZh0lDJiGEVghxSgihE0IsqGf/UiHE0eqv00KIghr7Kmrs22LK\nOsk0vLy88Pjjj2PVqlUoKSmRuxyLcfr0aYwdOxb+/v5Yv349VCqV3CURNYkQAlFRUTh69Ch+/fVX\nw/bS0lLDCnT3epN66tQpFBYWQqPRQK1WA7CsJZVrunz5MgDwJphavYCAAHh7e5tkyFxOTg5mzpyJ\nf/3rXw0ek5mZCW9vbyxevBiVlZU4fPgwDh8+DLVajXnz5hm9JqKWyMHBAX369DF7yJSTk4OysjJ4\neHggKioKxcXFSEpKYhcTkRUzWcgkhFACWAYgDEAfABOEEH1qHiNJ0ouSJA2QJGkAgBgAm2rsLtbv\nkyTpCVPVSaYVHR2NnJwcrF+/Xu5SZBcTE4Px48cjJCQESqUS27Ztg5OTk9xlEd2TSZMmwcnJCTEx\nMYZtZ86cMUz2n5CQcE/n1T9Oo9GgT5+qlwxLnZfp0qVLAMBOJmr1hBDQarX46aefUFpaatRzf/rp\np7h169YdJyTOzMyEu7s7oqKicOrUKcPXkSNH4O3tbdR6iFoyjUaDxMREs07+nZGRAaDqtbR///54\n8MEHAXBFSCJrZspOJg0AnSRJ5yRJKgXwLYDRdzh+AoC6E3yQVXv44YfRu3fveofVtDZ///vfsXPn\nTri6umLLli3w8fGRuySie9auXTtMnz4d3333naGjR99xFBAQcM+fhCYmJqJDhw4ICAhA+/bt0aNH\nD4vtZDp06BAAoGfPnjJXQiQ/rVaLmzdvYv/+/UY7Z3l5OZYvXw6lUonr168bgt3b6UMmImqe4OBg\n5Obm4ty5c2b7mbd/YLNkyRKMGjUKQ4YMMVsNRGRcpgyZPADUnPH5UvW2OoQQPQB4A/i5xmY7IUSS\nEOKAEOJJ05VJpqQfVpOUlHTPnQ0twc2bN3Ht2jXMnz8fhw4dwp/+9Ce5SyJqtjlz5qCiogIrV64E\nUBUyKRQKTJ48GWlpacjKymryORMTE3H//fdDoah6eVKr1RbbyRQXF4fevXvD09NT7lKIZPfwww9D\npVLVmTvp+++/x8aNG+/pnNu2bcOFCxcwd+5cAPUPnS0qKsL169cZMhEZgUajAXDvQ97vRc1OJgAY\nMWIEtm3bhjZt2pitBiIyLkuZ+Hs8gI2SJNVcQqiHJElBACYC+D8hhG99DxRCzKwOo5Kys7PNUSs1\n0eTJk+Ho6IjY2Fi5S5HN7S+gRC2Br68vHnvsMaxcuRKlpaVISUmBn58fhg0bBqDpN6nFxcVITk42\n3OQCQGBgIE6dOmUYhmcpbt68ib1793LOCKJqDg4OCAkJwTfffIOysjLD9tdffx0LFtSZlrNRdu/e\njXbt2mHhwoUA6g+Z9CvLMWQiar7AwEDY29ubPWRSKBTo3Lmz2X4mEZmWKUOmDADda3zfrXpbfcbj\ntqFykiRlVP/3HIA9AO6r74GSJK2SJClIkqQgNze35tZMJuDg4ICpU6di/fr1hpvB1oYhE7VUUVFR\nuHr1Kr755hukpqZCrVZj4MCBUCgUTe5ePHLkCMrLy2uFTGq1GqWlpThz5oyxS6+jrKwML730UqN+\n1p49e1BaWso5I4hqmDNnDi5fvoxNm6qm2CwrK8OpU6dw9uxZ5OTkNPl8Op0O/v7+cHNzg7u7e71d\njQyZiIzHxsYGgwYNwr59++46zcXvv/+ON954A5WVlc36mRkZGXB3d4eNjU2zzkNElsOUIdNBAP5C\nCG8hhC2qgqQ6q8QJIXoBcAbwW41tzkKINtX/dgUwBMAJE9ZKJhYZGYmysjJ88skncpciC04QTC3V\nyJEjERQUhOjoaOh0OgQGBqJdu3b405/+hHXr1jXp5lP/yWnNkEk/J8O9DrdpiuPHj2Pp0qUICwtD\nbm7uHY+Nj4+Hvb29YYJSIqqaqNfHx8fQuXzmzBlDV9PBgwebfD6dTgc/Pz8AVR0W7GQiMr2xY8ci\nKSkJ77333h2P++KLL7BkyRLs3LmzWT8vIyOD98dELYzJQiZJksoBRAHYAeAkgPWSJKUKIZYIIWqu\nFjcewLdS7bi8N4AkIcQxALsBvC1JEkMmKxYQEIDQ0FCsWLGiVht9a8FOJmqpFAoFvv/+ezg6OqKi\nogJqtRpAVUfDmTNnmnTzmZCQgO7du6NLly6Gbb6+vmb726F/s3r27FmMHTu2wYBMkiTExcXhoYce\ngp2dnUlrIrImCoUCkZGR2LdvH44ePVorFGrq8Jvy8nKcP3/eEDKp1WqkpqbWeV4yZCIyrnnz5mHc\nuHF49dVXsW3btgaP03f91lxl9sKFC5g/fz5u3brV6J936dIldOvW7d4LJiKLY9I5mSRJ+lGSpABJ\nknwlSXqzetvrkiRtqXHMPyRJWnDb436VJKmvJEn9q//7qSnrJPOIjo7G5cuX8f3338tditllZGSg\nQ4cOcHBwkLsUIqPr1q0btm7diocffhgjRowAADz99NPo3Llzk+ZiS0xMrNXFpBcVFWWWvx36N6sL\nFizA3r17GwzI9u/fj7Nnz+LJJ7kmBdHtpk2bBqVSiY0bNyIlJQUKhQJ+fn5NHj574cIFlJWVwd/f\nH0BVyFRUVIT09PRax2VmZkKhUIBTJhAZhxACn332GXr37o1FixY1OGxOp9MBqFoEQ//vL7/8Eu+9\n9x7WrVvX6J/HTiailsdSJv6mVkCr1cLHxwdLly5t9vhta8MXUGrpBg4ciJ9++skwcaetrS1mzZqF\nH3/8EWfPnr3r43NycnDu3Ll6Q6bbh+CYypUrVwBUhUydO3eu9elsTTExMXBycsLEiRNNWg+RNXJ2\ndsbgwYMRFxeH1NRU+Pr6YtiwYUhMTLzrHC816d+01hwuB1QNa60pMzMTbm5uUCqVRvoNiMje3h4v\nvvgikpOTsW/fvjr7JUmCTqfD008/DaVSieXLlwOAIUxu7Ou1fvVl3iMTtSwMmchslEolFi1ahAMH\nDuC1116TuxyzYshErdGsWbNq3XzeSX3zMekplUpMnz4d//vf/0y6eEBmZiY6dOiADh06YNasWbU+\nndXLyMjApk2bMH36dLRr185ktRBZM61Wi8OHD2Pfvn0IDAyERqNBbm4uzp8/3+hz3B4y9evXDw4O\nDvjuu+9qHZeZmVlriC0RGcdzzz0HZ2fnej9wycrKwo0bNzBs2DCMGjUKGzZsgCRJSExMhKOjIw4e\nPNio7kVOJ0HUMjFkIrOaNm0aIiIi8M4772DUqFGYOHEiLl68KHdZJseQiVqjrl27YuzYsVi9ejVu\n3rx5x2MTExOhUCgQFBRU7/5Ro0YBAHbs2IGbN2/ipZdeMnrgVPPNakMB2apVq1BRUYE5c+YY9WcT\ntSRarRYAcPXqVajVakN4fODAgUafQ6fTwd7e3vCcbNeuHaZMmYJvv/0WWVlZhuOuXLnC+ZiITKBt\n27Z4/vnnsWnTJkMYpFczBB41ahQuXbqE+Ph4XL16Fa+99hrat2+PadOmYdy4cfV2QukxZCJqmRgy\nkVkJIfDhhx/i+eefR3p6OjZs2IB3331X7rJMqqKiApmZmZzUkFqlqKgoFBQU4KuvvrrjcYmJiejT\np0+D85b1798f7u7uiI+Px5o1a7B06VLDMunGkpmZaXiz2lBAtmHDBjz00EPw9fU16s8makkGDBhg\nGDqrVqvRt29fdOrUCd9++22jz6FfWU4IYdgWFRWF0tLSWivV1nzeEpFxRUREoLKyEitWrKi1XT/p\nt7+/vyFUXrx4MQDgkUceweLFi6FQKPDzzz9j1KhROHGi/vWbGDIRtUwMmcjsVCoV/vOf/yAlJQUT\nJkzAmjVrcP369Wad8+DBg3jnnXeMVKFxXb16FRUVFXwBpVZpyJAhGDBgAGJjYxucj0XfYl/fUDk9\nIQRCQ0Oxc+dOw1wP9S1nrrd161Z8/vnnTar19jer0dHRuHbtmiEgS09Px8mTJw1dVURUP4VCgdDQ\nUABVcynZ2Nhg5syZ2LZtG86dO9eoc+h0OsOk33q9evVCSEgIPvjgA4wdOxZjx45lJxORCfn4+CA8\nPByrVq2qtWKcTqeDUqlEjx490L17d6jVaiQkJKBNmzbo168fXnzxRaSkpODQoUOwt7dHeHg4srOz\n65xfP4SW98hELQtDJpJVdHQ0bty4gS+++KJZ51m2bBkWLFiA3NxcI1VmPPyUhlozIQSioqKQkpKC\nvXv31ntMZmYmcnNzMWDAgDueKywsDHl5efj9999hY2Nzx5Dp/fffxwsvvIDy8vJG13p7yDR48OBa\nAdmOHTsMdRDRnUVERGDs2LHo2bMngKohqAqFAh9//PFdH1tRUYGzZ88a5mOq6fXXX4enpydOnz6N\n06dPIzAw0BBoEZHxRUVFISsrCxs2bDBs0+l08PLygkqlAvDHENn77rsPtra2huM8PT2xZcsWXLly\nBU8++SRKSkoM+1JSUvDee+/h/vvv5+rLRC0MQyaS1f333w+NRoOYmBiUlpbe83n0bzYPHjxorNKM\n5tKlSwAYMlHrNXHiRLi4uDS42ox+bofbuxZu9+ijjxqWKp8wYQJSUlIa7I7KzMxEQUFBo5dNv3Hj\nBm7cuFErZBJCIDo6GikpKdi1axfi4uLg6emJXr16NeqcRK3ZAw88gI0bNxrehHbr1g1jxozBp59+\nioKCApSXl+Pvf/879uzZU+ex58+fR2lpab0h09ChQ3HkyBEcP34cx48fx9GjRzFixAgT/zZErdej\njz6Knj17YuHChRg7diy+++47w3BWPf2HL/V1JGs0Gnz55Zf49ddf8eCDDxq6EENDQ+Hg4GD0oe9E\nJD+GTCS7RYsW4fTp05g1a1aTljfWq6ysNIz1buwbSnNiJxO1dvb29pgxYwY2b95c70T/t68i1ZCO\nHTvihRdewFtvvYVBgwYhNze31gTANeknBY+Pj29UjVevXgWAOsNuJkyYAB8fH0yePBn//e9/ERYW\nVmuOGCJqvPnz56OwsBDPPvssXnzxRfzrX//C448/juTkZMMxt27dwrRp02BnZ4fhw4fLWC0RAVXD\nX9988004OzsjISEB48aNw/Hjx2u9ZuvDo4kTJ9Z7jqeffhrLly/HrVu3DF2Inp6e2Lp1K+csJWqB\nGDKR7J544gm88cYbWLNmzT3Nq5SWloaioiIAfyyDbgmys7Px3HPPYdmyZVCpVHBzc5O7JCLZRERE\nQJKkeofK6HQ62NjYwMvL667nef/99zFjxgwEBgYCqGq3v11xcTGuXbsGAIiLi2tUffpQ6vaQyd7e\nHtu2bUNJSQlu3LhhGBJARE0XFBSEVatWYdeuXYiNjcX06dPRoUMHhIaGYsyYMRgzZgyGDh2Kffv2\n4fPPP0dAQIDcJRMRgLFjxyI5ORknT55Enz596nQa2traYuPGjQgODm7wHBEREUhOTjZ0If72228Y\nNGiQOconIjNjyEQW4Y033sCECROwcOFCfPfdd016rH6oXK9evZCYmHhP3VCmsHbtWnzzzTewsbHB\ntGnToFDw6Uatl5eXF0JCQrBx48Y6+86cOQMvLy/Y2Ng0+nxqtRpA/ZN/67uSfHx8cOjQoQa7nWq6\ncuUKABiWS6+pd+/e2Lx5M8aPH4+QkJBG10hEdU2bNg3vvfceIiIisGrVKmzbtg0+Pj7Q6XTQ6XQo\nLS1FbGwsnn32WblLJaLbtG/fHtu2bUNYWBhGjhwpdzlEZKEaf0dPZEJCCKxevRppaWn485//DD8/\nP/Tv3/+Oj3nnnXeg0WgMbzKnTZuGV199FWlpafD29jZKXYcOHUJcXBz+9re/Nfmx8fHxCAgIwPHj\nx41SC5G1e+yxxzBv3jycPXsWvr6+hu23z+3QGJ07d4aLi0u9nUz6rqSpU6fi9ddfR3x8PCZPnnzH\n8zXUyaQ3YsQIzvtCZCQvv/yy4d8DBgzA/v37ZayGiJrC09MTP/74o9xlEJEFY2sFWQw7Ozts3rwZ\ndnZ2ePPNN+94bFZWFhYsWIC5c+ciJSUF3bt3N3QYGHNepi+++AJ///vfG73ksl5xcTH27NnDoTVE\nNeifD/pV2gBAkqR7CpmEEAgMDKy3k0kfGIWFhcHT0xNr1qy56/kyMzOhVCrRsWPHJtVBRERERER/\nYMhEFqVTp054/vnnsWnTJsOE2fXZuXMngKr5WDZv3gy1Wo3AwEDY2dkZNWTSv1lt7Lwuer/88guK\ni4sZMhHV4O/vDx8fn1rPp+zsbBQWFt51Zbn6qNVqpKam1hkiq3/edu3aFREREdi9e7chjKqsrMQb\nb7xRZ0LwzMxMdOrUCUqlssl1EBERERFRFYZMZHEiIiJQWVmJFStWNHhMXFwc3Nzc4OLigps3byIw\nMBAqlQrBwcH1Lod8r5q6QpVefHw87OzsOLyGqAYhBLRaLX7++WfcunULQNV8TMDdV5arT1BQEK5d\nu1ZnyFxmZiaEEOjUqRNmzJiBNm3aIDY2FgCwcOFCLFmyBE899VStQDozM7PBoXJERERERNQ4DJnI\n4vj4+CA8PBwxMTEYPXo0Pvzww1r7KyoqsGPHDmi1WsyYMQMADCtNabVaHD161DCJb3PpQ6aff/4Z\nJSUldz1+3bp1GD16NL788ksMHz4c9vb2RqmDqKUICwtDUVERtFotIiIicOzYMQD3FjKFhoYCqBsC\nX7lyBW5ubrCxsYGrqysmTpyIzz//HKGhoXj33XcxZcoUdO3aFeHh4Rg9ejRGjx6NX3/9lSETERER\nEVEzMWQii/S3v/0NAQEBOHnyJF544YVay54fPnwYubm50Gq1mDdvHsLDww3zMYWFhQGoPedLc2Rm\nZsLHxwdFRUXYt2/fHY/98ccfMXHiRBw9ehQ9evRAVFSUUWogakkeeeQRhIaGIj8/H6tWrcIrr7wC\nhUIBLy+vJp/Lw8MDffv2rTOc9faupPnz56Nfv37IysrCX/7yF3zyySfYtm0b1Go1Lly4gAsXLqBH\njx5czYqIiIiIqJmEpSz3bgxBQUFSUlKS3GWQEVVUVGD06NGIj4+HVquFQqFAeno6jh8/jqysLLi6\nutY6XpIkdO3aFcOHD8e3335b6zyvvPIKnn/+ecPS53dTVFSEdu3aYdGiRXjvvfcQGRmJDz74oN5j\ndTodBg4cCF9fX/zvf/+Dg4PDvf/SRK3ERx99hHnz5sHb27vJk+vrvfrqq1i6dClyc3PRvn17AEBw\ncDCcnJyMFjYTEREREbV2QohDkiQF3e04djKRRVMqlVi7di2eeuopXL58GZcuXYJSqURUVFSdgAn4\nY86XnTt3oqKiwrA9ISEBS5cuxaJFixr9s69evQqgahjPyJEj8fXXXxvmkbndxo0bUVhYiO+//54B\nE1EjRUdH4x//+Admzpx5z+fQarUoKyvD7t27Dds4vxIRERERkTwYMpHFa9++PTZs2IDDhw8bvj76\n6KMGjw8LC0N+fn6tSX31c7Zs3boVaWlpjfq5+nmd3N3dERkZiaysLHz33Xf1HpuYmAg/P797GvJD\n1FoJIfDGG29gwYIF93yOIUOGwMHBAT/++COAqm5GhkxERERERPJgyEQtzsiRI2Fvb4/PPvvMsC0+\nPt6wRPqdVq2rST/pt7u7O0aOHAl/f3/ExMTUe2xCQgKCg4ObWTkRNZWtrS3Cw8Oxbt06FBUVoaCg\nAKWlpQyZiIiIiIhkwJCJWhwnJydMmjQJX3/9NfLy8pCdnY2kpCT8+c9/xpNPPonly5fj8ccfx9Kl\nS+94npohk0KhQFRUFA4cOACtVotZs2ahvLwcAJCRkYHLly9Do9GY/HcjoroiIyNRUFCAr7/+utbz\nloiIiIiIzIshE7VIUVFRKC4uxurVq7Fz505IkoSwsDAsWrQIffr0QXJyMubPn28YElefzMxMKBQK\nuLm5AQCmTp2KkJAQXLx4EatWrcLWrVsBVA2VA8CQiUgmQ4YMQf/+/REbG1trmCsREREREZkXQyZq\nkfr164dhw4bh7bffxuuvvw5XV1cMHDgQAwcOxIEDB/DTTz+hoqICK1eubPAcmZmZcHNzg1KpBAA4\nOjpi586dOHbsGDw9PQ1D5xITE6FSqTBgwACz/G5EVJsQAtHR0UhOTsa8efMAAF26dJELvTwMAAAM\nAElEQVS5KiIiIiKi1ochE7VYS5Ysga+vL5ydnbFgwQIoFH/8393Pzw9hYWFYuXIlSktL6318Q5MH\n29jYYM6cOdi9ezdSUlKQkJCA/v37w87OzmS/CxHd2cSJE/HYY4+hTZs2GDVqFHx8fOQuiYiIiIio\n1RGSJMldg9EEBQVJSUlJcpdBViIuLg6PPfYY1q5di/Hjx9fZr9Fo4OLiYliZrqacnBx069YN3t7e\nSEtLw/Tp07Fs2TJzlE1ERERERERkVkKIQ5IkBd3tOHYyUasVGhoKDw8PbNy4sd79d1oG3dXVFUuW\nLIGDgwMGDBiA5557zpSlEhEREREREVk8G7kLIJKLQqFAWFgY1q9fj7KyMqhUKsM+SZKQmZl5x3ld\n5s+fj/nz55ujVCIiIiIiIiKLx04matW0Wi2uX7+OhISEWtvz8vJQVlbGFaqIiIiIiIiIGokhE7Vq\njzzyCJRKJeLi4gAAlZWVeO211zBmzBgAXAadiIiIiIiIqLEYMlGr5uTkhMGDBxsm9164cCH+/e9/\n4/r16xgxYgQGDx4sc4VERERERERE1oFzMlGrp9VqsWjRIjz00EPYs2cPIiIisGzZMggh5C6NiIiI\niIiIyGqwk4lavYkTJ2L48OEoLi7G7Nmz8dFHHzFgIiIiIiIiImoidjJRq+fl5YU9e/bIXQYRERER\nERGRVWMnExERERERERERNRtDJiIiIiIiIiIiajaGTERERERERERE1GwMmYiIiIiIiIiIqNkYMhER\nERERERERUbMxZCIiIiIiIiIiomZjyERERERERERERM3GkImIiIiIiIiIiJrNpCGTEEIrhDglhNAJ\nIRbUs3+qECJbCHG0+mtGjX1ThBBnqr+mmLJOIiIiIiIiIiJqHhtTnVgIoQSwDEAIgEsADgohtkiS\ndOK2Q9dJkhR122NdALwBIAiABOBQ9WPzTVUvERERERERERHdO1N2MmkA6CRJOidJUimAbwGMbuRj\nQwHskiQprzpY2gVAa6I6iYiIiIiIiIiomUwZMnkAuFjj+0vV2243VgiRLITYKITo3sTHEhERERER\nERGRBZB74u+tALwkSeqHqm6lz5t6AiHETCFEkhAiKTs72+gFEhERERERERHR3ZkyZMoA0L3G992q\ntxlIkpQrSdKt6m//A2BQYx9b4xyrJEkKkiQpyM3NzSiFExERERERERFR05gyZDoIwF8I4S2EsAUw\nHsCWmgcIIbrU+PYJACer/70DwEghhLMQwhnAyOptRERERERERERkgUy2upwkSeVCiChUhUNKAKsl\nSUoVQiwBkCRJ0hYAc4UQTwAoB5AHYGr1Y/OEEP9EVVAFAEskScozVa1ERERERERERNQ8QpIkuWsw\nmqCgICkpKUnuMoiIiIiIiIiIWgwhxCFJkoLudpzcE38TEREREREREVEL0KI6mYQQ2QDS5a7DyrkC\nyJG7CKqF18Qy8bpYJl4Xy8NrYpl4XSwTr4vl4TWxTLwulofXxDIZ87r0kCTprquttaiQiZpPCJHU\nmBY4Mh9eE8vE62KZeF0sD6+JZeJ1sUy8LpaH18Qy8bpYHl4TyyTHdeFwOSIiIiIiIiIiajaGTERE\nRERERERE1GwMmeh2q+QugOrgNbFMvC6WidfF8vCaWCZeF8vE62J5eE0sE6+L5eE1sUxmvy6ck4mI\niIiIiIiIiJqNnUxERERERERERNRsDJmslBBCK4Q4JYTQCSEW1NgeVb1NEkK43uHxX1c/PkUIsVoI\noare/ooQ4mj1V4oQokII4VLP498UQlwUQty4bXsPIcRPQohkIcQeIUQ3Y/7elk7O6yKEaCuE2C6E\n+F0IkSqEeLvGvjZCiHXVNSQIIbyM/9tbLgu+LsOEEIeFEOVCiKdN8btbKgu+Ji8JIU5U/w37SQjR\nwxS/v6Wy4OsyWwhxvPrx+4QQfUzx+1sqE16XDkKIrUKIY9X/m09r4s/3rn5N0VW/xtga8/e2ZBZ8\nTRr181sqC74u9Z63tbDg6/Jp9WOThRAbhRAOxvy9LZmlXpMa+z8St73PbA0s9boIIdYIIc6LP+7l\nBtzxF5EkiV9W9gVACeAsAB8AtgCOAehTve8+AF4A0gC43uEc/9/e3YZYUcVxHP8eE83VVNIIrV5k\nCj1AJFT0TrSgElbLjAyMknyjhkFET0ZJJJRKWVlJCFoWmT288EVplAuJIRFpDxLkagv5UC8UkxKU\n1X8vzlkaL/fu3oe9zJk5vw8MOzt3Zs6Z87s7c+9h5uxMwIXpQ2BRlXU6gR01tr8FmAD8U7H8Y+DB\nMD8D2JR3e6WSC9ABTA/zw4CdwJ3h98XAujA/D/go7/ZSLkYo+3rgPWBu3m2lTAxgOtAR5hfpbyWa\nXEZn1psFbMu7vcqQC/AM8HKYvwQ4DgxroPwtwLwwv65a3mWcIs+krvLLOEWey4DnxrJOkeeSvba8\nAjyVd3ulnkl4/UZgExXfM8s+xZwLsJEGvqvoTqZiuhnoNrODZnYG2AzMBjCzPWbWM9AOzOxzC4Dv\ngGp3HN2Pf3NW2363mR2t8tK1wI4w39VXr0TkmouZnTKzrjB/Bvghs/1s4N0w/wlwq3PONXJwBRZt\nLmbWY2Y/AeeaOrLiijmTLjM7FVbdXWO/ZRVzLiczq44EUhpQsp25GHBRuB6Mwn/o7K2n/LDNDPw1\nBfw15q4WjrNIosykkfJLKuZc6jk3llXMuZwECNuPIJ1rS7SZOOcuAFYBT7R4jEUUbS6NUidTMV0G\n/JH5/VBY1rBwC90DwLaK5R3AHcCnDe7yR2BOmL8b/2Ye10zdCiiaXJxzY/F3C3xdWTcz6wX+BpRL\ng9qQS6qKksnDwBfN1Kugos7FObfEOXcAWAksbaZeBdXOXNYC1wBHgJ+BR82sstO7VvnjgBPhmtJS\nvQoo1kxSF30utc6NJRd1Ls65DcCfwNXAG83Uq4BizuQRYKtVv5mh7GLOBWBFeLT0Vefc8P7KVyeT\nvAV8Y2Y7K5Z3ArvM7HiD+3scmOac2wNMAw4DZ1uvZnKazsU5NxR/l8DrZnawjXVMkXKJT1sycc7N\nx9+uvWqQ65uKQc/FzN40s6uAJ4Fn21DnFFTmcjuwF5gI3ACsdc6NzqtyiVImcWpXLrXOjVKfQc/F\nzBaE7X8F7hvEuqZi0DJxzk0E7iWdzr52Guy/lafxHbE3ARfjP4vVpE6mYjoMXJH5/fKwrCbn3PYw\nSNf6zLLn8c9kPlZlk3nUeFSuP2Z2xMzmmNlUYFlYdqLR/RRULLm8A+w3szXV6ha+wI0Bjg2wn7KI\nOZdURZ2Jc+42/PlrlpmdHmAfZRJ1LhmbSeexLGhvLguAz8Kd9d3A7/gPkfWUfwwYG64pddWrRGLN\nJHVR5zLAubHMos4FwMzO4q8t99R1RMUXayZTgclAt3OuB+hwznU3cmAFF2sumNnRsO1pYAP+0bra\nLIJBrjQ1PCjYUOAgcCX/D8p1XcU6PfQ/KNhC4FtgRJXXxuCf0xxZR10qB/4eDwwJ8yuAF/Jur5Ry\nAV7EP4YypGL5Es4f+HtL3u2lXM57fSNpDfwdbSb4DzgHgCl5t5NyOW/5lMx8J/B93u1VhlyAt4Hl\nYf5S/IfJ8fWWj/9nH9mBvxfn3V6pZ1Jv+WWcYs6lv3Nj2adYc8EPjDw5rOOA1cDqvNsr5UyqlJHa\nwN/R5gJMCD8dsAZ4qd9jybsxNTX9JpwJ/Ib/MrQss3wp/vnJXvwzl+trbN8btt0bpucyrz0EbB6g\n/JWhnHPh5/KwfC6wP9RtPTA877ZKJRd8b7Phb/ft235heO1C/JeBbvwgcJPybivlYuBvOT0E/Iu/\nK2Bf3m2lTPgK+CuzfGvebaVcDOA1YF9Y1kWVD6NlntqVC/62+S/x4zP8AsxvsPxJ+GtKN/4ak8w1\nP+JM6iq/rFPEudQ8N6YwxZgL/omeXZltPyDz3+bKPsWYSZV1kupkijkX/D/26tv2fWBUf8fhwkYi\nIiIiIiIiIiJN05hMIiIiIiIiIiLSMnUyiYiIiIiIiIhIy9TJJCIiIiIiIiIiLVMnk4iIiIiIiIiI\ntEydTCIiIiIiIiIi0jJ1MomIiIiIiIiISMvUySQiIiIiIiIiIi1TJ5OIiIiIiIiIiLTsPwf5jv6f\njzqPAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.figure(figsize=(20,8))\n",
- "plt.plot(data_train_b['datetime'], data_train_b['cpu'], color='black')\n",
- "plt.ylabel('CPU %')\n",
- "plt.title('CPU Utilization')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABJIAAAHiCAYAAACz9+Z5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmUY2d57/vfK6kGlVRVqqGrR/fg\nxthmsBkS04AhmCnLkIQEbu46i1xuBk5MBmfgBAIn4JAYOAsIh2UgN1yGnCRMl5zLeEMg2OCDGez2\nCN2N226bbne3q7vdNc+jpH3/UL27t6S9pa2SVFKpvp+1vOguqaRdTWkPv/08z2scxxEAAAAAAABQ\nTqTRGwAAAAAAAIDNgSAJAAAAAAAAoRAkAQAAAAAAIBSCJAAAAAAAAIRCkAQAAAAAAIBQCJIAAAAA\nAAAQCkESAABAjRlj/soY85m1P+83xjjGmNja379tjPntOrznw8aYl9X6dQEAALwIkgAAwKZjjHmj\nMeYBY8ycMebCWjhz/dpjf2OMWV17bMoYc7cx5oWexz7v83qOMeZpAe9V9Jj3dYwxLzPGDHsfdxzn\nvzmO85/9Xs9xnBsdx/mX9f3k7vv/szHmfQWv+0zHcb5fzesCAACUQ5AEAAA2FWPMf5F0m6T/Jmm7\npL2S/kHS6zxP+1fHcZKStkn6kaSvGmPMRm8rAABAqyFIAgAAm4YxplfSrZL+2HGcrzqOM+84zqrj\nOP/mOM7bC5/vOM6qpH+RtEPSQB22JyHp25J2rVVAzRljdgVVPq19z/eNMf957c9HPN83t1b99LK1\nx/5fY8xTxphpY8wPjDHPXPv6TZJ+S9Jfrn3Pv619/bQx5pVrf+4wxtxmjDm/9t9txpiOtcdeZowZ\nNsb8hTFmZK2i63dr/W8DAABaE0ESAADYTF4oqVPS18I8eS08+R1JTzqOM1brjXEcZ17SjZLOO46T\nXPvvfAXff639Pkn/RdIJSQ+tPfxtSVdIGlr72hfWvudTa3/+0Nr3/qrPS79L0iFJz5F0raTrJL3b\n8/gOSb2Sdkt6s6T/yxjTF3a7AQDA1kWQBAAANpMBSWOO46TLPO9/N8ZMSXpS0vMl/Ubdt6wKa/Od\n3ifp1xzHmZEkx3H+h+M4s47jLEv6G0nXrlVkhfFbkm51HGfEcZxRSX8r6U2ex1fXHl91HOdbkuYk\nXVmjHwcAALSwWKM3AAAAoALjkgaNMbEyYdL/dBzn//D5elpSm/cLxhj799WA18oUfs/a34OeXxFj\nzGWS/qek33Yc57G1r0UlvV/Sbyo35ym79vRBSdMhXnaXpDOev59Z+5o1XvDvtyApua4fAAAAbClU\nJAEAgM3kHknLkn59nd9/VtL+gq8dUC5gOlfh99igxlnntsgYE5f0dUm3OY7zbc9Db1RuePgrlWtB\ns+9vB4aXe8/zkvZ5/r537WsAAABVIUgCAACbhuM405L+WrmZPr9ujOkyxrQZY240xnwoxEv8h6Sr\njDFvWvu+fuVWf/tKiQqnf5X0bmPMHmNMZG2g9a9K+vLa4xclDVTQdub1PyQ96jhO4bZ3KxeYjUvq\nWttGr4uSLi/xuv/P2jZvM8YMKvdv5jv8GwAAoBIESQAAYFNxHOe/KzeY+t2SRpWbg3SzcpU95b53\nRLnh2G+RNCLpZ5KmJP1hiW+7VdLdkn4kaVLShyT9luM4P1t7zUeVC25OGWOmjDG7Al+p2H+S9BsF\nK7e9RNJnlat4OifpuKTDBd/3j5KesfZ+fj/3+yQ9IOmopGPKDet+XwXbBQAA4Ms4zrqrsQEAAAAA\nALCFUJEEAAAAAACAUAiSAAAAAAAAEApBEgAAAAAAAEIhSAIAAAAAAEAoBEkAAAAAAAAIJdboDajU\n4OCgs3///kZvBgAAAAAATWtpaUms0l5/xhh1dnY2ejNq4sEHHxxzHGdbuedtuiBp//79euCBBxq9\nGQAAAAAANK2HH3640ZuwZTzzmc9s9CbUhDHmTJjn0doGAAAAAACAUAiSAAAAAAAAEApBEgAAAAAA\nAEIhSAIAAAAAAEAoBEkAAAAAAAAIhSAJAAAAAAAAoRAkAQAAAAAAIBSCJAAAAAAAAIRCkAQAAAAA\nAIBQCJIAAAAAAAAQCkESAAAAAAAAQiFIAgAAAAAAQCgESQAAAAAAAAiFIAkAAAAAAAChECQBAAAA\nAAAgFIIkAAAAAAAAhEKQBAAAAAAAgFAIkgAAAAAAQFO5+eab9bGPfazRmwEfsUZvAAAAAAAAgNfJ\nkycVjUYbvRnwQUUSAAAAAABoKplMRisrK43eDPggSAIAAAAAAE0lk8lodXW10ZsBHwRJAAAAAACg\nqaTTaSqSmhRBEgAAAAAAaCq0tjUvgiQAAAAAANBUMpmMlpeXG70Z8EGQBAAAAAAAmko6nWZGUpMi\nSAIAAAAAAE2F1rbmRZAEAAAAAACaCkFS8yJIAgAAAAAATcNxHIKkJkaQBAAAAAAAmkYmk5EkZiQ1\nKYIkAAAAAADQNGyQxKptzYkgCQAAAAAANA0bJGWzWaXT6QZvDQoRJAEAAAAAgKbhDY+Yk9R8CJIA\nAAAAAEDTsBVJEnOSmhFBEgAAAAAAaBreIImKpOZDkAQAAAAAAJoGrW3NjSAJAAAAAAA0DW9FEiu3\nNR+CJAAAAAAA0DRobWtuBEkAAAAAAKBpeFvbGLbdfAiSAAAAAABA06AiqbkRJAEAAAAAgKZBkNTc\nCJIAAAAAAEDTIEhqbgRJAAAAAACgaRAkNTeCJAAAAAAA0DS8w7YJkpoPQRIAAAAAAGgaVCQ1N4Ik\nAAAAAADQNAiSmhtBEgAAAAAAaBoESc2NIAkAAAAAADQN74yk1dXVBm4J/BAkAQAAAACApkFFUnMj\nSAIAAAAAAE3DGyQtLy83cEvghyAJAAAAAAA0DW9rGxVJzYcgCQAAAAAANA1vRRIzkpoPQRIAAAAA\nAGgazEhqbgRJAAAAAACgadjWtmg0SpDUhAiSAAAAAABA07AVSfF4nCCpCREkAQAAAACApkGQ1NwI\nkgAAAAAAQNOwrW0ESc2JIAkAAABbUjab1ac//WmNjo42elMAAB7NVpE0MTGhb3zjG43ejKZBkAQA\nAIAt6Utf+pJuuukmfeELX2j0pgAAPJotSPr85z+vd73rXZqenm70pjQFgiQAAABsOcvLy3rXu94l\nSRoeHm7w1gAAvGxrW1dXV1MESUePHpUkLS0tNXhLmgNBEgAAALacT33qUzp9+rQ6OjoIkgCgyXgr\nklZXVxu+LceOHZOUuwkBKdboDQAAAAA22j333KN9+/bp8ssvJ0gCgCaTyWQUjUbV3t7e8IqkJ554\nQvPz85KoSLLqVpFkjLnMGPO/jDHHjTEPG2P+zOc5LzPGTBtjfrr231/Xa3sAAAAAa2VlRYlEQnv2\n7CFIAoAmk06n3SCp0VVAR44ccf/c6G1pFvWsSEpL+gvHcR4yxnRLetAYc4fjOMcLnvdDx3F+pY7b\nAQAAAORZXl5WR0eH9uzZo3PnzimbzSoSYeoDADSDZqpIsvORJIIkq25BkuM4FyRdWPvzrDHmEUm7\nJRUGSQAAAMCGWllZUXt7u/bs2aN0Oq2RkRHt2LGj0ZsFAFAuSIrFYmpvb6/7jKTHH39cd911l9rb\n2/Ubv/Eb6u7uznv86NGj6unp0czMDEHSmg2ZkWSM2S/puZLu9Xn4hcaYI5LOS3qb4zgP+3z/TZJu\nkqS9e/fWb0MBAACwJXgrkqTcym0ESQDQHDayIukf/uEfdMcdd0iSEomE3vCGN+Q9/sQTT+i6667T\n3XffzYykNXWv3zXGJCV9RdKfO44zU/DwQ5L2OY5zraSPS/q632s4jvMpx3F+wXGcX9i2bVt9NxgA\nAAAtz1uRJIk5SQDQRLwzklZWVuQ4Tt3ea25uTldffbUkaWRkRMvLy3rVq16l733ve1pdXVU6nVZ/\nf78kWtusugZJxpg25UKkLziO89XCxx3HmXEcZ27tz9+S1GaMGaznNgEAAKBxjh07pg9/+MON3gzf\niqRa+elPf6rbbrutZq8HAFuNt7XNcRyl0+m6vdfS0pJ6e3uVSqU0OjqqCxcu6MKFCzp16pQbHPX0\n9EgiSLLquWqbkfSPkh5xHOcjAc/ZsfY8GWOuW9ue8XptEwAAABrrr/7qr/T2t7+9rhcFYdiKpMHB\nQbW3t9c0SPrc5z6nt771rTpx4kTNXhMAthLb2tbW1iZJdZ2TtLS0pM7OTm3btk1jY2O6ePGipFxo\nRJDkr54VSS+W9CZJLzfG/HTtv9cYY/7AGPMHa8/53yT9bG1G0sck/SennjVrAAAAaJjR0VH9x3/8\nhyRpcXGxodtiK5IikYh2795d0yDJztD43Oc+V7PXBICtJJ1OKxKJqL29XVJ9A5zFxUU3SBoZGdFT\nTz0lKbcvt+/b29tb9+3YTOq5atuPJJkyz/l7SX9fr20AAABA8/jSl77kViItLCwUrYyzkWxFkqSa\nB0l2MOznP/953XrrrYpE6j6WFABaim1t6+jokKS6DtxeXFxUPB5XZ2enTp48mVeRZG8M2Iokhm3n\ncFQDAADAhvBW6CwsLDRwSy5VJEnSnj17ahok2TvWZ86c0Y9+9KOavS4AbBXeVduk+gZJS0tLisfj\nGhwc1Pj4uC5cuOB+3e7PE4mEIpEIFUlrCJIAAABQdwsLC7r//vv1zGc+0/17I3krknbu3Om2MtTC\n8vKyLrvsMnV2durrX/ddlBgAUIJdtc3OSKp3RZJtbUun0+58O++MpM7OTnV0dBAkrSFIAgAAQN3Z\nk++dO3dKanyQ5K1ISiaTWlhYUDabDfW9p0+f1r59+3Tq1KnA1+7r69Pzn/983XvvvTXbZgDYKryr\ntkn1C5IymYxWVlYUj8c1NDQkSXr00Ucl5VckdXR0qLOzkyBpDUESAAAA6s6uuGPnTDQ6SPJWJCWT\nSTmOE3oA+AMPPKCzZ8/q+PHjvo/bkOoFL3iBHnzwwbreSQeAVmRb2zo7OyXVb8i1t+JocHBQ0qXQ\nyjsjyVYkMSMphyAJAAAAdWeHbNuVbxoZJGWzWa2urroVSYlEQpI0Pz8f6vvtPKWg59uQ6tChQ1pe\nXtaRI0dqsNUAsHXY1jYbJNUrwLHHong8rm3btuU95m1t6+jooLXNgyAJAAAAdWcrkpohSLLbYiuS\nKg2Szp07V/L5tiLp0KFDkqTDhw9Xtb0AsNUUrtpWryDJvq5fkFTY2kaQdAlBEgAAAOrOViTZ1raw\nbWT14L0wkGpfkWSDpD179mjXrl2688479Za3vEXf+ta3qt10ANgSbGtbPB6XVP8gybau2WNUV1dX\nUUUSM5IuiTV6AwAAAND6NroiKZPJ6P7773ergrzs/Iv1ViSFDZKMMTp06JC++tWvSpIcx9FrXvOa\nyn4QANiCMpmMOjs7697aZm9q2PcZGhrSzMyM9u3bp7m5uaKgiSAph4okAAAA1N1GD9v+93//d73w\nhS/UyZMnix4Lqkiam5sL9dphgyRJuvHGG9XR0aFEIhE6qAKArW6jZiTZIMlWPtmB23v37s2rSGpv\nb2fYtgdBEgAAAOpuo4dt2zlG4+PjRY8VViQlk0lJ4SqSstms+9pBwZN3Rbg3v/nNmpiY0MGDBwmS\nACAkOyOp3kGSd0aSlKtISiaTGhgYyJuRREVSPlrbAAAAUHe2Iqmrq0uxWKzuQdLk5KQk/1lM1cxI\nGh0ddX+WMBVJxhh1dXVRkQQAFbAzkuo9bLuwte13f/d3dcMNN+jo0aNuRVJbW5sikQgzkjyoSAIA\nAEDd2YqkWCymrq6uugdJExMTkvwrn6qZkWTb2ko93xskWYlEInTrHABsdba1ra2tTbFYbMMqkq64\n4gq96lWvcquPFhcX3ZCpvb2dIGkNQRIAAADqzlbxtLW1bUiQZCuS/N6nmookGyQZYyoOkqhIAoBw\nbGublKsW2qiKJMv+fXZ21r3pUM/t2GwIkgAAAFB3japI8mttq0VF0v79+ysKkpLJJEESAIRkW9sk\n1XU2UeGwbcvuw6enp91QqaOjwz1+bHUESQAAAKi7Zq5Iam9vVzQaDdV6Njw8rFgspgMHDvgGQ9ls\nVul02g2pLCqSACA829om5UIev5sCtWArjIIqkmZmZtxjha1IchynLtuymRAkAQAAoO5skBSLxRSP\nx5uqIskYE7piaHh4WLt371Z3d7dv8GRfm9Y2AFi/jWptW1pacm8mePlVJLW3t8txHPd4tpURJAEA\nAKDubGtbM1YkSeGDnnPnzmn37t2BwZPfa3tfnzvZAFDeRra2FVYjSZcqkqanp/NmJEn1W0FuMyFI\nAgAAQN1tdGtbJau2SeGDpJmZGaVSqcDnlwqSHMepW3sGgOZ2//3368SJE43ejE3DGyTVs7VtcXGx\naD6SdGkfPjMzkzcjSRJzkkSQBAAAgA2wkcO2V1ZW3Nf3u/iopiJpZWVF7e3tFQdJyWRSUriB3gBa\nz0033aT/+l//a6M3Y9NIp9Nua1tHR0ddW9v8giQbHqXTaXd/bv+XiiSCJAAAAGyAjaxIsm1tUu0r\nkgqDpMJWNRsk+Q3blgiSgK1qfn5eY2Njjd6MTcNbkdTZ2bnhrW3emwGFFUn12pbNhCAJAAAAdbeR\nFUm2rU2qbEZSmFXbvEGS4zhFd6ZLDduWCJKAIEtLS3r3u9/dsu2fKysreSE3SisMkuq5alupiiRJ\nRTOSCJIIkgAAALABGlWRFGbVNkmhV23zBkmSisKnUjOSJIIkIMjhw4f1/ve/Xz/84Q8bvSl1sby8\nrKmpqUZvxqbgOI7S6XTTViTR2kaQBAAAgA3gFyTVawWz9VYkVRIkBc08IkgC1sfuI+o9iL9RqEgK\nL5vNSpI7I6mzs7Nu4U3QsG1vuFQ4I4mKJIIkAAAAbIDC1rZMJuNeONaavVjbvn17XWckSZUHSWHa\n54CtaCsESfPz83Xb77WSTCYjSQ1tbfPuwwmSihEkAQAQwvz8vO66665GbwawaRVWJEn1u2C0FUm7\nd+8OXLXNGOPe7ZZqHyQVDttm1TagNBs2t3KQJEnT09MN3pLmZ38XvEFSOp12v15LS0tLvq1tfhVJ\nzEi6hCAJAIAQvvjFL+qGG27Q+Ph4ozcF2JQKK5Kk+l0w2oqknTt3BlYktbe3yxjjfi2RSGhhYcFt\nqQiysrKijo6OwCCJYdvA+rRyRZLjOO6+gfa28mxFkre1TapPgMOMpPUhSAJa0He/+11dffXVLbvq\nBdAIMzMzchxHMzMzjd4UYFPa6Iqk3t5edXd3B85ICgp6Sm1TJpNRJpOpqrWNIAnw18pBkredjYHb\n5fm1tkn+iydUK2hGUjQadYMsWtuKESQBLej222/Xo48+qrGxsUZvCtAy7J3EVjzBBTZCOp2WMUaR\nSGRDKpL6+/sVj8cDV20Laj07fvy4Pv3pT/u+rr0Y9A7bZtU2oDZaubXNnkNIVCSF4dfaJtU+wFld\nXVU6nfYNkrzvS5BUjCAJaEGPPvqoJMougVqyJ4FcBALrs7q6qra2NknakIqkvr4+d3W4QqUqkj7w\ngQ/opptuKjuku9KKpI6ODkUiEfYhQIBWrkjyBklUJJUX1NpW62sb+3p+rW1ScYDEjKRLCJKAFnTi\nxAlJBElALVGRBFQnnU5vWJBkK5KCgiS/iiQbDN19992S/I+hlQRJha9vjFEymWTVNiCArUJpxdEM\nVCRVJqi1rV5BUrmKJPu/dr/ONRZBEtByVlZWdPLkSUmteSAGGoUgCajO6uqqe3d5oyqS4vG4lpaW\nigZo24HZXjYYunjxoiT/Y2iYIClo2LZ9DyqSAH9UJMEKam2rdYBj9/NhK5KMMero6KAiSQRJQMs5\nefKkm+KTlgO1Q2sbUJ1KWtscx9Hdd98tx3Eqfp9sNqsnn3xSu3fvdt+n8Hi4vLwcWJFk+R1DvdVG\nQa1qQa1t9j3YhwD+WnlGkjd4IEgqr7C1rV6rpdkgKeyMJPtngiSCJKDl2PlIEkESUEtUJAHVSafT\noSuSvv/97+vFL36xHnjggYrfZ3h4WAsLC7rqqqvc9ymsLirV2maVq0iyrWoESUBtbJWKJFrbyits\nbbNBT62vbez+2B4rChVWJNltacXf0UoRJAEthiAJqA+CJKA6lVQk2RbtkZGRit/HHgevuuoq9+Kj\n8H38hm3bVdiscjOSpFww5LdqmzHGDc28CJKAYFslSKIiqbxatra94x3v0Ne+9jXfx+wK14ODg76P\nFw7ZlqSBgQFNTExUvB2thiAJaDF20LZEkATUEq1tQHUqqUgaHh6WJM3MzFT8Pt4gKeh9wlQkhQ2S\n/CqSOjo6ZIwp+n6/CiYAOa3c2kZFUmWCVm1bz/zXH//4x3rwwQd9HxsdHZUkbdu2zfdxv9a2gYEB\nN4DaygiSgBbz6KOP6sCBA5IYtg3UEhVJQHW8FUlBlUJWtUFSKpXS0NBQYGubX0WSDZJ6e3t9v0cK\nHyQVhlTe92DVNsDfVqhIisViVCSFELRq23pmE2UymcDfqZGREcViMaVSKd/H/VrbBgYGND4+XvF2\ntBqCJKDFnDhxQtdee60kKpKAWiJIAqqTTqfdICkajaqjo6MuQdKJEyd01VVXyRgTGFj5VSQlk0m1\ntbXpRS96kaT1VyT5rQhn0doGBGvliiQbgAwNDREkhVDL1rZMJhN4c31sbEyDg4OKRPxjkaCKpPHx\n8XUtBtFKCJKAFjI1NaWpqSk94xnPkESQBNQSrW1AdVZXV/PmBnV1ddWtIunKK69030MKNyOpra1N\nd911l2655RZJ1VUkVRokLSws6E/+5E80PT1d9ucDWtVWqEjavn07rW0hBK3atp5ui3IVSUFtbd73\n9c5IGhwcVDqdXtfxqZUQJAEt5MyZM5JycyEkgiSgliqpSJqamtK5c+fqvUnApuJtbZPqEyTNzMzo\n/Pnz7nHQViQtLi7q4Ycfdp/nV5EkSS984Qs1NDQkKVxFUm9vb1H4s54g6f7779ff//3f6wc/+EHZ\nnxFoVa1ckWT3HbYiaatXs5RT2NoWiUTU0dFR89a2sbGxkkFSUEWS/d6tjCAJaCE2SHr6058uiSAJ\nqKVKgqS//Mu/1K/8yq/Ue5OATcU7bFsKDpLm5ubccKbSIMkuOGGDJFuRdPvtt+tZz3qW7r//fkml\nwx5v+FSoMEjq7+8vmpVR6rWTyaQWFhaKLiJnZ2fz/hfYirZKRdLq6mpL/oy1VBgkSbkwZz3XNtls\nNrCSaXR0tGSQtH37dvX39+cdu2yQtNXnJBEkAS3EBkkHDhxQe3s7w7aBGqqkte2JJ57QU089Ve9N\nAjaVsBVJ3mq+SoOkRx55RJKKWtvuvvtuSdKFCxckBVckSaVncdj9gA2K7DLQ3mCo3LBtx3GKjs92\nADeDuLGV2SBpZWXFrU5qFd4gSRJzksoonJEk5UJ+7355YWFBb37zm3Xy5MnA13EcR9ls1vdYs7Ky\noqmpqZJB0hvf+EZ94xvfyPva4OCgpFyQ9Hd/93f65Cc/Ge6HajEESUALOXPmjOLxuLZt26bOzk4q\nkoAaqqQiaWRkhFlKQAHvsG0pOEiybW2RSKTiIOkHP/iBent7dcUVV0i6VF30s5/9TNKlip9SVUOl\nlpkurEgaGBhQOp3OqyQqN2xbKg6M7N+pSMJW5g2PWu1mqHfYtkSQVI5fRVLhtc3w8LDuvfdePfTQ\nQ2Vfx+/3ybam2WDIT1tbm/r6+vK+5m1t+/KXv6xPfOITOn36dJmfqPUQJAEt5MyZM9q7d6+7Ug1B\nElA7lQRJo6Ojmp+fZwYC4OE3bNvv5N4GSZdffnlFQZLjOLr99tv1ile8wn0fW5FkP7/29aqtSPK2\ntknSxMSE+5xyrW1ScWUjQRJwqSJJar32NrvvsNUvBEmlhWlts8ePUv+W9nX8WopHRkYkXQr3wurp\n6VEsFtOxY8c0Pz+vdDqtj370oxW9RisgSAJayJkzZ7Rv3z5Jxak9gOqEbW1zHEejo6PKZrPrGgoJ\ntKpKK5KuvvrqoiBpdnZWu3fv1p133ln0fSdOnNCTTz6pV7/61e7XbEWS9/sdxykZ9kQikcD2cL+K\nJCl/VkaYICmoImlubk7j4+Pavn27244HbGarq6s6ePCgvvjFL5Z9rrciqVWDJBs+U7VcWuGqbVJu\nf+7dL9vfkTBBUiaTcf8/sEZHRyWpZGubn0gkov7+ft1zzz2SpJe85CW64447dPjw4YpeZ7MjSAJa\nCEESUD9hK5KmpqZaeuUZYL38KpKCgqTBwUENDQ1pZmZGq6uruuWWWzQ9Pa0LFy7o/PnzOnbsWNH3\n3XHHHZKUFyTFYrG88Gp2dlaZTEaO4wRWJEnFszisoIqk9QRJMzMzuuWWW7S6uppXkXT69GmNjIy4\n7XjAZpBOp/XXf/3XRRf1J0+e1KlTp/STn/yk7GtshYok2yZFkFSaX0XSwMBA3r7WhkqFK2f6vY73\n+ZZtbas0SJJy7XCTk5Myxui9732v/uAP/sCdzbdVECQBLWJxcVEjIyN5QVKr9ZcDjRQ2SLKl0hIn\nioBX4bDteDzufp7Gx8fdPw8PD2v37t3q6enRzMyM7rvvPr3vfe/T7bff7gYufi1vt99+uw4ePKgD\nBw7kfd22t0m5oMZWCgaFPVLwMTSoIqmwtS0opPIGSXfccYfe97736YEHHshbtc1eFNHmhs3kyJEj\neu9736vvfOc7eV9/9NFHJYVbKn0rVCQRJIXjN2x7+/btunjxovv3MEFSNpt1/1z4OzUyMqJoNFo0\nAykMu++/7LLLNDg4qJtvvnldr7OZESQBLeLs2bOSREUSUCdhW9tsqXSY5wJbSTqdDqxIuuGGG3TL\nLbdIyq2stmvXLvX09Ghubs5tdZudnS0ZJP3oRz/Sy1/+8qKve4OkmZmZojDIT1BFkg2hSlUklRq2\nXViRJOUugrytbbaio9JB40Aj2d/XwgC0kiCplSuS7L4jlUpJ4vygHL+KpO3bt2tmZsb93QgTJJUK\nJ0dHRzUwMJD3HmHZIOnpT396xd/bKgiSgBZx5swZSZeCJIZtA7W1noqkVjsRBqpRWJHkDZLOnj2b\nFxj19PSop6dHkvTYY4+5Xw8KkjKZjKamprRr166i943H44pGozp48GBFFUmlWttsILbeYdtzc3Pu\nBbc3SKIiCZuVt6rOiyApxw5sr7dwAAAgAElEQVT4D5qThnxBQZIktyopzLBtb0VSYZXp6OhoyRXb\nSrFB0lZrZ/MiSAJaRGGQREUSUFv2AnJ1dTXvZLcQFUmAv6Bh29lsVrOzs+6F4/z8vBKJhBsknThx\nQlLuwisoSLIXr/Z7vLq6unTw4EENDAxodnY2dEVSUGtbe3u7jDGScktD9/T0rGtGkt3mqampvCDJ\nXhQRJGEzsb+vhQGJ/fyGbW3r7u6W1LpBUiKRkMT5QTk2AIpELsUVhUFSJcO2vc+3xsbG1h0k2e8j\nSAKw6Z07d07GGPduLDOSgNpaWVlxV4AqdYLLjCTAn9+wbSlXzZPNZt3Py8LCQl6QZCsaZmdn3YvV\nwiDJ/t0vSLriiiv0kpe8RN3d3ZqZmam6IqkwgOrv7w8dJNmL5NnZ2cDWNiqSsBn5tbY5jlNxRZL9\nDLdikNTR0aFYLKb29nbOD8rwC5J27NghqThImpmZkeM4vq9TKkgaHx9fd5B05ZVXKh6P69nPfva6\nvr8VECQBLWJsbEypVMo9SaciCaidTCajbDbrzjYodYJLRRLgz68iSbp0UWA/L/Pz8+rq6iqqSCrV\n2lYqSPrKV76iT33qU+ru7s5rbaumIslrYGAg9LDteDwuY0yoiiRmJGEz8WttGxkZ0dTUlAYGBjQ1\nNVWymlfK7SN6e3sltV6Q5N0vJBIJzg/K8GttGxoakiQ99dRTki61qqXT6cB/z6BV27LZrCYnJ90W\ntUpdd911Onz48LpWfGsVBElAi5iYmMjbGRIkAbVTuNpKuYokG+i22okwUI2giiR7UTA/P690Oq2V\nlZW8iiRvtc56giRjjCKRiBsk2dCn1Ao71VQklRq2bYxRMplkRhJajl9rm61GevGLXywpf5aYn1av\nSCJICs9WGHkrkjo7O5VKpdzKb28wFDRwO6giaWpqSplMZt1BkqR1DeluJQRJQIsYHx/P2xkybBuo\nHRskhVltZXR0VHv37i37PGCr8Ru2LeW3KdjPjDdIskpVJJWakWT19PRodnbWrRq0d7f9rLciKZ1O\nK5vNlmybs0GS/RmmpqbyLsInJyfzfiZgM/BrbbNB0vXXXy8pf3VDP61ckeTddySTSc4PyrABkDdI\nknJzkgqHbUvBc5KChm3bVsv1traBIAloGePj4+7qMRIVSUAtFQZJ5SqS9u/fL4kgCfAK09pmPzPe\n1jZrva1tlp2RZO9ml2pJqKQiaWBgwL1ADjN/KagiyRgjx3F04cIF358RaGZ+rW3Hjx9XV1eXnvOc\n50gqPydpdXVVXV1dikajLR0kJRIJVm0rw29GkhQcJAVVJKXTaffP3t8pu8+upiJpqyNIAlqEX2sb\nw7aB2qiktW10dNRdPZEgCchxHCewtc0bJNnPll9FUmFrm3e4atggKZ1Oa3h4WFLpO9GFx9CPfOQj\n+sY3vuHbttbf36/JyUllMpl1BUnj4+NaXFx0gy27fVQkYTPxa22777779PznP9+t/gsTJLW1tbkr\nOrYS776D1rbybJBU2D5WGCTZ87IwFUkESbVFkAS0CL+KpHQ6nZfEA1ifsK1t2WxWY2Nj2rVrl9rb\n21vuRBhYL3sy71eRZGckFba22RXO7HO9q7al0+m8iqEwQZJ97OTJk0qlUmWHbXtf/6Mf/ag++9nP\nBlYkOY6j6elp90LZezwuVNjadv78eUnSzp078/49wgRJ6XRa999/f9nnAfXgOI7uueceOY5T1Nq2\nvLyshx56SIcOHXJD23JBkq1abMUgiWHblQlqbduxY4cmJia0vLyshYUFd78ZpiLJe3OAIKl6BElA\nC1hdXdXMzExRRZJ0qcwewPqFrUiyVQnbtm3jRBHwsKs1lapIchzHPblPJBKKRqNKJBKSpCuuuCKv\ntU3Kb/2yf/aGT4XsYydPniw5H0kqrkhaXFzUzMxM4LBtKXdhcubMGUlyqxL9FFYkFQZJNnRbXl52\n9z1BvvzlL+u6667Tk08+WfJ5QD3cc889etGLXqTDhw8Xtbb99Kc/1crKil7wghe456dhKpJisVhL\nBkkM265MqdY2KTdGYHFx0f17UJAUVJE0Njamtra2kjcfUBpBEtAC7GDOwmHbkpiTBNRA2BlJ3tkr\nnCgCl9i7wqVmJEmXPkP2MXuSf+WVV+a1tknFQZINn4J4g6RySzbbiiTbPre4uKjp6enAiiQp12Ie\nJkiyq8d5q6uk3J12ywZo5aqSbIBk/92AjWR/786ePVvU2nb48GFJ0qFDh9TZ2alkMrmlK5IIkioT\nFCTZmwAXL17U4uKiuru7lUgkAlvbglZts4sUGWNqvelbBkES0ALsHdzC1jaJIAmohbCtbfbCtre3\nV11dXZwoYks7duyYvv/970sqXZFkW7mkSxemNkjp6elRNBrVgQMH3Ioke2FRGCSVu7NsH5+cnAxV\nkSTlPvuO42hhYaFskGQrkqLRqHbv3h342slkUjMzM5qbm8sLvnbt2uX++bLLLpNUPkiyx38Gc6MR\n7DFudHQ0r7XNcRwdPnxYe/bscT8LAwMDW74iyc5IYtW28rLZrIwxRUGPbZO0s+W6urqUSqUCK5K8\nQVJhaxttbdUhSAKayPLyct7w0LD8+nztSTADt4Hq2YvgoNY2e6Line+SSCRa7kQYqMTf/u3f6qab\nbpJ06TPkV5HkraYZHR2VlB8k7dixQz09PVpdXdX4+LhbuVNpkORtewtTkSTljqGrq6vKZrOBrW22\nJe3s2bM6c+aMdu/enReYFUomk+7P7A2P7OtI4YMke2EedBEF1JOtPhodHXV/VzOZjJaWlnT48GEd\nOnTIfe7g4CAVSVQkhZbJZHwrTO1N84mJCS0uLioej6u3t7fssO1IJFJUkVRqwQWUR5AENJHrr79e\nL3vZywJ3hkEmJiYkUZEE1IutSLIXqt6TkUceeUTxeFyPPfZYUZDEiSK2somJCff4VKq1zXvHuDBI\n2rZtm/bt2+eGQE899ZQbvlQTJIWtSFpaWnJvyARVJF122WXq6enR0aNHdebMmZJtbVIuSLL/Hnv2\n7HG/7m1ts0FSuUojgiQ0kg2SRkZGNDs7634Gz5w5o9OnT+u6665znxsmSPKu2tZqx8/CYdvLy8ss\niFNCNpstamuTLlWGj42NaWlpyQ2Syg3bTiaTeTfXx8bGqEiqUt2CJGPMZcaY/2WMOW6MedgY82c+\nzzHGmI8ZY35ujDlqjHlevbYH2AzOnDmjH/zgB3rZy15WdsCmV6mKJIIkoHr289jZ2al4PJ53gnvq\n1Cmtrq7q1KlT7teTySRBEra8qakpTU1NyXEc39Y2e5zyKpyR9PGPf1z//M//7IZA6XTabZXZqIok\nGxwvLi5qfn6+KEgyxuiaa66pKEiybGAk5Vck2YApbEUSrW1oBHuMe/LJJ5VOp92Q9/jx45KkgwcP\nus8NGyTFYrGSwcBmVViRJAW3ySMXJPlVJMViMaVSKXeRgng8XrK1zVYkdXd3u/vybDaryclJgqQq\n1bMiKS3pLxzHeYakQ5L+2BjzjILn3CjpirX/bpL0iTpuD9D0lpaWtG3bNh05ckSPPvpo6O+zd3wZ\ntg3Uhw2S2tvbi1rW7B0u7yDgRCLRkndUgUpMT08rk8lobm7OtyLJGOMGRnYORmFF0uWXX64rrrgi\nL3xZb0WS9/H1VCTZ7SsMkiTp2muv1ZEjRzQ8PLzuIMmvIonWNjQze8w7efKkpEufzRMnTkjKD0cr\naW3r7+93z20rcf78+Yqr+jcKQVJl7IwkP319fTp37pyk3PVOqZlTtuI1mUy6525TU1PKZDIESVWq\nW5DkOM4Fx3EeWvvzrKRHJBVOHnydpM86OYclpYwxOwVsUcvLy+7Jo3dlmnLGx8cVi8Xy7rZSkQTU\nTmGQ5L24sxeZs7OzzEgCPOwF3eTkpG9FknSp8shWCI2OjioajRaFNd7j23qDJG+AU0lFkjdImp6e\nDgyS5ubmlMlk1h0k9fX1ucN4aW3DZmCPeU888YSkS5/Nxx57LO/vUu5m5+zsrJaXl31fy3EcZTIZ\nxWIx9fX1aWpqKm/p9jB+9Vd/VW9/+9sr/jk2gnfYNkFSeUEzkqTc75I3SGprawvs5LBBUnd3t7sv\nt50czEiqzobMSDLG7Jf0XEn3Fjy0W9KTnr8PqzhsAraEbDarlZUVd6dWaZDU39+fl9wzbBuoHW+Q\nVHin1FuRxIwkIMdxHDfcmJqa8q1Iki4FSbYaZ2RkRIlEouhOtDdIGhgYUFtbW8VBUjQadd+vkoqk\nwkDYL0i65ppr3D+XC5K8P4t3RlIymXQfC1ORlMlk3H0RrW1oBHuuasOhwiDJW2VnZ9uUm2VjK5Ls\ngPtKXLhwQcPDwxV9z0bxViTZMJlzhGCO4/jOSJJyobu3Dbqtrc29WVHIGyQtLCzIcRw3gKciqTp1\nD5KMMUlJX5H0547jrOsoZ4y5yRjzgDHmAVvyDLQaexBeT5A0MTGRN2hboiIJqCVvkDQwMODezZKK\ng6RIJKKOjg6CJGxp8/Pz7gn81NRU2Yoke8E5OTnpfs3LW8XT3d2tnp4e9yLTcZxQQZJ0qb1tvRVJ\nkn+Q9KxnPcsNvyqpSNq7d6+k3MVze3u7GySFmZE0OTnprvRKRRIaofBc1Rsk9ff3uxU4UvkgybuP\nsCukTk5OVrw9lX7PRikcti0RJJWSyWQCg6T+/n5339fV1aX29vayQVIymVQmk9HKyopbLVt47YTK\n1DVIMsa0KRcifcFxnK/6POWcpMs8f9+z9rU8juN8ynGcX3Ac5xfKHfiBzcoGPuutSCpM1QmSgNrx\nBkmDg4MlgyRbTWFb2+zJDrCVeC8Wva1t5SqSpEsXWV7eKp5kMqmenh43ZFlYWFA2mw0VJNnXKdfS\nEDQjSfIPkhKJhJ72tKdJuhQOBfEGSTYwsl/r7u5WW1uburu71dnZWTJI8s6bIUhCIxQGITZIGhsb\ny2trk6Te3l5JCpxhVFiRJFUWJDmOo/n5+aackeQ4ju+MpErO9beaoFXbJLlBo3SptS2dTvu2QnqH\nbUu5cza7v7S/k1ifeq7aZiT9o6RHHMf5SMDT/j9J/+fa6m2HJE07jnOhXtsENLNaB0kM2wZqp5KK\nJHtB2NXVJcdx+AxiS/JezIVpbdu+fbv7tXJBUmFFkv3fsEFSf39/UWVUIW97eJjWNkl67nOfq507\nd7rH3yDeICmVSimZTLpfSyaTSqVSMsaou7u7ZGuPDZIikQitbWiIoIokKX/QthS+Iqmtrc0NCioZ\nuL20tOSuxtVsMpmMHMehIqkCQau2ScWLC9l/V7+qJHvs8bYT2uMTQVJ1Sh9Fq/NiSW+SdMwY89O1\nr/2VpL2S5DjO/y3pW5JeI+nnkhYk/W4dtwdoatUESRMTE3re856X9zUqkoDaKQySJicn3UGQ3iBp\ncXHRPUH0niiWu7AEWk1QRVJQa1sqlVJnZ6eWlpZ8gyRv+GIrkgqDJG/YFKS7u7vsfCQp/2ZM4V1x\nb7uO1wc+8AFduFD+fqj9WaLRqDo7O9Xb25tXkWQvbrxVV35skLR3714qktAQc3NzeZ9Fb3hUaUVS\nta1t9rx5ampKjuMErvjVCPYcgmHb4WUymZKrtlneIMk70NyyFUm2ym1qakrT09PubCWsX92CJMdx\nfiSp5CfYydX7/3G9tgHYTGzgY4dm16q1jWHbQPUKgyTHcTQ5OanBwcFQQRIrg2CrqbQiqbu7W4lE\nQktLS74zkjo6OhSLxZROp90g6amnnpJUWUXS61//+lCtL95jaGGQFFSRdODAAR04cKDsa9vQqKen\nR8YYpVIpd3/xute9TufPn5eU+zcJEyQdPHjQXW4d2Ejz8/M6cOCAjhw5Iil3M7S9vV0rKysVVyT5\ntbZVUpFkQ5mVlRUtLi767kcaxXsOIREkhVGqIsk728i2tknyXbnNzkiy43EmJyc1NTXl/j5i/epZ\nkQSgAjZIisfjSiaTJU8evRYWFrS4uFgUJNlEnookoHqFM5KkXIBbGCR5qyns/xa2xQBbgfdiMcyw\nbRskjY+P+1Yk2VavyclJN0iyK0NVEiT96Z/+aajtL9UeHhQkheWtPpJyK7TZY/Yf/uEfus8L29p2\n+eWX6/77769qm4D1mJub07Oe9Sw3SLIrD46Pj6+7ta3aiiQpt89ppiDJLqjDqm3hlRu2bXmDJL/W\ntsIgaXx8XNPT0wRJNUCQBDQJe7La2dmpZDIZuiLp3LncfPrdu3fnfT0WiykWixEkATVgg6S2tjY3\ntLVzkmyQNDs7q5WVFfdi1p7EcqKIrchW/XR0dGhycjJURZL9s1+QJOUuvrxB0npmJIXlbQ/3rg60\nsLBQdZDk/Zkl6bOf/azvBVNPT0/JVrmxsTF1dXVpx44dmp2dLTmcFqiH+fl57d27V5FIRPF4XJFI\nRMlkUuPj40Wtbd3d3TLGhBq2HY/H1dHRUVFFkve8eXJysuj9G4mKpMo5jhNYkVSqta2QDZLsTcDJ\nyUlNT0/X9HixVXG0AZrEeoOk4eFhSZdWfvGKx+MESUANrKysqK2tTcYYN0iy1QB+q7ZJnChia7NV\nB/v27curSAoKknp6eoo+O4Vs8LKRQdLi4qL7Gbcry1UbJNmLbbu927ZtK6oqlsK1tg0ODqq3t1eO\n44SuZAZqwXEcd0bSwMCA+/tsP6eFFUmRSEQ9PT2hKpKMMerr66uoIsl7rG22ldsKg6RoNKqOjg5W\nbSuhVEWSXZCgra3N/U8qXZHU29urtrY2TUxMUJFUI1QkAU2i2ookvyCps7OTGUlADXiX7Q2qSJqb\nm3Pnt0gESdjapqam1NbWpp07d4Yatm1b27xfK9Td3a1YLKb29nb19PRocXFRq6urdQmSvFW9mUxG\n7e3t7l3waoMk6VILUCm9vb0lL4jHxsY0MDDgDjGemZlhFSJsmMXFRTmOo2QyqaGhIfczHhQkSaV/\npwvD5v7+/qpa25pJ4bBtKXeOwPlBsFIVltFoVKlUyg2JSq3aZp8TjUbV39+viYkJTU1Nsa+sASqS\ngCZRbUVSYWubfS2CJKB63iDJOyNJKl+R1Aozkh599FEdPHgw1IpUgJSrSOrt7VVfX1/oYdthWtts\ne4wNjWZnZytata0S8XjcnUPY1dXlvmctgqTe3t6yd8S3bdum8fFxd9WhQrYiyW4XK7dhI9kQJJFI\naMeOHe7vs72Z4hckpVKpUMO2pVz70nqGbUuVzVbaCIUVSRJBUjnlWnX7+/vdWXalWtvs/tMGSePj\n45qZmaEiqQaoSAKaRGGQNDo6Gur7hoeH81Z88UomkxykgBrwBknJZFJtbW2+QVI2my2qqmiFz+DD\nDz+sU6dO6fjx474XB0AhuyqODZKCKpLshUDY1jbvimdSrgpnenpaHR0dbjtardj2uWg0qng87t7B\nrkWQ9MlPfrLsao7btm1TNpvVxMSE73PHxsZ0+eWXu9tFkISNZG94JpNJfehDH3IHSnd3dyuVSrmf\nba8wFUl2H9HX1+feLK1ke6Tmq0gqHLYtESSVUy5I6uvrc0OiMKu2RaNR9fX16ezZs8pmswRJNUCQ\nBDSJwiDpiSeeCPV9w8PDvm1tkvJmSABYP2+QZOck+c1IchzHvQhupSoBu3+yPzNQjq1ISqVSJYdt\nHzp0SC996Uu1ffv2sq1tr3jFK9w5RYVBUj0uCmwbRDKZrHmQ9Eu/9EtlnzM0NCRJGh0d9Q2SbFjn\nbW0DNoo3SHre857nfv0Vr3hF3qpaXqlUSk8++aTvY4X7iP7+fh09erTi7ZE2R0USN3tLy2QygcO2\nJemlL32pe9M9TGtbJBJRf3+/7r33Xkm1bYXeqgiSgCZRTWsbQRJQX94gScrNSSqsSLIrO9mL4b6+\nPhlj3OdtZgRJqJQNOVKplObm5tzPSWFF0vXXX6+77rpLksq2tt18883un20b28zMTN3mXdhhv3ZF\nqlq2toVhl6seGRnR1VdfXfT40tJS3na1QmiNzcPb2ub1R3/0R4Hf09vbq2PHjvk+5leRtJ5h252d\nnU1XkRTU2saw7WCO45SsSPq93/s9989hK5L6+/vdv1ORVD1mJAFNwhsklVupxYsgCai/MEGSZU+q\n7UlLK4QvBEmolHdGknTpd6ewIsmrXGub10ZVJE1OTrozkmpZkRSGtyLJz9LSkjo7O2ltQ0N4K5LC\nqmRGUn9/v2ZnZ32rTIK2p6OjQ4ODg01bkeQdtt3T08NKiyWUWrWtULkgKRKJyBiTVylHkFQ9giSg\nSfhVJNkKhyArKyu6ePEiQRJQZ4VB0uDgYF6Q5B3y6z2pHhwcbInwxYZlrfCzYGN4K5KkS2FIPYKk\nelYkTUxMaHFxseEVSYXS6bQymUxekMTxHhshk8novvvucyuAKgmSent7NT097Xt+61eRJIWfdzQ3\nN6dEIqFUKrUpKpI4Ry+t3Iwkr3KtbbZFzv5OSWLVthogSAKaxNLSkowxamtrUzKZVCaTcYfzBTl/\n/rwkESQBdeZXkeSdkWQv+KT8i+BWCZKoSEKlgiqSClvbvMrNSPLayIqkhYWFms9ICsPORfKrSLKf\nyXg8rkQioUgkQkUSNsS//du/6QUveIHuu+8+SeGCXyuVSimbzfq2dNkQwFuRJIWfdzQ/P69kMukO\n+G8mfsO2OUcvrdyMJK+wQdLAwID7dSqSqkeQBDQJW6JujHHv7pTrnbarWZQKkmZnZ5XNZvW2t71N\n73//+2u70cAWEdTa5jgOQRJQYHV1VfPz8xVXJJWbkeS1URVJCwsLmp6eVldXl/uzeNtT6ikWi6m/\nv9+3IslWCdrzhp6eHoIkbAh77nnPPfdIqrwiSfKvMipsbbMh9MTERKjXnpubUzKZdAf8NxMqkipX\nbkaSV6nWtmw2W1SRZIzJqyTH+hAkAU3CBkmSQgdJ586dk1Q6SHIcR/Pz8/rmN7+pb33rWzXcYmDr\n8AuS0um0G6xUEyTdeeedOn78eI23uLYIklAJe3FkV22TLrVnhalIChMkJRIJGWPqWpFkLzrOnTun\neDyu1772tfrIRz6ia665pubvFWTbtm0lK5LseUNvby8XpdgQ9jjw0EMPSaq8Iknyn+cV1NoWNhSy\nrW3NWJG0sLAgKb/asqenRysrK2W7D7aqSmYklapISqfTbpBkq9y6u7tDVzshGEES0CTWEySFqUiS\ncif14+PjgQM7AZTmNyNJkruMcbkgqdS8s9///d/Xe9/73lpvck0xIwmVsBdxqVRKu3fvVjQa1eOP\nP65IJFLywuA5z3mOnv70p2v//v1l3yMSiai7u1tjY2NaXFysS0WSveiYn593W8je+ta3hr64qYWh\noSHfiqTCIGloaMi9uQTUkz0O2DCokiCpkook24YUduVT29rWjBVJ9nzeWwXjPUffCNlstuzs1WZS\nyYyksBVJdp9OW1ttECQBTWJpacktl6+kIqmrq8s9GBWyX5+amtLExITvySiA8vwqkqRLYW5QkDQw\nMKCVlRV3KKmf2dlZXbx4sdabXFPeiqTNdCKKxrAXmHZG0qtf/WqtrKyUbGuTpOc+97k6ceJE6JP8\nnp4eN8ytZ0WSlJtF1AhhK5Ke/exn6+jRo3w+UXfeGwqdnZ0lqwwLVVKRZI+rYW+CelvbZmZmlM1m\nQ29Xvdnzee/5wUYGSaurq7rhhhv0zW9+s+7vVSveAKgce35WatU2KVcR1t7ezqDtGiFIApqEX0VS\nuWVBp6en1dfXJ2OM7+P2IDU8PKxsNqvp6WnfnSyA0soFSXaZbql41TapdCXPwsJCYMi7urqqP/uz\nP9NTTz21/o2vAXvRurS05JboA0G8rW2S9KY3vUlS6ba29ejp6dHZs2fz3quWvEtFhxkAXg/lKpJs\nwHXNNddodHS06UNpbH7e41kl1UhSZRVJqVRKsVgs9E3Q+fl5t7XNcZymmhk2OztbFLptZJC0sLCg\n8fFxPfHEE3V/r1rJZDKB1zeF7O9MuWHbxhj19/dTkVQjBElAk/AGSbb0tVxF0uzsbMlhcfYg5T1w\n0N4GVG69FUnlgiQ7rDvoc/nwww/rYx/7mL74xS9W9wNUyV60SrS3oTx7YWSPQa973evU3d1dtiKp\nUlulIml8fFyZTCbv695h25J07bXXSpKOHDmysRuILcd7DKhk0LZUWUWSMSawIs+PtyJJ8g+rGsVu\nm5fdP5a7aVwL9hhe7rqimVRSkWSMUSwWK9vaJkm/+Zu/qRtvvLFm27mVESQBTWI9M5LCBkmnT592\nv0aQBFSu3Iyk/v5+t3S6kiBpZWVF2WxWY2NjvmX4tiXu8OHDNfgp1o8gCZUoDJK6urr0xje+MS9w\nrYWenh53Fkq9K5IaFSQNDQ3JcZyiOTGFrW12APjRo0c3dgOx5YyNjelpT3uapNpWJNkgyRs4B1Xk\n+bFhjf3cNtOxqlSQtBEVSXZ/UarNvtlUMiNJyrW3lRu2LUlvectb9Gu/9ms12catjiAJaBLrCZL8\nDkxeVCQBtVEYJKVSKRlj3IqkeDyuZDKpaDTqGzgFndDaNrFsNuu7xLF9vNFB0uLionsiFnbwKbau\nwiBJkm677Tb9+Mc/run7eF+/HhVJ3nCqUa1tQXNiCoOk/v5+7dmzh4ok1JXjOBobG9P1118vqfKK\npM7OTnV0dIRqbZOCZ4T5bZdtbbPD+k+dOlXRttVTo4MkW8G42SqSahEkVVLZhMoQJAFNYqMqkhi4\nDVSuMEiKRqPq6+srCpLskuRWuSDJntxJ/p9Ne/fwySef1Pnz56v/QdZpaWlJu3btktRcd3nRnPyC\npM7OzrpUJFn1qEiKRqPu6zayIkkq3j8UBklSriqJiiTU0/z8vJaXl3X11VcrlUpVHCRJ0v79+/X4\n448Xfb2wtU0KX5G0tLSkbDarZDKpyy+/XBJBktdmrEjyzjYKo62treywbdQW/6pAk/AGSfbOZ7VB\nkn2MiiSgOoVBkpSbk+QXJHn19vYqGo2WrUiS/D+b3pO+e++9d93bX62lpSXt2bNHEkESypuZmVEs\nFssLOeqh3hVJ0qX2ttbrrScAACAASURBVEbOSJKCK5K823XttdfqkUce0fLy8sZtILYUu//ftm2b\nXv3qV7uzuSoRFHhWU5HkXRUtmUxq+/btOnnyZMXbVi9zc3NF5+v27xsZJG3FiqRMJlPzhR6QQ5AE\nNAlvkBSJRJRIJKpubWtra1M8HncPwtFolIokYB38gqTBwcG8i7lkMln0eYxEIhoYGKi6IklqbHvb\n0tKSdu7cqUgkQpCEsmZmZtTT0xN6xZ31skGSMabkTZVq2IHbjQ6SCvcPhcO2pdwFejqd1okTJzZu\nA7Gl2P3/4OCg/vVf/1Uf+chHKn6Na6+9VqdOnSoKUGwI4K1CGRoa0uzsbN6cPj/2WGmPwQcPHmy6\nIKnw/KCrq0uRSISKpADrCZKoSNpY/KsCTcIbJEm5g2G5lRzKVSRJl060U6lURatfAMhxHCewIsmK\nx+Pq7u72HTw6ODi47ook+/iVV16pe+65Z13bXwtLS0tKJBLq7+8nSEJZMzMzdQt2vOzxraenp24X\nCrYiqVEzkux+pvBz59faZqsGL1y4sEFbh63GGyStlx0M/7Of/Szv6+l0WrFYLC+ADqrIK2RvvDZr\nkDQ7O1sUJBlj1NPTw4ykAJUGSUGrtlXaIofwCJKAJuEXJJXa4afTaS0uLoYOkgYGBnx7zRcWFnyH\n/ALIyWQychynbJD067/+63r9619f9P1hg6RSFUkveMEL9Nhjj61r+2thcXFRnZ2dJX8W4Ny5c5Iu\nVSTVm32PesxHshpdkRSLxdTX11d21Tbp0sU9A/FRL3b/7z3+Vcq2wxUOhl9dXS1qQbIzwsoFSfZY\naW/mHDx4UMPDw03T5hnUQbBRQdJmbG2rNABi2PbGI0gCmkRhkNTd3V3y4FJYxhvEnmj39/f7ViS9\n853v1Mtf/vL1bjbQ8uwdrnJB0p//+Z/rlltuKfr+UuGLt7UtaEZSLBbTrl27ND4+Lsdx1vUzVMvu\nn0q16WFru++++7Rnzx4dP358w4Okes1Hkho/I0ny34eUCpL4jKJealGRdNlllymVShXNSVpdXc2b\njyQFt3YW8qtIchwnb0ZoIzVLkLS4uKhMJlP396sFx3FqMiMpnU7T2lYn/KsCTaIwSBoYGCh5V9G2\nvVVbkXT27Fk98sgjymaz6910oKUFBUneE+lSF5lhKpKMMYEVSYlEQgMDA0qn02XbXevF7p/6+vp8\nl20GnnzySUnSz3/+85asSGpUa5sUHCS1t7fnXSD19fXJGEOQhLoZGxtTJBKpKrw1xuiaa64pqkhK\np9NFQVLYiqTCIMmu3NYM7W3pdFpLS0t1C5LOnz+v17zmNXrwwQcDn+O9aeWthG5mlc42Clq1LZvN\nMmy7TgiSgCaQzWa1srKSFySVm2dUaZAUVJE0NzenlZUVTjyBAOUqkmKxWMmTFFvF41dNZE/udu7c\nGTgjyQZJUmNaVhzH0dLSkuLxuPr6+jQ5Obnh24DmZy9ORkdHW6oiqdGtbZJ/kGTbTb2i0ShzzFBX\nY2NjGhgYqLrC45prrtGxY8fybmL6tbaFrUjya22TmiNIstvmd75eiyDppz/9qb797W/rhhtu0F13\n3eX7HO+w8s3S3lbLVduoSKoP/lWBJmB7uAuDpFIng/ZAUGlF0szMTF7PuA2k7DLmAPKVC5LKXWAO\nDg4qk8loenq66DF78b1v377AiqSurq6GBkn25+/s7FQqlaIiCb7sxdLIyIhmZ2dbpiLpWc96lnp6\netwL2kYIqkgqDJKCngvUytjYWFVtbdazn/1szc3NuZWMkn9FUk9Pj9rb2yuuSBoaGlIikWiKIKlw\n27xqESTZkMhxHL3jHe8o+Rxp86zcVulso6CKJIZt1w9BEtAEgmYdTE9P++4UpUsBUNgZSQMDA76r\nXxAkAaXVIkiS/OeWeIOkoBlJiUSiobNPvMuM9/X1aXp6mlZYFLEXJxtZkWRvpNSzIunGG2/U5OTk\nhvw8QWw45K1qJEhCI9QqSNq/f78k6cyZM+7X/CqSjDHatm1bxTOSjDE6ePCgTp06VfW2VqveQZI9\nRj/3uc/N+/f02qwVSd4V/Mppb28nSNpgBElAE/ALkmzoE1SBsN7WNik/SLIHFLvaDoB85WYkVRMk\n2RPA/fv3a3x8vGgIpndGktSYiiTv/imVSslxHM3MzOjee+/Vt7/97Q3fHjQnG4qeP39eCwsLLVOR\nZIxpeFvE4OCglpaW8mab2HZTv+cSJKFeahUk7du3T1J+kORXkSTlqosqXbVNknbt2qWLFy9Wva3V\nKnXjt5YVSU972tN08eJF3zDFOyNps1QkVRoAtbW1Bba2ESTVB0ES0ARKBUmFB8/V1VUtLi6uq7XN\n74KWiiSgtHpXJEUiEe3evVuO4xQFRc0wI6kwSJKkyclJ3XrrrXrrW9+64duD5mQvTmwFwEYESb29\nvXrlK1+pl7zkJXV/r0by24dQkYRGmJycdOeGVWPv3r2SylckSQpdkdTR0ZH3/c2yymi5iqT5+fmq\nVlKzIdEVV1whx3F04cKFouds1oqkSodtEyRtLIIkoAmUWsa3MEh6+9vfrle84hUVt7b19/e7B387\n48RxHIIkoIx6B0ldXV3auXOnJOnYsWN5j9sZSXY1pkYGSXbYtpTbh1y8eLEh24PmZIOkn//855I2\nJkiKRqO644479Mu//Mt1f69G8tuH+A3bts8NGu4PVMtWyVYrHo9raGioKEgKqkgKEyQVng83S6ha\nLkiSVNWKrN6KJMm/w2Bpacl9r80UJFUSAAW1tlUaSCE8/lWBJlCqIqnwIHj69GkdPXq04ta2gYGB\nvGoCKTfk294F2UxB0jvf+U4dPny40ZuBLSIoSGpvb1cymQwdJPmFLouLi+rq6tKNN96oXbt26ZZb\nbsm7ALQn7dFoVH19fQ05KfarSJqamtLo6KgmJiaYlwRJl4Ike3xp5EyhVmND67AVSaurq1VdmKL1\nfe5zn9NnPvOZir/PVsnWwr59+0K1tm3fvl0XL14sGY76BVyDg4OanZ0NnDW6UUp1ENj9ZDXtbfYY\nfcUVV0jyP59fXFx0z0U2U2tbpTOS/CqS0ul0yZV1sX4ESUATqKS1bX5+XvPz8xoeHpYxRl1dXSVf\n++Uvf7l+53d+R89+9rOLKpK8J5q1CpLGxsbcO9L1kMlk9MEPflBf/epX6/YegFdQkCTlLvDKBUnd\n3d1qa2sLrEiKx+Pq6urSrbfeqnvuuUdf+9rX8h63J8cDAwMlK4BWVlb00EMPhfqZKlE4bFvKhQWj\no6PKZrO+q9Fh6/HO75EIkmqp0ta2wucChT796U/r4x//eEXfs7q6qtXV1bLnnWHZICmTyejHP/5x\nYGvb9u3b80Y6+AmqSJIa0xLuFaYiqZogaXFxUdFo1B1g7nc+v7y87AbSrVqRFLRqGxVJ9cO/KtAE\n/IKk/v5+ScVBkj1Zf+SRR5RIJMruHHft2qV/+qd/Umdnp7q6uhSLxdw7xjZI6u/v1/DwcE1K4d/z\nnvfoNa95TdWvE8Re1FY7nBAIq1SQdPXVV7tDQ4MYYwJL7G1FkiT99m//tp7xjGfone98p3tXzXuX\ntVyQ9OUvf1m/+Iu/6DsfoRp+FUnDw8PuZ3FiYqKm74fNqfAuN0FS7QQFSUHDtgufCxRaWFioeBC1\n30Drauzbt09nz57VF77wBV1//fX64Q9/GFiRJKnk9s7PzwcGSY3+LNQ7SLL7gt7eXiUSCd8gaWlp\nSYlEQl1dXZumIqnSAMi2thVeyzAjqX4IkoAm4BckxWIx9ff3Fx0AvUFSuba2QsYY9fX1FVUkXX31\n1VpYWHC/Xo3x8fG6rgBnf36CJGyUUkHS1772NX3iE58o+xpBQZKtSJJyn/kPfvCDevzxx/WZz3xG\njuO4M5Lsa5QKksbGxpTNZmv++fPun2xF0mOPPeY+3ui7vWgOBEn1k0qlFIlEqEhCzczPz2t0dLSi\nIc/2/KtWQdL+/fu1tLSkf/mXf3FfP6giSSodJM3Nzfm2tkmN/yzYc22/fze7n6ymstfOSzPGaM+e\nPW6QNDMzo0OHDunIkSPu/iKZTG6KiiTbMl/psG0p18rmRZBUPwRJQBPwC5KkXHubX2ublKsIqDRI\nknInpDYwsgeTq666yn3Nai0vL2thYaFuPekESdhopYKkzs5O368XKhUkedsEXvva1+qlL32p/uZv\n/kYTExPKZDJ5FUmlTojtZ6PcUNJKeYdtJ5NJRSIRgiQUmZ+fzztZJ0iqnWg0qv7+/rzPWqlh21Lj\nL57R3Obn55XNZiv6PalHRZIk3XnnnTp48KAk+VYk7dixQ5L01FNPBb5Wqda2Rn8W7Ipyfj9bLbbR\nW524e/du91z+u9/9ru6991795Cc/cfcXiURiUwRJNuCstLVNUtGcpEpb5BAeQRLQBCoJkrxzKMqt\n2Oanr6+vqLXNBkm1qGRYXl6WdGngaq3R2oaNVipICitMa5uUqxp817vepZGREd1+++2SFLq1zX42\nCvcZ1fLOSIpEIurt7dXjjz/uPk5rG6Tcsemyyy5z/06QVFuF+xAqklANey5ZSXubDZJqOSPJes97\n3qM3vOENet7znlf0vLCtbc1akeQXcllhfrZyvKGytyLJnkNMTk66YVMymdwUrW22Pa3S1jZJRTey\n0+k0QVKdMMIcaAJBQdLg4GDR4GpvkFRtRZK3tU2qXUWSlLu4tAfIWqIiCRutFkFSUDXRwsJC0efk\n6U9/uqRLy6jbk/aBgQEtLCwEXkDawKdeFUn2Pfv6+vTEE0+4j1ORBCl3Ibd//36dPn1a0vpudCBY\n2CCpt7dX0Wi04RfPaG42TFhPkFTriiRJeuUrX6k3velNvs8bHByUMaZsa1vhPsdvtcNGmJubCzxf\n7+7uVmdnZ1VBkrciac+ePTp//rwymYy+853vSModo+3+YrNVJK0nSKIiaeNQkQQ0gfW0tknrD5Js\ntZA9mNiS4jAHsvHxcb31rW91A6NCVCSh1dSqIsm2qnkVViRJl8r4bdWPPWkvtwJNvSqSCvdPqVQq\nb5glFUmQLgVJUu7YxCo5teUXJPkN2y413B+Qchfpdr9eql2sUK1nJPX29qq3t1fXXHONdu7cGfi8\nWCymwcHBilvb2tra1Nvb27DPwokTJ/TOd75T09PTgcG6MUbbt2+v6P+HQoUVSZlMRnfffbcb6nuD\npM1SkVTNjKTCiqRMJsPxqE74VwWawOjoqIwx6u3tzfv6tm3b3AG6Uq4807uDXE+Q5Ddse3BwUN3d\n3aEuQL/3ve/ptttu009+8hPfx+321evikookbLRaBUnZbLZooL132LZlh1rbiiRva5sUfHe13jOS\nvBVJUm5mUiqVqmtF0qlTp+o2bw21tbCwoL6+PvX09NDWVgfecCiTyWh1ddW3Isk+l0pBBPFWtjey\ntU2Sbr75Zr3tbW8r+7wdO3YEbqtdmMIv4GpkqPr1r39dH/zgB3XnnXeWrNDcvn17TSuSJOnDH/6w\nJOnyyy93Qyrb2rYZKpLsdU8llURBrW0M264fgiSgCZw8eVK7d+/2bW3LZDLuag624sAYI2l9rQO2\ntc1xHDdI6u7u1tDQUKggyW5D0ElqvSuSvEFS4RKfQD3UKkiSikOgwmHb1q5duwKDpEZVJNkT1VQq\nJUkaGhoqO7fp/2fv3OOjqM/9/57NPZAruRACCRAwK0KCyiVAFRESUSnaqoAoalu1VamXehRQQT1W\nPVY9PVptT2vLrxUBsa2gtuoJKoKAARRJQAiEAGIghDsJ7Oa68/sjzrhJdje7m92d3eR5v155Kbsz\ns092MjPf7+f7eZ6nK1itVoYPH87ixYv9cnzBd9hP5FJTU0VI8gPaM7qpqcmpi1kjJSXF54Ky0H3o\nqpDkK0cSwK9//WunKW32uBJb6uvrsdlsDsfERgpJ2hi7rq7O5XjdlUjmDvaOJC01/t1332Xo0KGM\nGzeOw4cPA+ipbd3VkeQstU2EJP8hQpIgGERxcTEzZsxAVVUqKyv19DJ7UlNTge8nhtrNPysrC/De\nkdTY2IjVauXs2bNEREQQFRVFamqqWwNPbbLq7MFsXyPJH2if39TU5DS9ThB8iT+FJEepbQAZGRn6\nda+9725qm68nkFarFUVRdNu4JiSlpqbSp08fv13rtbW1WK1Wn9RuE/xLfX09qqrSq1cv0tLSvHo2\nCa654IILaG5uZvfu3Z0KSRkZGVRXVwcyPCGEsBcSPEmp8oeQ5C6uhCTNYRNsQpK9c74zR1JXUtvs\nHUm5ubl8/fXXbNy4kXXr1pGWlqafNy217ezZs7pQE6x4UyPJVWqbCEn+QYQkQTCItWvX8ve//52D\nBw9SWVnJ4MGDO2zTXkjSVpG0FQdvayQBnD59us0qiaeOpM6EJH87kkDS24TA4C8hyWazOa1zYl8v\nwl1HknZt+MORFB0drTshtdS2tLS0Di3JfYk2+JXrPPixn2AuXLiQhQsXGhxR9yMvLw+A0tLSDi7B\n9mhCkrh2hQ0bNui1cjTshSRPnDC+rpHkCZrY4uhv2pXA5azRRSCoq6tzK4MgPT2d48ePd6ih6C72\njiSAYcOGMW7cOPr27UtaWpr+enR0NAMGDMBms7VpmBGM+LJGkhTb9h8iJAmCQWg3us8//5wjR444\ndCS1n3xqD/Hc3FzAu9Q2bRJ46tQp6urqdDEqVBxJIiQJgaaxsRFFUbo0EHEkJGnXkrPUNg13ayT5\ns2ub/SC1vSPJ30KSltorBC/afTk2NpYrr7ySadOmGRxR9yM3N5fIyEjKysrcciRZLBY9tUboucya\nNYsFCxa0eU27t0ZGRhpeI8ld0tPTdSd9e4LVkVRXV4fZbObiiy9m+PDhTrdLT0/HZrN5HaezDo7w\n/YI0tArPmiC9fft2rz4rUHhTI0kTkpqbm/XXVFWVYtt+RL5VQTAILYd31apVAG6ltmmD9fPPPx/4\nXhTyBHtHkn1LUs2R1NkKptGOJO3zQYQkITA0NjYSGRmpryx6gyYk2buFXAlJjhxJkZGR9O7du9PU\nNqvV6tMaCO1dU+0dSf4SjUVICh2MTHnpKURERDBs2DBKS0v1a93Z5FETorXaKELP5eTJk2zbtq3N\na9pYctCgQR6ntoWFhXXJnestWjdTR8KXdv9xJiRZLJY2i5CBora2loSEBLZs2cK8efOcbufqd3MH\nq9Xq1J3Y3pE0cOBA4uLiKC0t9eqzAoXmzvJk3OWo2LYmSIWHh/swOkFDhCRBMAjtRvfvf/8bcCwk\ntZ98ag/LYcOGsWrVKmbOnOnx5zpLbUtNTaW5ublDV6n2GC0k2Q8GZLVVCASakNQVevXqRXx8fJuJ\nnfa33Flqm73Q5Kobk/214UtXUmeOpDNnzrRZAfQV0qExdBAhKTDk5+e77UgCpE5SD6e5uRmLxcKe\nPXvaLMJp1+vgwYM9SqnSCup3ZVHFW9LT0wHHYovmSHLWtQ2cp4T7E83139n3pf1u3tZJcteRFB0d\njclkYsSIEZSVlXn1WYHCV13bvKm1JLiPfKuCYBDajU57ADoSkmJjY4mNje2Q2tarVy+uueYan6a2\naasWndVXMTq1TRxJQqDxhZAErW15Dx06pP/b09Q2wGUqmdVq1a9vX9ZJal9/wd6RpKXb+eN6F0dS\n6CBCUmDIy8ujurqab7/9FhAhSXCNtthms9n4+uuv9dfthSRPUqosFoth17grsaWz1DZwPmb1J/Zj\nbFe4EsncwVmtRWjrSNK2ycvLo6KiwqVLy+iuj12pkWTftU0TksSR5B9ESBIEg7C/0SUmJpKcnOxw\nu9TU1A6pbV3JT2/vSLKvkQSdPzxcCUk2m013JkixbaG74Eshyb4DmTuOpMjIyDYDIFeFQ61WK9nZ\n2YB/HUn9+/cHWtMitPuWCEk9GyOL8PYk8vPzAdi0aRPgvNi2JkSLkNSzsR8j2acyader1uTFXQHj\n3LlzhtRHgu/Tvxz9TbtKbdPGtl3piuYttbW1xMfHd7pdV4Sk5uZmmpub3XYkQet9xGazsWPHDof7\nlJeXc/nll7Nz506P4/EV3ghJ4kgKPPKtCoJB2N/oHLmRNFJTU/WJoy8KHWpC0qlTpzh79mybrm3Q\nNUeS5kYC/xbb1ibWIiQJgcDfQpKrGkntJ+auHEkWi4WsrCzAt46k9kLSiBEj+Prrr7nkkks67STX\nFaRrW+hgZBHenoRWKLekpARw7kiKj48nJiZGaiT1cOzvnfapTPaOJHBfZNFS24wgPT2dmJgY9u3b\n1+E9V6ltQ4cOBaCiosK/ATrAXUdSfHw80dHRXglJnXVw7N27tz5+0e4XI0aMAHCa3qbFYcR3pqEJ\nQL5KbZOubf5BhCRBMIimpiZ90N2ZkNTekdSVB3lERAS9evXqsiPp5MmTHfLqNSEpKiqKU6dO+aX1\nsNVq1VdvZIIpBAJfCUmZmZlUV1frbkRXqW2xsbEkJCR0eM9VjSR/OpLaD1KHDRuGoih+dSRp9ztx\nJAU/ktoWGFJTUxk2bBifffYZ4FxIUhSFjIwMcST1cLQxkqIobRxJ2vWqNW5xtxW8kUKSoigMHjzY\npZDkyJGUlpZGYmIiu3fv9nuM9qiq6raQpCgK6enpXrmmOiu8b/+c1p7jiYmJpKWlceDAAYf7aEKM\nkUK0Nn/wVWqbCEn+QYQkQTCIxsZGhgwZQnZ2NgUFBU63S0lJ8WlqG7Q+RNoLSY66SjlCe2jZbLYO\nhbk1Ialv3740NTX5tHOUhsViITk5mfDwcBGShIDgS0eSqqr6YNFVahu0upIcOZJOnz7dobh1c3Mz\nTU1NpKSkEBMT41dHkj0DBw4kIiKCJ554wuc1FbT7R2Njo77qKgQnktoWOG6++WY97cPZdQmt6W0i\nJPVstDFSXl4eZWVl+uT83LlzKIrC0KFDiY2Npby83K3jGVkjCVoXXSsrKzu87krIVhQFs9ns9u/o\nK+rr62lpaXErtQ1aHVf+cCQBupAUFRWlv5aRkeFUKNKOaaSQ5I0ApAlJjrq2SWqbf5BvVRAMorGx\nkaioKPbu3cv999/vdDtHqW2uHhjukJSURE1NDU1NTfoKTlRUFAkJCW47kqBjepsmJGlpOf6ok2Sx\nWIiNjSU+Pl6EJCEg+FJIAvT0NleOJGh1MLVfzXRW3Nr+WOnp6WzcuLHNtdoVrFZrmwGoPampqaxc\nuZJdu3bxox/9yCefp2EvRMu1HtyIIylw3HTTTfr/uxKSXE0UhZ6Bdt+85JJLOHXqlN7sQROETCYT\nubm5bossRtZIglYhad++fR3c7mfPniUqKsppQWVPfkdfoX337jiSgA6OpBMnTjBs2DDeeecdl/t1\n5kgCx0JSv379nN4ftLG8kUK0JgB50iFQ+w7sF56k2LZ/ESFJEAyiqalJL6Tr6kaZmprKuXPnsFqt\nWCwWoqOju2zRTExM1K3M9g85+zQ6Z1itVv2G7ExI0ooi+iPdxWq1ipAkBBR/CUmdOQx/85vf8NJL\nL7V5zVlNIm0wGRMTw6OPPkpJSQlXXnllG4u3t2jXnDOuvvpq7rrrLrZu3erTdFZ7IUnS24IbXy1y\nCJ2TlZXFZZddBrj+viW1TdDGSKNHjwZgz549QNsUNU/cOkamtkFrTSeLxdIhBcy+3qcjzGYzhw8f\nDuiYUeuY566QlJGR0eb3euaZZ9i1axdr1qxxuZ87jqSkpCRiYmLazDX69evHkSNHdMHGHm0sH2qO\npMjISBRFkWLbAUS+VUEwCHcnp/YpZ5obp6uMGTNG78Zg/5BLS0tzy5GUmZkJdC4k+cuRFBMTI0KS\nEDD8JSR9++23beoXtOeiiy5iwoQJbV7T7gfOhKTY2Fhuv/12Xn75ZdauXcvnn3/e5bjdue/07duX\n+vp6n6az2ndoFCEpuDl37pxPFjkE93jooYcYP348CQkJTrfp168fdXV1ev2YI0eOUF5eLtdSD0Ib\nI40cORJAry9k7ywym8188803LlvBawRDahvQIb2tM4HLbDYD6HWS/FV6wR5vhKRjx47R2NjIgQMH\neOWVV4COv2t73HEkjRs3jksvvbTD5zU3NztcPLZ3JDkSmgKBNylpiqIQFRXl0JEkzyb/IEKSIBhE\nU1OTns/rCq0I9vHjx31mK37uuee47bbbgO8dDtpnueNIGjBggB6TPYFIbRNHkhBofCUkaauCmpBU\nUlLCsGHD3B5ognuOJICpU6cCnQ9C3cEdIcndYv2eII6k0MHoCWZP46qrrmLDhg0u0zW053B1dTX/\n+7//S2ZmJueffz7Z2dmsX78+UKEKBqKNkc4//3wiIiL054G98JKbm4uqqm516DLakeRMSHLHkQTo\nzqv58+dz8cUX+6UhjIb23btbI6lfv35Aa8e03/3ud0Drom9nz3B3HEnTp0/nxRdfdPh5jlxH2jGb\nmpr80pHVHbytbRQVFdWmg7QISf5FhCRBMAh3J6faBE1zJPniIR4eHs7ixYtZu3YtV111lf66u46k\nzoQkf6a2SY0kIdD4SkhSFIX+/ftTVVWFqqqUlJS4LLTvCE1Ian/ttS/cnZ2dTVhYmMMON56gqqpb\nQlJaWhrQebF+T9AKwoLUSAp2jJ5gCh3RJorXXXcdd911F1OnTuWNN94gPT2dwsJCPv/8c1RV5cEH\nH9S7wAndi9raWuLi4oiIiGDgwIG6KGE/lmzv1nGGqqqG10gaOHAgJpPJoSPJlZCUk5NDeHi4/jt+\n9tln7N69m127dvksNpvNxm233cakSZOYO3euV44kaBV+d+/ezfnnn88ll1zCvn37XLqC3HEkOUK7\nPzhKf7UXYoxKb/M2JS06OlocSQFEhCRBMAh3HUn+SG2D1kntpZde2iaGjIwMjh492ia/uD1Wq5WU\nlBSio6M7dST5YyVDUtuEQOMrIQnQhaSKigpOnTrlsZDkTmobtHYvycrK6rIjqampiZaWFsMcSdpx\nxZEU3Bg9wRQ6MmrUKKZNm0ZSUhIPPvggq1at4qabbmL9+vXEx8fzwgsv8OWXX/Lf//3fLFmyxOhw\nBT9QW1urO2LsfJIJ5QAAIABJREFUO57ZC79Dhw5FUZRO6yQ1NjbS0tJiqGAcGRnJgAEDHDqSXMUV\nERFBTk4O5eXltLS0sGPHDgBWr16tb7N9+3b+/ve/s2HDBq9iO378OH/729/YvHkzr776qi7QeCok\nHT58mG+++Ybs7GxycnJoaGhwWevMHUeSI1w5koJBSNLcYp4KQOJICiwiJAmCQXjqSPJlapszsrOz\nUVVVT71xhNVqJSYmhpSUFKdCUp8+fYiKivKLkCSpbUKg8YeQVFJSAuCxkBQbG+vw2mqf2gbOWyV7\nQmcFwTX84UiyWCz64FqEpOBGUtuCj8TERN577z3Wrl3LCy+8oC8apaamMnv2bP71r3/x8ssvA75J\ngRWCD0dCUntnUWxsLNnZ2Z0KSdqzwOjr3NFzrbPUNoBhw4bx1VdfsXfvXv15WVxcDMCuXbu48MIL\nmTFjhu4C8hStFplWi0gTqzxNbauurm4jJIHr69NbR1JsbCwJCQlOhSRtLGFUwX5vHUntayR5myIn\nuId8q4JgEO5OThMTEwkLC/NpapszsrOzAfjmm28cvm+z2fQHTEpKSodJoyYkRUVFORSauop9mo0I\nSUKg8LWQdOjQIVasWEFcXBznn3++R/srikKfPn06CEntU9sgsEKSvxxJmpAk13pwI6ltocWcOXNo\nbGzUnUgiJHVP2gtJZ86c4eTJkx3GkmazudM0L61mndHOQ0fPtc5S2wAmTZrEvn37WLVqFQATJkzg\n008/paGhgfnz59OrVy8+/PBDVFVl6dKlHselCUkXXHAB8L2Q5K4jKS0tDUVR2LlzJ3V1dW4LSd46\nkqBVvHIkFNXX15OUlER8fLxhjiRvBaDo6Og2jqTm5mYAl/XkBO/x6OwoipKjKMoIfwUjCD0Jd1Pb\nFEXRRRtfprY5ojMhyf6BNXDgwA6rNv4WkhobG7HZbHpqm8Vi0R8SguAvfCkk3XLLLSQnJ/P+++8z\nZswYr+zWffr06XBttU9tg9YB94kTJ7rk5nFXSIqNjaVXr14+r5GUkJBAbGysOJKCkA8++IBFixax\naNEiKioqREgKIS688EKGDRsGtHb0+vbbb12mtAuhib2QNHjwYKBVlGgv/I4cOZIdO3bozxFHaEKS\n0dd5Tk4Ox48fb7O40FlqG0BRUREAL730EuHh4dx3331YLBZ+8pOf8O677zJ//nyuuOIKLrvsMpYs\nWeJxIW5nQpK731d4eDhpaWm6Wzk7O5usrCzCwsKorKzk73//O/v37++wn7eOJGhNp3PmSIqKinL6\nfiDwVbFtcST5F7e/VUVRHgEeBe5TFEWSqQWhi3gyOU1NTQ1IaptWRNuZkGSfPmM2m9m7d28bIcff\nQpL9ZFkbHMkEU/A3vhSSzGYz69ev58ILL2TmzJleHSMlJcXt1DbomtvAXSEJWu9TvnYk9erVi/j4\neLnOg4xdu3Yxbdo0nnrqKX79619z+PBhLrzwQqPDEtxEURQeeOAB8vPzueeee7DZbBw4cMDosAQf\n096RBI6FpIKCApqbm9m6davTYwWTkAToC5ktLS2cOHGC5ORkl/udd955ZGVlUV1djdlsZurUqfTv\n358333yTiy66iPvuuw9odetVVFSwefNmj+LShKShQ4cSERHB0aNHiYuL80jA6NevH9u2bQNahaSI\niAiys7P55z//yYwZM3juuefabN/S0tJlR9Lhw4c7iGYNDQ1ER0eTkpLil+7L7qAJQJ4utkmx7cDi\n9K9bUZR7FUWx/9bzVVX9qaqqtwP5nR1YUZTFiqIcVRRlh5P3L1MU5YyiKNu++1nkefiCELq460iC\nVstrdXW131PbtBUId4WkpqamNisk/haS7Ce1SUlJAIY95ISegy+FJGgd0G7dupU77rjDq/3dTW2z\nX4H2Fk+EpLS0NJ/XSOrVqxcJCQmS2hZkLFiwgN69e3Ps2DFsNhs2m42nn37a6LAED7j99tvZtm2b\n3rVL0tu6H64cSfb39LFjxwLobhhHBFONJPj+7/XAgQM0NjaSm5vrcj9FUSgsLAQgLy+PuLg4vv32\nW2w2G19++aX+fVx//fVER0ezfPlyj+LSurTFx8fri7LuprVpZGRk6IuzWoaAViQcoLS0VN92zZo1\nxMfH64KaN46kfv36YbVaOyzUNDQ0EBkZiclkctkxzp90pUaSFNsOHK7OzgngQ0VRpn/372JFUT5U\nFKUY+D83jv1XYGon23ymqurI737+041jCkK3wZPJaV5eHqWlpdTW1vo9Pz07O9stIUl7aNsXaAyU\nIykmJkZffRIhSfA3vhaSuoqr1Lbu5kjSCoKKIyl42LBhA++88w7z5s3TuwgKoUt7h4fQfbAXkmJj\nY8nIyGDPnj00Nja2EYT69u3LwIED2bRpk9NjBUuNpPYLJNoYVBNEXaGlt+XnO/dDxMfHM2nSJD78\n8EOP4tIcSb1799ZFIE+FJK3gdkxMjF53ULs+MzIy2L59uy7srF+/HovFwsaNG1EUxe2FaXvsO8XZ\nU19fT3R0NCaTyeMUP1/RlRpJjopti5DkH5yeHVVVlwI/BPIURXkX+BL4MXCDqqoPdXZgVVXXASd9\nFaggdDc8mZwWFBRgtVoD0mLZl0LSqVOnfFrDSBxJghEEm5A0ZMgQjh071mbw50hIiouLIzU1NSQd\nSc3NzfpkR1Lbgovf//73JCUlcf/99xsdiuAD+vbtS2xsrDiSuhk2m426uro2XcPy8vJYs2YN0NFZ\nVFBQQElJCbW1tQ7/FoIltS0hIYE+ffroMe7evRugU0cSwNSpU5k+fTrXXnuty+2KiorYvXu307Gw\nI3whJGnCTlZWFoqiAK0OqdmzZ7No0SLOnTunC77a2Pvrr78mJiZG394TNOGqvZDU2NhIVFQUiqIY\n5kjyVgBq70jS5iAiJPmHzmS+HOAt4E7gHuAlwPMkTOeMUxSlVFGUDxRFucDZRoqi3KkoyheKonzh\nS9u8IBiFqqo0Nze7vYKg2Y7B/w/x7Oxs3e7bHvvJalJSEunp6S6FJFVVfSr02E9qNUfSyZOiVwv+\nQ1VVmpqagkpI0uz5q1ev1l+zWCyEh4d3uKd0tXObN44kX6xg2k9aJLUteKirq2PlypXMnDnTcGeC\n4BsURWHw4MEiJHUzzp07h6qqbYSkwsJCqqqqAMdC0rfffsvIkSOZMGGCw+M52s8I7J9r5eXlpKam\n0qdPn073i4+P55133uG8885zuZ2jZ2xn2AtJAwcO1D/PEzQhSROiACZPnszSpUu5+OKLASgrKwO+\nF5IaGxu9SmuD74Wk9p3b7B1JRgtJngpk4kgKLK5qJP0VuB94HPiVqqp3AL8HXvNRPaOtQLaqqvnA\n74BVzjZUVfVPqqqOUlV1lGb1E4RQpqmpCcDtyWl2djbp6emA/23F2dnZNDY2cuTIkQ7vtXc9mM1m\nl0IS4NP0tvZCFogjSfAvnl6rgWDEiBGkp6e3GeRarVaHxTYDKSSlpaXR2Nio14roCvafK6ltwcPb\nb7+N1Wplzpw5Roci+BD7+8TKlSuZOnWqLNKEOJr4bi9maKld0PGeXlBQAMD+/fupqanpcP61+3ow\nCknupLV5wrBhw+jXrx8rV67kpptu4sUXX+x0n7Nnz2IymYiJielyapu9kKRxwQUXYDKZKC0txWaz\ntRl7e1NoGyAxMZGYmJgOjiStRpKiKIaltnlb28iZI0m6tvkHV9/qhaqq3qGq6k1AIYCqql+pqvpD\noNTFfm6hqmqtqqpnv/v/94EIRVEk2V7oEWiTU3cdSYqi6A/5QAhJ4LhzmyMhadeuXfqDpqGhgfDw\ncEwmk1+EJEepbTLYFfyJ1hI7mIQkk8nElClTWL16tb7aZrVaHd4bcnJyutTa21NHEuCTOkntHUki\nJAUHS5YsIScnh3HjxhkdiuBDtIn5ww8/zPXXX8///d//eVxsWAguHAlJw4cPp2/fvkBHQWjUqFE8\n88wzetH89gsQxcXFZGRk6IuaRpKTk8PBgwdpbGykvLzcrbQ2T1AUhaKiIt5//32WLVvGggUL2jSW\nccTZs2fp3bs3iqJ0ObXNkZAUGxvL0KFDKSsr49ChQ1gsFqKiogDvCm1D6++ZkZHRrWokaUKSFrc4\nkvyLq7PzgaIo/6coyifAMvs3VFV9p6sfrChKX+U7v5qiKGO+i+WE670EoXvgzeRUE5ICkdoG7gtJ\np06d0sUiLa8a0G3G/hKSoqKiiI2NFUeS4FeCUUiC1pXlo0eP6jZ3i8Xi1JGkqqrXrb09dSQBPqmT\nZC8kJSYmcvbsWV2AF4xj7dq1XHPNNV7V4xCCl4KCAurr63n++eeZNm0aF1xwAUuWLDE6LKELOBKS\n7DuXtR9LhoWFsWDBAqZPb+2xZC8kHT9+nH//+9/Mnj07KCbkOTk52Gw2vvrqK44dO+ZzRxLA7Nmz\nSUlJ4Y9//CPh4eE8+uijLrfXhCT4fhztaWrb0KFDSUtLY/z48Q7fz8/Pp7S0VK8LpZ1Lbx1J0OqC\nap/apo3lgyG1zZti2/B9hoR0bfMvroptzwduAKarqvq8pwdWFGU58DmQqyhKlaIoP1MU5ReKovzi\nu02uB3YoilIKvAzMUo2SPQUhwHjqSAL0FWBPH0yeoj0AHU08HQlJ8H2xw4aGBl1I8ndqG0BSUpI4\nkgS/EqxCkjaAfP/99wHXqW3gfec2TUhyZ6DqL0eSdlxfd4EUPKO5uZnm5mYSExONDkXwMTfccAPn\nzp2jrq6Od955h1tvvZVNmzaxZ88eo0MTvMSRkATfp7clJCQ43K99VzSAFStW0NzcHDQprdpzTXv+\n+UNIKiws5OjRo9x555386le/Yvny5S6vB3shqX///oSHh+vOeXdJSkqipqaGSZMmOXw/Pz+f/fv3\n89FHHwHoRcO9dSQBTh1JWrFto1PbvHEkgQhJgcLl2bFPP/MUVVVvVFU1Q1XVCFVV+6uq+hdVVf9X\nVdX//e79V1RVvUBV1XxVVQtUVd3ozecIQijizeT00ksvZcWKFUydOtVfYQGtVty+fftSUVHR4b32\nQs6QIUMA2Lt3L9BWSPK3IwkgOTlZHEmCXwlWISkjI4Nx48axbNkyVFV1mdoGXROSIiMjCQ8P73Rb\nTfDxhSPJ/lr35XEF77GvgSd0P2JjY/WJ8OzZs1EUhTfeeMPgqARv0YSk9ulVs2bNYvny5YwZM8bh\nfrGxsWRkZFBZWcn27dv56U9/yvPPP8+IESPIz8/3e9zuoD3X/vKXvwD+EZLg+0LPt912G9DqyHSG\nvZAUGRnJBx98wNy5c30az4033khkZCQvvPACCQkJTJw4EeiaIykzM5PTp0/rz9yWlhaampoMdyRp\nApanApAmqmkFtyW1zb9I5SlBMABvJqeKojBjxoyATGjbF9G22WwcPny4g5CUnZ1NWFiYPkm1F5Ji\nY2OJjY0VR5IQ0gSrkAQwZ84cvv76a7Zt2+bUkZSent6l1t7OBCpH9O3bl/DwcL09cVewdyRpKXO+\ncDoJ3qMJSV1Z/RZCg8zMTEaNGsXGjbLGG4pUVVVRWtpazra9Iyk8PJxZs2a5dHpoNbNeeOEF3njj\nDRRFYd68eX6N2RMyMjIoLCwkPDycSZMm6V3S/EVOTg59+vRh06ZNTrexF5IApkyZotej8hWDBg3i\nnnvuoaWlBbPZzKBBg4iMjOzSPVkr8K25krQxT3R0NIqiGCYk+cqRpBXbFiHJP4iQJAgG4E1qWyBp\nX0T7zTffZNCgQRw8eBD4XsiJiIggKyvLoZAEreltJ074rvSZOJKEQBPMQtLMmTOJiIhgyZIlTmsk\ndbW1t8VicVtIioyMxGw263WbuoKj1DZxJBmLtsIrjqSeweDBgx3WShSCm+bmZkaMGMFTTz1FWFgY\nycnJHh8jJyeHvXv3snr1an784x+zf/9+brrpJj9E6x2KolBcXMyBAwf45JNP/C4SKIrC2LFjKSkp\ncbpNXV1dGyHJXzz66KMkJiaSl5dHWFgY+fn5+mKLN2gFvjUhyd55amRqW1drJIkjKTA49aorivLj\ndi+pwHFgm6qqXe/tKwg9mGCenELbItqpqals2bKFxsZGvvrqK6CtjdZ+kupISPJ1apuiKPr3Jo4k\nwd8E87WanJzMtGnTWLZsGcnJyU4Hkzk5OQ5TVd3BEyEJWms4uLL/u4u9kKTdb8SRZCyS2tazyM7O\nZuXKldhsNmmdHUJUVFRw+vRp5s2bx6xZs5zWQnJFTk4Of/vb34Dvayr1dAoKCvjggw84c+aMw+/0\n7NmzesqdP+nTpw/btm3TY3jnnXe6ND5p70iyXzAwMrXN29pGzhxJcg/zD66+1R+2+5kO/AdQpijK\n5QGITRC6LcHuSNJaqWrpbVox7R07dhAZGdnmhqxZoMH/QpKWZqPlrYsjSfA3wSwkAdx9993U1NSw\na9cup4JPTk4O+/bto7KyUr+W3cVTISkvL4+qqqouC7z27sOkpCTCwsLEkWQwktrWs8jOzqaxsZGa\nmhqjQxE8QHOE3njjjYwcOdKrY2gFt+H7xg49nYKCAlRVZcuWLQ7fb5/a5k+ys7P1pgcZGRl6TVJv\nSE1NJTw8XO/cZr9gYDKZDHMkaZ/rK0eSO3UeBc9x1bXtJw5+rgEuA54NWISC0A0J9smpVrhQE5K0\n/9bU1HRIn8nJyeHEiROcOXPG70JSfX19m0lMUlISFotFf/AJgq8J9mt1ypQpTJkyBXBecDMnJ4f6\n+nqGDx/ONddc49HxvXEkAWzfvt2jz2mPvSPJZDKRkpIijiSDkdS2noXWwVXS20KL0tJSwsPDu1SA\nWnPWmM1mBgwY4KvQQpoxY8agKIrTOklnz57tUNg8FDCZTPTt27dDalt3qZHk7XEE9/D4W1VV9Rsg\nOG0UghAiBPvkNCsri+joaMrLy7FarRw4cEB/z5GQBLBv374OQlJqaiqHDh3yWQvh9gWFtdaq4koS\n/EWwX6sAv/nNb4BW0cURWndFm83G7t27PRJ3vXEkAXqhV285d+4cYWFh+veempoqjiSDkdS2noUI\nSaHBb3/7W8aMGaOP08rKyjj//PO7dJ1qzwxxI31PQkICZrPZYZ0kVVUD6kjyNf369XNYI8lIR5Kv\naiR5myInuIfHQpKiKLmALP8LQhcI9tQ2k8lEbm4u5eXlVFRUoKqqnk7mTEiqrKzsICTdeeedxMXF\nMWHCBHbt2tXluNo7krQikiIkCZ1x/PhxnnvuOd3p4i6hICRdeOGF/OMf/+CXv/ylw/cvu+wyXnrp\nJd566y0Al51n2uOpkNS3b19SU1O9Lrhts9l4+umn+eCDD9qksaalpYkjyWAkta1nIUJS8NPS0sIL\nL7zAli1bGD9+PHv27KG0tFQX9L0lJSWFpUuXsmDBAh9F2j3Iz89n586dHV5vaGigpaUlpIUkLbUt\nWGokeVsk25kjSYQk/+BUSFIU5T1FUd5t97MeeB/4VeBCFITuRyhMTs1mM+Xl5Xpa29ixYwHPhKRh\nw4axYcMGamtrWbx4cZdjqq+vd+hIkoLbQmesXLmS+fPnM3nyZI86CYbCtQpw3XXXcd555zl8LzIy\nknvvvZcpU6YQFhbmVyFJURTy8vK8diTt3buXxx57jN27d3PZZZfpr4sjyXgkta1nERcXR1JSUhtH\nshBcfPLJJxw+fJgnnniChoYGbrnlFqqqqvQU464we/ZsvaOX0IrZbGb//v36vVDj7NmzACErJGVk\nZHDs2DGampo6dG0zWkjSFpPcpb0jSau3KAsg/sGVI+kF4EW7nxeAnwPnq6r6eQBiE4RuS7A7kqBV\nBNq/fz+rV69GURSuvPJKoKOQFBcXR2pqqkMhCWDo0KFkZ2f7ZFXTarWKI0nwigMHDmAymdi2bRt3\n3XWX2/uFipDkDr169WLEiBEuWxi3x1MhCVpXbXfs2KHf5zxBE4tWrlzJu+++q78ujiTjkdS2noev\nnt2Cf1iyZAkJCQnMmzePhQsX6osEXXUkCY4xm82oqtqhC2qoC0n9+vVDVVWqq6vbOE+NTG3zVde2\nmpoakpOTg3q+Fcq4Kra9FkgCRgPRqqquU1X1a1VVGwMWnSB0U0JhcnrrrbcSGRnJn//8Z7Kzsxk+\nfDjguKCv1rnNkZAEvhuMOiq2DeJIEjrnm2++YcCAAdx22218+OGHboscoXCtekJBQQGbNm1yusr4\n5Zdf8vOf/1z/frwRksaMGUN9fT07duzwOD6tflNKSkqb11NTUzlz5ox+PoTAo63wyspuz0GEpOCl\nqqqKt99+mxtuuIHo6GjuuusuBg4cCOATR5LQkfaNaDS6g5AEtBGSgsWR1NUaSTU1NfTt29e3wQk6\nrlLbfg88APQBnlIUZWHAohKEbo42SQvmyWl2drZec8VsNuvtYB0JSUOHDmXPnj1+F5LaF9sWR5Lg\nLt988w3Z2dkUFRVRV1fH5s2b3dqvOwpJtbW1HQbCGosXL+ZPf/oTf/rTnwDvhCQtDdYT55OGMyEp\nLS0NQNLbDEQcST0P7dltlCtBcExFRQUTJkzAZDJx7733Aq3X5Z///Gfuvvtu0tPTDY6wezJ06FCg\no5BUV1cHhK6QpKUwHj58uE0Ks6Iohhfb9oUjSa4H/+FK5rsUuFxV1QXAZcC1AYlIEHoA2uQ02K2W\njzzyCKmpqYwePVqvheRISDKbzVRVVXH69GmnQlJNTU2HvHJPae9ISkhIAMSRJHSOJiRdfvnlmEwm\niouL3dqvuwlJmsizZcsWh+9r4s+TTz5JbW0tFovF4TXviuzsbNLT030qJKWmpgIiJBmJCEk9j+zs\nbM6ePSuLNUHGI488Qm1tLWvXrmXEiBH665MnT+bVV1/1uK6M4B6xsbFkZ2d3O0dSRkYGiqJw+PBh\nfcxjdNc2LbXN07/lsLAwwsPD2ziSREjyH66EpEZVVVsAVFW1AHJXEgQfESqT06SkJCoqKli0aJFe\nC8mRO0Gz+7pyJAEcPHiwS/G0dySFhYWRmJjoUTtzoefR1NTEoUOHyM7OJjExkTFjxvRYIWno0KHE\nxMQ4LIZtsVgoLS3liiuu4NixYzz//PMAHjuSFEWhoKDAayEpOjq6w2dqjiSpk2QcktrW89Ce3VJw\nO7goLy/n0ksv5cILLzQ6lB6H1ojGHk1IiouLMyKkLhMREUFqairV1dVt7vNGdm1TVRWTyeSVKBod\nHU1DQwNWq5UzZ86IkORHXAlJZkVRyr772W737+2KonjX11cQBCA0im1rJCQkEB4eDsBrr73Ggw8+\n2GEbTUgCx6vVvmoj3N6RBHhcPFjoeRw6dAibzab/HRYVFbF582Yee+wx1q5d63Lf7iYkhYWFMXz4\ncIdC0tatW2lpaeGee+5h5MiRfPjhh4DnQhK0ptDt2bPHow550CoktXcjgTiSggFxJPU8NLfLV199\nZXAkgoaqquzbt093iQuBRROSbDYbqqqyePFiDh06BISuIwlaXUmHDx8OmhpJLS0tHtdH0oiKiqKh\noUFfeNIWogTf4+oMnQ/88LufaXb/nvbdfwVB8JJQnZxec801jBo1qsPrOTk5eh6zP4Wk9o4kaBUF\ntm7dKhNMwSna3532d/jjH/+Y6Ohonn76aebOnety31C9Vl2Rn59PaWlpB8u6JsiOHTuW/Px8tm3b\nBngnJGkpdO7WotI4ceKEQyFJHEnGI0JSz2Po0KEkJSXJYk0QceTIESwWi163UggsZrMZi8XCoUOH\n2Lx5Mz/72c945plngNAWkvr166fXSDKZTISHhxua2maz2bwWkqKjo6mvr6empgZAim37EVdnKALo\nr6rqN/Y/QH8gPDDhCUL3JJQcSe4QFRXFoEGD9P9vT2ZmJiaTyS+OpKKiIgA++uijLh1b6L60F5Ly\n8/M5d+4cjzzyCOXl5foE2RGnTp1CUZRuc61Ca2voEydOUF1d3eb1kpISBg8eTFpaGnl5eTQ3NwPe\nCUmjR4/GZDJ5LCQ5cyQlJiYSERGhDwyFwGNfhFXoGSiKwtixY0VICiIqKysBxJFkEJoDf8eOHfp1\noT1LQ11IOnLkCPX19bobycjUtpaWFo8LbWtojqQjR44ASGqbH3ElJP0PUOvg9drv3hMEwUu6o8tB\ne7g6mmRERESQmZnpEyGpvSPp4osvJikpidWrV3fp2EL3Rfu7y8rKavO6Jpbs2rXL4X6qqvL2228z\nceJErwc0wUheXh5Am/Q2i8XChg0bKCgoANq2j/ZGSOrduzeDBg1i586dHu3nTEhSFIWsrCyp1WIg\nDQ0NREZGSiHfHkZBQQFff/213plKMJZ9+/YBIiQZxejRo4mMjGTNmjVs2rRJf11RFI8bUwQTGRkZ\nNDc3U1VVpS/YGpnaptVI8ob2jiRJbfMfrs5Quqqq29u/+N1rA/0WkSD0AEKla5snuBKS4Ps2wt7S\n0tJCU1NTB0dSWFgYkydPpri4WFoUCw755ptvSE9P7/C3o4kljuoFAWzatIm9e/cyZ84cv8cYSDQh\nqaystdzh6dOnKSoqoqamhhtvvLHNNuCdkASQm5vboShpZzgTkqB14qStxguBx1kzBaF7U1BQgKqq\nTjs9CoGlsrISk8nEwIEDjQ6lR9KrVy8mTJhAcXExJSUlXHHFFcTGxtKrVy+vhY9gYOjQoUBrPTRt\nkVtRFEO7tnW1RlJNTQ3x8fFej2GEznF1hhJdvBe6kqsgBAFNTU2Eh4d3q5VdfwtJWlqFoxWfyZMn\nc+jQIXErCA45cOCAntZmz9ChQ4mOjtYFlfYsWbKE6Ohorr/+en+HGFCSkpIYMGCALqDdfffdbN68\nmRUrVjBt2jSgtbh1RkYG4L2QZDab2bNnj9srms3NzZw6dcqpkDR48GARkgzEUWqx0P0ZM2YMgKS3\nBQmVlZUMGDCgWznaQ42ioiJKS0vZv38/hYWFzJw5k8zMTKPD6hJ5eXnExMRw+vRp/T5vZGpbV2ok\nRUVF6Y4kSWvzL67O0BeKotzR/kVFUW4HvvRfSILQ/WlsbOx2gwB3hKSqqiq97oqnWK1WwHHr6SFD\nhgBw8OBbWyQmAAAgAElEQVRBr44tdG8OHjzoUEhy1cHswIEDvPnmm1xzzTXEx8cHIsyAkp+fz4YN\nG/joo49Yvnw5Dz/8MDfccEObbTRXUleEpPr6erevy5MnTwK4dCSdOnWKU6dOeRWP0DXEkdQzSUpK\nwmw28/nnnxsdikCrkCRpbcai1eaEVsfeq6++yrp16wyMqOtEREToorF2nzfSkWSz2bwuKRAdHa07\nkqTQtn9xJSTdD/xEUZRPFUV58buftcDPgPsCE54gdE+ampq6VVobtK5aLly4kCuuuMLh+xdccAEt\nLS3s2LHDq+NrjiRHQlL//v0BqKqq8urYQvfGlcvFUQez8vJyJkyYgM1mY/78+YEKM6Dcc889VFdX\nU1RUREpKCg8//HCHbbTUv64ISUCn6W02m40VK1Zw+PBhwLWQBIgrySBESOq5XHLJJaxbt87rhSDB\nd1RWVkrHNoMZOXIkKSkphIeHc9FFFxETE9Mt6vCMHz8eoI0jCTBETOqqI0krti2OJP/i9Aypqlqj\nqup44EngwHc/T6qqOk5V1SOBCU8Quifd0ZEUERHBf/7nf9KnTx+H72tFfL21x2uOJEepbZqlWIQk\nwREWi8VpEcy8vDyOHz+ud/cAeOKJJ7BYLKxbt46RI0cGKsyAMnXqVP7973+TnJzMc88959B1VVRU\n1CbFzVPcFZJWrlzJrFmzePnll4HOhSSt2KwQWCS1redSVFREbW2tx10YBd9SV1fHsWPHxJFkMCaT\niVmzZlFYWBjSBbbbowlJ2vxEE3KMSG/rSo2k6OhoDh06xMmTJ/WO0oJ/6PQMqaq6RlXV333380kg\nghKE7k5TU1O3E5I6Y9CgQaSmprbpcuEJrhxJcXFxJCQkiJAkdEBVVaxWq1NXjSYU/eUvfwFaBy+r\nV6/mmmuuYcSIEQGL0wgKCws5evQoP/3pTx2+P3nyZI4ePUpCQoJXx09JSSE5OblTIWnJkiUA/POf\n/9T3c4S2Ci+OJGMQR1LP5fLLL8dkMlFcXGx0KD2aPXv2ANKxLRj43e9+x/vvv290GD5l4MCBZGRk\n0KtXLwC9jqsRQlJXHUmNjY0kJyd3uxqXwUa40QEIQk+ksbGx26W2dYaiKBQUFPjFkQSt6W0iJAnt\naWhoQFVVp0LShAkTuO6661i4cCGqqnLllVdy8uRJCgsLAxypMfizy4yiKJjN5g5C0ooVK+jTpw9T\npkzhxIkTvP/++5hMJmprawHnQlLv3r1JT08XIckgREjquSQnJzN69GiKi4t54oknjA6nx/Lpp58C\nMG7cOGMDEboliqLw29/+NmhS27pSIwlaG4loopjgH0K3T6EghDDdMbXNHQoKCigvL/eqWK4rRxKI\nkCQ4xmKxAM4FyLCwMFasWMHs2bN54okn+J//+R8ApkyZErAYuzPthSRVVbnnnnv0mkwrVqygqamJ\nX/3qV/o2ztJjoXUlXoQkY5DUtp5NUVERmzZt4vTp00aH0qNQVVUf2xQXF3P++efrdSEFwdcMHz5c\nb2BjdGqbt52tR48ezaRJk7juuut8HJXQHhGSBMEAumOxbXfQ6iR5U2dBHEmCN2h/N64KRoeFhfHy\nyy8TFxfH0qVLGTlypBRo9BFms5mamhpOnDgBtKalnThxgq+++oqjR4/y+uuvM2LECB588EEAevXq\n5VKsECHJOMSR1LMpLCzEZrPx2WefGR1Kj+Kzzz5jwIAB/POf/2TdunVtOoYJgj8xOrXNW0fSpEmT\n+N3vftcj51mBRoQkQTCAnupIGjVqFIqisHHjRo/3dceRVFNTQ1NTU5diFLoXnTmSNPr06aN3aJOB\nuu8YPXo08L14bJ/a+vvf/55NmzYxZ84c+vbtS15entO0No2cnByqqqp0gVAIHCIk9WwuuugiFEVh\n27ZtRofSoygtLQXgJz/5CfX19fJ8EgKGJiSFWtc2IXDIGRIEA+ipjqT4+HjGjRvH22+/7fGDSROS\nXDmSVFWlurq6y3EK3Qd3HEka9913H3fffTd33HGHv8PqMYwaNQqTyaQLSCUlJfTu3Zvk5GSeffZZ\nFEVh9uzZADz11FMsWLDA5fEKCgpQVZUPPvjA77ELbZHUtp5Nr169GDJkiC5srFmzRn8uC/5Dc2DW\n1dURERHBxIkTDY5I6CkYXSNJhKTgR86QIBhAT3UkAdx8883s2LFDH4y6iyYIuHIkAZLeJrRBcyS5\nIyTFxMTw6quv6vUBhK7Tu3dvhg8frgtJmzZtYsyYMUyZMoXGxkYmT55MZmYmANOnT+fnP/+5y+NN\nnjyZvn376p3ehMAhjiQhLy+P0tJSysrKuPzyy/nrX/9qdEjdnsrKSkaMGMHEiROZOnWqFA8WAobR\nNZJESAp+5AwJggH0ZCFpxowZREREeDwRdMeRBCIkCW1xN7VN8B8FBQVs2rQJi8XCtm3bGDt2rJ6e\nccstt3h0rPDwcGbPns2///1vve6SEBgaGhrEkdTDycvLo7KykrfffhuArVu3GhxR96eyspIhQ4aw\nevVq/XsXhEBgZGqbqqpe10gSAocISYJgAD01tQ1aa9FcffXVLFu2jObmZrf3E0eS4A2epLYJ/qGg\noIAzZ87w+uuv09zcTEFBAbNnz+aVV15h5syZHh9vzpw5NDU18dZbb/khWsEZ9fX14kjq4eTn56Oq\nKr///e8BKCsrMzii7o3NZmPfvn3k5OQQERFBeHi40SEJPQhxJAmdIWdIEAygJzuSAG688UaOHDni\nUfe2zhxJCQkJxMbGipAktMGT1DbBP2jdGufOnUtycjI/+MEPiImJ4Z577vHqPpifn4/ZbGbVqlVA\nq1jY0tLi05iFjkhqm5CXlwfAsWPHMJlMbN++Xb/2WlpaOHv2rJHhdTuqq6tpaGggJyfH6FCEHoiR\nQpLUSAoN5AwJggH0ZEcSwJQpUzCZTBQXF7u9j+YscTbxVBSFrKwsaQ0utEH7u5HUNuPIzc0lNTWV\n9PR01q5dS3JycpeOpygKU6dOZd26dVitVi6//HLy8vL49ttvfRSx0B5VVSW1TWDgwIHExcUBcP31\n12OxWNi3bx8Ar7zyCoMGDaKhocHIELsV2nhm8ODBBkci9ESM7tomqW3BjwhJghAAmpqauPPOO9m7\ndy8gjqTk5GRGjx7tkZCkdQzSHmyOGD9+POvWrRN3gqAjjiTjMZlMrF+/nm3btjF8+HCfHLOoqIj6\n+npeffVVSkpK2LlzJxMmTJC6SX6iubkZm80mjqQejqIo5OXlERkZydy5c4Hv29OvW7eO48ePs23b\nNiND7FZoQpI4kgQj0Mbb4kgSnCFnSBACQHl5Oa+99ppeYLqpqalHC0nQOhHctGkTp0+fdmt7q9Xa\nqaukqKiI06dP88UXX/giRKEbIMW2g4PzzjuP1NRUnx3v0ksvJTIykkWLFhEREcHy5cv59ttvWbdu\nnb7NsWPHdLeE0DU0l4kIScK9997Lk08+yejRozGZTHqdJE1Q0jo0Cl2nsrKSsLAwsrKyjA5F6IFI\njSShM+QMCUIAqK6uBr4fYDU2Nvbo1DZoFX1sNhuffPKJW9trjiRXTJ48GUVRPHI6Cd0bKbbdPenV\nqxc/+MEPsFqtXH311Vx99dVAq2ivcd999zFlyhSjQuxWaEKSpLYJM2bMYP78+URHR5Obm0tpaSln\nz57V3TObNm0yOMLuQ2VlJdnZ2T1+vCgYg9GpbSIkBT9yhgQhABw+fBiAzZs3Y7PZenxqG8DYsWOJ\ni4vjvffec2v7+vr6Tl0lKSkpXHzxxSIkCToWi4WwsDAZiHdDCgsLAbj55puJi4sjMzOzjZBUVlbG\n/v37OXTokFEhdhu0ZgfiSBLsyc/PZ+vWrWzfvh1obXohjiTfsXfvXklrEwxDE3KkRpLgDBGSBCEA\naI6k06dPs2fPnh5fbBsgIiKCOXPm8MYbb1BRUdHp9lar1a3V8KKiIkpKSqitrfUqruLiYvbs2ePV\nvkLwYbFYiImJcVlbSwhN7rjjDp599lmmT58OgNlsZvfu3UBrTR/tviIOia4jqW2CI6ZMmUJVVRV/\n/vOfAZgzZw779++npqbG4MhCn8bGRrZv3653yhOEQGN01zYZtwU/IiQJQgDQHEnQmt4mjqRWFi1a\nRFRUFI888kin27rjSAK48soraW5u5l//+pfH8aiqyg033MDChQs93lcITqxWq6S1dVP69OnD/Pnz\ndVHebDZTXl6OqqocOHCAxsZGQIQkXyCpbYIjrr/+eqKjo/nrX/9KQkICM2fOBOSa8wWlpaU0NDRQ\nUFBgdChCD8XIYtstLS3iSAoBREgShABQXV1Nbm4u8fHxlJSUSLHt70hPT+ehhx7iH//4h16w0xnu\nOpLGjx9PVlaWXtjcE6qrq6mtrdWLhgqhj8ViESGph5Cbm8uZM2eoqanRU9xiY2Ml1cYHSGqb4IiE\nhASmT5+OzWYjLy+Piy++mPDwcDZu3Gh0aCGPdt8SIUkwCqNT26RGUvAjZ0gQAkB1dTWZmZmMHTuW\nTz/9lObm5h6f2qYxd+5cIiIi+Nvf/qa/9vbbb/OHP/yhzXbuOpJMJhM333wzxcXFHDlyxKNYtMln\nRUWF3u1LCG3c6fYndA/MZjPQeh1r1/J1113Hli1baG5uNjK0kEdS2wRnzJkzB4C8vDxiYmIYN24c\nH330kcFRhT4lJSVkZmbSv39/o0MReihGOpJESAoN5AwJQgA4fPgwGRkZ3HTTTXoND3EktdKnTx+u\nuuoqli1bRnNzMzabjfvuu4+5c+eyc+dOfTt3HUnQOrC12WwsX77co1i0yafNZuPrr7/2aF8hOBFH\nUs/BXkjavXs3aWlpXHXVVVitVr0YsOAdktomOOOKK65gxowZzJo1C2gtgr9161aOHz9ucGShTUlJ\nibiRBEMxOrVNhKTgR86QIPgZVVWprq6mX79+3Hrrrfzxj3/EZDKRnJxsdGhBw5w5czhy5Agff/wx\nn376KVVVVdhsNubPn69v464jCVonlKNHj+YPf/gDTU1NbsdRXl6uPzglva17oBXbFro/mZmZ9OrV\nS3ckmc1mxo4dCyDpbV1EUtsEZ0RERLBixQp+8IMfAK0NL1RV5eOPPzY4stDl6NGj7Nu3T4QkwVCM\nTG1TVVVqJIUAIiQFMcuWLeOmm24yRAkWfMfp06dpaGggIyMDgDvvvJN9+/Zx++23GxxZ8DBt2jQS\nExN58cUXWbx4MXFxcSxatIj33nuPDRs2AJ45kgAWLlxIRUUFf/nLX9zep7y8nJEjR9K7d+9OazYJ\noYEU2+45mEwmcnNz+eyzz9i1axdms5mBAweSlpYmQlIXkdQ2wV1GjRpFYmIixcXFRocSsmjFyjUh\nXBCMwMiubeJICg3kDBnE8uXLee+991xus2LFCpYtW8aKFSsCFJXgD7SObf369dNfy87OJjw83KiQ\ngo6oqCieeuopVq9ezdKlS7n++uuZN28e8fHxelvh+vp6j4SkadOmcckll/D4449TV1fn1j67d+9m\n2LBhjBgxQhxJ3QRJbetZ3HPPPWzdupUTJ05gNptRFIWCggIRkrqIpLYJ7hIWFsaUKVMoLi42xMnQ\nHfjkk0+Ijo5m1KhRRoci9GA0h74U2xacIWfIIF544QVeeOEFl9to9VoeeeQRfRAnhB7V1dUAuiNJ\ncMzcuXN57bXXSEpK4he/+AWxsbFcf/31/OMf/8BisXhcNFlRFP7rv/6Lo0eP8sYbb3S6/blz5zh4\n8CBms5n8/HzKyspkENwNkGLbPYuf/vSnLFmyhOTkZCZOnAi0dj3as2cPJ0+eNDi60EVS2wRPKCws\npKqqSh/HCp5RXFzMpZdeKs8uwVCMTG0TR1JoIGfIIIqKiti4caNTp0RjYyOVlZWMGzeOAwcO8Prr\nrwc4QsFXiJDkPrfffjsnTpxgzJgxQGvtpLNnz/LOO+947EgCGDduHBdccIFbQtKePXuA1vpKeXl5\nnD59moMHD3r+SwhBhTiSeh4333wzx48f56KLLgK+b5+9efNmI8MKaSS1TfCEwsJCAFavXm1wJKFH\nVVUVO3fu1L9DQTAKI1PbpEZSaCBCkkEUFRXR3NzMp59+6vD9yspKWlpauOuuuxg8eDD/+te/Ahug\n4DO01DYRktxDs9ICXHrppWRlZfHaa6/R0NDg8eqcoijMmTOHjRs3UllZ6XJbbeVUK9QNMvHsDoiQ\n1DOxv4+MGjUKRVEkva0LSGqb4AmDBg1i6NChUifJCz766COgdZ4gCEYiXduEzpAzZBDjx48nNjbW\n6UNWaxFvNpspKipizZo1HnWfEoKH6upq4uLi6N27t9GhhBwmk4n77ruPNWvWAN5NYm666SYURenU\nlVReXo7JZGLIkCHk5eURHR2tF7wUQhdJbRPi4uIYPny4CEldQFLbBE/Rxq5SmsEziouLSU9PZ8SI\nEUaHIvRwpEaS0BlyhgwiKiqKiRMnOhWSNHdEbm4uRUVF1NXVyaQ2RKmurhY3Uhd44IEHePrppwFI\nTk72eP/+/fszadIk3nzzTZfblZeXM3DgQKKjo4mMjOSiiy6SiWeI09LSQkNDgziSBMaPH8/69es5\nceKE0aGEJJLaJnhKYWEhFouFzz//3OhQQoampiaKi4spKipq46oUBCMwMrXNZrNJalsIIEKSgRQV\nFbFnzx62bNnS4b3y8nL69etHfHw8kyZNwmQyiUU4RDly5Ah9+/Y1OoyQRVEUHnnkEcrKyrj11lu9\nOsa0adMoLy/Xax41Nzdz4403sm7dOn2b8vJyzGaz/u+CggK+/PJLGhsbu/YLCIZhtVoBxJEkMHfu\nXKxWqy5KC56hOZIiIyMNjkQIFSZNmkRYWJjUSfKADz/8kBMnTjBjxgyjQxEEw4UkEVODHxGSDGTm\nzJn079+fwsJCPvvsszbv2U9qExMTGTt2rAhJIUpNTQ3p6elGhxHyjBgxwuvVcK3WgDag3b59O2++\n+Sa/+MUvaG5uxmazsWfPng5CUn19PWVlZUBr3bKKioou/hZCINGEJHEkCcOHD+cnP/kJr7zyCvv3\n7zc6nJCjtLSUwYMHy8BecJv4+HhGjRrF+vXrjQ4lZFiyZAmpqalcccUVRociCIamtrW0tIgjKQQQ\nIclAMjIy2LBhA3379qWoqIj33nsPaL1g27sjpk6dyubNm/XCzULoIEKS8QwbNox+/frpYqyWsrZr\n1y7+3//7fxw8eJD6+voOQpL9tnPmzGHWrFkBjlzoChaLBRAhSWjlySefJDw8nMcee8zoUEKKpqYm\nPvnkEyn+K3hMQUEBW7Zsobm52ehQgp7Tp0/z7rvvMmvWLCIiIowORxB0R5IRQpKqqlIjKQSQM2Qw\nWVlZfPbZZwwfPpzp06cTFRVFVFQUZ86caTOpnTVrFqqqsmzZMgOjFTylvr6e06dPS2qbwSiKQlFR\nER999BEtLS1s2rSJtLQ0xo8fzxNPPMH27dsB2lxz/fv3p1+/fmzcuJH6+nq++OILtm3bxrlz54z6\nNQQPkdQ2wZ7MzEweeOABli1bxpdfftnmveuuu47/+q//Miiy4KakpISzZ8+KkCR4TEFBAVarle3b\ntzNnzhzmz58PwEMPPcTdd99tcHTBxdKlS2loaGDOnDlGhyIIgLGpbeJICg1ESAoCUlNT+eSTT3jm\nmWf41a9+xYMPPsiiRYu48cYb9W3OO+88xowZw5IlSwyMVPCUo0ePAogjKQgoKiri5MmTfPnll5SU\nlDBu3DjmzZvH4cOHeemll4C2QpKiKEycOJFPPvmEr776iqamJmw2G1988YVRv4LgIeJIEtrz8MMP\nk5KSwrx58/TXrFYrq1atYvHixQZGFrwUFxcTFhbGpEmTjA5FCDHGjh0LwIoVK3jjjTd48803UVWV\nN954g1WrVhkcXfBw7tw5fv3rXzNhwgRGjRpldDiCABjftU1SqYOfcKMDEFqJi4tjwYIFLre55ZZb\nmDt3LmVlZeTl5QUoMqEr1NTUACIkBQOFhYVER0fz5JNPsnv3bm699VamTp1Knz59+Pjjj0lOTiYl\nJaXNPkVFRSxfvpzXXntNf23Tpk1MnDgx0OELXiBCktCehIQE5s+fz3/8x3+wY8cOhg8fzs6dO7HZ\nbFRUVHDgwAEGDhxodJhBxerVqxk7diyJiYlGhyKEGAMHDiQtLY3f/va3AHzzzTds2bKFI0eOAHDm\nzBkSEhKMDDEo+O///m+OHDnCP//5T5k8C0GD0cW2xZEU/IgjKYSYOXMmERER/OEPfzA6FMFNREgK\nHlJSUnjggQd4//33gVbLfWRkpF73KDc3t8MArrCwEIDXX3+drKwshgwZotdMEoIfSW0THDFnzhzC\nwsJ0h29paan+nnSYasv+/fvZsmWLpLUJXqEoCgUFBTQ2NtKnTx8A3QEMsHv3bqNCCxrOnTvH888/\nz49+9CPGjx9vdDiCoKONiY1KbZMaScGPnKEQIiUlhdtvv50///nP7Nmzx+hwBDfQVt2kRlJwMG/e\nPPr06YPJZNLt41o9Avu0No3MzEyGDRtGS0sLBQUFFBQU8Pnnnxti8xU8RxxJgiPS0tKYOnUqS5cu\npaWlhbKyMmJjY8nMzJTuqO149NFHiYqK4o477jA6FCFE0RpXPP7440RERPDWW2/p75WXlxsVVtCw\ncuVK6urqeOCBB4wORRDaYHRqmwhJwY+coRDj8ccfJyoqqtM0OCE40BxJaWlpBkciQGtayx//+Ece\nfvhh4uLiABgzZgy//OUvueWWWxzuo63Ea0LSkSNH+PbbbwMWs+A9miNJhCShPXPmzOHQoUN8+umn\nlJaWMmLECIqKivj4449paWkxOryg4IsvvmD58uU8+OCD9OvXz+hwhBBl1qxZzJ49m9tuu42RI0fS\n3NzMmDFjCA8PFyEJWLJkCQMHDmTChAlGhyIIbTAqtU1VVRGSQgQ5QyFGeno68+bN4+2332bhwoXi\njAhyampqSEhIIDo62uhQhO+47rrrePbZZ/V/K4rCyy+/zGWXXeZw+2uvvRaTycSkSZMYN24cAOvX\nrw9EqEIX0RxJktomtGf69OkkJCTw0ksvUVZWRn5+PoWFhZw6dYpt27YZHZ7hqKqqFyZ/6KGHjA5H\nCGEGDRrE0qVLiYuL091Jl1xyCUOGDOnxqW3V1dV89NFH3HzzzTJpFoIOI4UkQGokhQBy1wpBFixY\nwM9+9jN+/etf89RTTxkdjuCCmpoaqY8U4kycOJGamhpGjhxJfn4+ycnJUkclRNixYwcgjiShIzEx\nMcybN4/33nuPkydPkpeXp9cnkTpo8OGHH7JmzRoef/xx4uPjjQ5H6CZoQtLYsWMxm8092pGkqirP\nPPMMNptNT7EXhGDCqNQ2zRUs4mrw47czpCjKYkVRjiqKssPJ+4qiKC8rirJXUZQyRVEu8lcs3Y3w\n8HBee+01Zs6cybPPPitpNkHMkSNHpD5SN0Dr5hYWFsaUKVMoLi4WN2CQ89RTT/Hb3/6WG264oUM3\nPkEAuO+++8jMzAQgPz+frKws+vbty6ZNmwyOzDi++OILnnjiCe6//35ycnK48847jQ5J6EZce+21\nPP300/zwhz8kNzeXiooKmpubjQ4roOzatYsnn3ySGTNm8Morr3D33Xdz3nnnGR2WIHRAE3ICPd7V\nHFAiJAU//jxDfwWmunj/SmDodz93AtKKzAMUReG5557DZrOxaNEio8MRnCCOpO5HUVERhw8fZufO\nnUaHIjihubmZJ598kmuvvZZly5ZJO2XBIbGxsbz44osMGjSIkSNH6h2merIj6Wc/+xlPPvkkVVVV\nvPTSS0RGRhodktCNiI2N5ZFHHiE6Ohqz2UxTUxP79+83OqyA8vTTT/PEE0+watUqHnvsMV555RWj\nQxIEhxiV2qZ9nqS2BT9+E5JUVV0HnHSxyTXA62orJUCioigZ/oqnO5Kdnc29997L3/72N5YuXWp0\nOIIDREjqfhQWFgJId6cgprq6mpaWFq688krCw8ONDkcIYmbOnMm+ffvo3bs30Jp6U1FRwYkTJwyO\nLPCUlZVRVlbGK6+8wrlz57j66quNDknoxmidUnft2mVwJIFl7969XH755TQ1NfHUU0/JQocQtGh/\nm0YJSeJICn6MPEOZgH1OVtV3rwke8Pjjj3PZZZdx880389JLLxkdjmBHfX09p0+fFiGpm5GVlUVu\nbq4ISUFMVVUVAP379zc4EiHU0Gq49MT0tiVLlhAeHs7MmTONDkXoAVxwwQVAq4Bpj6qqzJs3j+uu\nu4558+Z1uzTyyspKcnJyjA5DEDpFaiQJnRESZ0hRlDsVRflCUZQvjh07ZnQ4QUXv3r15//33+fGP\nf8z999/PY4891u0euqHK0aNHAaRGUjdk2rRpfPzxxy5dC01NTezduzeAUQkaIiQJ3nLxxRdjMpl6\nnJDU0tLCsmXLuOqqq6SmmBAQ4uLiGDx4cAchqba2lt/85jd88MEH/OY3v9HHUt2B2tpajh8/LkKS\nEBIY3bVNhKTgx8gzdAgYYPfv/t+91gFVVf+kquooVVVHpaamBiS4UCI6Opq33nqL22+/naeffpq7\n7rpLV3MF49Da2mrFXIXuw80330xTUxNvvfWW020WL16M+f+3d+dxUdX7H8ffX0QQFzTFfd8xwy01\n3BeUzK1yS0vSbnZvi3XN0qvZr7TFNDVttay0RFNb1KvZgru55gqhmbulCO6ZGipwfn/AzAUFBHU4\nM/B6Ph7n4XDmzDmf8RyGmc98vp9vYKD279+fg5FBko4eTf5TQiIJ2VW4cGHVq1dPa9eutTuUHLVt\n2zbFxMSob9++doeCPKRevXqKjIxMs+7kyZOSpB49ekhSrprZzfF+gEQSPIFdQ9scn2HpkeT+7Ewk\nLZL0cMrsbcGS/rQs65iN8Xi0fPnyadq0aRo5cqQ++ugj9e3bV5cuXbI7rDztiy++kL+/v9q2bWt3\nKLjF6tevrzvuuEPh4eEZbrNp0yYlJiZq1qxZ2rp1q9q1a6czZ87kYJR515EjR+Tn56fbbrvN7lDg\ngWjpoJYAACAASURBVEJCQrR27VpdvHjR7lByjCP5Wrt2bZsjQV5Sv3597d27N83vmiOR1LJlS0kk\nkgC72D1rG/3D3J/LEknGmDmSNkiqbYw5Yox51BjzuDHm8ZRNvpN0QNI+SR9LetJVseQVxhiNHTtW\nb731lr7++mt17txZFy5csDusPOXChQuaO3euzpw5o6+//lq9evWSn5+f3WHhFjPGKCwsTBs2bMhw\n+JrjW9bw8HA9/fTTWrVqlX744YecDDPPOnLkiCpUqMCbENyQ0NBQXb58WWvWrLE7lBwTFxcnSfT0\nQ46qX7++LMtSdHS0c50jkdSgQQMVLFiQRBJgE7sSSVQkeQ5XztrWz7KsspZl5bcsq4JlWZ9alvWh\nZVkfptxvWZb1lGVZ1S3LCrIsa4urYslrnn32Wc2cOVMrVqzQ2LFj7Q4nzzh16pRCQkLUr18/NWjQ\nQOfPn1dYWJjdYcFFHnzwQRljNGvWrGvuS0hI0M6dO1WhQgXt379fGzZskMRMbznFkUgCbkSrVq3k\n6+urpUuX2h1KjomNjZUklSpVyuZIkJfUq1dPUtqG245EUqlSpVS7du1cl0gKCAiQv7+/3aEA18Ws\nbbgezlAuFRYWpn79+mny5MnOknW4VlhYmHbs2KEhQ4bo6NGjqlixolq3bm13WHCRChUqqH379po1\na9Y139bs2bNHly5d0siRI+Xn56fbb79dPXr0UEREBM3wc8CRI0foTYYb5ufnp9atW+epxG9cXJyK\nFy+u/Pnz2x0K8pCqVauqcOHC6SaSAgICFBgY6Ow3mRswYxs8id1D20gkuT/OUC72+uuvKyEhQS+/\n/LLdoeQJ27dvV//+/TV58mStX79eCxcu5EUwlwsLC0tTceTgGNbWsmVLLV68WN988406d+6smJgY\n7dq1y45Q84ykpCQdPXqUiiTclI4dOyo6Ovq6X8S8++67uWJ2xri4OGYYRY7z8vJSUFBQmobbJ0+e\nVP78+VWkSBHVrl1bhw4d0t9//21jlLfOgQMHSCTBY9g1a5tjaBufodwfZygXq1q1qp566inNmDFD\nO3futDucXC0hIUFxcXEqV66cJKlp06Zq1KiRzVHB1Xr06CE/P79rmm5HRUUpf/78CgwMVEhIiAID\nA9WxY0dJDG9ztePHjyshIYFEEm5Kly5dJEnz58/PcJuzZ8/qmWee0dSpU53rkpKSnP2GPElcXBz9\nkWCLxo0ba/Pmzc4JYk6ePKmAgAAZYxQYGCjLsrR3716bo7x5ly9f1u+//04iCR7DrqFtjgooeiS5\nPxJJudyLL76oIkWKaMSIEXaHkqsdP35clmU5E0nIG4oUKaKePXvq888/T9NIOzIyUnXq1JGPj49z\nXaVKlRQYGKglS5bYEWqeceTIEUkikYSbcvvtt6tBgwaZzsx47FjyRLOph958+eWXqly5so4fP+7y\nGG+l2NhYEkmwRceOHfX3339r/fr1kv6XSJKkwMBASblj5ra33npLSUlJqlOnjt2hAFniSCTZ1Wyb\niiT3xxnK5UqUKKERI0bo22+/1YIFC+wOJ9eKiYmRJJUtW9bmSJDTJk6cqFq1aqlbt25q3LixmjRp\nopUrV6p+/frXbNunTx+tWLGCvmUuRCIJt0pYWJg2b96cYY8Wx+t+6g+5UVFRunTpUppZqDwBFUmw\nS9u2beXt7e2s1k2dSKpZs6aMMfr111/tDPGmTZo0SSNHjtQDDzygnj172h0OkCV2DW2jR5Ln4Azl\nAf/+97915513qnfv3po9e7bd4eRKjm+mSSTlPaVLl9bq1av1yCOPqHTp0ipVqpQ6dOigxx577Jpt\n+/fvL8uy9MUXX9gQad5AIgm3Sr9+/eTl5ZVhVZLjdf/gwYOKj4+XJB0+fFiSZ1VQXLx4UefPnyeR\nBFsUKVJEzZs3TzeRVLBgQdWsWVPbtm2zM8Sb9uGHH6pt27aaPXt2mkplwJ3ZnUhiaJv7I5GUB/j5\n+WnFihVq1aqVHnnkER08eNDukHIdxwcKhrblTUWLFtW0adO0ZMkSLVmyRIsXL1arVq2u2a5mzZq6\n6667Mh0ug5uzdOlSFS1aVCVLlrQ7FHi4smXLKiQkRF999VW69zte95OSkpwNtz0xkeTo6USzbdil\nY8eO2rZtm06cOJEmkSRJwcHB2rRpk8fOeHrgwAHt27dPPXr04IMxPIpjaFtOoyLJc3CG8gh/f3/N\nmjVL3t7eGjVqlN3h5DoxMTEyxvCNLq4rLCxMv/zyi3x9fdWxY0edOXNGknTu3DnVrVtXK1eutDlC\nz7V27VotWrRIw4cP5w0IbonOnTtrz549zgRRao6hbdL/EkeemEiKjY2VJP5+wTahoaGSkr8IOH36\n9DWJpLi4uHR/Bz3B0qVLJf3vOQKeglnbcD2coTykfPnyGjp0qObMmaOtW7faHU6ucuzYMQUEBCh/\n/vx2hwI3N3DgQI0ZM0aPP/641qxZo9atW+v06dNav369du3aRS+zG2RZloYNG6Zy5cppyJAhdoeD\nXCL1B9yrHTt2zDmceffu3bpy5YozuZRRXyV35KhIIpEEuzRq1EiFChXSd999p6SkpGsSSZK0ceNG\nu8K7IREREVq8eLEiIiJUqVIl1apVy+6QgGyxe2gbiST3xxnKY4YPH66AgAANGzYswzLhc+fO5XBU\nnu/YsWMMa0OWFCpUSC+99JLefvttLV68WNHR0Zo9e7Y2bdokSc5/kT3z58/Xxo0b9corr6hgwYJ2\nh4Ncok6dOipfvryzf0tqx44dU82aNVWpUiX99ttvOnLkiJKSklS1alX9/vvvunDhgg0RZx+JJNjN\n29tbjRs31vfffy9JaRJJQUFB8vPz87hE0qhRo9S9e3d9++23Cg0NtW2YEHCj7Jq1jR5JnoNEUh7j\n7++vl156SStXrkwzXbnDkiVLFBAQoF27dtkQneeKiYmh0TayLTQ0VDVq1FBERITzTfL27dudjXuR\nNVeuXNHIkSNVt25dDRgwwO5wkIsYYxQaGqply5Y5y+0dHK/7tWvX1u7du51Db+6++25J0p49e3I8\n3hvhGNpWqlQpmyNBXhYcHKzTp09LSptI8vb2VpMmTTwukRQTEyNfX19dvnxZ99xzj93hANnmSCTZ\nNbSN5Kv7I5GUB/3rX/9S9erV9Y9//EOhoaGaN2+e874FCxboypUr+uyzz+wL0ANRkYQbFRoaqpUr\nV2rjxo0qV66crly5ou3bt9sdlkf5+OOPtXfvXo0bN07e3t52h4NcxtHL7Ooh4Y7X/cDAQO3evVuH\nDh2S9L9Ekqf0SYqLi1Px4sWZTQq2cgxhk9Imkhz3Xf0ly7Rp09x2JuLExETFxcXp2Wef1bp163T/\n/ffbHRKQbXYPbaMiyf2RSMqDfHx8NGPGDAUGBurgwYPq27evJk+eLMuynOX7s2fPvubbV6QvMTFR\nsbGxVCThhnTs2FEXLlzQ2bNn9eSTT0ryvF4Qdvrrr780ZswYtWnTRl26dLE7HORCoaGhyp8/v778\n8kvnur/++ksXLlxQ2bJl1axZM50/f16zZs2SJLVv315eXl4elUhiWBvsdtdddzlvX51IatmypS5f\nvqwNGzY4140fP14TJkzIsfiy48SJE0pMTFSFChXUvHlzKivgkewe2kaPJPfHGcqjWrVqpZUrVyo6\nOlo9e/bU0KFDNX36dP3xxx8KCQlRTEwMs0dl0YkTJ5SUlEQiCTekXbt2zm9d7r//flWuXJk+Sdkw\nceJEHT9+XG+++SZv1uESJUqUUOfOnTV79mwlJCRISq5GkqSyZcuqe/fuKlSokJYvX66yZcvK399f\n1apV84gh4pZladeuXapYsaLdoSCPK1u2rCpXrizp2kRS27Zt5e3t7fyy88qVKzp8+LB27dqly5cv\n53is1+N4faBSHZ6MiiRcD4mkPM7X11eff/65ypYtqyeeeEKS9O6778rf31/Tp0+3OTrPwBsG3Iyi\nRYsqODhY/v7+CgwMVHBwsH766SfnB1Zk7NSpU5o0aZL69Omjpk2b2h0OcrGwsDDFxsZq+fLlkuSc\nna1cuXIqVKiQevbsKUnOD8JBQUH65Zdf7Ak2G7Zv367du3cz9AZuITg4WH5+ftdMmFCkSBE1a9bM\nOXvi77//rsTERF25csUtZ0hMnWgGPJUjkZTTFUn0SPIcJJKgQoUK6ZVXXtGVK1dUo0YN1alTR//6\n1780d+5cRUVF2R2e2zt69Kgk3jDgxr355pv65JNP5OXlpX79+ikmJkYzZsywOyy3N3fuXF24cEEv\nvPCC3aEgl+vatauKFSvm7B949QfFsLAwSf9LJNWvX1979+7VxYsXcz7YbAgPD5ePj4/69OljdyiA\nRo0apY8++ijd+0JDQ7Vt2zadOHFC+/fvd66PjIzMqfCyzJFo5n0hPJldzbYdiSsqktwfiSRIkgYO\nHKgWLVo43wyPHDlSxYoV04gRI2yOzL0dOHBAQ4YMUeHChVWrVi27w4GHat68uXr37i1J6t69u1q0\naKGXXnrJY6YPzwnpVWiFh4erXr16ql+/vg0RIS/x9fXVP/7xD82dO1ejR4/Wvn37JP2vErVdu3Zq\n2rSp2rRpI0mqV6+ekpKSFB0dbVvM15OQkKA5c+aoS5cuKl68uN3hAAoKCnK+D71ax44dZVmWli9f\nrgMHDjjXu+MXno5Ec5kyZWyOBLhxdlck0SPJ/TG9DSQlT6+6du1a58+33XabXnjhBQ0bNkwbNmxQ\ns2bNbIzOfXXv3l1nzpzRsmXLeCOOW8IYowkTJqh58+aaOnWqnn/+ebtDst3WrVvVsmVLrVixwvla\ntGfPHm3atMltm60i9xk/frxOnTqlMWPGSJIKFy4sf39/ScnfnKbubeZIbkZFRbntsMtFixYpLi4u\nww/ugDtp3LixihUrpoiICJUoUUK+vr4KDAx024okR4yAp7K7RxKJJPfHGUKGHn/8cRUsWFCff/65\n3aG4pdOnT2vnzp36z3/+k2a2EeBmNWvWTM2aNdPnn3+e498EuaOff/5Z8fHxeu6555z/Hx999JG8\nvLz04IMP2hwd8gpvb2/NmDFDX331ld5//30tWrQowx4OVapUUeHChd3yQ66UXI00atQo1a5dW926\ndbM7HOC68uXLpw4dOigiIkL79+9XtWrV1KBBA2dFUnx8vIYOHarY2FibI02uSKJvJjydXUPbHBVJ\nDG1zfySSkKHChQvr/vvv17x583Tp0iW7w3E7jkaqDKuBK4SFhSk6OtptP4jmJEc/jA0bNmjy5Ml6\n4YUX9NZbb+mhhx7izTpylDFGvXr10pNPPql27dpluJ2Xl5eCgoLcctiNJE2fPl27d+/WuHHj5O1N\ncTo8Q2hoqI4ePaoVK1aoWrVqql+/vmJjY3X8+HGtWrVKkydP1pw5c+wOU8eOHaM/EnIFY0yOf6Hp\nOB4VSe6PM4RMhYWF6ezZs/r222/tDsXtOD7g16tXz+ZIkBv16dNH+fPn18yZM+0OxXb79+9XrVq1\nFBQUpOeee05vvPGGBgwYwMyScGv169dXZGSk21UVJiUlaezYsWrevLnuvfdeu8MBsqxjx46SpD//\n/FPVq1d3fpG3ZcsWbdy4UZKc/9opJiaGRBJyBS8vL9sqkkgkuT/OEDIVEhKiMmXKMINUOqKiolSy\nZEmaKcIlSpQooS5duuiLL75QfHy83eHYypFIWrdundasWaMtW7ZoxowZVFLArdWrV09//vmnDh06\nZHcoaaxZs0aHDx/W4MGDmV4ZHqVKlSqqWbOmJKl69epq1qyZfH19tWzZMrdJJCUlJSk2NpZqWeQK\nxhh6JCFDnCFkytvbW0888YSWLFli+x9ndxMZGal69erxRhwuM3jwYMXFxemDDz6wOxTbWJalAwcO\nqHr16ipSpIhatWqlO++8k987uL327dtLkhYsWGBzJGmFh4erSJEiVCPBI4WGhkpKTiT5+fmpVatW\n+vHHH/Xzzz+rQIEC+v33352zptnh5MmTSkhIoCIJuYIdyRxHIokeSe6PRBKua+jQoSpdurSGDx/u\ndiX6dklMTFR0dDT9keBSISEhCg0N1WuvvaYTJ044y33zkuPHj+vChQuqXr263aEA2VK7dm01adJE\n4eHhthw/vb/XFy9e1FdffaWePXuqYMGCNkQF3Jw+ffrI399fDRs2lJScWNq1a5fOnDmj/v37S1Ka\nGRRzmiOJRSIJuQFD25AZzhCuq3Dhwho9erR++uknTZw40e5w3MK+ffsUHx9PfyS43Pjx43X27FmV\nKlVKJUuW1LJly1xynLi4OLVq1UqDBw92yf5vlKPRNokkeKKwsDDt2LFD0dHROXrcadOmqU6dOjp/\n/nya9V9++aX++usvhYWF5Wg8wK3SunVrnT171jl0zFGhJElPPPGE8ufPb2sFvWMoK0PbkBswtA2Z\n4QwhSwYNGqRevXpp+PDhGj16tN3h2O7nn3+WxIxtcL0GDRrou+++0+uvv67y5curS5cu6Ta/X7p0\nqebPn39Dxzh+/LhatmyptWvX6quvvnKrykMSSfBkffv2lbe3d45XJa1du1a//fabJk2a5FwXHx+v\n0aNHq2HDhmrbtm2OxgPcSqmHNgcFBal06dLy9/dXgwYN1LBhQ23YsCHHYpk6daoeffRRjR49Wpcv\nX9Y333yjokWLqlGjRjkWA+AqXl5eOf6ekESS56BTKbLE29tbc+fO1SOPPKJXXnlFPXv2VFBQkN1h\n2WLlypV66qmnVK1aNd1+++12h4M8oFOnTurUqZOeeOIJtW/fXv/85z+1d+9eFSpUyLnN8OHDdfTo\nUd13333Z/uM7e/Zs7du3Tw8//LBmzpypQ4cOqWrVqrf6adyQ/fv3yxijKlWq2B0KkG0lS5ZUp06d\nNHv2bI0dO/aW9nyIiYnJsOrh8OHDkqQJEyaobdu2KlSokBYuXKjDhw/r008/5Q06cg0vLy/9+9//\n1tmzZ+Xl5aUWLVpo6tSp+vvvv+Xn5+fSYyclJenZZ59V/vz5df78eRUoUEDz589Xv379VKBAAZce\nG8gJdlYk0SPJ/fFOAlmWL18+TZkyRUWLFtWIESPsDscW8+fPV6dOnVSpUiWtWbNGPj4+doeEPOS2\n227Te++9p2PHjmnKlCnO9RcuXFBUVJROnDihyMjIbO83IiJCgYGBGjJkiCT7Z71Jbf/+/apYsaJ8\nfX3tDgW4IWFhYTp69KhWrVp1y/b57bffqnz58lqzZk269x8+fFjBwcG6fPmy2rZtqyZNmuj1119X\np06dFBIScsviANzByJEjNX78eElSx44dFR8fr7Vr17r8uEePHtWlS5c0YcIEtWvXTi+88IIuXLjA\n0FHkGvRIQmY4Q8iW4sWLa9SoUfruu++0YsUKu8PJEYmJierVq5eaNGmi3r17684779SaNWtUvnx5\nu0NDHtSiRQvdd999Gj9+vE6cOCFJ2rp1q/MP/dKlS7O1v/j4eK1evVqhoaEKCgqSn5+fWyWS9u3b\np2rVqtkdBnDDunXrJn9/f82cOfOW7C8hIUHDhg2TlFwhm979R44cUfv27RUdHa3Fixdr8eLFWrJk\nyQ0PfwU8RevWreXj46OIiAiXHyv10Os333xTlmWpSpUqatmypcuPDeQEYwxD25AhzhCybfDgwapU\nqZKGDx+e41lqOxw8eFDffPONEhIS9Pjjj2vp0qUqXry43WEhD3vjjTd08eJFvfrqq5L+V0FUqVKl\nbL95Xr9+vf7++2+FhobK29tbTZo0cZtEUlxcnDZv3qxmzZrZHQpww/z8/NS7d2998803unDhgnN9\nTEyMfvnll2zvb/r06dq9e3eGSd+YmBglJiaqcuXKqlWrlrp27aquXbuqc+fOLh/qA9itUKFCatGi\nRY4nkho3bqwJEyZo4sSJfABGrmFHRRJD2zwHr3TItgIFCui1117T1q1b9eWXX9odjss53ii88847\nev/999P0pQHsEBgYqEGDBmnq1Knat2+fNm7cqBo1aqhXr1766aefdPHixSzvKyIiQvnz51ebNm0k\nScHBwdqxY4cuXbrkqvCzbM6cOUpMTHRO6Qx4qoEDB+rChQv65JNPnOueffZZtWvXzlnGn1UfffSR\nGjdurIceekibNm265ttiR3+kypUr33zggAcKDQ1VVFSUYmNjXXqc/fv3y9vbW5UqVZIkPf/88+rZ\ns6dLjwnkJDsrklI31Yd7IpGEG/LQQw+pfv36euGFF9ziA6crORJJDK+BO3n55Zfl4+OjQYMGaf36\n9QoODlZoaKguX76sH3/8Mcv7iYiIUPPmzVW4cGFJcvZVcWV/iSlTpqhJkyb6448/Mt0uPDxcjRo1\noqk9PF6LFi3UoUMHvfrqq/rzzz8lSevWrdOpU6e0devWLO/nypUrio6OVrt27RQcHKwzZ85o7969\nabYhkYS8LjQ0VJL07rvvZvohuE+fPjfV83P//v2qXLmyvL2Zuwi5kx2ztjm+XKEiyf2RSMIN8fLy\n0ptvvqmDBw9q6tSpdofjUvv371eBAgVUtmxZu0MBnMqWLasPP/xQP/30k+Li4hQcHKx27dqpWrVq\nGj16dJaqHI4fP67t27c733RLyY1KS5curdGjR7vszcPy5cu1ZcsWtWjRwpmovdquXbu0bds2mpYi\nVzDGaPz48Tp16pTGjx+vI0eO6OjRo5KUrSE4e/bs0eXLl1WvXj0FBwdLurY5viOR5KiSAPKahg0b\n6qGHHtLYsWP1wgsvpLvN5cuXtXDhQk2YMEG//vqrpOSegRMnTtRff/2VpePs379f1atXv2VxA+7G\njqFtjveeDBF1f5wh3LDQ0FB16NBBr732ms6ePWt3OC6zf/9+VatWjRc0uJ2wsDB98803ql+/vjp3\n7iwfHx+NHTtWUVFRmj179nUfv2zZMklKk0gqXLiwRo8erbVr12rx4sUuifvw4cMKCgrSuXPn9Mwz\nz6S7zRtvvKECBQqoX79+LokByGmNGjVS79699eGHHzpnWytSpEi2GuQ7ZmWsX7++6tSpI39//3QT\nSSVLllTBggVvXfCABzHGaObMmRo0aJDGjRunDRs2XLPN7t27deXKFSUlJWnkyJGSpIULF2rYsGF6\n7bXXsnQcEknI7Ywxts3aRkWS++OTMW7Km2++qVOnTiksLEx///233eG4xIEDB3ijALd13333aceO\nHapataokqXfv3mrcuLFefPHF6/5OOhrHN2zYMM36Rx99VLVr19bLL7/skpgPHz6sNm3aZDgD5Pbt\n2zVr1iwNGTJEpUuXdkkMgB0effRRnTlzRq+88op8fX312GOPaf369VmugIiKilL+/PlVu3ZteXl5\n6a677tKPP/6ohIQE5zaHDx9mWBvyPC8vL02ePFllypTRsGHDrqmwjYqKkiQ9+OCD+u9//6vt27c7\nqwPffvtt/f7775nu/8yZMzp79izvD5Gr0SMJmSGRhJvSsGFDvf/++1qyZIkaNmyou++++5oPhZ7M\nsiwSSfAojmGnf/zxh959990Mt7MsSxEREerQocM13/rkz59fgwcP1o4dOxQVFaUFCxbo9ddfvyXx\nnT17VufOnVPlypX19NNPq2LFitfMADly5EiVKFHipnpXAO4oJCREZcqU0W+//aZGjRqpa9euSkhI\n0PLly7P0+MjISN1+++3y8fGRJD311FM6cOCAPv30U+c2JJKAZI4K23Xr1um///1vmvsiIyPl4+Oj\nKVOmyMfHRzNnzlRERIRatGghKXmYd7du3fTzzz+nu+/UM7YBuRWztiEzJJJw05588kl9+eWXKlWq\nlKKiovTwww9na9aoq0VHR6eZItlOcXFxunDhAm8U4FHatWunLl26aOzYsTp16lS62+zatUsxMTFp\nhrWl1rdvX3l7e+u9997ToEGDNGbMGMXHx6e77Z49e7I8vDV1I+D0ZoA8cOCAfvzxRz377LMqWrRo\nlvYJeApvb289+OCDkqS77rpLLVq0ULly5TRu3LgsfesbFRWlevXqOX/u3r27WrZsqdGjR2v+/Pla\nsGABiSQgFUeF7YgRI9JU7kVFRalu3boqWbKkunbtqmnTpuno0aMaOHCgPvzwQwUEBGjLli1q3759\nun3MSCQhL7AjkeQY2kZLEffHGcIt0atXL61Zs0bz5s3T0aNH9fbbb9/Qfv766y81btw4y+PTXY03\nCvBU48aN019//aWxY8eme/+qVaskJVdIpCcgIED33HOPPv74Y50+fVpXrlzR9u3b0922devWeuqp\np7IU19UzSl09A+SsWbNkjNHDDz+cpf0BnmbgwIHKly+fQkJC5OPjo1dffVWbNm3SN998k+njTp48\nqZiYGNWvX9+5zhijCRMm6NSpU+rZs6d69Oih+Ph41a1b19VPA/AI3t7eGj9+vH777bc0lXuRkZHO\n36WwsDDnF6AdO3bUwIEDtW7dOm3fvl01atRQ165dNW/ePOdj4+LiNG7cOPn5+fH+ELmaXUPbSCJ5\nBs4SbqnWrVurW7duGjdunLMpaHZs3rxZly5d0vfff++C6LLPkUiqVq2azZEA2XPHHXdo4MCBeu+9\n93To0KFr7o+MjFTx4sUzrVxwzJjWsWNHSdfODiVJf/75p+Li4jR//nydO3fuunFdnUjKly+fxo8f\nr4MHD+rFF19UeHi42rZtq4oVK153X4AnCgoK0rFjx9SlSxdJ0oABA1S3bl0NGzZMR44c0eTJkxUc\nHKw9e/akedzChQslKU1FkiQFBwfr0KFD2rFjh3bs2KGdO3dq4MCBOfJcAE/QvXt3tWjRQs8884zK\nli2rp556SnFxcc7fpc6dO6t48eKqVatWmr+JZcqU0erVq9WsWTP169dPZcqUUZkyZVS9enX99ttv\nmj9/Pk3tkavZNbSNRJJn8LY7AOQ+U6ZMUZs2bdSmTRstXrxYrVq1yvJjHR9UIyMjFRsbqzJlyrgq\nzEwlJSVp6tSpWrhwoYwxqlKlii1xADdjzJgx+uKLLzRq1KhrZnFzfBubWTPDe++9V6+++qoe5h1M\nwwAAGfhJREFUe+wxNW3aNN1EkiMxFB8fr6+//lr/+Mc/Mo3p8OHDKlCggEqVKuVcFxoaqscee0wT\nJ06UpAynawZyi5IlSzpv58uXT5988olCQ0NVt25dnTt3Tt7e3mrZsqWefPJJeXl56fTp03r33XfV\nvHlztW7d+pr9lStXTuXKlcvJpwB4DMcsblOmTNHBgwf1wQcfSJKzIsnHx0efffaZfH19r3ls0aJF\n9cMPP2j8+PGKjY2VlPw7O3DgQDVp0iTnngRgAy8vL1sqkuiP5BlIJOGWq1atmtatW6fQ0FCFhobq\nyy+/VLdu3TJ9TEJCgry9vbVx40YVLFhQFy9e1LJly9S/f/+bjicxMVFeXl7Z6v6/bNkyDR48WJLU\nsmXLdN9cAO6uQoUKevrppzVp0iRNmDDB+UEzMTFR0dHReuyxxzJ9vI+Pj1588UVJyVUPmzZtumYb\nRyLJ19dX4eHhWUokVapUKc3vozFGH330kQICArRw4UL17NkzW88T8HTBwcFavXq1evTooYEDB+qJ\nJ57QvffeqzFjxji3ue+++zR79mz+HgE3oFq1anrnnXdkWZbGjh2r2bNn684773Ten9n7VD8/P40e\nPToHogTcix1D2xyf2+D+OEtwiUqVKmnt2rUKCgrS/fffr23btmW4bVxcnEqUKKFp06Zp06ZN6tmz\npwICArR06dKbjiMpKUlVq1bVlClTsvW48PBwFStWTBcvXtSaNWtuOg7ALoMGDVJSUpLmzJnjXHfg\nwAFdvHgxTa+V6wkODtbhw4d17NixNOsdiaRHH31Uq1at0u7duzPdT0aNgI0xGjt2rHbt2iV/f/8s\nxwXkFg0bNtSBAwf09ttvKzAwULt371ZiYqJzWbBgAcNogJtkjNGoUaO0a9cuJnQArsMYw9A2ZIiz\nBJcJCAhQRESEbrvtNg0bNizDjPacOXN07tw5Pffcczp+/LiaN2+uDh06KCIi4qaz4LGxsfrjjz/0\n/vvvZ3lf58+f1/z589WnTx/5+fllq5IJcDe1atVS06ZNFR4e7lzn6F92da+VzAQHB0u6tk/S4cOH\n5evrq5deekmFCxd2DkuzLEvvvfeePvzwwzS/e8woBWTs6ko9Ly8v5wIAQE6yq0cSQ9s8A+9M4FLF\nihXT//3f/2nFihX64IMPtGnTpmsSOuHh4SpfvrzOnz8vKfkDa5cuXRQbG6t169bd1PEd1RL79+9P\nt79LapZlacuWLXrrrbd08eJFZ6NhwNOFhYUpMjJSs2fP1u7duxUVFaV8+fJla2anRo0ayd/fX4sW\nLUqz3jFUrXTp0ho+fLgWLFigzz77TIMHD9bTTz+tJ554QkOGDNGKFSsUERGh48ePk0gCAABwc8za\nhsxwluByjz/+uGrWrKnBgwcrODhYjz76qBISEiRJu3bt0rZt2/T888/roYce0m233aY77rhD9913\nnwoWLJimiuJGOBJJkjLdV2JiogYPHqwmTZro5ZdfVo0aNdSiRYubOjbgLvr27StfX1/1799ft99+\nuz799FPVrl1bBQoUyPI+fH191atXL3399dfOaZKltBVGQ4cOVYUKFfTII4/ogw8+0HPPPadnnnlG\n77zzjkJCQnT33XdLkgIDA2/tEwQAAMAtZUdFEj2SPAdnCS7n4+OjzZs3a/Xq1RoxYoRmzJihqlWr\nqnbt2mrfvr3y5cunfv366dNPP1VkZKS8vb1VuHBh9ejRQ/PmzVN8fLxzX7t371a7du105MiRLB3b\nkUjq2rWr5s2bl+YDcGrPP/+8PvjgAw0ZMkSrV6/WmjVrGNKGXCMgIEC//PKLVq1apa5duyomJiZb\nw9ocwsLCdP78eec05FLaRFKhQoW0Y8cOrV69Wjt27NDEiRM1ZcoUbd++XatXr9bq1au1ceNG3X//\n/bfsuQEAAODWsyORZFkWiSQPwaxtyBFFixZV69at1bp1a9WpU0fff/+9877g4GCVLl1aklSxYkXn\n+rCwMM2aNUvffvutevXqJUl6//33tWrVKv3f//2fZsyYcd3jHj58WLfddptGjBihli1basqUKddM\nLZ6QkKDPPvtMffv21eTJk2/F0wXcTs2aNVWzZk01b95ckydPVkhISLb30bp1a1WqVEnh4eF68MEH\nFR8fr7i4uDRD1UqUKJFmenJjjBo0aHBLngMAAAByhl2zttEjyTOQSEKOe/jhh/Xwww9fd7uQkBBV\nqFBBkyZNUs+ePZWQkKC5c+fK19dXn3/+uZ5++mnVq1dP3t4ZX8aOaokWLVro3nvv1bhx4zRw4ECV\nLl3a+SK1ZcsWnT17lioJ5An58+fX8OHDb+ixXl5eGjBggF577TVFRUXJz89Pkuh5BAAAkMt4eXnZ\n0iOJUSGegboxuK18+fJp9OjR2rhxo+bPn68ffvhBJ0+e1Mcff6yiRYvqzjvvVPHixbV27doM95F6\n2M24ceN08eJFlS9fXhUqVNCBAwckSRERETLG3FCFBpDXDBkyREWLFtWIESOcQ0dJJAEAAOQuzNqG\nzJBIglsbMGCA6tatqyFDhmjkyJEqWbKk+vbtq+XLl+v1119X0aJF9eyzz6b7ImdZVppEUmBgoH74\n4Qe9+uqrOnfunEaNGiUpOZF05513qkSJEjn63ABPVLx4cY0aNUrff/+983eIRBIAAEDuQ7NtZISh\nbXBr3t7e+uCDDzRo0CCdPXtWw4YNU/78+dWoUSM1atRIFSpU0IABA/TVV1/pgQceSPPYM2fO6Pz5\n82k+5Hbo0EEdOnTQpUuX9Nprr6l79+7auHGj/vOf/+T0UwM81uDBg7Vs2TJFR0erZcuWqlChgt0h\nAQAA4Baya2gbiSTPQCIJbq9169bas2dPuvc99NBDmjRpksaMGaM+ffqkGVOb2bCbYcOGadq0aXrw\nwQclSffcc48LIgdypwIFCuiHH36wOwwAAAC4iF1D20gkeQbOEjxavnz5NHjwYP3666/aunVrmvsy\nSyT5+/tr27ZtWrRokVauXKkWLVrkSLwAAAAA4O7smLWNHkmeg0QSPF7v3r3l6+ur8PBwScm9kX78\n8UfNnz9fUsb9W8qXL69u3bqpbdu2zA4AAAAAACnsqEiiR5Ln4CzB4xUrVkzdunXTnDlzdPnyZQ0Z\nMkSdOnVSeHi4ypYtq4CAALtDBAAAAACPwdA2ZIazhFwhLCxMJ06cUJEiRfTOO+9oyJAhOnjwoH77\n7TeqjQAAAAAgG+wa2kYiyTPQbBu5QufOnfXGG2/o9OnTCgoKUv/+/UkgAQAAAMANsGvWNnokeQYS\nScgVvL29NWLECLvDAAAAAACPZ4yhRxIyxFkCAAAAAABOdiSSLMsikeQhOEsAAAAAAMDJjqFtiYmJ\nDG3zECSSAAAAAACAk12zttHn1jOQSAIAAAAAAE529UiiIskzuDSRZIzpZIz5zRizzxhzTSdkY8xA\nY8wJY8yOlGWQK+MBAAAAAACZs2NoGz2SPIfLZm0zxuST9L6kjpKOSNpsjFlkWdauqzadZ1nWYFfF\nAQAAAAAAso4eSciMK9N9TSXtsyzrgGVZlyXNlXSvC48HAAAAAABukh1D2+iR5DlcmUgqL+mPVD8f\nSVl3tZ7GmChjzNfGmIoujAcAAAAAAFyHMSbHK5KSkpKoSPIQdg9AXCypimVZ9SQtlfR5ehsZY/5p\njNlijNly4sSJHA0QAAAAAIC8xI5Z2xITE+mR5CFceZaOSkpdYVQhZZ2TZVmnLMu6lPLjJ5LuTG9H\nlmVNsyyrsWVZjUuWLOmSYAEAAAAAgH1D20gkeQZXnqXNkmoaY6oaY3wk9ZW0KPUGxpiyqX7sLulX\nF8YDAAAAAACuw45m2ySSPIfLZm2zLCvBGDNY0o+S8kmablnWTmPMK5K2WJa1SNIzxpjukhIknZY0\n0FXxAAAAAACA67NjaBs9kjyHyxJJkmRZ1neSvrtq3Uupbo+UNNKVMQAAAAAAgKyzY2hbYmIis7Z5\nCOrGAAAAAACAkx1DzKhI8hwkkgAAAAAAgJNdQ9vokeQZOEsAAAAAAMDJrlnbqEjyDCSSAAAAAACA\nkzEmx2dtS0xMpCLJQ3CWAAAAAACAkx1D2yzLIpHkIThLAAAAAADAyY5EUmJiIkPbPASJJAAAAAAA\n4GTH0LakpCQZY3L0mLgxJJIAAAAAAICTXbO2UZHkGUgkAQAAAAAAJy8vL1sqkuiR5Bk4SwAAAAAA\nwIlZ25AZzhIAAAAAAHAyxtgytI1EkmfgLAEAAAAAACd6JCEzJJIAAAAAAIBTTg9tsyyLiiQPwlkC\nAAAAAABOOV2R5DgWiSTPwFkCAAAAAABOJJKQGc4SAAAAAABwMsZIUo4Nb3MkkuiR5BlIJAEAAAAA\nACdHZVBOJZISExPTHBfujbMEAAAAAACcHAmdnBre5khYkUjyDJwlAAAAAABwjZyuSGJom2cgkQQA\nAAAAAJxyuiLJcRxHbya4NxJJAAAAAADAya5EEhVJnoFEEgAAAAAAcLJr1jZ6JHkGzhIAAAAAAHDK\n6YokeiR5FhJJAAAAAADAiR5JyAyJJAAAAAAA4GTX0DYqkjwDiSQAAAAAAODkqEjKqUSSY2gbPZI8\nA2cJAAAAAAA4OSqScnpoG4kkz8BZAgAAAAAATnb1SCKR5Bk4SwAAAAAAwIkeScgMiSQAAAAAAOCU\n0xVJ9EjyLJwlAAAAAADglNM9khyVTySSPANnCQAAAAAAONk1axtD2zwDiSQAAAAAAOCU04kkmm17\nFs4SAAAAAABwyumhbfRI8iycJQAAAAAA4GTXrG0kkjwDZwkAAAAAADjl9KxtjuPQI8kzkEgCAAAA\nAABOdiWSHJVQcG8kkgAAAAAAgJNdQ9uoSPIMJJIAAAAAAIBTTlck0Wzbs3CWAAAAAACAk11D20gk\neQbOEgAAAAAAcGLWNmSGswQAAAAAAJzokYTMkEgCAAAAAABO9EhCZjhLAAAAAADAyVGRRI8kpIez\nBAAAAAAAnBwJHYa2IT0kkgAAAAAAgBOztiEznCUAAAAAAOCU00Pb6JHkWThLAAAAAADAya6hbSSS\nPANnCQAAAAAAONk1tI0eSZ6BRBIAAAAAAHByDG3LqYokx9A2x3Hh3kgkAQAAAAAAp5xOJDmOQ0WS\nZyCRBAAAAAAAnG5maNvJkyez/RiabXsWzhIAAAAAAHC60VnbFixYoHbt2unAgQPZehw9kjwLiSQA\nAAAAAOB0I7O2Xbx4Ue+8844sy9KWLVuydTwqkjwLZwkAAAAAADg5EjqxsbHat2+fJOns2bP69ddf\nM3xMeHi4Tpw4IV9fX0VFRcmyLG3cuPG6yajdu3frzz//THNcuDdvuwMAAAAAAADuwzG0bdy4cSpY\nsKBWrVqlt956S999953Wrl2rAgUKpNn+1KlTmj59utq3b6+kpCRFRkZq6dKlGjp0qN555x21b98+\n3eOcPXtWffv2VUJCgiSGtnkK0n0AAAAAAMDJURkUHx+v06dP69dff9W6desUHx+vrVu3SpKuXLmi\ngQMHavz48Zo6dari4+M1ZMgQBQUF6eDBg5o9e7Ykae3atRkeZ+PGjUpISJCvr2+a48K9UZEEAAAA\nAACcHBVJDrNnz1ZcXJwkaf369WrRooXmzZunLVu2OPsh9e7dW9WqVVP9+vUlyZlwWr9+va5cuaI5\nc+bo+PHjkiRfX1/169dP69evl7+/v2bOnKnt27dfU+kE90QiCQAAAAAAODkqg+rVq6f4+HgtXrxY\nklS1alWtX79e58+f10cffaS77rpLbdq00YIFC/Tkk09Kku644w4ZY2RZlnr37q2vvvpKkyZN0qxZ\ns1SgQAEZYxQfH699+/Zp586datq0qWrUqKEaNWrY9nyRPdSNAQAAAAAAJz8/P0lS9+7d1bx5c1mW\npSpVquj+++/X3r17NXToUJ05c0ZDhw7Vww8/rAULFqhkyZKSpMKFC6tWrVoKDAzUgAEDJEmzZs3S\nXXfdpc2bN2vz5s0aPHiwli9frtjYWDVv3ty254kbQyIJAAAAAAA4Va5cWdOnT1fv3r3VrFkzSVKz\nZs2ct9evX6+RI0eqbt266T7+rbfe0pQpU1S5cmWVK1dOkjR06FDnkLmwsDBn4olEkudhaBsAAAAA\nAEijadOmkqQmTZqoc+fO6tWrl2rWrKkHHnhATZo0UadOnTJ8bOXKlZ23//nPf+rEiRNpkk4FCxbU\nyy+/rJ9++kkVKlRw3ZOASxjLsly3c2M6SXpbUj5Jn1iWNe6q+30lzZR0p6RTkh6wLOtQZvts3Lix\n5WjmBQAAAAAArrVz5067Q8gzMqrM8jTGmK2WZTW+3nYuG9pmjMkn6X1J90i6XVI/Y8ztV232qKQz\nlmXVkDRZ0nhXxQMAAAAAAICb48oeSU0l7bMs64BlWZclzZV071Xb3Cvp85TbX0sKMVfPMwgAAAAA\nAAC34MpEUnlJf6T6+UjKunS3sSwrQdKfkkpcvSNjzD+NMVuMMVtOnDjhonABAAAAAACQGY+Ytc2y\nrGmWZTW2LKuxo7M7AAAAAAAAcpYrE0lHJVVM9XOFlHXpbmOM8ZZUVMlNtwEAAAAAAOBmXJlI2iyp\npjGmqjHGR1JfSYuu2maRpAEpt3tJWmG5cho5AAAAAAAA3DBvV+3YsqwEY8xgST9KyidpumVZO40x\nr0jaYlnWIkmfSgo3xuyTdFrJySYAAAAAAAC4IZclkiTJsqzvJH131bqXUt2Ol9TblTEAAAAAAADg\n1vCIZtsAAAAAAACwH4kkAAAAAAAAZAmJJAAAAAAAAGQJiSQAAAAAAABkCYkkAAAAAAAAZAmJJAAA\nAAAAAGQJiSQAAAAAAABkCYkkAAAAAAAAZAmJJAAAAAAAAGQJiSQAAAAAAABkibEsy+4YssUYc0LS\nYbvjALIgQNJJu4MAXIhrHLkZ1zdyO65x5HZc48jtXHGNV7Ysq+T1NvK4RBLgKYwxWyzLamx3HICr\ncI0jN+P6Rm7HNY7cjmscuZ2d1zhD2wAAAAAAAJAlJJIAAAAAAACQJSSSANeZZncAgItxjSM34/pG\nbsc1jtyOaxy5nW3XOD2SAAAAAAAAkCVUJAEAAAAAACBLSCQBkowxnYwxvxlj9hljRqRaPzhlnWWM\nCcjk8bNTHh9tjJlujMmfsn6YMWZHyhJtjEk0xhS/6rEFjTFLjDG7jTE7jTHjUt3na4yZlxLDJmNM\nlVv/7JHbufH1PdQYs8sYE2WMWW6MqeyK54/cz4XXeFFjzGJjTGTK9ftINo9fNeW1e1/Ka7nPrXze\nyDvc+BpPd79AdrnrNZ7q/neMMedvxXNF3uOu17dJ9roxZo8x5ldjzDNZflKWZbGw5OlFUj5J+yVV\nk+QjKVLS7Sn3NZRURdIhSQGZ7KOzJJOyzJH0RDrbdJO0Ip31BSW1S7ntI+knSfek/PykpA9TbveV\nNM/u/y8Wz1rc/PpuJ6lgyu0nuL5ZbmRx5TUu6QVJ41Nul5R0WpJPNo7/paS+Kbc/TO93h4Xleoub\nX+PX/fvAwnK9xZ2v8ZT7G0sKl3Te7v8rFs9b3Pn6lvSIpJmSvFJ+LpXV50VFEiA1lbTPsqwDlmVd\nljRX0r2SZFnWdsuyDl1vB5ZlfWelkPSzpArpbNZPyb/4Vz/2omVZK1NuX5a0LdXj75X0ecrtryWF\nGGNMdp4c8jy3vb4ty1ppWdbFlE03ZrBf4HpceY1bkoqkvO4WVvIbtISsHD/lMe2V/NotJb+W33cT\nzxN5l1te49fZL5AdbnuNG2PySZogafhNPkfkXW57fSv5i9xXLMtKSjnO8aw+KRJJgFRe0h+pfj6S\nsi7bUsoMwyT9cNX6gpI6SfrmOo8vpuTKjuVXx2ZZVoKkPyWVuJHYkGe58/Wd2qOSvr+RuJDnufIa\nf09SHUkxkn6R9G/Hm60sHL+EpLMpr903FRfyPHe9xjPbL5Ad7nyND5a0yLKsYzcSDyD3vr6rS3rA\nGLPFGPO9MaZmVmMhkQTcWh9IWmNZ1k9Xre8maZ1lWaczeqAxxlvJFR3vWJZ1wIUxAjfKJde3Maa/\nksvGJ9zieIHsuvoav1vSDknlJDWQ9J4xxt+u4IBbwFXXeEZ/H4CcdsuucWNMOUm9Jb3rikCBG3Cr\nX8N9JcVbltVY0seSpmf1gSSSAOmopIqpfq6Qsi5DxpgfTXKD4U9SrXtZyWNTh6bzkL5KZ9jPVaZJ\n2mtZ1pT0Ykv5IF5U0qnr7AdIzZ2vbxljOkgaJam7ZVmXrrMPID2uvMYfkTQ/pZp8n6SDkgKzePxT\nkoqlvHZnKS4gA+56jWe2XyA73PUabyiphqR9xphDkgoaY/Zl54kBct/rW0quTpqfcnuBpHpZekaS\nvK+/CZDrbZZU0xhTVcm/VH0lPZjZAyzLujv1z8aYQUrOCIdcXU5ojCkqqY2k/hntzxjzmpKTRIOu\numuRpAGSNkjqpeRmxlYWnhPg4LbXtzGmoaSPJHXKzphs4CquvMZ/lxQi6SdjTGlJtSVdXTGa7vEt\ny7KMMSuV/No9V8mv5f+9saeIPM4tr/Hr7BfIDre8xi3L2impTKpjnLcsq8YNPD/kbW55fafct1DJ\nk98cVPL7+T1ZflaWG3QyZ2Gxe1FyJ/w9Su5oPyrV+meUnKlNUPLY008yeHxCymN3pCwvpbpvoKS5\nmRy7gpIbpf2a6vGDUu4rIOkrSfuU3Fitmt3/Vyyet7jx9b1MUlyq9Yvs/r9i8czFVde4kkvFI5Tc\ndyBaUv9sHr9aymv3vpTXcl+7/69YPHNx42s8w78PLCzZWdz1Gr9qG2ZtY7mhxV2vb0nFJC1JefwG\nSfWz+pxMyg4AAAAAAACATNEjCQAAAAAAAFlCIgkAAAAAAABZQiIJAAAAAAAAWUIiCQAAAAAAAFlC\nIgkAAAAAAABZQiIJAAAAAAAAWUIiCQAAAAAAAFlCIgkAAAAAAABZ8v+2dpfYileKhAAAAABJRU5E\nrkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.figure(figsize=(20,8))\n",
- "plt.plot(data_b['datetime'], data_b['cpu'], color='black')\n",
- "plt.ylabel('CPU %')\n",
- "plt.title('CPU Utilization')\n",
- "plt.axvspan(xmin=pd.Timestamp(datetime(2017,1,28,4,42)), xmax=pd.Timestamp(datetime(2017,1,28,5,41)), color='#d4d4d4')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Acceptance rate of Metropolis-Hastings is 0.0\n",
- "Acceptance rate of Metropolis-Hastings is 0.0501\n",
- "Acceptance rate of Metropolis-Hastings is 0.15295\n",
- "Acceptance rate of Metropolis-Hastings is 0.23055\n",
- "Acceptance rate of Metropolis-Hastings is 0.3038\n",
- "\n",
- "Tuning complete! Now sampling.\n",
- "Acceptance rate of Metropolis-Hastings is 0.13965\n",
- "Acceptance rate of Metropolis-Hastings is 0.2398\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAHiCAYAAABoTExbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl0pGd9J/rv8661SiWpu9WL3IuN\nd+xujLEh2DAYJ0ASPPFNLjHcwOXkQmJnnAmZTG4guRmGLOAsDGTCzM0QEuAGYxsciHHGXFYDNmax\nDW03tru9tKWWetMu1fquz/zxvO9bVVJJKqlLaPt+zvFxd216Sn2OqvSt7/N7hJQSRERERERERERE\nAKCt9QKIiIiIiIiIiGj9YFhEREREREREREQJhkVERERERERERJRgWERERERERERERAmGRURERERE\nRERElGBYRERERERERERECYZFRERERERERESUYFhEREREREREREQJhkVERERERERERJRgWERERETU\nghDiPCHEF4QQY0KICSHEx4QQ7xRCfDf684wQ4qgQ4vUN9xkUQtzY8Pf/LIT4zNo8AyIiIqKVYVhE\nRERENIcQQgfwrwCGAOwHsAfA3dHV1wJ4AcA2AO8H8AUhRO8aLJOIiIhoVTAsIiIiIprvGgC7Afy+\nlLIspaxJKR+OrhsF8FEppSelvAfAMQC/sFYLJSIiIuo0hkVERERE850HYEhK6be47qSUUjb8fQgq\nWCIiIiLaFBgWEREREc03DGCvEMJocd0eIYRo+PteAKeiP5cBZBqu27lK6yMiIiJaNQyLiIiIiOb7\nIYDTAO4QQmSFECkhxKuj63YA+PdCCFMI8b8DuBTAA9F1hwHcEl13NYBf+amvnIiIiOgcMSwiIiIi\nmkNKGQB4M4CXADgBYATAr0ZX/wDAhQDGAfw5gF+RUk5E1/0xgAsATAH4AIDP/hSXTURERNQRonnL\nPREREREtRAjxTgDvklJet9ZrISIiIlotbBYREREREREREVGCYRERERERERERESW4DY2IiIiIiIiI\niBJsFhERERERERERUYJhERERERERERERJYy1XkAr27Ztk/v371/rZRARERERERERbRqPP/74uJRy\n+1K3W5dh0f79+/HYY4+t9TKIiIiIiIiIiDYNIcRQO7fjNjQiIiIiIiIiIkowLCIiIiIiIiIiogTD\nIiIiIiIiIiIiSqzLmUWteJ6HkZER1Gq1tV4KRVKpFAYGBmCa5lovhYiIiIiIiIg6ZMOERSMjI8jn\n89i/fz+EEGu9nC1PSomJiQmMjIzgwIEDa70cIiIiIiIiIuqQDbMNrVaroa+vj0HROiGEQF9fH5te\nRERERERERJvMhgmLADAoWmf470FERERERES0+WyosGit6bqOQ4cO4fLLL8fBgwfx4Q9/GGEYLnqf\nwcFBfPazn/0prZCIiIiIiIiI6NwwLFqGdDqNw4cP46mnnsLXvvY1fPnLX8YHPvCBRe/DsIiIiIiI\niIiINhKGRSu0Y8cOfPzjH8fHPvYxSCkxODiI66+/HldddRWuuuoqPPLIIwCA9773vXjooYdw6NAh\nfOQjH1nwdkRERERERERE68GGOQ2t0QfufwpPn5rt6GNetrsL73/z5cu6z/nnn48gCDA6OoodO3bg\na1/7GlKpFJ577jm89a1vxWOPPYY77rgDf/3Xf41//dd/BQBUKpWWtyMiIiIiIiIiWg82ZFi0Hnme\nh9tvvx2HDx+Grut49tlnz+l2RERERERERERrYUOGRcttAK2W48ePQ9d17NixAx/4wAfQ39+PJ554\nAmEYIpVKtbzPRz7ykbZuR0RERERERES0FjizaIXGxsZw66234vbbb4cQAjMzM9i1axc0TcM//dM/\nIQgCAEA+n0exWEzut9DtiIiIiIiIiIjWA4ZFy1CtVnHo0CFcfvnluPHGG/FzP/dzeP/73w8A+K3f\n+i18+tOfxsGDB3H06FFks1kAwJVXXgld13Hw4EF85CMfWfB2RERERERERETrgZBSrvUa5rn66qvl\n3KHPzzzzDC699NI1WhEthP8uRERERERERBuDEOJxKeXVS92OzSIiIiIiIiIi6ogwXH+FFFo+hkVE\nREREREREdM6eO1vEoT/5Kr797NhaL6XJo48+imPHjq31MjYUhkVEREREREREdE7CUOIPv3gEszUf\nR0am13o5Td797nfjve9971ovY0NhWERERERERERE5+Tzjw/j0cEpAMDIVHWNV9OsXC7j7Nmza72M\nDcVY6wUQERERERER0cY1XnLwwQeO4pr9vXCCcN2FRY7jYGxsfW2NW+/YLCIiIiIiIiKiFfv7h46j\n7Pj485tfivN60hiZqqz1kpo4joPx8fG1XsaGwrBomf7lX/4FQggcPXo0uWxwcBDpdBqHDh3CZZdd\nhne84x3wPA8A8K1vfQu/+Iu/CAD41Kc+BSEEvv71r897vHvvvTe5bHx8HKZp4u/+7u9+Ks/pne98\nZ9PXX+ltiIiIiIiIaOsZnXWwq5DChf15hGefw8hkaV2diuY4Dqanp5Pf02lpDIuW6a677sJ1112H\nu+66q+nyCy64AIcPH8aRI0cwMjKCz33ucy3vf8UVV+Duu+9ueryDBw823ebzn/88XvnKV877GkRE\nRERERETrjeuHsHQNp0+fxv/7H27BxPe/iNGis9bLSjiOWsvk5OQar2TjWDIsEkKcJ4R4UAjxtBDi\nKSHE77S4zb8RQswIIQ5H//2nhuveKIQ4JoR4XgixocePl0olPPzww/iHf/iHpsCnka7ruOaaa3Dy\n5MmW119//fX44Q9/CM/zUCqV8Pzzz+PQoUNNt7nrrrvw4Q9/GCdPnsTIyEjLx9m/fz/e97734dCh\nQ7j66qvxox/9CG94wxtwwQUXJI0kKSV+//d/Hy996UtxxRVX4J577kkuv/3223HxxRfjxhtvxOjo\naPK4jz/+OF772tfi5S9/Od7whjfg9OnTy/4+ERERERER0dbh+AEsQ8fUlBpwXT7ydQxPltd4VXWu\n6wIAt6ItQzsDrn0Avyel/JEQIg/gcSHE16SUT8+53UNSyl9svEAIoQP4bwB+FsAIgEeFEF9qcd9l\nec973oPDhw+fy0PMc+jQIXz0ox9d9Db33Xcf3vjGN+Kiiy5CX18fHn/8cbz85S9vuk2tVsMPfvAD\n/M3f/E3LxxBC4MYbb8RXvvIVzMzM4KabbsKLL76YXD88PIzTp0/jmmuuwVve8hbcc889+L3f+72W\nj7V3714cPnwYv/u7v4t3vvOd+O53v4tarYaXvvSluPXWW/GFL3wBhw8fxhNPPIHx8XG84hWvwGte\n8xp873vfw7Fjx/D000/j7NmzuOyyy/Drv/7r8DwPv/3bv4377rsP27dvxz333IM/+qM/wj/+4z8u\n87tJREREREREW4Xjh7ANDZWKmlXkTQzjwYe/h1cc+MUl7rn6fN9HGIYAwCHXy7Bks0hKeVpK+aPo\nz0UAzwDY0+bjXwPgeSnlcSmlC+BuAP92pYtda3fddRduueUWAMAtt9zStE3shRdewKFDh9Df349d\nu3bhyiuvXPBxbrnlFtx99924++678da3vrXpunvuuQdvectbWn6NuW666SYAamvbtddei3w+j+3b\nt8O2bUxPT+Phhx/GW9/6Vui6jv7+frz2ta/Fo48+iu985zvJ5bt378YNN9wAADh27Bh+8pOf4Gd/\n9mdx6NAh/Nmf/dmCzSYiIiIiIiIiQIVFlqGhWq2fgnb/vetjrEq8BQ1gs2g52mkWJYQQ+wG8DMAP\nWlz9KiHEEwBOAfiPUsqnoEKl4YbbjAC4dkUrbbBUA2g1TE5O4pvf/CaOHDkCIQSCIIAQAn/1V38F\noD6zaHx8HK9+9avxpS99KQlz5rrmmmtw5MgRZDIZXHTRRU3X3XXXXThz5gzuvPNOAMCpU6fw3HPP\n4cILL5z3OLZtAwA0TUv+HP/d9/1lP0cpJS6//HJ873vfW/Z9iYiIiIiIaGty/RD5lJGERVbPLjz6\njftRq9WQSqXWdG0Mi1am7QHXQogcgH8G8B4p5eycq38EYJ+U8iCAvwXwL8tdiBDiN4QQjwkhHluP\n1bB7770Xb3/72zE0NITBwUEMDw/jwIEDeOihh5put23bNtxxxx340Ic+tOjj3XHHHfjgBz/YdNmz\nzz6LUqmEkydPYnBwEIODg3jf+9634kHX119/Pe655x4EQYCxsTF85zvfwTXXXIPXvOY1yeWnT5/G\ngw8+CAC4+OKLMTY2loRFnufhqaeeWtHXJiIiIiIioq3BnbMN7SWvvRlOuYj77rtvjVfGsGil2gqL\nhBAmVFB0p5TyC3Ovl1LOSilL0Z8fAGAKIbYBOAngvIabDkSXzSOl/LiU8mop5dXbt29f5tNYfXfd\ndRduvvnmpst++Zd/uWWQ80u/9EuoVCrzgqRGb3rTm/C6171uxV+jHTfffDOuvPJKHDx4EDfccAP+\n8i//Ejt37sTNN9+MCy+8EJdddhne8Y534FWvehUAwLIs3HvvvfiDP/gDHDx4EIcOHcIjjzyyoq9N\nREREREREW4PjB7ANPWkWXfmq18Eu7MCnPvWptV0YGBatlJBSLn4DIQSATwOYlFK+Z4Hb7ARwVkop\nhRDXALgXwD4AOoBnAbweKiR6FMDboi1qC7r66qvlY4891nTZM888g0svvbStJ0U/Pfx3ISIiIiIi\nak8QSuiaWOtldNz1f/lNXL2vFy8tPY53vetd+P1Pfg3/428+DPvk402nb/+0BaHEC88/h4svvhgA\n8La3vS0Z+bJVCSEel1JevdTt2mkWvRrA2wHcIIQ4HP3380KIW4UQt0a3+RUAP4lmFv1XALdIxQdw\nO4CvQA3G/txSQRERERERERHRZvPF7/4EvS/7ORw/PbnWS+k4xwth6fUB1/v6eyFyfRgbG0uOrf9p\ne2J4Gi99/1dw9GT9+81mUfuWHHAtpXwYwKLRp5TyYwA+tsB1DwB4YEWrIyIiIiIiItoEPnrn/Zh9\n8uv4+ncewW/86tofKd9JbhDCNuth0YH+Hui5XgDAmTNnsHfv3p/6moanKqh6Ab7w6CAAdRAUw6L2\ntT3gmoiIiIiIiIiW7/hYCU+PTAEATpw4scar6by4WRQPuL5gVw+MKCw6derUmq0JAB58Wo1N7u/v\nZ1i0DBsqLFpqvhL9dPHfg4iIiIiIaGl3/uAEZBgAAE6ODK/xajqvsVlkWRb29uWh5/oArGFY5Kuw\nqBYNuN6zZw/DomXYMGFRKpXCxMQEA4p1QkqJiYkJpFKptV4KERERERHRulV1A3z+sWHs6TIBAKdO\njqzxijrLD0IEoYSl66hUKkin00hbOrb39wNYy7BIhXM7szoAFRZVKpWk/USLW3Jm0XoxMDCAkZER\njI2NrfVSKJJKpTAwMLDWyyAiIiIiIlq3vvTESczWfPzCBT14EsDo6ZNrvaSOcgPV4ImbRZlMBgCw\nb88uHNH1NQuL3KhZdMNFvXgSSGYojY+Pr8kMpY1mw4RFpmniwIEDa70MIiIiIiIiorZ98ccnceGO\nHA4ItStjbLOFRVEoE5+Glk6nAQDn9WZh5fvWfBvaVQM5AMApT4VYDIvas2G2oRERERERERFtNNMV\nD+dvz0JIFV5Mjp5e4xV1VhzKWIaWbEMDgK60CaODYVEYymWNpXH8ALomgMAHAJzx62ERLY1hERER\nEREREdEqcYMQhq4hjEKLarmI2dnZNV5V58TNItto3oaWs3WIbG/HwqL/8LnD+J27D7d9e8cLYRsa\nnGjAdcXsBsCwqF0Mi4iIiIiIiIhWiR9ImJqA53nJZcPDm+dEtMZmUeM2tKxtQGR6OhYWHR6exvHx\nUtu3d4PmsMiITmfjHOT2MCwiIiIiIiIiWiV+1CxqDItOnDixhivqrPjUMdtQp6HFzaKsZUDP9WJq\nagrVavWcvkYYSpyarqHsBO2vywthG3oSFu3atRNCaGwWtYlhEREREREREdEq8UIJc05YtJmaRXO3\noTU2i/SozXP69LnNaRorOXCDECXHb/s+jh/AMjS4rgsAeOWFO6Gn82wWtYlhEREREREREdEq8YIQ\npq62oQndgND0TdYsqodFjQOus7aeHFd/rlvRRqYqAIDKssKi5m1oP3PRToh0F4ZOnT2ntWwVDIuI\niIiIiIiIVokfSBiaBt/3oRsWUt3bNmWzyJo34NroYFiktrGV3QBh2N6JaI4fwjZVWGSaJn7mJduh\npbswdPJMdH37j7UVMSwiIiIiIiIiWiWNzSLNMJDq2bGpmkVzw6K4WZSxDOh5tQ2tU2ERAFS89uYW\nuX59ZpFt29jXl0Gmq4Czo2N4fGgS1//Fg/jT//n0Oa1rM2NYRERERERERLRK/IaZRbpuwOzavu6b\nRX4QQsr2GzzA/AHXOduAZmdh2amObUMDgHKbW9EcP0i2oVmWBSEEdu/cgZmpSdzy8e9jtOhgePLc\nBm9vZgyLiIiIiIiIiFZBGEoEoYQRNYt0w4CeV2FRGIZrvbyWHD/AtR/8Br70RHsBjxuopo8uJFzX\nbZpZJIRAz/b+jjaL2g+LQlhRWGTbNgDgor17EFRm8Mrz+3Dprq62H2srYlhEREREREREtAq8KBCK\nm0WGYQK5Priuu25P5ZoouZgou3hxvNzW7R1PPUfpqUHScViUsw0AQHffjo6ERWlTBwCUnfa2oTme\nGnDtum4SFr36igOADPHRmy9Cf5eNssuwaCEMi4iIiIiIiIhWgR+orVyGFjeLdCCr5vis17lFk2V1\n1HzVbXM2UKDCoiAKi+JtaJkoLMr3bj+nsCgMJU5OVXFRfw4AUGqzDeQGzTOLAGDH9u0AgLHRs8ja\nRtuPtRUxLCIiIiIiIiJaBUlYpKvT0EzDBHLbAKzfsGiqosKiSrthkd8cFiUDrqMmULZwbmHRWMmB\nG4S4qD8PYBnb0Lz6zKI4LLr66qsBAA8++CByloFKmy2lrYhhEREREREREdEqiLehWdHMIsM0oXep\ndst6HXIdN4vaDYviAdeBWwNQbxZpmkDW0pEqbEOxWESxWFzReuLh1hfvjMKiNreONc4ssiwLAHDJ\nJZfgggsuwP3334+sbXBm0SIYFhERERERERGtAi/aomVEM4tM04SWyiOdyazfZlG8Dc1rP5QBAN9t\nbhYBQNY2YOXVtruVtovi4daX7OwCsIyZRf78bWhCCNx00034xje+ASOsoez6bZ/6ttUwLCIiIiIi\nIiJaBXNnFlmmCSEEdu3es36bRRUPwHKaRQEsQ0O1qkKduWGRnusFcO5hUTyzqP3T0ALYZvM2NAB4\n85vfDNd1ceLIDxBKoOpxK1orDIuIiIiIiIiIVkHcLIpPQ4u3Q/Vu24GzZ8+u5dIWNL2CmUW2Xg+L\n4m1oAJC1dWhRWHT69OkVrWdkqoq+rIW+nAp82hlKHYYSXiDnnYYGANdddx0KhQKe/v43AbTfVNpq\nGBYRERERERERrQI/VM0iM9mGpk4IK/Rtx5kzZ9ZyaQta7mlojh/CNhdoFlkGfEOFR9PT0ytaz8hU\nBQM9aeiaQNrUUWljZlF8QtvcbWgAYJom3vSmN+GJRx6EDAPOLVoAwyIiIiIiIiKiVVCfWSTg+z4s\nywQAdPVuW7fNovppaG0eUe+HsHQNlYoaRN0YFuVsA66mgpqZmZkVrefkVBUDPSpwUsfdLx1iOV40\nWNyYvw0NAG666SbMTk3APf1sW02lrYhhEREREREREdEq8IK4WaRmFqWibWi5wjbMzs4mbZz1ZLKs\nZha12yxyo1PHWm1Dy9gGaqEO27ZX1CwKQ4mR6SoGelQAlbP1tppAjq/Wbs85DS32xje+EbphoPL8\nD9gsWgDDIiIiIiIiIqJV4MfNIk1tQ7Oj0CLdreb4rMd2UXwaWqXNwc+OH8A29Jbb0HK2jrIboFAo\nrKhZNF5y4PphEhZlrPaOu49PaLMXaBYVCgVcduXL4Jw82vZspq2GYRERERERERHRKoibRUbcLLLj\nsEgdJ7/ewiIpJSZXMODaMurb0JoGXEfhTnd394qaRadmagCA3YW4WWSg3Mb2uCQsMufPLIpd/tIr\n4I6+iGLNW/a6tgKGRURERERERESrwA+j2TnRgOs4LLLyPQDWX1hUcQO4foispcP1QwTRgO7FOH4I\n21hgwLVtoHIOzaJ4blLWNqL/622dXta4DW3uaWixK6+8EtIpY2hoaNnr2goYFhERERERERGtgvqA\naw2+78O2TAgBWFkVFq23E9Hik9D2RNu+2jp5rKFZpOs6TNNMrsvaOgAg17WyZpHr1wdVq8db3ja0\nhQZcA8DLr3oZAODZZ55a9rq2AoZFRERERERERKsg2YamqW1opmkiaxnQsgUA669ZFJ+Etifa9tXO\nkGs3qDeLGregAQ2NoFz+3MIiPQqLLKOt08vi+5ka4HnevAHXAPCKlx0EABw/9vSy17UVMCwiIiIi\nIiIiWgV+chqaloRFaUuHKzX09PSsu7BofrOovWPq49PQGregAWrGEABk8l0r2obmBvVB1UB9W9uS\na4rCIi2MtqO1aBb1FLph9uzCiecYFrXCsIiIiIiIiIhoFcQzi0y93izKWDoqboD+/v51tw2t3ixS\nDaF2ghk3CGEZOiqVyvxmkaXColQmd07NIjNqFqnT1XxIufgsJSc6yU2Eanh1q7AIALK7LsCp48eW\nva6tgGERERERERER0SpoDDvqYZGBshNg586d67BZpMKVuFlU9dqYD+QFyTa0uc2iTDSzyM7mUa1W\n4brustbTamaRlEuHWHGzSARq/QuFRV27L8DkmRMol8vLWtdWwLCIiIiIiIiIaBX40WliRtQsMgwD\nGUtH1fPR39+/7sKiqbILTQD9eRWutN8sUgOuF9qGZqZyALDsrWjxNrQ4LEpbKnxaash1EhbJhbeh\nAUDf3osAKXHkyJFlrWsrYFhEREREREREtAr8+DQ0TZ2GNncb2noLiyYrLnoyVjKYut35QEsNuDYz\nKwyLGppFt912G/7r//0uSBmivMS64vshWHwb2s4DFwEAnnzyyWWtaytgWERERERERES0CuLT0ExN\nIAiCelgUbUObnZ1FtVpd41XWTZVd9GQtZKIGTzunoTn+0gOuNTsLAMueW+Q0nIb25JNP4vGHv4HS\njx9oo1mk1i2jsKjVaWgAsH33eTBSWTzxxBPLWtdWwLCIiDaNiYmJJYfdERERERH9tMQDrmWowo14\nZlEl2oYGYF21i6YqLnozFjLRYOqjTz+FT3/60wveXkoJ1w9h61rLAddx6LTSsMhtCItqtZpa47c+\niWPPPb/o/eKQSS7RLMrZJrK7zmdY1ALDIiLaFM6cOYPdu3fjK1/5ylovhYhoU6l5AYKQQTwR0UrE\nzaLmsEg1i9ZlWFT20JM1k9lAn/4v/xm33XbbgrdPjrY39ZbNovg0NERh0UpmFpm6gKYJ1Go1XHHV\nKwCh4U//4N8jjIK4VhxPXRf6S5yGZutI7TgfTz755KKPtxUxLCKiTeH48eNwXRcjIyNrvRQiok3l\ndX/9LXzm+0NrvQwiog3JC+LZOWpbVOPMop07dwJQH3ou5fTp0/jQhz606oHGZMVFb9ZC2tThz5zF\n0R99D9VqFb7fettXY/On1YBrTRPIWDqkoS5fSbPI0lVsUavVcP7556Pnte/EEz98BN///vcXvl8Q\nwNAEfE+dvrZwWGRA37YXxWKRv0fMwbCIiDY0LwhR84LkRTaupxIR0bkLQ4nTMzUMTVTWeilERBuS\nH0hoAgiiI9wNw0DaMlD1AmzfvgNAe82i++67D3/4h3+IY8eOrdpapZRqZlHGUqeb/eSbyXWlUqnl\nfeLtXrbZesA1oAKZ0FKXr2TAdXwSWrVaRTaThj1wKQAVoC3E8dTQbdddPCzK2QZ8Kw9AjbSgOoZF\nRLShfeiBo/jV//G95EWWYRERUefE2wuq3uKDRImIqDUvDGHqWtLMMU0T2WiLV76nD0B7YVH8HvfF\nF19cpZUCRceHH0r0Zi2EYYjST74OCKGuKxZb3qexWdRqGxoAZC0drrAhhFh2s8gL6mFRrVZDLpOB\nluoCsHi44/ghbFOH4zhqfQsMuM5YRrJFbnZ2dllr2+yWDIuEEOcJIR4UQjwthHhKCPE7LW7zfwgh\nnhRCHBFCPCKEONhw3WB0+WEhxGOdfgJEtLX9cHACJ6erbBYREa2COCwqO0ufhkNERPN5voSpa/A8\nNTsn3oYGAD509Pb2trUN7acRFk2VVQunJ2Ph29/+Nrzps7jgqtcAaCMsMsTCYZFtoOqF6O7uxuTU\nNGpe+68pjc0iFRaloaWXbgI5fgBL15KwaOFmkQ5tha2nza6dZpEP4PeklJcBeCWAfyeEuGzObV4E\n8Fop5RUA/hTAx+dc/zop5SEp5dXnvGIioogfhHjubAk1L2SziIhoFcS/BFRcNouIiFbCD0MYupgT\nFqmhz1VXDbleTrPo+PHjq7bWySgs6s1a+OQnPwk9lcVLXv3zABYOi+JtaIgGSS+0Da3k+Oju7sa3\nfzKI//Mff9j2mpxAzSySUqJWqyGTSSOTScO0U200i5YOi7K2Ac1Wa2azqJmx1A2klKcBnI7+XBRC\nPANgD4CnG27zSMNdvg9goMPrJCKaZ3CiAscPEYSSzSIiolUQh0VsFhERrYwXSBha62ZR2fWXHRat\narOoosKinAn88z//M3a/7PXQM90Alm4WSV/dt1WzKGcbGC3WUCgUMDw6ge7pattrUs0iHZ7nQUqJ\ndDqNXGggleteNCxyfTWzaDlhEZtFzZY1s0gIsR/AywD8YJGb/V8Avtzwdwngq0KIx4UQv7HcBRIR\nLeTYGfWi5YcSZ86wWURE1GnxKT5sFhERrYwfhLDmNIviY+njE9Ha2YYWhx6rGRZNltUaUSuiUqlg\n276LEegpAIs1i9SHCdJX62vVLMpYOspOgEwuj3JxFjWv/RPd4m1o8Xv8VCqFrG3AXiIscvwQtqEv\nHRZZBjTOLGppyWZRTAiRA/DPAN4jpWz5XRRCvA4qLLqu4eLrpJQnhRA7AHxNCHFUSvmdFvf9DQC/\nAQB79+5dxlMgoq3q6Jn6jyI2i4iIOi9pFrlsFhERrYQfShgNM4sMw0DWVr+GV1bQLDp+/DiklBDR\n4OlOimcWSUcFQ7lCDzxj8bBOBpWNAAAgAElEQVQoaRZ5KpRZqFlUdnyYdhahc3L5M4t00RQWZTwD\nVnapsChoOg1toQHXWVsHdBOGabJZNEdbzSIhhAkVFN0ppfzCAre5EsAnAPxbKWXyryalPBn9fxTA\nFwFc0+r+UsqPSymvllJevX379uU9CyLakp45rV60pJQYHWWziIio05LT0BgWERGtiBuomUWNp6Gl\nzXqzqL+/H8ViEdXq4luz4ve4s7OzmJqaWpW1jpccdapZUYUmXd0F+JoKWRZsFkWvE+EiYVE2Cotc\nLYXQqaC6nLAomN8sytk69HQXxsfHF7yf46n7LT3g2oAQAplcns2iOdo5DU0A+AcAz0gp/8sCt9kL\n4AsA3i6lfLbh8qwQIh//GcDPAfhJJxZORHTs7Cw0AUi3mrzAMiwiIuqcerOI29CIiFbCD0KYc2YW\nxc2ieMA1gCXbRY3vcVdrK9qzZ4s4f3s2CaO6C71whQqLSqVSy/s40ZaywFt4G1rW0lF2A5RhQ9ZK\nCEKZbHNeimoWacl7/XgbmpbOLz6zKGh/ZhEApDI5NovmaKdZ9GoAbwdwgxDicPTfzwshbhVC3Brd\n5j8B6APw36PrH4su7wfwsBDiCQA/BPA/pZT/f6efBBFtPSXHx/BkFRf15xGU65+uMCwiIuqc5DQ0\nDrgmIloRP5AwjbmnodUHXBcKBQBLD1c+MTYDCPXr+2qFRcfOFHHJzjwmJycBAIWeHjjShKZpC29D\nS5pFCw+4jgOZccdA6FYhZdh2u2ihmUVI5TE1NYUwbB06OV59ZpEQAobRegJP1orDIjaL5mrnNLSH\nASy6IVJK+S4A72px+XEAB1e8OiKiBcTDrV+2t4DDj00nlzMsIiLqHC+QANQvA/EbdiIiap8Xxqeh\nqfeojQOuq26AbVk1XLlSqSz6OJOzZRg9u+BPnsTx48c7vs6ZiodTMzVcvLMLk4+psKi3pxfVkQnk\ncrmFt6FFoY/vqufXslkUhUW+kQJkCOnWUHMDdKXMJdeltqHpzWFRqENaOYRhiOnpafT29s5flx/A\nNlWzyLbtBWc8ZW31b2Gls2wWzcFXfCLakOLh1ofOKyAoqWbR9u3bGRYREXWQG9Q/+eXcIiKi5fP8\nEOac09Ay0cyishMk4Uq5XF70cUrlCvRMN7p7elelWXTsrAqDLtmlmkWGYaDQnUfVC5DP55vCopGR\nETzyyCMA6s2iOCxaaMA1AAg7BwAInXLbJ6LF29Di9/jpdBpZ20BgqZBtoa1o6jS0eli0EEPXYBsa\nzEx2wWbRbbfdhr//+79va72bCcMiItqQjp0pImcbOH97DmFFNYv27dvHsIiIqIPibWgA8NSxZ/GJ\nT3xiDVdDRLTx+GEYNYvqp6EZugbL0FDxfGTbbBZVaw6EbmLnnr2rEhbFH8TG29B6e3uRsVXzJ5dr\nDos+9KEP4eabbwZQf53wnYXDonjbnZVWzzV0ym1vQ3NabEPL2QZ8c/GwKG7Duq674ElosZxtwEgt\n3Cz6/Oc/jyeeeKKt9W4mDIuIaEM6elrtqU6bOoLSFDRNw8DAAMMiIqIOcqNtaABw152fwbvf/e7k\nFx4iIlqaF8h5p6EBauhz1W2/WVSt1SAMC327BlZlG9ozp4voTpvY2ZWqh0VRyJOZsw1tdHQU09Pq\nw1onCou8Rbahxc2ifbt3AADCWmkZM4sC2C1mFolUF4ClmkX6ks0iAMjYOjRr4WZRuVxOQr2thGER\nEW04UkocPTOLi3fmkTJ1BJVpdPX0IZvNMiwiIuqgxmZRKfpFZqlfaIiIqM4P1Taqxm1oAJCxDJSd\noK1mkeuH8FzVLOrpH8DQ0NCCg51X6tiZWVyyMw8hRBIWxbOV0plsU1g0OTkJ13XheV7yOuFGp44t\nNuD60r3q5LfQqaDWblgUtBhwbenQ0kuFRUFb29CAaMi1ncHMzAyklE3XBUGAWq3GsIiIaCM4O+tg\ntubjkp15pEwNQXkKXT3bkEqlGBYREXVQY1hUrqpfBBY6PnkxpVIJw8PDHVsXEdFG4fmqWTQ3LEpb\nOqqe31az6PRMFdJ3IQwL+e274bouTp061bE1hqFMTkIDMK9ZlM7kmn72x6ellctlOH4AXRNwaupo\n+1ZhUV9ObQO7+uIB9fWWsQ0tnllUrarHj5tFelqtdXx8fN59glDCC2TbzaKcbQBmGkEQzAvt4n8X\nhkVERBvAi+Pqh/aBbTm1Da08ja5ehkVERJ3mBfWwqFJRb9RX0iz64Ac/iGuvvXbeJ7ZERJudF4Yw\nWjSLspbe1Cxa7GfryFQV0vcA3US6bxcAdHQr2snpKspugEt2qbbO3LDISmfmNYsA9UGAGw2Srlar\nEEK0DGYGejK4//br8MvXXgQAkE4ZtTYOTfCDEKHE/GaRbUDYWei63rJZFH/QYbXbLLINSFOFdnO3\nojEsIiLaQE5Mqh/a+/oyahtaeQrZQh/DIiKiDmtsFlWjn68rCYvOnDmD06dPY3R0tGNrIyLaCPxA\nwtQWaBa5QXKs+2Lb0EamKpCBB820YBVUWNTJIdfPnFYBycVzmkVpU20fs9Pzt6EB9bDIisKidDq9\n4BH1Vwx0o6enAAAIa2XU/KXDIi+amzc3LMrbBoQQ6OruWTQsstsccJ21dQRGCgDmDblmWEREtIEM\nTlRg6gK7ulOwDQ1BeRqZKCyqVqv85JqIqEPcoDNhUTn6Jejo0aOdWRgR0QbhByFMvfk0NEDNLKp4\nPoQQyGazbTSLXHRlM0B+G4QQHQ2Ljp1RQdDF/Xl4nodisYi+vr56syilmkXTFRe1mpNsSSuVSuq0\nMl1DpVJpOdy6kW3bSKfTahuau/TMpaQhpDeHRYWMCn9y3YWWYZETBVG22f7MIl9XYdFCzaJcLrfk\nejcbhkVEtOGcmKhgoCcDQ9dQLhWBwEO6S4VFYRgmp00QEdG5aWwW1Worn1n01Ak1U4JhERFtNV4o\nYejavNPQMpaOiqNCjUwms0SzqAoEHjLpFMoesGfPHgwODnZsjUfPFLG3N4OsbWBqagoAmrahGekM\nHMfBq/78q7j74WeS+5XLZbUNzWwvLAKArq7utmcWOYG6jTmnWRTPQErnFwqL4mZRezOLsrYBV2Oz\naC6GRUS04QxOlLGvT70YnTlzBgBg53uRSqkf8tyKRkTUGW4QIt5RUKutfGbRTEndh2EREW01XhDC\nbDHgOmPpqERze5ZqFp0Yn4UMA2TSKczWfAwMDODkyZNLfu3f/M3fxJe//OUlb/dMdBIaUN9i1nga\nmmGr992lUgnPnjid3K+xWTQ7O4t8Pr/k1yr0FBDWyjg5PIRf+7Vfw9DQ0IK3TbaTRc2ieMteT9Qs\nsrLdizeL2pxZlLMNuAs0i+IPSBgWERGtc1JKnJioYF+vetE6e/YsAMDK9zAsIiLqMNcPkTF1mLqA\n47oAVhYWxafYPPPMM0vckohoc/EDCUObP+A6YxmouKpttFSzaHhcBRiZdBrFqoeBgQGMjIws+nWl\nlPjEJz6xZFg0W/MwOF5uGm4NxM0itWVOs9UJZ9KtYrwhnInDItvQUSwW0dXVtejXAoBCdze8iRP4\nyO+8DXfeeSe++93vLnjbxkHVtVotea9vGRq6UgaMTH7RZlG7A64ztg6Y6jmyWVTHsIiINpSpioei\n42Nvn/qBHTeLjBzDIiKiTvMCNbg0YxlwHbUNbSVhkRP9XH7m6LGOro+IaL0712aR64c4M1WMbpfG\nbE2FRcPDw4vO6XQcB2EYzmvKzPXg0VGEEnjNhdsAzA2LVLNIs9SHtKFbSa4H1OuB4wewjGU0iwoF\neOMnUC2pdS22vnhu3tywCAD6cjaQUmHR3O+D0zDgut1mkbCzLdfDsIiIaIMYnFA/sPf3NTeLtEyB\nYRERUYfFp9xkLT0Ji5Y7s0hKCddRP5eHTwwt+uk5EdFm44cyGXCt63pyWljG0uGHUjU4F2kWnZ6p\nIoyCpnwmg9mqj927d6NcLi8atMSPt1RY9LWnz2JbzsLL9vYAaA6LbEODEIAw42ZRDVOTU8l9G09D\na7dZdODAAZj5PrztTz6x5PoaB1xXq9WmsKg3a0HaedRqtXnfO8erzyxq6zQ0y4BmsVk0F8MiItpQ\nTkyoF4PGmUVC0wE7z7CIiKjD3OgUn7Slw/dWtg2t6PgIPQfCsCClxHPPPbcaSyUiWnfCUCIIJYyo\nWRSfhAYg2eJVcf1Fm0UjU1XIQIVFuUwKbhCif9ceAGg5tygIJaYrblthkeMH+NaxMdx4aT90TYVY\n8bau3t5eCCGQMXUEumrmhG4VM9NzwqIghB2FRe00i/72b/8WV/3H/w+F8y6BpmnthUUtmkW9WQu+\nmW1ac+PzAto/DS2XMiA0HelMlqehNWBYREQbyuBEGUIAAz31sMjOFeAEkmEREVGHJc0i24Dnrmwb\n2ljRgfRdmNv3A+CQayLaOrxQhR1mdBpavAUNQLLFq+IG85pFTz/9NH7hF34B1WoVJ6eqkL4K67ty\n6v1vz/Z+AGg5t+iLPz6J6//iQUxOL73N63svTKBY83Dk7r/Eww8/DEA1izRNS1pCacvAGTV2DtKt\nojg7DU3ToOu6mlnkqbCo3W1ohmEgm83A8UN0dXWtOCzalrNQ1dT3Y35YVG8ktRMW5W0V3OXyeTaL\nGjAsIqIN5cREBbu6UkiZ6gV2eHgYub6dqHkBwyIiog5zo1NuMufQLBqddSA9B9aOAxBCMCwioi3D\nD9QsHUNTzaKmsMiOm0XBvGbRd77zHTzwwAMYHBzEyFQFIlA/f7tzKrDI96mw6MSJYUyUnKavOTxZ\nQdHxcWZShR6LhTFfffosUnDxwL134jOf+QwAFRb19PRA01RUkLF0PD+pBnEXLB/l2Wn09PQgn8+j\nXC7DDdTrRLvb0AAgbemoecGSYZEzZ2ZROp1OruvNLhwWxSFTahnNIgBIZ/PJesJQYrzkoFQqwbZt\n6Lre1nPbTBgWEdGGMjhRxt5oCxoADA4Oomv7LtS8kGEREVGHxQOus5aBwF3ZzKKxkoPQd6Glcujf\ncx7DIiLaMuKwKJ5Z1BQWmXGzyJ/XLIrbLeVyGSNTVfSl1K/t3VGzKNW9HQDwjcefwXV/8SBKjp/c\nN/7zeDQUe6EwJgwlvv70WVyzR71/PnLkCAAVFvX29tbXaemoCRW27MkA1eIMent7kcvlotPQAojA\ngZSyrWYRAKRNHdUoLJrb5GnUOLNo/jY0G7DV1rBzbRZlo+Aulc0l6/nq02fx6ju+icnp2S3ZKgIY\nFhHRBnNisoL90UloYRhiaGgIhR27UWWziIio4+JPjDO2gcBXMzOW2yw6M10BAg/CsLB73wUMi4ho\ny6hvQ2vRLGrYhhY3i4o1DzUvSAKeUqmEkakqetNqnlAhr8KiaiiwY8cOvDB4AlUvwGTJTR63VFNh\n0cTM4mHREyPTGC06ePkuNfz5yJEjkFLOC4vSlg4RDX+2pItaeRa9vb3IZrPJgGvhqX1q7TaLUlFY\n1N3d3dY2NLvVaWhZC3pafb2FZhbpCCGlXHLAdbwNzUrnkvUMT1bg+CEmZooMi4iI1ruS42O85CbN\norNnz8J1XfTtHOA2NCKiVeD6asB1xtQRrjAsOj2p3ngLw0b/eefj2LFjCKNfoIiINjMv2kZlRM2i\npgHXdn3AdSaTQa1Ww6/9/fdxx5ePNjWLTk5XUYiyjp4oLCrWfAwMDGD0zGkAwGzNSx43bhZNRWFR\nuVxGEATz1vbd58cBAJf0qnUUi0UMDQ21bBYJw4LQdEi3Cr9SRKGnB7lcTm1D80NIV4VF7TaLUqaO\nmnduM4v6cha09ALNoug0NBFGg67b3IZmpbPJ974YfU9niiWGRURE693QhPoFJW4WDQ4OAgC27drD\nsIiIaBW4gYRlaEiZIjmNZ9nNookoLDJtbBs4gGq1iuHh4Y6vlYhovVl0ZtGcZhEADJ2dwshUNQlQ\nyuUySo4PW6jQo69LhSOzVQ8DAwOYHjsDAE3b0IrRnydni/XLivU/xybKLvK2gaBW/5n+5JNPzm8W\nmQaEEEhlspBeDWGtiHx3oWEbWojQUVvoltMsamdmkdsws6harc47DU3oJtLZ3PyZRdH94tetpcKi\ntKlDE4CRqodFs1FDq8iwiIho/TsxoV6I9vaqT1XisKh/93mcWUREtAri09BSmkwuW25YdDaamyEM\nC9279gPgiWhEtDV4DWHHYqehxWHEbKmMius3NYsqrg9dquCityu6Xc3Dnj17UJ48C0A1jWKlhkZM\nrFUgM1v10ZU2m2YGHTlyBJOTk+jr65u3zmw2i8CpIKwWkc0Xmrahhd7ymkVpU0PVbSMsWmRmUV9W\nBUC5rgLGx8eb7hc3i9oNi4QQyNkGNDubrCf+npbKZeRyubae12bDsIiINozBKCzaF21DGxoaAgDs\n3DMANwhhWuqFgGEREVFnuH4AS9dgioZfRJY54Ho0CotsO4XsjvMAAC+88ELnFklEtE75YdwsajHg\n2oq2oTlqGxoAOLUKym6QBDgzs0V4gUzCoq5cBpauYbbqY/eePfCrRYSeg5JT34ZWdoLovkuERTUP\n+ZSB6elpACro+fGPf4zp6el529AAoNDdBadSQuiUkc53J80iP5QIastrFqVNHTV/GWFRi21ovVm1\nNy+VL7ScWWTqIjnFc6mwCADyKRPCSqNUKiEIgmRrX7nMZhER0bo3PFVBT8ZEPqVeaAcHB9HX14fu\n6IVJGOpyhkVERJ3hRdvQLNTnXSy3WRQPWU2n05CWesM9NTXVuUUSEa1TcdhhLDbg2qs3i6TnoOz4\nSYASzx0SoQou0uk0utIGZmseuvp2AgCC0kRzsyjahlZs+FndahvabNVrahb9zM/8DB566CEAaAqL\ntudtFDImegvdmDx7CgCQynapsCj6GkG0DW05M4viZlGlUoHv+y1vF28nM6NmUTqdTq6zDA35lAEr\n293yNDTb0OE46hTPdsKinG0AVjQTqlhMZhZVKxWGRURE69140cGOfP0ThcHBQezfvx/p6OhRqTEs\nIiLqJNdXp6HFn2rn813LCotcP8R0Ud0+nU7DlTrS6TTDIiLaEuJmUavT0GxDgyaAihMkzSLp1VBx\n6tvQpqO5Q1qofganUil0pUzMVj1Y3dsAAEFxvCksikOOUrH+s7p1s8hHV0qFRbZt4xWveAVGR0cB\nNIdFt772Atx/+3XI5/M4e2pEPZ9MV9IsAgC/tvywyPHD5Patwixg8W1oQP1EtHkzi/wQtqElYdFS\np6EBQNbWERoqjJqZmUm+p06VYRER0bo3WXaTyimgtqHt27cPKVP9KPOhQdd1hkVERB3iBiFMQ8CU\nqlnUVehBuVyGlHKJeyoTZQfSV2/WM5k0So6Pnp6eZNsDEdFm5senoWnzT0MTQiBjGU0zi6TvoOwG\nSbgzG4UxomH2Tj5tYrbmQ2RVoOMX680iKWXSLCpXlgiLqh660mobWnd3N6644orkusawKGsbOK83\ng3w+j6lJFcromTyy2SzKc8KitrehRa2qdDa/4Po++9nP4qH774apC0gZwvO8eWFRb9YCUvMHXDt+\nAMvQ4Lrtb0PLpUwEZjpZTxIW1aoMi4iI1rvJsovenAqLpJQYGhrC/v37kYqaRVVXnYjGsIiIqDM8\nP4Sl69CgflHJdxcQBEHyae1SRmcdSE/dNpfJoOL6KBQKbBYR0ZbgBXGzaP7MIkCFJlWvPrMo9ByU\nHa9+Ilc0pLpxUHNXysBs1YNnF9SDlCaSmUVVL0BUZkK1Wkm+zkIzi+JmUaFQwJVXXplc1xgWxRpb\nQyKVRy6Xg+/7am1+FZqmNW0TW0zKUDFEKpNbcH0f//jH8cj9d8LS6w2hec2inI3AzGFmZqZpK5sz\np1nU1swi24CnqdupZpH6nnoMi4iI1r/xkoNtUbNobGwM1Wq1KSyqeQyLiIg6yQnUaWhGqJpF+e4e\nAO3PLRorOgh99cluNptB2QnYLCKiLcNLZu6IeaehAUDW0lF2mmcWea4Lz1NBRTEOi3wXpmlC13V0\npU3M1jxMujq0VA6WO10/uathO1q1UklONZsbxoShaiB1pc2kWfSSl7wkCVWWCotgZ5MTwkK3BulW\n0dXVBSFEW9+XuFlkZbIt1weo2XaV4kwy3BpoERZlLXimCtomJyeTyx1vZTOLPF09/szMDGZrPmQY\nIPRdnoZGRLSeeUGI2ZqP3uiYzMHBQQCItqGpFxzHD5BOpxkWERF1gJQymlkkoEUzizJd6pPsdsOi\n0aIDGYVFuSybRUS0tfhhPOB6oWaR2obWOLModOo/X0vlerMoDkrUzCIfZ2arSBe2IyxOJCFRMdqC\npmsCtVoV/f39AOaHMUXHh5RAV8pImkWGYeDyyy8HsHRYFJq5hoCritCptD2vCEDy3t1KL9wsmp6e\nRq1chGVoqFar6n4ttqHVNPW9a9yK5vgBbHN5zaJcyoCrqWbU2OQUglBCeup3CjaLiIjWsamy+mUj\n3oYWh0WNA66rbshmERFRh8SDWS1DS+ZlZPLdAJbXLIq3oeWzWZSdAIVCgc0iItoS4m1ohjZ/wDWg\nmkVVz29qFoVOfftYuaz+LH03CTzi09BOTdfQ1dcPd3YsaRaVo7BoZ1cKbrWKfF5tF5sbxsxWveix\n6s0iAMncokKhMO+5NLZrfCPV1CzyapW25xUBjWGRet7xtrtG09PT8GoVGCJcsFmkZhapkGp8fDy5\n3A3U4QyVSqXl/VrJ2QaqiHYwTKjXKDOMm7EMi4iI1q3xkvph3RdtQxsaGgKApgHX3IZGRNQ58Sk0\npq5BRM0iO6d+oYhPwGnlk5/8JF7/+tcDAEaLNaQ1tYWtO5dB2eWAayLaOvygHrovNLOo3HAaWujV\nmsKiShTM+57b1Cxy/RCDE2Vs69+F2vQYpotlfPOb38TJ0+o0s92FFDynhkwmg66urvlhUTSPJ55Z\nFIdFt912G/7kT/4Euq7Pey5xc8hIZVH26uFRVvNRLhWX1SyKP+g1Uup5N67vzEwNQVAf8q25leS9\n/dyZSNtyNrS0CqmamkVeCNvUMDw8DAAYGBhYck0524Bmq1BobFK1X3dEXy7V5iymzYZhERFtCJPl\n5rBocHAQhUIB3d3d9QHXDIuIiDomnrVhGRoQbSWzs+pN+WLNoscffxzf+ta3IKXEWNFBRlOP05XP\notLQLAqj7RlERJtVsg0tahY1noYGABlLR7VpG5qTbEPr6elBNTrRLGwMi9IqcJqueNi1ew+qMxP4\nxv/zZrz+9a/HP/z3jwIAdhfSCL0a7FQa+Xy+RbPIjx5LnYYWN4muvfZa/PEf/3HL5xKHQVa2C7M1\nL2nb5I0AxeIyw6JoZpFuN88sGhwv41V3fAPf/slQclvREBa1ahbpLcKishsgZeh48cUXkcvlktlN\ni8mlDAjThq7rmJxSTaftUUYkTIZFRETr1kRZbWPoa9iGtn//fgD1TyfYLCIi6py4WWQZGhCoXyyM\nzNJhUbVaRRiGqFQqGC06SGnqvt25DNwgRL6rACklisXiKj8DIqK11djQbL0NzUDZ9aFpGnTThvRq\nkK5qFu3evRu16EQzz21sFtUDp1de9xpsP+8l6Dl4I7Zt24axUdUs2tWdRug5sFLpRZtFaR2oVCpJ\ns2gxcRiUznWjWPOTZlFe8zA7O7u8bWhG1FwyUxBCJOs7M1uDlMCxE2fqN3bLi4ZFWlqtKw6LpJQY\nmapgT08aL774Ig4cONDW4O2cbUAIgVw+j8mo/dpjRR9qGEvPPNqMGBYR0YYQN4viAddDQ0PYt28f\nAMCOt6H5nFlERNQpTsMvOa6rAns9elO+WFgU/wyenZ3FWNGBjQC2bSOfVmF/Jqceg0OuiWizi2e/\nGQuchpaOmkUAYNgpSL8+s2jPnj1wqhVkLR2OU2uYWVR/jBte92/wHz9+P7pvvA0DAwMozqpGzJ5C\nCtJzYFip1mFRNLNI99Xg6FYziuaKw6JMvjksymgraRap9+5OIJuaT1VPfS/OjtdPNoNTWvg0tJwF\nYaZgmFYSFk1VPBRrPvb2ZpKwqB25KITL5bsxGW1Di8OiULfafm6bCcMiItoQJkouNAEU0iaklK2b\nRS6bRUREnRJvQ7ON+okyIhokutjMovjUmpmZGYwVHZjCQzqdRtZSb8RTefXpM+cWEdFm5wfxNrQF\nmkW2Og0NAHQzBUt6SVi0a9cuuLUqMraBWq3WNLMotrs7hVzKQBBK5Lu6krBodyEN6dWgLxAWxQOx\nw5oK/pfTLMp196DYsA0tBXf5zaKG9+6N64uDs7Hx+paysLZ4s0gIgUxXIQmLhibUc9rXm8Hx48fb\nDovytnqN6u7bhvHRs+q5RjP3fJ3NIiKidWui7KqqqSYwOTmJcrmcNItS3IZGRNRxbjyzSK+HRbDV\nJ8ntNItOj03BDUIYoQqLMrb6WW1H7SSGRUS02cWnoVkLbENLmzqqXoAwlBCWDRt+MrNo165dcJ0q\nMtER8HFQ0p2ub0PbVUgjH4VH2XwXSsVZWLqGbTkb0ncgTHvRbWjeCsKirkIBszUfMtqaZUp32c2i\n5L273zosmpisvz6EteKCYZFt6MjbBlK57oawSIVteVlBpVJZdrOou28HJsdVWJSJtlF7MBe832bG\nsIiINoTJsqOOxwQwGu3H3rlzJwC1RULXBGo+wyIiok5pnLUR/1yVbYRFcbNoNKrxS99tahYZafUY\n3IZGRJvJyenqvMvihqahi5ZhUcaqH9IiDBt66EI6FViptNoaJiVSImjZLMqnDORsI2nEZHJdqJRm\nkUsZyFoapO9CMxfahuYjZxtJE2k529AKhR64fogpV0UJYWUWYRguq1kU7wqozmkWVaJtaFMNHyYE\ntXLyujI3LAKA3pwFM9PVFBYJAbgzau5R22FR9H3M92zH9PgYdE3AggrVXMFtaERE69Zk1CwC6r9g\n9PT0JNenTR1VlzOLiIg6pfE0tLhZFBgZCCHaahZNRKfJBF4UFkVvxM0Mm0VEtLk8OTKNV9/xTTx9\nqjmUaZxZ1PI0tOjnYkOZFE0AACAASURBVNlVTR0tcBC6FdiZXMM2Lw+12vyZRbu71Qld+agRY2fy\nqJWLyNkGTKlCDmlYSRgjpUy+7mzNQ1fKwMyM+jndTrOoUChACIHtO3YAAIZnXEA3UJ0eU+tYQbOo\n6s1tFqkmT+Prg1etN4vSLY6w356zATuP8fFxAGob2s6uFE4NnwCw/LAoU9iGamkGGT2EdNXXrUk2\ni4iIVswLQgxPVlbt8SdKLvpy6kWyVViUMjU2i4iIOshpOA2tVqtB0w1UvBDZbLblzKLR2Rq8IEw+\nAR6fUm/2A9dR29CiT9C16KhkNouIaLMYnlQ/94anmt8Lx6G7ucDMokxDwybULISeA82rwk7XwyIT\nbtM2NNvQYOkadhXU3+OQw87k4VbLyJoa9FCFRaGutqGFYf1nM6AGXHelzSSUaadZ1NPTg69//et4\n0/92CwDg+FgZmplCcWr5YZGuCVi6hpoXoru7uyEsUt+v4uwMhBAwswV4lYW3oQHAJbvyqGjperNo\nsoJ9fWq4NdB+WBR/oJHq6gUA2F4R1eg0uorU235umwnDIiLqiM/+4ARe81cP4r89+HzTJxedMlF2\n0bdIs8g2dA64JiLqoMZtaI7jQDctVNwA2Wx2XrPI8QPc8OFv43OPDSc/g6eiZpHvOU3NIliqncRm\nERFtFtNVdWrvdMVtutwPJHRNAJAIw7DFgGsVQoyXXAgzhcCtAV4VZjqThEVG4DZtQxNCYFchhZds\nj46uj7almZkcICVs6cBzVDAUalayPaxxK5pqFpnLahYBwA033IAdver99wtjJQgzjckxNR5iOdvQ\ngOiDXm/uNjTVLCoXZ1AoFKCn80uGRVcOFBBYOUxOTkJKiaGJCvb1ZvHiiy9i27ZtyaltSzF1DSlT\ng5nvU393ZlAul6EZFopRiLXVMCwioo6YKLuQEvirrxzDv/vsj1CJaqSd4AUhZqre4tvQLL2pWbQa\ngRUR0VYSD2a1o2aRYVoou+q45LlhUdkJUHJ8nJquJp9eT0W/hPhOLZpZpH4pqkSfJLNZRESbxUx0\nFP1UxWu63AtDGJqA76v3xfMGXEez3EZnaxCmrUIetwwjlUtCDiNsDosA4HO/+Sr87s9eBKC+DU1P\nqdtbYQ2VimrEeJrZOiyq+uhK17ehLSfoibfBvTBWgm6lMHpWzQZaTrNIPXd93syieMB1pTiLQqEA\nLZWDWyktGhYdHFChku/7ODU2ifGSg33bVLOo3VZRLGeb0HPq9wu9No1SqQTdTmNmzr/rVsGwiIg6\nwvECWIaGP/r5S/HAkTP45HcHO/bYU9GnNHObRY2VWfXphJpZFIZh8qJMREQrM7dZZJgWqgs0i6rR\nUNJSzU/e1M/MqDf/rltrahZVXB89PT1sFhHRphGHCVMVF1/96lfx7W9/+3+x9+ZBkt71mefze+98\n3zfvrKsPdUsg6wBjIWQhEBYYMxg7BrwMXlvYZhywHoyXCMYOa73LjDdAzESMWRsvYTwzC14IjMNj\n7LEZDttYxl6DQRxCIHNYCKkltdRHdVdV3vne1/7xe983s46syqyq7sqq/n4iFKKz3nzzzWr0Hs/v\neZ4vACAIE8jpJDRgs1iUxXMv5WKRi9izIWpG7iwSU7Eo6ywCgIWSlp9TM7GIqTrfPnTyc3TItncW\ndTodFItFiOLkMavs855atSBrOlZXeQxtemeRmE9D6/f7iKIoF4tci4tFTDPhWT24rgtRFDd1PgHA\nc+dNaEX+TPDdJ88DQO4smlYsKmoSoHOxKLE7sCwLslpAxyGxaEsYYycZY//AGHuUMfbPjLF/u8U2\njDH2e4yxM4yxbzPGbh/52S8yxp5I//nF/f4CBEHMBm4QQZME/Jt7bkBFl3G5t39RsOYgFYtGOotM\n01x3weUF11G+4kBRNIIgiL3hR/ymPSu4llUVlhdt2VmUlZIOvCh3FmUPJr7LxaJs+o3lRahUKiQW\nEQRxZOikYlHXDvAbv/EbeNe73gUACOM4L7cGdhCLJBWeYyPybDClAF3n4o8Qees6izaSiUZMScWl\n0M6dRR7GOYt4Z1G32504gpaRiUW2H6GQHiOwC2eRPHQWAcBgMMinoQXOAOVyBVANuKlYNO77iwLD\nDSf4hOTHzl4EAJyoqHj22Wd34SySECsmwBiiQQuWZUHVCpvihdcKkziLQgC/niTJrQDuAvB2xtit\nG7b5CQA3pv+8FcB/BQDGWA3AuwC8GMCdAN7FGKuCIIgjhxvEKKQXPFOVMHD3z9nTsvgJejSGNhpB\nA4arEyQWEQRB7A9ByGNoWcG1rKhwggi6rm92FqV9DgMvyM+/g0EfAOClMTRBYNAVEZYXolKpUAyN\nIIgjQ9ZZ1LZ9XLx4MS9bDqL1zqJN09DyGJoHQdbguQ5CZwAoOmSVT/5KfBtBEIwVS2RRQEEWkchc\nuGGeNSIWSZvEojhO0PdClDQJnU5nonLrUbKOJAAopO4nYHfOomwaWnZ8mbModi3oZhGCasK1+nAc\nZ+z3B4DnXX8MwFAsktw2giDADTfcMNUxmaoEOwQkvQK/n4pFBR1d59pMLOwoFiVJspwkyTfT/90H\n8D0Axzds9lMAPpZwvgqgwhhbAvDjAD6XJEkrSZI2gM8BeM2+fgOCIGYCJ4jyMZimKqHv7d9JtWlt\njqFtFItUiZxFBEEQ+4mXTfERGTzPQyE9vyqFLcSidDW453j5Q9Gg34fAAMe28xVyXZFg+RHF0AiC\nOFJknUXNno3V1dVcLAqjGPI2nUW5s6jLY2hxHCNwbSRyAWIqFgUWF3m2E0tMTYInpD/37fwc7SZS\n7vjJxKKBHyJJsGtnUTZ9DQBMY1gePa2zSJMFeEG8tVjkWVCMIgTVgDPowbZtFAqFsfu67caTAICv\nPfYMaoaCtWUeR5vWWWSoEvpuCMGowu01YVkWCrqOruNfk32oU3UWMcZOA3ghgK9t+NFxAOdG/nw+\nfW3c6wRBHDF4DI1f8HQhwsDdv2xvc+AB2N5ZVFBEeGFMYhFBEMQ+kXUWqaKYRgB4FFhUCuPFov5w\nbLQ96MNQJTiOk9/km6oI2ydnEUEQR4sshnb50jIAoNlsIkkSBFEMaYLOost9F0weikGJrAMSP+f6\nNhd5RjuLNlLUJHRjvu9oxFlkJ5udRb1U2Mo6i6Z1FokCywWjcpGLRYIg5IsCk1LYwllkBxEY42KR\npJkQNBNJkmBlZWVbsewlt5wGAJy9cAmn6rzcGpheLCpqElb6HgSjCqu9BsuyYBgGgiiBnQpZ1xIT\ni0WMMRPAXwD41SRJejttPy2Msbcyxh5mjD2clWQRBHF4cMMYmsxPKQ+8+2fx8J//533bd8vyITCg\nom8TQ5P4+E0SiwiCIPaHIHUWZZ1Feir4MFndIobGV8271lAscqwBdFlcJxbpigTLI2cRQRBHi9xZ\ntHIZAOD7PizLQhAnO3QWDWNoTB6KQYGoIUnFInfAJ5ZtJ5YUVQlrPt9X6Azyc7QViZucRb00UpVN\nQ5vWWQQApbS3qFLmQk+xWARjbKp9FJStYmghGgUJie9ASMUiAFheXt72+z//hmMAY4idPk7VuFjE\nGMN111031TGZqoSW5UM0q+i3VzEYDPKpdN1rsOR6IrGIMSaDC0V/nCTJJ7bY5AKAkyN/PpG+Nu71\nTSRJ8qEkSe5IkuSOubm5SQ6LIIgZwg0iqLKIIAhgt1fx1D/8Gc6fP78v+25aPqq6AlHgF6FxnUUO\niUUEQRD7xnAaGoPrujD1tD9DUjcXXGfT0AZDsci1ByiIfB+ZWGSow84i27bh+9dmaShBEEeLTEho\nr13OX2s2m2kMbbyzSBQYVEnAwAshKUMxJBQ1+IkAMAF2l7swtxWLNBmX+wGYrCF0h86iWFAQCxIU\nRcnFor673lm0G7Eo6y2qjYhF06JJItwgyj+/1+vBCSLUFH58iaLnYtGlS5e2/f6SJEEpFBE5fZyq\n80loJ06cgKIoUx2TmYpgollDt7WGfr+Posl7mTL32LXEJNPQGIAPA/hekiS/O2azTwP41+lUtLsA\ndJMkWQbwAIBXM8aqabH1q9PXCII4YnhpZ1G2khGHAf7jf/yP+7Lv1sDPI2jA+BgaOYsIgiD2jyCK\nITBAErmzqKjz82siarBte11/Q15wnTqLDMOA51goCFxEGopFEmw/zM/h5C4iCOKw44URbD9CUZXg\n9Zr561wsSiBLbGzBNTCMoo1OFoOio2OHYEoBVp87i7aLoZmqBCeIIKgGPLuf348zWUXPCVEqlYbO\nonQITVHjzqJpY2jZewGgXuEi0bTl1gCgpffuGzuLyiL/XUWSDkHjQs3ly5e3FYsAoFStInZ6OFXX\n8cQTT0wdQQOGfUyiUUUcRVheXkY5FcKyEvNriUmcRXcDeBOAVzLG/in95ycZY29jjL0t3eavATwF\n4AyAPwDwvwJAkiQtAP8BwNfTf96TvkYQxBHDDWJokpBfnMRCCR/+8Ifx1FNP7XnfTctD3eRike/7\nsG17TAwtzi+kJBYRBEHsDT+MoUj8VtF1XZiGDkUUEAoKkiSB4zj5tnYaQ7PTc+/8/DwCx4LK+Ou5\nWJQWXGcPJyQWEQRx2MlcRacbBqLBerHIj2JI2ziLgGEUzRyZLCYoOu/OkVUMJnIW8X0ImgE3LYSW\nFRVMENFzg/ViUXq8ShIiDMNdOov4583X+bl8N86igsyH06zrLPIjlAQuyniCljuL4jjeUSxamJtD\n7PQxJ3l46KGH8LKXvWzqY8q+l2jw54wkSVAupTG0a9BZtFna3ECSJF8CsG0AMeFLS28f87OPAPjI\nro6OIIhDgxuudxYVX/wGuF/9E9x///34wz/8wz3tu2n5uGWRX0iyQtRNYlG6KiPIXFQisYggCGJv\neGEMWeRiked5UFUVDVOBz/jDjmVZeaGpm8bQkoAPJJifn8fTTz8NKeJ/HnYWibC9obOISq4Jgjjs\nZCLCqbqOaDD0RXBnURGyOH4aGjB0FmVxJwAQVAMrael1t7OzWJTFpwTVhDPo8+lh6fm552wQi9IY\nWuzzOPHunEX8eyzUuNC0K2eRLMANYxipSNbtduEEEaSAO1QdpkIY+c47iUWnjy8A0Xl850sPII5j\nvPGNb5z6mAxlGEPLqJaLQESdRQRBELvGDSJo8tBZJFeX8KZffDP++I//OF9N2S0taxhDa7X4RXiz\ns4hfaJlIYhFBEMR+EEQxVGkoFmmahkZRhQv+kDDaW5R1FiURP9/Pz88DAJjDnUOjMbRB2lkEkLOI\nIIjDT+4sqhuI+i0cO3kaQCoWxZM4i/g9bKk4HEPPVB2rfQ9M1tBucbfSTp1FACCoOqwBj6Fl592+\nuyGGlhZchw6/Z9+Ns+h4tYCTtQLKJe4o2q2zKIoTxBBgmiba3S6SBAg9fm0ZJCoEdfg7yb7POOr1\nOvrdNj7+8Y/jec97Hp7//OdPfUyjnUX5fstZDI3EIoIgiF3hBvE6ZxGTNZy84bmIogjdbnfX+w2j\nGB07yMWisc4imV9oIfGLJYlFBEEQe8MfcRa5rps6i1Q4ydBZlJF1FmXOooWFBQBAZPPz/2jBte0P\nC01JLCII4rCTFR/zGFoLJ57zAwC4WBRECWRpshhayRwKI0IqFgmKBisV5rfrLCqmXTtMM9DvdWHb\ndu7Y2RRDcwMYiohBn/95N2LRO155Iz7xK3fnk8J25yzi9+7ZRLR2hx9PlIpY3UgBUwoQRb7dTs6i\ner2Oixcv4otf/CLuvffeqY8HGP4eRWPotqqWS1BEgQquCYIgdosTRChsEIvUAr+A7OVhoGXx3HLD\n3F4sKijp6YycRQRBEPuCHw07i0ZjaHbMb9zXiUUBX6ne6CwKrfXOIl2REMYJjBJ/OKEYGkEQh53M\ncXJ9Q0c0aKLUWEK5XM6dRbLAJnIWVdNuHEEQwGQNK6mzKGOiziLVRK/bgWVZQ7EojaH1+/3hnwty\nvpi7mxhaQRExV1RzsWhX09BSscjLxSJ+vQgcfpw208AYg5leLyYRi7K4327FosxZpKiFXAAzTZP/\nvq5BZ9GOnUUEQRA7EccJ/DCGKouw+vzhQZA1yDq/gOzlYeB8hxeoHq8W1u1rXAwNAjmLCIIg9oMg\niqGIApIkgeu60DQNpqliEPHbx/XOovWdRY05LhZ5PX7OHhZc83O1XEht/eQsIgjikJOJCA2NIfYs\naKU66vU6dxadTiCJ209DK2wQi8xiEYwxrPY9yGoB2R3tJJ1Fmm6i0+3CsiwUTQM98OlnG51FJU1G\np7MKYHfOooxMkNptDA0YOosy8cqz+mCCmAtl5XIF3XZrIrEIAO644w4897nPnfp4gOE0tKImQVpa\nQq/Xg2EY+OCbbkfDHO/sOqqQs4ggiD3jhTx+MNpZxGQV0j48DJxvc7HoRJWX9O0UQ4tFfpInsYgg\nCGJvZDG0MAyRJEkeQ4tFfsO8sbNIYENnUbnGb9rddIx07ixKb8RjQYaqquQsIgji0NO1fTAG+On5\nTi6OiEVxDEncPoaWlSrXq9zJUkydNKt9D4o27OmZpLOoYJYQhiHW1tZgGgZUSdhccO2EKBWkPTmL\nMvYzhtbrcUeRZ/WhGlwwA4ByenyTikW7dRUBQ9GtqMlYXFwEwAWxF52q4VTd2O6tRxISiwiC2DPZ\nFBxNEmHbfIIBkzUIKj+p7k0s4vs7XtnBWZRecCJGYhFBEMR+4IU8hpadTzVNQ8NUICj8hn19DC1G\n3VSRhDw6bFb4Tbvd5UMJMrEoW7W1/QiVSoWcRQRBHHo6ToByQcalS8sAAGbUcrEojBLIwvbT0DJn\nUcUsQJIklFPhxY9iqAU93267zqLs3GoU+XsvXLgAXddRKsh5Z5HruvA8L3cWZWLRXpxFmdCUCTXT\nkFVIuEGMEydO4Jmnn0SSxHCtPgrG0KlUSe/5dxKL7r77brzuda/Dm970pqmPJaOo8r+foiZhaWkJ\nwNA9dS1CYhFBEHvGDVOxaKSzSFA0QOEn1z3F0NoOaoYCI70IttttGIax6WKryfx0FiYMkiSRWEQQ\nBLFHgrSzyPN4tExVVcyZah4NWB9DCzFfHIpFRolPkul31gCMdhalfUd+iGq1Ss4igiAOPR07QKUg\n4+LFiwCAWK+MiEXcobmts0jl58WiJsMwDFQqQ/FGGxGLthNLSqkjxkzFolarBcMwUNIk9JwwHzpw\n+fJlLhYVZDSbTSiKAl3Xx+53JxYWFvDAAw/sakx97izyI7zyla9Ep9VEsPI07EEvF72AoSC1k1h0\n7NgxfOpTn8o783aDJgsQGIlFGSQWEQSxZ9xgqxiaBuyLs8jBierQgttutze5ioDhqowbxNA0jcQi\ngiCIPeKHvLMoE4s0TUN9nFgURGiMOIsKZS4W9VrrxaJM+Le8kJxFe+Rcy4afxsAJgjg4uqmzKBOL\nfLWci0V+lOwYQ8umoRU1Cbquo1qpIE1gTSwWZfGp0ohLaNRZlEWqlpeXeQxNk3Dx4kUsLS3lca/d\n8upXv3pXgkomFrlBhFe96lUAAOfsI7D7vTyKBwC19L4/u45cSRhjMFUJJU3OxSJzZErdtQaJRQRB\n7Jk8hpY6ixRFARNE+EyGJEl7ehi40LbzCBqwjViUXnBsPyKxiCAIYh/IpqFl59NsGloWQ8v6LwC+\nMmxqEsQ4AGMMks5XhTutDZ1FmbPIoxjaXvDCCD/+/n/Enzz07EEfCkFc83ScAGVdwcWLFyHKKqxE\nQ71eR7fbRRAEkMXtp6Fl97DFVKA4ceJE3mOkj4gw28XQss6iUnnYP8SdRTJ6TpALHxcuXETfDVDU\nZCwvL+evHwTZ9cD2IywtLeG659wE9+l/wqDfXSd61WuTxdD2i+NVHcerBfzYj/0YXvnKV+L48eNX\n5XNnERKLCILYM0OxSMhHdeqKmD8M7DZmkCTJxM6i7CI5cAMSiwiCIPaBIEzWOYtUVUVVVyDJCirz\nS3j00UfzbR0/QkEWISGEKKtwwgRMKcCxuftoc2cRxdD2gu1FsP0IZ5vWzhsTBHFF6do+KgUZFy5c\nQLE2h44T5B0+ntWDJAjbTkPLYmglTcJf/dVf4b3vfW/+WubYkSQJoiiOPQZdFsEY1kXYhs6iMBeF\nnjl/EXECVHQuFh07dmwffgO7o6orAIC2zR2pt/zwy+Ce/2esraysu9ev17lT9WqJRf/tl16M3/jx\nm3H77bfj7//+76/a584iJBYRBLFn8hiaJOZikalKGOwxZrA28OGFcT4JDdhOLOIX354bklhEEASx\nD/hRDHlDwbUgMNQMBQs3PB8PPfRQvq0TRNAVEVISQpQVWF4IQeECkSRJ+QNSFkPruxRD2wtZV2Bz\n4B/wkRAE0RmJoVUbC+g6ASoVfq/qDjqQpe2dRUvlAkSBYbGsYXFxEeVyOXcWGQaPQO0kWAgCw/FK\nAaeW5vLXhp1FAebn58EYwzPnLwAAyoWDdxZVdP67aFv8PPYDL3wpEAVot1uoj9zrN2pXVyyqGkpe\nb3GtQ2IRQRB7JncWKSNikSah7/GV490+DGST0CZxFsmiAF0R0XPIWUQQBLEfbOwsyiIQDVNF6bqb\n8dRTT2FtjXcSOQF3FgmRz2MYXgimcKF/tGeiUpDBGNC0fJTLZXS7XSRJcpW/2eEnW6RZG3gHfCQE\ncW0Txwl6ToCKzsWi+sIikgQoFLnDJ7B6kAVh22loP3JjA1/6338US+XhuVJPnUWmyZ1Fkwgln3r7\n3fjVn7xtuI+RziJRFDE3N4fzF3ivUkGI0G63D1QsUiURpiqhbXMh7cQtLwJELpLV6/xeXxGF/L7/\nWnb4HBQkFhEEsWdysWjEWVRUJQzSlePdxgzOtx0AmMhZBIDnsimGRhAEsS/wziK2zlkEAA1Tgbz0\nAwCAr3/964jjhA8XkEUIcQgmybD8CIK6WSySRAE1XcHawEO5XEYQBHS+3gWOz6+7JBYRxMHS90LE\nCfLC6MVUfJGMVCyye5B26CxijK0TioBh6XXJnMxZBAB1U0WlaOTCvq7rKGkygoifo5eWlrC8vAwA\nCC1+b36QMTQAqBpyHkOLJAWFE7cCABbS6JkikVh0kJBYRBDEnsns8KOdRaa29xhaJhYdT51Fvu/D\ntu3xYlGBjwfdSizqdDq4fPnyro6DIAjiWmQ7Z1FUPQ3GGB566KH8GqArIljsg0ncWbSVWJS9f63v\n5eOQKYo2PdnvfI1iaARxoHRTV4ya+LAsC8eP8TJkQSsCAGKnB3mHaWhbkfW7lUp8P9uVW2+knJZD\nG4aBUiGraeAl1ysr/F7Y7fLhAwfpLAKAmq6glcbQXD9C+Tm3AwAW53jnkyIJePGLX4y3vOUtuOuu\nuw7sOK9VSCwiCGLP5J1F8vrOImuPMbQLHRsVTcT9v/lOPPHEE7lDaTfOoje/+c147Wtfu6vjIAiC\nuBYJ0mlomVg06ixqByJuvfVWPPTQQ7nLpaCIYFEASAoGXghF4/GJjWJR3Rw6iwCg2+1era90ZMgc\nvW3bRxjFB3w0BHHt0nW4CBT0ufhy8gQXi1gqFkVOf900tK0KrrcimxRWKU7uLMrIhPjMWQQAPSfA\n4uIimqlYZLVWABy8WFQ1lNxZZPsR5p//UoiiiFtuuhGSwCCLDMViER/+8IfH3v8TVw4SiwiC2DPD\naWijYpGcF5i22+1ddVKcbztoiDZ+53d+B+9973tzsaiWFt1tJMtlbxSLfN/H5z73OTz66KPUjUEQ\nBDEhfhhDFocF16POIi+M8cIX3YGHHnoIts+7ODRZRBL6SAS+WKAUxjuLss4igMSi3ZBdd5MEaNnk\nLiKIg6Lj8P/+/FQsOn2Sx7pcyJBlGbHTz6ehCYIAQZjs8TsruC6nzqLdiEXcWZSKRamzqNtaQ5LE\n6LZWAcxADG3EWeQEEeonb0Sr1cJLXvISlAoyFInkioOEfvsEQeyZobNoJIaminkMzff9XXVSnG87\naKhc3PmLv/iLPEY23lk0jKENBoP89a9+9auwLAuWZeVlrARBEMR44jhBGCdbOovqJheNbv7BF2Jt\nbQ1nnnwaAFCQRcShj1hUYHkR1HSKD8XQ9p/sugsAa30SiwjioOikMbTI4fed1y3O89edENVaPY2h\ncWfRpBE0YFhwXStPLxZlQjx3FqUxNCfE0tIS4iiEElhYW7kMSZJQr9cn3u+VoKor+TQ0x49QUESU\nSiUAfGKbIpJccZDQb58giD2zVcH1aGcRMP3DQJIkON+2UVXi/P0f//jHAWwjFqXOottuuw2PP/44\nnn32WZxZ6eNzn/tcvs3Zs2en/XoEQRDXHH4abVKkrZxFCgDg1M0vAAA8/PDXAfDYRBx4gCijZfnQ\nDf6Qo+v6un03igosP4KqczFpN86iOI4RRdHE2zuOg3e/+92wbXvqz5pFsugfQCXXBHGQdNIYWuRZ\nAIBj83UwBnRsH9VaDZHbhyTyaWjTiEVZZ1GtwoWTaTqLxjmLFhcXAQCFsM/LuBcXJ3Y6XSlqBh+I\n4AYRbD/K43cAUmcRjbA/SEgsIghiz7hhBEUUIAgMlmVB13WYqowoTmCko0OnnYjWtHy4QYyyNLwh\n/qM/+iMAO3QWOQHuvfdeAMB/+X8/ilf97j/iE3/5N/l7SCwiCILYmVwsGlNwDQCV48+Bqqr4p288\nDIA7i6KAF1xf7rkojHMWGfz9kchf341Y9I53vGOqHroHH3wQ999/Pz7zmc9M/VmzSFZwDZBYRBAH\nSS/rLLK5s6hWq6JckNGxA1SqtTSGtgtnURpDq1d2H0Nb11nkhnk/keJ3sby8fOARNIB3FgHcoeUE\nETR5KA6dqulYKE0ukhH7D4lFBEHsGS+IocoC4jiG4zi5swgAlHTleFpnUTYJrSjyLowXvehFsCy+\narPdNLQ4ARZOnMLdd9+NP/2T/4bYs/DYdx7BL/zCLwAAnn766em/IEEQxDWGH252FmUPK3NFfvPe\n8RLcfvvt+O63vsl/rogIfQ9MknGp58I0+UPOJrGoyB8OfJHvZxqx6InLfSRJgsceewyPPvroxO/L\nosnf+MY3Jn7PD/eXCQAAIABJREFULDMaQ/vaV76M+++//wCPhiCuXTq2j4IsYtDvAQBKpRKPVtk+\nypUqYqcHRRKmFouMNIZW0jUoirKrGJphGCjmMbQgF4sEp4Pl5eUDL7cG+DQ0AGhZPpwNzqL/9K9+\nEB944wsP6tAIkFhEEMQ+4AYRCrKY2/sNw0BRzcQi/rAwrVh0IRWLCgJfsfmlX/ql/GfbOYsAfkH8\n+Z//eZw98330Hv404ijCG97wBlSrVXIWEQRBTECwjbOolq4Erw083HHHHXj8n7+NJEmg52KRAtuP\nYBbHiEWpM8lOFAiCMPH14VzLxr/4v/8R//D9FfR6vakcq9liw9ERi7izSBQYvvjAp3H//fcjDMMD\nPiqCuPbo2AEquoxutwvTNCGKIuaLKs6sDFCu1NYVXE8jFh2vFCCLDA1ThWmau3YWabIIRRLWxdDg\ndHDx4sWZEIsyZ1Hb9mEHIQojziJDlVDUJv+dEfsPiUUEQeyZzDaa3YzzgmsuFkkF/rAwbQztfJsL\nT2rCxaLXvOY1OH78OAzDGHuxLWrDXPbP/MzPQBQldL/yZ5BUDXfddReuv/56EosIgiAmIHMWyalY\nJAhCPvJZFgWUC7yX6MSJE3AdG0ngoiCL8D0XTOQ3/1lJ6TixKJuINqmzaDWNW51ds9Hv99Hr9Sbu\nLRoVi47CVEw3iMAYsFjS0BsMkCQJms3mQR8WQVxzdJwA5QIXizKR5rU/dAyPXerDEQuInD5EAQiC\nID+HTsIrb57Hg//HKzFXVHHixImh0DMBr3/963Hffffli6u8piGEYRgQVB1+ZwXNZnMmYmi1EbHI\n8WMUlMl/R8SVh8QigiD2jBtE0GRhnbMoi6EJGi82ndZZtNx1UdQkRD6PP5RKJfzqr/4qXvGKV4x9\nT6nAP7PvhqjX67j5znuAKMD8jbdBVVWcPn2aYmgEQRATsDGGpqoqGGP5z+uGgubAzyfpxG6fi0W+\nBybzm//yGLGonhZkr/W9qcSirNR5deCh1+ORj0nfm4lF3W4XTz755ETvmWXcIIImiWiYCgYD/t2y\niaEEQVw9uk6AUioWZfGv/+mFx2GqEh5rA4hDhJ49tbOIMYb5IncT/d3f/R3e8573TPzeW2+9Fb/9\n27+dn7NLBQk9ly++ikYVrXOPA8BsOIvSGFrb8uH44boYGnHwkFhEEMSecYN4rLMIigFgerGol67U\nZD0Tpmnivvvuw1/+5V+Ofc9oDA0Abrr7JwEAxRtuBwCcPn0aZ8+ePRKrygRBEFeSrOA6cxZtjEDU\nDAVNy0OtVgMAxE4fsggEvp87iyoV/uC0USxSJRFFTULT8lGpVCa+PtipWLTSG4pFO7lWV/seVvpu\nfn0CgIcffniiz5tlnICPmK6bar5QQ2IRQVx9svvVTqeTi0WmKuFf3X4c7YifC+1eZ+ppaKPMzc3B\nMIxdH2M2AMYNIghGFZee/j4AzISzqKLz30nT8mGntRbE7EBiEUEQeyZb4dxKLPITEYVCYeoYWt8L\nUdS4WCTLMhRF2fE9o+NBAaDx/Jeh8vJfhHLrKwEA119/PVzXxcrKylTHQhAEca2ROYvUEWfRKHVT\nQcsaOosipw8h5p05mbOoNkYsAoA5U8XqYDpnke3z/a/0nHwhYadryzs/8W388h99A5ZlQZIkqKp6\nJHqL3CCGJglomApcm5xFBHFQ9N0QJW29swgA3nTXKQg6/3Pz8vLUzqL9pFSQ0XND9JwAolFF4HHX\n/iw4i2RRQEmTcLnnIkmAAjmLZgoSiwiC2DNuyKehrROL0hjawAunWjnO6LsBiqqEwWAA0zQnek8p\nn/jAHyjabozyXf8zeomGIIpx+vRpADQRjSAIYidGY2ie520Si2qGuk4sYl4foc87hTJnUb3G+zJ0\nXd+0/4ap7jqGtrw2FIh2uras9j1861wH7W4fpmniBS94wZFxFmmKiIapwnf5QAgSiwji6tNzApQK\n0rrOIgC4caGIl73sZWCSir/91H8/WLFIk9B3AnScAKJZy1+fBbEI4E7VbAoyOYtmCxKLCILYM942\nBdd9d3di0cALUdSmE4uKG2JoLcvPf7Y28HKxiEquCYIgtieIeFxXFrmzaGMMrW5wZ1G1yh88BH8A\n1+Wr1ZLChaXF+Tl88IMfxBvf+MZN+28UFaylzqJpY2iXm8Ptd3IWWX6EOAGeudyCYRi444478M1v\nfhNxHG/7vlnHyzuLVMRptx+JRQRxdYniBH1va2cRALztX7wA+i334IFP/znW1tamKrjeT7izKEDH\nDiCaXMQXRRFzc3MHcjwbqRoKLnS4WESdRbMFiUUEQewZdwuxSJUEyCLDwAtRrVanj6G5IcwpxSJF\nElCQxTyG1rJ8LJb4A85qn8QigiCISfHTKWPjnUUK4gQQ0omXgmfBcfjNvlbg511TlfDWt751y9Xr\nuqHmnUUTO4vScfGtznD7na4ttsedphfWOjAMAy960YvQ6/Vw5syZiT5zVuFdgQLqpoI4ILGIIA6C\ngcvPL0VNWtdZlPHq5y3iEx94Fxzbxte+9rUDdBbxaWgd24docIF/YWEBojgbwkxNV3AxFYsohjZb\nkFhEEMSeyboTRsUixhhMVYI1RQwtSRLcd999+N73voeBO3QWTVPqVypI6DkhojhB2/Zx0yJ/kFnp\neTBNE41Gg2JoBEEQO+CH3FmkjHMWpRPNBkECWdMBr587iwoa7ygy1PGr6A1TRccOYBZL6PV6Ew0e\nyDqLYs/OX9vp2jJIxaKVVjd3FgE49L1FWcH1nKkiIbGIIA6EbHGywCIEQbAuhpbx6pffnZ93Dq6z\nSIIfxbjc9yAa3Fk0KxE0gDuL3IC7PSmGNluQWEQQxJ5xQ37TOioWAeDOoCliaGtra3jf+96HT37y\nk9xZpMpTOYuAdPXEDdC2fSQJcPMSF4tWB7xLI5uIRhAEQYwnm4amSGxLZ1Hd4H9eG/hQzTISt587\niwydi0XmdmJRkYtNcsFAHMd5YfV2ZDG02Hfy17ZzFiVJAtuPIIsM3d4AqlbArbfeClVVD31vUTZY\nolEksYggDopMLBIifk7a6CzK+JVf+RUABygWpTUN51p2HkObhUloGVV9+HvRlYOJ6hFbQ2IRQRB7\nxvE3x9AAwFAk9KeIoWUPC81WC34UT91ZBAxz2Vlf0c0jziKAT0QjsYggCGJ78oJrUYTneZucRTWD\niz0ty4eilxA5Q2eRmRZab9c90TC52CSo/Pw+yYJCVnCdjDiLtru2+FGMME5w1w11xIGLUFAgyzJ+\n8Ad/EN/+9rd3/LxZJot/VwsSkpBf72jSJ0FcXbKBKszn56RxYtG9996LSqWy6Tx6tcimBT/btKEU\n+VCCWXMWZVAMbbYgsYggiD2RJAm8cBhDEwQhX4EujjiLut3ujoWi/X4fALDabOfvtyxrSmcRj6E1\nB/zmeaGooarLWB3wh5jTp0/jmWeeOfTlpgRBEFeSIBpOQ3Ndd5OzqJHG0JqWD0kvInSGziLTmMBZ\nlL4/Vvi2k/QW2X4ERRIQpw9miqJsKxZZHheX7n5uAwg82DE/nhMnTmB5eXnHz5tleGeRCCXhzgZJ\nVrCyskLXNoK4imTOosTji6XjxCJd1/GpT30K7373u6/Woa0jmxZ8rm2jUq3i1KlTuP322w/kWLai\npo+IRRRDmylILCIIYk946eqzmjqLsr4igD8oDNLOokliBkNn0VAs2q2zqGlxJ1HNVDBf1HJn0enT\np+F5Hi5dujTdFyUIgriGyJxFsrh1DC1bCW4NfIiFEgKrmzuLigZ3Fu3UWQQAsTSdWHSyWshjaCdP\nntzWkWSlfUU1Q4GU+OiF/LZ3YWHh0Ee2uLNIgG3zh9TS3DGEYTj1MAmCIHZPNn03TsWirTqLMu65\n5x688IUvvCrHtZHcWdSyUTVUnD17Fr/8y798IMeyFaPOIpqGNluQWEQQxJ5w0+k02ohYlGFqcj4N\nDZigiDQVi9ptvt2uO4ucYQytbqiYK6p5Z9H1118PgCaiEQRBbEceQ5O2LriWRQElTULT8iAUivCs\nXu4sKpk6GNt+hTgTiwKRi0UTxdCCEOWCDDXmotR11123rTiSdRwZigQh9NANRfTdAAsLC2g2mwjD\ncMfPnFXcIEJhJP6tN44DoN4igria9NJpaKG7vbPooMk6i/ouP4fOGjWKoc0sJBYRBLEnsukFmixs\nFotGnEXAziOOsxhap5uJReIunEUSeu4whlbVZcwX1dxZdPLkSQDAuXPnJt4nQRDEtUZWcC2LwpbO\nIgComyqalg+oXCzKhIsTcxUcrxQgCGzs/g1VQkEW4YDvd1Jnka5I0BIfoqxgYWFh+xhaOj3NUEWE\ngQtIKr57oYeFhQUkSYLV1dUdP3MWSZIETrC+K1CuLAIgsYggriaZs8gd8PvXmRWLCkOXZ0WfPbGo\nqpNYNKuQWEQQxJ7InUXSZmfRaGcRMLmzKHtokJMQcRxP7SyK4oTnsnUZkijkzqIkSbCwsABg8w31\ndy90JxrdTBAEcS3g5QXXWzuLAKBuKGgNfCSqCSRJHu998z0/gL/+tz+y42fUTQU2+EPCJGKR4/PJ\nm3LiQVT1HSdtZjE0XRHhOQ4EWcPawBt7HTgsBFGCOBku0gBAUpwHcHi/E0EcBlb7Hi51XQRBgPe/\n//1o9S0UVQn9fg/A9jG0gyRzFgGYfWcRdRbNFCQWEQSxJ9xwfAytqEpwggiGWQIwuVg06PGHBjHi\nbqDRfe5Elst+es1CPb34zBVV+GGMnhOiXq9DFMV1N9TfW+7hX37gS/jyk82JP4cgCOIo44cxFFGA\nIGzdWQTwG/yW5SNW+Dn6woULAICSaax7OBlHw1QxSCYXi7izSIQYuhCUQj5pc5zQnxVcC7GPJEnA\nZA0tyz/0YpEzEv/Orpu+3gBweL8TQRwG/v3/+A7e8fFH8OUvfxm/9mu/hm9/5QsoFWR0u10IgjDV\n4ubVRJNFKCJ/7K/MoFhULshgjHfkySLJE7ME/W0QBLEntouh1dJpN0zjF89JY2hWv8dv/sN0DPOU\nziIAeKZpo27wh5u5Iv/36sCFIAiYm5tbd0N9ucc/58nV7Qu4CYIgrhX8MIYi8dtEz/O2dhaZClYH\nHmKFn6MzsWjS8dANU0XL5VPNJuksysQi+A4SuYBKpYIoisYOT7DTGBoL+MKDoPDY3GEXi7wNXYEA\nkBiNTQshBEHsL2sDD+da9nB676ULKGoSut0uSqVSPuBlFsmiaOWRyNesIAoMlYJMrqIZhMQigiD2\nRBZDy4o2dV3Pf5YVmIYTFphmN/xh4CMJfST+LsSi9GLYsvzc1jpf5A8uWW/Rxkk4gzSqcL7tTPw5\nBEEQRxk/SsfUxzGCINjWWSQUuHv0/PnzALDltlsxV1TQtAKUy+UJY2ghCrKE2LcBRUfB5P0g464t\nVlpwjZCf+03DRPMIxNCyRZrRgmsma2jMzWFlZeUgD40gjjS2H2Ft4KHX42JR6/JFlAoyOp3OzPYV\nZWSLqbPoLAL4RDTqK5o9SCwiCGJPZGKRKouwbXudsygTixxBhSzL+YPEOLKVGgCQQxueawPYnbMI\nGDqbMmfRSn9rsajvZmKRjQcffBBf+MIXJv48giCIo0gWQ/M8ft7csuA6dW8KhSIA7izSNG3i1fW6\noaJleROJRUmSwA64syj0bAhKAVD59WacazXrLEpSl2qpaKJl+SgWi9A07dCKRc4WziIma6jW5w7t\ndyKIw8DACxFECdY6vKOou7qMksZjaLPaV5RRTEWiWewsAoCarkBXpJ03JK4q9DdCEMSeyAuut4ih\nNVKxpm2HuPPOO/GlL31p232NRgm0xMv/PJ2zaHgRbGTOolIaQxsRix577LHh57pDZ9G//4PfRL/f\nxze+8Y2JP5MgCOKokcXQXJcLLeNiaAAgaFwsunz58lQPTA1TQZwA5VJ5R+epF8ZIEj4px7cHYHoN\nicKdrOPEItsLwRgQpt+hUjLRtHwwxrCwsHBoXTij193sOikoBZSqdRKLCOIKYqduxctNfr4aNC+h\nVJBwpts9BM4i/tg/i9PQAOCGOQMaxdBmjh2dRYyxjzDGVhhj3x3z8/+NMfZP6T/fZYxFjLFa+rOz\njLHvpD97eL8PniCIg2fYWbS54DpzFjUtH694xSvw8MMPr3MPbWRULFJjJ18xnUYsKmpDDTyLoRVV\nCaokYKXPHxgyZ1FWitp3+ejT820HzWYz790gCIK4VvEjLhZt5yzKzrGCZkAQBCRJMnFfEQA0Utdn\nwSju6CzKHtJ0RYRrWxDUAkJpe7HI8iPosgjH4S7VWrmIluUDAObn5w+tsLIx/g0ATFZhVhqH9jsR\nxGEgcyuutPn5yu2s5M6imReL0sXUWRWL3vNTz8cf/Os7DvowiA1MEkP7KIDXjPthkiS/nSTJbUmS\n3AbgnQC+kCRJa2STH01/Tn/7BHEEyWNo0mZnkaFKKMgi1voeXvGKVyCKIjz44INj99Xv9/P4ghw5\nu3IWrROLUrGKMYb5krrOWeR5Hno9biPupxf/luWj1W5jZWUFQRBM/JkEQRBHjSyGtp2zKBOLGBNg\nlrijqFAoTPwZ2YKCUjAmEIv4eVpXRFiDPgRFhyds34dneSEMVcoFlXqlhOZg6zjyYcIZiX9blgVV\nVcEEEVq5tm4hhCCI/SOMYnghXyBtpTG0sN+CLiXodDozH0PLahpmNYamySJ1Fs0gO4pFSZL8I4DW\nTtulvBHAn+zpiAiCOFRkYpEQh4iiaNOY+0ZRwdrAw0te8hLIsozPf/7zY/c1GAywtLQEABADe1di\nkSqJ0GR+aqsbw4kPc6a6rrMIGJabZp1FANBpd5AkyaF9iCAIgtgPvHBnZ1Em9gBAuVoFMPkkNP5+\nfo6WCuaOYpGTOosUAXAcB5KmwwH//O2cRaNiUaNaRscJEMXJoRaLxk0hVcxqvhDSdQI8RRM+CWLf\nyAvzAbS6mUs+QdRfOyTOonQaWmH2pqERs8u+FVwzxnRwB9JfjLycAPhbxtg3GGNv3eH9b2WMPcwY\ne3h1dXW/DosgiCuMm66yROnksk1ikalibeDDMAz88A//8I5i0YkTJwAAwohYtHGfO5GtnmR9GgAv\nuV4dIxZlnUVJFMK2+UMFRdEIgriW8TeIRVuJQNWREcyVCheLduMsElRjx86iLIYGn0+tLJVK6MUK\nGGPbdhbpyjCqtVArIUmAtu1jYWEBq6uriON44uOdFUZjaIPBAKZpQpMFiAZ3Nly+fBm///89gZ/9\n0FcP8jAJ4kiRuRsBoNcfCrFO+zJ6vd7Mi0Wn6wYqujyzMTRiNtnPaWivBfDghgjay5IkuR3ATwB4\nO2PsnnFvTpLkQ0mS3JEkyR1zc3P7eFgEQVxJspvWcWJR3VCxltr+x/UW9dwAZ1YG6Pf7uVgEfygW\n6bo+1TFluezaiLOoqivoODxatslZ5AU4WSsgdocX/4sXL071mQRBEEcJL4yhjhRcb+UsUiQhj/7W\n6nUA0zmLygUZssiQKDoGgwGiKBq7bSYWJT7vH6qWS1izApTL48uxLT+EoQydRYs1Lqa0LC4WRVGE\nZrM58fHOCu6GaWiGYXDhrsAfVi9fvoxnWzZW+x788PCJYQQxi1je8PzU6/chyfxes3X+aURRNPNi\n0c/ccRJf/I0fhSzSMHRicvbz/y33YkMELUmSC+m/VwD8DwB37uPnEQQxA7hBDFlkcNMC0Y1i0VxR\nwdqAF4pmvUVf/vKX123zB//4FF7/Xx7EYDBAo9EAkxQknoXBYABd1yGK02WYs4kP61a9dQUd20eS\nJFs6i65vmBBDO9+exCKCIK5lss6i7WJowNAd1EjFommcRYwx1A0VkcgFpqxHbiucgK/qR6lYtDhX\nw7fPd1Aql8fH0LwIhjp0Fh2b4w9zawNv03XgMLGx4NowDFR0BZFaAsC/U+akbdv+gR0nQRwlsnJr\nALAsCydP3wAAOP8Un647651FosBQ1MhVREzHvohFjLEygJcD+NTIawZjrJj9bwCvBrDlRDWCIA4v\nbhDlq5vA1jG0luUhihO89KUvhSRJm6JoawMffTdEfzCAYRgQVAORO8jt9dNSKsjpivXwFFfVZQRR\nAsuPuCDF2LrOopImoS4NS61JLFrPdy90EUS0Qk0Q1wrZNLTtCq6BoYOz0ZjeWQTwuLAvbl9UDQyd\nRaHLY2g/fdeNsP0IrlDYprMohJ52FjHGsFTjYlHmLAIOp1jkbDGFtKrL8OQiAP6dso6+zNlLEMTe\nsNIYWt1Q4FgWzHIVgl7BM09wsWjWnUUEsRt2FIsYY38C4CsAbmKMnWeM/S+Msbcxxt42stnrAfxt\nkiTWyGsLAL7EGPsWgIcA/FWSJH+znwdPEMTB44U7i0Vx2hFhGAbuvPPOTWKR7YdIkhjWYABNN8FU\nA6Gze7HodN3Ac+fXvy/LaHdsH5IkodFojMTQQhQ1GWVxeFNNnUVD1gYeXvf7X8JnvkUCGkFcK/hp\nDG0nZ1EmFs01pncWAfwa4QlcYNqu5HooFvG48C3XLeDf3HMDerGCZ5e37rq0vQiGMhRU6qkL6rCL\nRaNTSLPrZEWX4QgGGGO4dOlSLha1LHIWEcR+YKcxtFN1HZ5rQ1J1SKU5nHnsUQAkFhFHE2mnDZIk\neeME23wUwEc3vPYUgB/a7YERBHE4cPwon8gCbNFZlJZMNwc+GqaKl770pXj/+9+POI4hCFyvtv0I\nScBvbGWtAEEz4NkDDAbKrsSif/eTtyCK148OrqSRtI4d4ER1/djkvhugqEkwGT+GUql01Z1FT69Z\nqBRkVI3Zm1LRsQPECXC5RyvUBHGtkBVc7+QsyqZOLsw1tt1uHA1ThZ3wfWwnFmXT0HyXx9BKpRLe\n8aIb8dvFMp688Cy8MIIqrY8sW14IQ5VwccR9A3A368JNXCxaWVnZ8RijOMF3L3TxQycr+NM//VMc\nO3YMP/IjPzLV99xP3DCCKgkQBLYuhtbzYszPz+PchWX48+mIbxKLCGJfyJxFpxsGAtcBJBVSaQ6D\nS08AILGIOJpQwxVBEHvCDWJo0vbOImBohV9aWkIYhuu6KWw/RJxOuBHVAgTVhGf1d+0sUiQBBWX9\nQ0PWX5T1N2RiURDFcIMYRVVCIeHHeMutt151segtH/06fvdzj1/Vz5yU7CGt7wY7bEkQxFEhi6Ht\n5Cx67ryJpbKG+XQ4ydTOoqKCfsL3PYmzyLe5s6hUKqGgiHjxzSfhWX188AtPrds+SZJ1Bde6rkMS\nBVR1GS3LQ7VahSzLEzmLPv/9FfzUf34QT64O8M53vhPve9/7pvqO+43rc0cvgHUxtI4TYHFxEc+e\nHzpjmwMSiwhiP8gKrq+vG0gCFz5TIJaGQ5lmvbOIIHYDiUUEQewJd4IYGjAUi+ppCWqrNRycaHkR\nklQsEhQdgmbAGfRgWdauxKKtyFaU2/ZwItrly5cxcPlKkalJkNOC6+uec9NVF4vato/lrouzZ8/i\nne9850yNc87GxfZILCKIawZecC3u6Cx6893X4+9//eX5uX1asWjOVBHJfOLldi4fJz0PORYXi4pF\n3s9z6+ljgGfh9//hDJ5eG7YheGGMOAF0dRhDA3hsrmX5YIxhfn5+IrGombpzzrcd9Hq9A5+g5gYx\nCpvEIgVRnKAxt4DlS5fybZsWOUIJYj+wR5xFSeDCTmQYtcX85+QsIo4iJBYRBLEneMH1+BjaXCoW\nZZNZarUagPVike2HSAL+QCLIGgTVgDXoYZAWXu8HWQytu8FZNEinWxQ1Gcy3wCQV5fnjaLfbcBxn\nXz57ErwgRtv28ZnPfAa/9Vu/haeffvqqffZO2Gk/Rs8Jd9iSIIijQhZD28lZJAoMuiLlYtFuCq6l\n0hwWlo7hk5/85NjtbD9CQRYxGKwXi6rVKqLAg5yE+M1PfgdJwiPI2eQiQ5Fg23Z+Lakbau62mVQs\nyjqCVnou+v3+uuvXQcAXafgt/LCziF/janPzWF0ZfieKoRHE/pA5i07XDcS+i34ooNQgsYg42pBY\nRBDEnnCDeFtnUakgQRYZ1tKb80wsGl2Ztbwoj6ElsgZBMzDoddHv9/fNWVQubHYW2baNS00+RcdU\nJUTOAIJmgBn8GK+WuyhJEnhhhLbl5wLV6urWha0HQRZDI2cRQVwbJEkycQwtIzu376bgmgkifuL1\nP4vPfvazY8+7dhBBV0T0ej0YhgFR5M6aarUKAHjbSxbx4JkmPvVP/P3Zg52RTkMbdRZlTqHR7rrt\nyCJwy+0+fN8/cGeRk8bQgiBAEAS8syi9xhWrDXTWVpEkMY6VNTQHPh544IFcZCMIYnfYfghNFlAt\nMCAOEQoqagvHAACyLE997iOIwwCJRQRB7Ak34KWi7XYbkiRtEosYY+lK7vgYmhMMY2iJpEHQTARB\ngJWVlX0TixRJgKlK6zqLAODZ88sAgJImwRn0IGomQo3nzq+WWBTGCeIEaNk+bJtH4WZJLMoelHoO\niUUEcS3gRzwGq05QcJ0xNzcHwzCwuLi47XYbyaLKd//kTyOOY3zsYx/bcjvHj1BIxaLMVQQMe0J+\n9HoDtyyV8JEHuSszK6MdnYYGcCdTa5di0fnLfHGh2WzmDqaDwA03L9JUDS4W6ZUGoiiEHFg4VTdw\n4cIFvOY1r8FHP/rRAztegjgKDDzegaaBn1uYrGF+6QQA7ipijB3k4RHEFYHEIoIg9oQXxtBkAWtr\na2g0GlteLBtFJe8s2tpZFEKO+c37ms8gqFwgchxn38QiAKjoMjojziIAOH+RdzuYmoROpw3NLMGR\nSwCunljkhfzBrOsEsKzZE4ucvLOIYmgEcS3gp+ckRRw6ixRl+0mNhUIBjz32GN785jdP9VmZWKTU\njuGee+7BRz7ykS2FGNsPoSsi+v0+SqVS/nrmLOr3urjtZAXn206+PQDoG5xFdUNB2/YRxQkWFhaw\nsrKyo/CTxdCWUydqGIYH6tRxt5hCmsXQtBJfkCkmFuqmgovnzgIAzp07dyDHShBHBduPYKgSXIff\npzFFQ2NtpxrOAAAgAElEQVSuAU3TKIJGHFlILCIIYk+4Ae+RaDabuWtoIw1T3RRDy5xFYRTDC2M0\nNP5wcq6XQFCH7qT9FIuquoLOBmdRVgRa1GS0220US2X0GF+1vnDhwtY72me89EEkSYDugN/8TzLO\n+WpBziKCuLbIxaLUWaQoCgRh51vGEydO7CgqbaSqy2AMWOt7eMtb3oInnngCDz744KbtbD9CQZHQ\n6/XWiUXZdefMmTM4VtbQsny4QTSMoSmbC66TBOjYPhYWFuD7PjqdzrbHmAlPK2vD7Q4yipYNlsgE\nK9M084mfosnFMyPso24oWFs+DwBYXl4+mIMliCOC5XHBOvvvTpA1lAsKrrvuOhKLiCMLiUUEQewJ\nXnAt5s6ireBiEV+dliQJpVIpF4uy8uSawh9Onu5GMIrDB4H9dha1NziLsgiCqUrodDoolStohzx7\nvltnURQn+MYz7Ym3z5xFANDtc7FolpxFNnUWEcQ1hTciFnmet2Nf0V6QRAE1XcGa5eOnf/qnYZom\nPvKRj2zazvEj6PLmGNptt92GW265Be9+97tRL3Bn63LXHRZcb+wsSp1MTcvfdB0Yh+Pz38dqeygW\nHWTJdbZIM+osKmkSAEAwuFgkBz3UDBX9VX4duzQyIY0giOnJnEWZWMQUDaWCjJe//OW44447Dvjo\nCOLKQGIRQRC7JooTnuFWpW2dRXVTQXPg51b/Wq2Wr8ra6epvSeL/bnoMZnG4QrO/YtHQWTQ/Pw8A\nWFnlDp6iJqHdbqNSrWJt4OPYsWO7Fou+8PgK3vBfv4wzKwOcPXt2R+FnVCzqDWZPLHJSQc8NYnhh\ndMBHQxDElWY0hua67tQTzqalYapY63swDAOve93r8Dd/8zebtrH9aMsYmizL+L3f+z089dRT+MKf\nc5FpuePA8jNn0XqxqGFwB05z4A+vAzs4OZ2AC0/Ndjd/7SCdRU66SDMqFkmigJImIdb49VN0uqiZ\nCsIu/27kLCKIvTFInUXZf3eCXEBJk/ChD30IH/zgBw/46AjiykBiEUEQu+ZC20EQJbihYWzrLJoz\nVfhRnHfe1Ov1obMotfeLoQsmymCijFLlyohF1RFnkSzLqNVqaK2uQBYZJJag1+uhUavBj2LMLy7t\nWixqWfwzLnYcvOENb8B999237fajAkw/7SyarRjasKuoT71FBHHkyQuu5SvvLALW99rddNNNWF5e\nzruSMpxgWHA9KhYBwKte9Sq84Q1vwMf+n/cj7K3gYtfNz1sSixCG4YiziItFLcvPFzja7e2doJm7\n0raGPUUHGkMbM4W0aijoBCKYrCKyWmgYCsIed03Nmlh0rmVjuesc9GEQxMTYfghz1FkkqyilUwgJ\n4qhCYhFBEFPjOA4eeeQRPLnKL5jXN/QdO4sArCu5HopF/CY88BxImg5gON0GwKbpanuhoivouQGi\nmDucFhYW0GmuoajJ6Hb5ivHCHP8OtbmFXXcWZYXQawMPq6urO9r/vWDoLBpYs+csyv6OAOotIohr\ngY0F11faWVQ3hr12p06dArC5kDkruN4YQ8t43/veBwag/fk/xHLHwSCNoSHg153RziIAaFrepg69\ncTjpOTCb2jnJe64kPP49LLjOFlUquoIzqxZEowa/30LNUBB2uFjUbDbh+/6BHfNGfv3PvoX/85P/\nfNCHQRATY3kR9NSpCABMKaCkkVhEHG1ILCIIYmK+f6mPtuXjYx/7GO688058+ykupsyrMcIw3Laz\nCOAFpgB3FmWrslmvROjaUAtcLKqOiEX7GkMryEiSoeCxsLCAbnsNpirlK8uLqVhk1uZx8eLFXY1H\nzmJbawMPlmXlQtQ4RmNols0fRmZJLHJGxSJyFhHEkcfbUHB9xZ1FpopmupiQiUXPPPPMum14DE3a\nFEPLOHXqFN7+9rfD/v4X8f2nnoHtRRAYEKUCT+6+0YcxtInFoiCCLDLEI2LRwTqL1hdcZ9+tUpDx\n9JoF0ajC7jZR1gRE/TWUa/zavFM309VkzfKw2ncP+jAIYmJsP4Shri+4LqZdYQRxVCGxiCCIifnF\njzyE/+uB76PdbiMMQ3z7+0/xlUunBwDjxaJitpI7nIi20VnkORZ0Pb3hNXUUCgUA+xxDM/gKUDvt\nLbr++uvRvXw+7ysCgBOL/DsUyg3Yto1erzf152RlqGsDf6J9jMbQXIc/jEwyzvlqMeos+uvPfBrv\nec97DvBoCIK40vhXseAa4NcIy4/g+BGuu+46AJvFIsePICOC7/tbikUA8La3vQ2IYzz4138Gyw9h\nKBJsm0d7M0FFFgVUdBkty0exWIQoijuKRbYf4WRNz51FqqoemFgURjGCKNlUcA3wqHUUJxCNCrrN\nVbidVSCJcf2tLwQwW1E024vQdQKcOXMGt91220wtkBDEVmx0FklqAacb++d+J4hZhMQigiAmpucG\n+OYz7dzK/sTT5/CcOSO/aR5bcG1sjqG1223EcQwrjWz5rp1HC4qalEfR9rvgGgA6qbPopptugt1Z\ngxp7+ejkU0u88FQ0+YrzbnqLMmfRateB67o7O4tGYmiuy1daPc/LV68OGseP8ujGA5/5BD7wgQ8c\n8BERBHElyTuLpKtXcA3wa8SJEyfAGFsnFvlhjDBOIIRcrNkqhgYAz3nOc3D8+Xfhe5//JAa2B13d\nLKgAPIrWsnwwxtYtXozD8SOcqumIfQeiJGNxcfHAYmhuKuSNxtByZ1F6jRNN3sfXXD4PADj2Ay8A\nMFsT0Sw/RNcJ8Mgjj+Bb3/oWHnvssYM+JIIYix/G8KMY5oiz6JH/8FrcsrS1cE0QRwUSiwiCmJgg\nivHESh+DNCr17PkLeM6cibW1NQDjnUU1Q4HAgNWRGFocx+h2u7lrxbEslEv8AcBUr4xYlMUPsolo\nN910EwAgal/InUXHFxrQZAHM4MLXs88+O/XnZJ1Fl9rcUbSzs2hkFd8dxhxmZaXVDkIslPjDYrfb\nRavVQhzHO7yLIIjDyrCzSLw6zqK0dHp14EFRFBw7dmydWJRHYQN+fhznLAKAl/7Le+F1VvHPD30h\nn4QGrBeLGoa6ZYfeOJwgwlKlAAQO1IK+Lkp9tXHTxYhRZ5GupxHuXCyqotvt4PHHvw8AqJx+HoD1\nzqIoOrjJlkmSwPYj9Nwwf/Du9/sHdjwEsRPZOUhXeMG1KIqomPoBHxVBXHlILCIIYiLiOEEQJYgT\n4GKL39x1myvrxKJxziJRYKibai4WjfZE2GlnkWNbqJb5A0BRk6+QWJTG0NJpZTfffDMAwFs7l4tF\ntVoNc0UVSWkBAHDmzJmpPydzFq20uEg0GAy2vTHPYmhLZQ2B72FpaYm/f0Ymotl+hMUSf1gc9PuI\n43hX8TyCIA4H/obOoqvlLGqOlFyPCvV2Orr+4b/7NADgxhtvHLuve171GohmDY888N9hqFuLRXVT\nmUosyqYgKbEHSdMnes+VIhOL1LSzSNd1CAK/nc+i1uXaHADgq1/9KsAEaEs3gjGWi0Vra2uoVqv4\n7Gc/ewDfgC+QRHGCKE7Q6vJrCYlFxCwzSBcBjdStaJomGGMHfFQEceUhsYggiIkIRpwky6kIEg1a\nuGEkhjbOWQQAcyNiUSYqNZtNWNlIYtvCfL2MckHG6YZ+ZWJoBb7qmnUW3XDDDYAgwFp9NheLqtUq\n5osaLLEI0zTx+OOPT/05ThorW2sP42fb3QhnzqLFkobQc/POjllxFjl+hIapQhQYrAH/uz/IcleC\nIK4sfipuX63Oorki3//lHo/hnjp1ap2zyPYj+Ktn8emP/j5+7ud+Di95yUvG7utk3YT5Qz+OS49+\nFXHv8tbOIlPdskNvK+I4gRvEKMgixNiDoMyGs0hLnUWj36ucjvGuz/HFjq985SvQK3PoBgIajUYe\nQ3vkkUfQ7/fxne985yofPScbbAEAzQ6/NtICBDHLZAubmbNoPyf1EsQsQ2IRQRATEUTDsuXLHX7z\nHQ1aubNIFEWUy+Wx758vqVjZylnkhxAFhkG/j0qphK/9ux/D637oGKrVKiRJgqIo+/YdipoEgQHd\ntLNIlmXIlSV0Lj6DdrsNRVFQKBQwX1SxOvBx44034oknnpj6c7IYWqs37BzarrfIC4bOoijwZk4s\n4lOIRJQ0CfaA39gf5NhogiCuLBsLrq+0s2i+qEESGC50eMzs1KlTOHfuXB53HTg+mp/9PRjFIt7/\n/vdvu6+lcgHG838MSBI0H/3KWLGoYwcIonhHschNnZ8FRYQQuoCsHbBYxH8nhS3EoiyGtri0CAB4\n4v9n783j5LjrM/93dfV9zPT0MZfmkEandcs6bWNjZGxMHEMSTIAlQCDLBoJJNtmwG8ICDnF+OBsg\nCacxDmGDkyyQbLzc2MFH5FO2LEvWYdmy7msuzd1HdVfX749vV02PNEdL09Mz1nzerxcv5Onumm9L\nM9VVz/d5ns+rrxJtWMD5EYPGxkbHWbRv3z5g9tyrpUMT+gbUZ4o4i4S5jL2xGS66FSu5kSkIcxkR\niwRBKAujZLx7z4ASQQojfbTUBejt7SUej09qyU1OEENT0yWUnT4cDuP36GiaRkNDw5THvFRcLo1o\n0Os4i7L5Au7YAs6fOUZfXx/RaBRN00hG1FqXLl16mc4idVGRN0bHAk+2a2o7ixpq/Fh5g9ZWJRbN\nlRha2jAJeN3UBDxkUurfXsQiQbhycXrUdBVDm2lnke7SaI4GON03KhblcjlH3Pjut+/DOPsK//XT\nnyeZTE56rKZaP55oI+66JjoP7pwwhgYq9jaVWDTaVaKDkabg9o8Z0lBtRp1FrotuWm2xqKW52fla\noqmF3hGDpqYm5+/TdhTN1oaEPdgCoH9QxCJh7jPqLNLFWSTMK0QsEgShLHLF6TitsQBDqaIIkjqP\nW3fR09MzaQQNlLOoZzhLoWCNiaGljDxBXSOTyYyZcPPJT36Shx56qOLvIxr00JdSzqLBTA5PrIXu\n08ecDgeA+oiPgXSOjsVLOHbsmDP9rVzsmwsrNyoWTeosKt6YxYub9/5ILcFgcE44i/KmmgAS9OpE\nvDpGWt14SQxNEK5cLnQWzbRYBNBSF+BUnxpz397eDuBE0X70L/8Hb/NyfvXX3zHlcRpr/Wga+Bdu\n4MzBXc6kywudRaCmr8ViMQYHB8nlcuMez3bBBDw6BSNNXvdRF4thWZZz7GqSLomhXXjTGi328rW3\nNDobLU0tbQykczTMIWdRaQxtYEjEImHuM5y1O4vEWSTML0QsEgShLOybh83tMTCL4+6HzmNZFj09\nPROWW9skwz7yBYu+lOH0EakYmolXU2JM6YdvMplk7dq1FX8f0YDHmYY2nMnjjrWQMwz27NnjiEV2\nf0ZD60JM0+To0aOX9D3SuQJhnxsrl3W+NrmzyMTt0qjxFKN+upf6+vo5IRalcqO76kE9B5ZaoziL\nBOHKxRawfVUquAZbLBp1FoESi/r7+zl88CUCi64m6PVMeRyP7iIZ9hFYuB4jk+KRRx4BRieGASQj\no9PXbKfrRMKPLc4EvDq5TArNE8QXUpHr2RDNJ4uhJSM+agMeVi2ocxxYbcW/y2i8ns7OTkzTZP/+\n/cBsikWjMbShIbUBIZ1FwlwmVeIwtJ3wgjAfELFIEISyMIrOog3tdVim2oEt5HOcP3+e3t7eMpxF\n6majayiL2+0mGo0WnUUm3oISVarx4VsX9NJfdBYNZfJ44i0AHDlypMRZpNZa16Qusi+1tyht5GmN\nBSmUiEWTdxYV8Lld+DUlwuVdHpLJ5JyIodkuqYBXx1cYfT/iLBKEKxejJIZWPWdRkK6hLJmcOUYs\n2rFjB4VCAX/bWhUFK4OmaAB/21o0l4vHHnsMv9+Pro++tnT6WmksejxKY2jZ9AguXwDNH570NTPJ\nhTG0UrHI79HZ+SnV+2dP1exYtAiAcF2CXC7Hrl27SKVSeDyeWduQSJXE0IZHVLRZnEXCXMaOToZ9\nUnAtzC9ELBIEoSzsGFoi5CXgGi27Pnv2bHnOoqJbp7S3SHUW5fFYyulTGkObKaIlYtFwNo8ntsB5\n7EJnUTCphKRLFotyJq11gTHOoqliaD6Pjt+lbgJMTYlFc8JZVHKj5DVHY3XiLBKEKxfDLODRNTSN\nqjqLAM70pwmFQsTjcY4fP86jjz6Kx+vF17y8bLGoudaPyx+mffka8vn8GFcRQPyCGBpMfE6zz4E+\nt4v0yDCaN4DlU2LRbIjm6QumoV24yeJzq96/xkZVcr186WL1/Fr1Gf3www8DsG3bNrq6urAsi2pT\n6ixKFTulRCwS5jKp4s9sUGJowjxDxCJBEMqitMMi6LbApS7aT58+XZ6zqCjAdF0gFqUME49ZTWeR\nxym4Hsrk0IO1ROvUzUJpZxFARg8Ri8UuueQ6bZg01frRzPJjaD63Cx/FeB/uuRNDK+6mBTxu3CIW\nCcK8wMgX8Ooup8enWs4iwImitbW1OWJRx6qr0dxeAuU6i2qV8LR26/UAF7kAQl4dv8dFz9DUYlE6\np86BrkKOQqGAyxsgp6vjzYZYlJ2ks6iUxsZGdF1nRYdyabnD6n3++7//OwA33ngj2WyW4eHhcV8/\nk5QWXNtikcTQhLmM3VkUmOL3ThCuNEQsEgShLGxnkUd3EfKAp0b1IRw6dIhcLnfJziJ79PCIkUev\nplgU8pIyTLJ5k6GM+vBfvHSZeqwoFsVCXjQNZyLa5TiLgj63EyuDMpxFbhceqygWWboTQ5uNXd9S\nSiMYrpy6idM0TWJognAFY+QLeIt9RUBVnUWlvUV79+5lz549LFqzGYCg113WsZqjar2brn0jcLFY\npGkaibCvLGdR2lCffZah1uXyBsi6g5O+Zia50Fk00U3r+973Pj796U/TmogQ8Og8+LISZZ566ina\n29tZvFg5jmYj7mw7i5IRH5m0KjUXZ5Ewl0kZeQIeHd2libNImFeIWCQIQlkYeSVaeHQXYbfFtetX\nAKMjeKdyFgW9bsI+N11D6ubDdhalDRNXXn2tGjG02oAqSB1I5Ryx6KoV6r3Yxdtu3UU85KN7KMOy\nZcsuyVmUMwvkTIuAR8dfdArV1NRM7izKFfC5dfLF2FracpNMJmdt17eU0hiaK69ulhqbmsVZJAhX\nMLZYlM2qc1I1nEUNNX7cLm3MRLTTp09jWRatqzbjdbvQXVpZx7KdRes3bSYUCo0rqCixaLSzaCIB\n3HZXmhm1rmAozHDBO2uiuV1w7dO1ScWim266ic9+9rOEfW6++ztbyPvV55thGKxevdopwJ4NB2vK\nyKNpysWbzajPFRGLhLnMiGES8rnJ5/Nks1kRi4R5g4hFgiCUhV1w7XW7MAyDumiUaDRatlgEahex\n1FlkdxZp+eoWXAP0pXKOrXjVVUossp1FpWtdunQpJ0+eJJ1Ol3X8TMn0MB85XG4vdXV1UziLTHwe\nl/M9MpZOfX09MDsX8qWkSgquLUPdLC1obRNnkSBcwRhm9cUi3aXRFPVfNBEtEAgQX7Sq7L4igKua\nInh0jSWNdbz3ve9l8+bNFz3HdhbV1taiadqEArh9Ts9l1fmvpT7G/33xLKFI7aw5izy6RsHMY5pm\nWZ+bmxbG+Ol/uxndp0S0NWvWOJ8xs+UsCnndRIMejKKzSGJowlwmlc0T8ik3H1zsVhSEKxURiwRB\nKIvcONNxmpub2bdvH8CUMTRQAkxpZ1FfXx8jGQNyyllUrc4igL6UwVAmR8Cjs3LlVeqxErGovrjW\nZctURO3w4cNlHd+Obfk9Oh7LwOXxUVtbO0VnkeoHSaXURfNIQXd2fWd7Iprd1xH0uikUb5YaF7SJ\ns0gQrmDszqJqxtAAWqLBMc4igGuvvRbD0gl6yheLOpJh9v/ZrVzVVMM3v/lNvvGNb1z0nETYS8+w\nga7rRKPRKQuuc0VR4w9/ZR1LGyJk9ABP7j92KW+vIqQNk6DX7bhOy71pbaz1UxdXAtGKlStnWSxS\nN961AQ95Q5xFwtxnODv2906cRcJ8QcQiQRDKwnYWedwahmHg9XppampydlnKdRb1lIhFlmVhpEew\nil041YihtcWDuDT48x8f4NWuYSJ+NzfeeCMf+tCHuOGGG8as1XYWQfkT0ew+iYBHRy/kwO2jpqam\njGloo86ikbxrViMCpZTG0PKZEUAj1tBMX18fhUJhVtcmCMLMkM0X8Lr1qjqLQPUWXegsetOb3kTX\nUIbaoiu0XLzuyS9xE2Ef50eymAXLiUWPh30ONNLqs669Mc73fncbiXicl4+d4XDXEA8++CB79uy5\npPVdLikjT9B7eQ6HeH0DAAsWLZvVz5gRI0/I66bG78Y0MrhcSpi0C9UFYa6RMvKELvP3ThBez4hY\nJAhCWdgF115dxdBsZ5FNOc6i+hJnkf38QmaIQnFnsRofvi11Qe7/wCZO9KZ47FA3Yb+bmpoa/u7v\n/m7Me6gvikWLFy8BKLu3KF0SQ9PMLHh8hCKTdxYZedVZZItFQznXnImhpUtiaEZKjY32R+qwLIv+\n/v5ZXZsgCDNDNm9WveAa1Pm5ayhLNm+ybt06PvWpT/H+3/4gLxzvY1N73dQHuAQSYS8FS7lMJxOL\nMjkTv8fFyIhyFEQiEXxunSWtTRQyQzzxwkHe+c53cs8991R0fRMxYpgELvOmtbGxETQXtY3tBAIB\nwuHwrDiLUoZJ0KcTdBXAsmhoUCKWuIuEuYrdWSTOImG+IWKRIAhlYeRHp6Fls1nHWQTgcrmccujJ\nSEZ8DGfzpIy8UypaSA9x/OAeotEoul5+zGA6bF/RwIN3XseS+jBtseCEa80XLEy3n8bGxvKdRXYM\nzatDLovL48cbCE3dWeQedRYN5rU5E0NznEUenWx6GJcvhDugHGASRROEKxMjX8CnV7ezCEYnop3p\nz+B2u7n77rvpMQOMGCbbOqbekLgUEsUJnb3Dk4tFKcMk4NEdIcN2wLY0JTHTQ9z/tb8mn89z7ty5\niq5vItKG6vuxxaJLuWn9ldt/jcjVtzFgqKLwZDI5O86irHIWeTEAaGhoBEQsEuYudnTyUuOfgvB6\np7wZpIIgzHvsGJqvWHDt9XodZ1EsFsPlmlp7ro+o3enuoazj4hl49l8498rTfOlLX5qhlY/P4mSY\nX/zXGzAL44+mt9faNZRh6dKllywWBTw6hXwWze3DEwhN2VlUKhZlCm5cHh/BYHDWnUUpw8Sru3Dr\nLtIjw7h8AVwBdXPS29vLkiVLZnV9giBUHsMsEPa5yWSUIFE9Z5ESi071pViUUDdjzx5VIs6WRbGK\nfq9EWIlFPcPq82iiXrpUsSPoQrGoPpGgMHKeZ37+rwB0dnZWdH0TMZLNE/Be3k3r+977br5+op7u\nYSUC1tfXz05nkZGnPuLHRzGWnlROWhGLhLlKKpsneJkirSC8nhFnkSAIZZG7wFnk8/kcZ1E5fUWg\n3DoAXUNZx1mUfuVprr7mBv7gD/5gBlY9ObpLm7DXoqFGrfXsQIaFCxdy/Pjxso5Z2llkZjNoHh8u\nb3ByZ1FubAxN83g5P2LQ2NhYtd3qiUgb6sYEIDU8hMsXAp84iwThSsYuuK66s6jo9LR7iwCeOdLL\nkvqw8/lRKRJh1YHUM5ydMoYW8I46i+ybxHg8jpXPUSgUuO2226omuqRz5mV3p8RDxc/gwVGxaDY2\nJFJZk6BXx1tQHUWxhBKLZCKaMFcZMdTvncTQhPmGiEWCIJRFzlQOHLeuXeQsKlcsqi9e7HeXiEUu\nf4S7vvi1spxJ1aQtrm5aTp5P0d7ezunTp8nn81O+rrSzKGcosQhvCMMwnBuvC8nmTXweNQ3N4/Wh\naS56hw2am5s5c+ZM5d7UZaB21ZVYNDAwgDcQouBVNyciFgnClYmRL+B1V18saoj4cLs0ZyJa3izw\n3NHzbOuorKsIRp1F9udRf38/pmle9LyUkXdiaIFAALdbmfJtd2zt2jezefNment7q1LQbDudLkcs\n8rpdxEJeuoZUF1UymZw1Z1HI60a3VAytJqZi1+IsEuYqKSNPyHd5v3eC8Hpmbt2dCYIwZ7FjaFpB\nXUyXFlyXU24NJc6iwQyxWIybbr+DxO1/zMLW1hlY8fRIhn0EvTrHepRYZJomp0+fnvJ1dseP36OT\nTafQPD5Mt4pwTOQuKo2h2XGPnuHs3BCLirvqoNbvC0bIu5WQ1tvbO5tLEwRhhjDMwqwUXLt1F421\nfsdZtP/M4Iz0FQHUBjx4dI2eYmeRZVnjnqNTxqizqKamxvn6unXriCbqCW59J/4aJWZVw6WTKsbQ\nLjcOkwyr4Q0w6iyyrPHj2DNFKqvKgl15tY5gVP37ilgkzEWyeZOcaUnBtTAvEbFIEISysAuuLVPt\nnJYWXJfrLIoFveguje7hLJqm8fHP/Q2Bjo0EfdUptr4UNE2jLRbkxPkRZ4RzOVG0TG50elgqlSIQ\nCJLX1Y3WRBb7bMk0tEBAdXZ0zxGxKF3iLBocHCQYDpMtikXiLBKEK5PZiqGB6i06eV45i545ogTp\nSvcVgTrHx0M+eodHna7jndMyudGCa7uvCOANb3gDP3l6P55oIwWfEpGq0VuUyo2Nw1yqw6G+ZnQq\naTKZJJfLTRqTrjSWZSlnkU/HZap1+GvVNYSIRcJcJJUddYyLs0iYb4hYJAhCWRhmAU8xggbq5iEQ\nCLB582Y2btxY1jFcLo1E2Ov0JdgunJB3bnbtt8eDHOtNXZJYZBdcB4tiUSgUYsRS3RjjXZDnzQJm\nwXKcRaGgEmJsZ9Hw8PCsXkCnjDxBj/r3GRgYIBiOMJwtEI1GRSwShCsUO4ZWbWcRwOrmWl440c+X\nHn6Fp17rZXEy5AwcqDTxsNfpLILxxSI7inuhWASwuF65C9Ju9f9VEYuyJoHLjKHBxc4iqO7UzUyu\nQMGCoNcNObUOb0T9/UtnkTAXGTFUBUHIq5xFLperqudEQZhN5uYdmiAIc45ccafZFou8XiWA7Ny5\n85KOUx/xO5NYRrLqA9iOOc012uMhHj3UTUuLiskdO3ZsytfYnUV+t9qBWhKN0JlRuvx4YlG26Njy\necw8fiUAACAASURBVIpiUSiI6dXpHTboKMb8zp49e9FNSrVIGybRoBfDMMhkMkQiNQxmcsTjcYmh\nCcIVymx1FgH88VuW05/O8eVfqgmU793aNmPfKxH2qRjaionFonRJwfWF5+H6iI+QV6ffUiL/TIsu\nebOAYRYIenW6R0bQNO2Sb1qTNUossizLEYu6u7tZtmzZTCz5Ipwbb59O2lAOMleoDhBnkTD7FAoW\nDx/spHfYoFAoYBUK9Kbtn1klFoVCITRNm+WVCkJ1ELFIEISyyJkFPG7XGGfR5ZCM+Dg3oHarUyUu\nnLlIWyyIkS8wkIOGhoaynUU+twvTzJPP52lORnnOGI1xXYgjFpXE0PxhHz3DWa4rxvzOnDlTtQv5\nC0kZJs1R3Vl7pKaG/lRu0ulBgiC8vsnOUmcRqL63v7pjLWsW1PIXPz3IW1Y1ztj3SoR9vNI5RCzW\nAkwgFhmjMTQ7em2jaRqL68N05VU8e6adRanc2DhMOBy+5JvWZNiHYRYYTOdJJlWxdDWdRXakJ+R1\n01ecAJpzBfD7/SIWCbPOP+48wacf3AdA78++TK7/HI3v+f/QNBWRtX/vBGG+IDE0QRDKwjDHdljY\nzqJLpT7iG3UWGXm8bhcefW6eihbGlb3fLrkuSywq7kLbEYGWRFSNm2ciZ1GxMNztKnYcBZxohF0g\nPpu9RXa5q732WF3UEYvEWSQIVx6WZWHkC/hmqbMIlAjzgWsXcuDP3sINy5Iz9n0SES+9wwZ1dcrZ\ncqkxNIDFyTDHB0wCgcDMi0VOd8qow+FSqa9Rwl/XUGaMs6halDqL7M/JNB4ikYjE0IRZpWsww//6\n2ctctyTOs396E7GBV8ie2Mv339PB7k/fzLrWKMPDwyIWCfOKuXmHJgjCnMPIW3j06TuLmqMBeoaz\nDGZypA1V1DlXaY+raIFdcj2VWHT//fez94mHCXpUXxFAe0MdLp86zrjOotzYGFogEFDRiCFjTohF\n6Zy6UbLXnqirwzAL1EbrxFkkCFcg9uRLO4bmcrmccfHVxj3DGwm2y0YPKBHownOaZVnFDQD3JGJR\niLODWerrG2ZeLLpAaLkcsSgZVp/d3UNZZzhFNZ1Fdvw8WOxd0lw6wzmoqakRZ5Ewq3zuxwfImgXu\n/rU1+AoZThw/BsBjv/gR0aDaIL3c3ztBeL0y5aewpmnf1jStS9O0fRM8fqOmaQOapr1Y/N9nSh67\nVdO0Q5qmHdY07U8quXBBEKpLzhzbYXG5zqJN7XVYFuw61sdI1lQll3OUplo/Hl3jWG+KhQsXcuLE\nCQqFwoTP/8u//Et2/fx7+L2jYlFzIkpNrZqUM2lnUUkMLRH20TuSJRKJEAqFZtlZlCfodTtrT8aj\nAAQjUnAtCFci9uRLO4Z2JRe5xsPqc6w/Y1JTU3PROS1TFPPHm4ZmszipXAa1sUQVxCLTWc/l3rTW\n1yixqGsoi8/no7a2tsrOomIMrdj/4vb6GcrmiUQiIhYJs8Zjh7r48d6zfOzGJSxKhNizZw+gIrjf\n//73AbXht2PHDpYuXTqbSxWEqlLOls13gFuneM4Oy7LWF//3OQBN03Tga8BbgZXAezRNWzmdxQqC\nMHsYExRcXyob2urw6i6eOdJLqjg+d67i1l201AU5UZyIls1mJ92B7ezsJDVw3rmQBzWpZtWCOC6P\nd4LOotEYmi0WJcNezo8YFCxobm6eNbGoULDI5AoEPKPOosaEKoL1hWvo7+/HNM1ZWZsgCDODUSJg\nZ7PZqkfQqsmCqHJ9vto5PG4Pm+3k8bs1RkZGxheLihPR/DWxGXfojPb8uS+7OyUZGXUWgZqIVt3O\norHuKI8/wGA6JzE0YdawLIu//NGLLPDn+MiNHQDs3r0bgI997GPs2rWLI0eO8JWvfIW+vj7+x//4\nH7O5XEGoKlOKRZZl/QdwOdvHW4DDlmUdsSzLAP4P8PbLOI4gCHMAVXCtTbvDIuDVWd8a5ZkjvYwY\nyt4/l2mLBTnWq2JowIRRtHQ6zdDQEOnBPoIlzqJgMMjyxgiaN0h/f/9Fr7vQWRQMBklEfBQsOD9i\nzKpYlC4pU7WdRU1JJRZ5gjVYljXuexIE4fVLaQztSncWbWiLEvG7+feDnSSTSV577bUxj9vnQC2n\nir7HE4va40FcGriC0arF0II+/bI7iyI+N36Pi64h9Z6SyWR1Y2jGaMH1yMgIvkCQgXROYmjCrLHn\n1ABPfPeLHP+H/463GH198cUXaWxs5M477wTg29/+Nl/84he5/fbb2bhx42wuVxCqSqXC4NdomrZH\n07SfaZq2qvi1BcDJkuecKn5tXDRN+y+apj2vadrz1bTDCoJQHoZZGNNZdLnOIoBtHTFeOj1A12Bm\nTncWASyMK2dRW5sa33zs2LFxn2eftzJDfU5ZNShn0YomJRZ19vZd9LrSziKn4DqkhLie4SxNTU2z\nJhaVTquzd3xbGuIATseHlFwLwpWFE0MrFlxfyc4ij+5i+4p6fnmwk1//9d/gqaeeYu/evc7j6eI5\nkJya2jWeWORz67TGguS8Ebq7uyeNKk+X0nPy5cbQNE0jGfGNcRZVNYbmdBbpY8QiiaEJs8U/PH0M\n0v2cPvoqhw4dApRYtH79ehYuXMjmzZv5/Oc/T19fH5/97Gdnda2CUG0qIRa9ALRblrUO+Arw4OUc\nxLKs+yzL2mRZ1iZ7lKcgCHMHO4ZWiek42zriFCx4+dzQnO4sAmiLhxjK5qlJqJHJEzmL7J1Zq2Ci\n51JODC0YDLKisQaXL8jZ7otNmuPF0BLFHo3eYeUsOnv2LJZlVfy9TUWmuKseKOksamtQhaj4xy+E\nFQTh9c186iwCuGVlI32pHBvfcgeBQIAvf/nLzmO2s8iaRCwC1Vs04gphmuaMCuiOWORxT6totz7i\np6soFi1atIjDhw87n+0zzeg0NNVZFAgESRkmoXBYYmhC1Tk/YvDjvWdJBDQAfvSjH5HNZtm/fz8b\nNmwA4J3vfCeFQoG3ve1t4ioS5h3TFossyxq0LGu4+OefAh5N0xLAaaC15Kktxa8JgvA6xC64roSz\naENbHR5dfTDP5c4igPaY6rQ4n3cTjUanFIsArMzgGGfR8sYILl+Q3r6JC649LhXxCwQCJCKjzqLm\n5mZSqdSsXESX7mIPDAzg9XpJRsPoLo2CR92kiFgkCFcW2fzYaWhXsrMI4I3Lk3h1FzvPGLz//e/n\ngQcecJw29jnQzKjz+cRiUYgB1GfFTEa6SmNol9tZBFAf8Tli0Y033kg6nebZZ5+t2DonI5U10V0a\nPrerKHip9+D1h8RZJFSdHzx/EiNfIOYbFYsOHDhAPp9n/fr1APzWb/0W1113HX/xF38xm0sVhFlh\n2mKRpmmNmqZpxT9vKR6zF3gOWKpp2iJN07zAu4EfTvf7CYIwOxjm2ILr6dxA2L1FwJx3Fi1MqBuA\n48XeorLEovTAGGdR2OcmGI5M0FlUjDnk1d+rPQ0NRsUiYFaiaPaNSaAYQ6utrcXl0qgLejDc6u9F\nYmiCcGUxnzqLAMI+N9cuifPQgU4+/vGPk81mue+++4DRGFo+O5VYFKbgrwWY0d6iUgH/cjuLgDEx\ntBtuuAGXy8UjjzxSsXVOxoiRJ+jV0TStKHip9+ANhBgZGZGhCULVMAsWDzx7nC2LYmiFHABPPvkk\nv/zlLwEcZ1FTUxNPPPEEq1evnrW1CsJsMaVYpGnaPwNPA8s1TTuladrvaJr2EU3TPlJ8yh3APk3T\n9gBfBt5tKfLAncAvgIPA9y3L2j8zb0MQhJkml7fwlMTQpuMsAhVFA3XRO5dpqQuiaXC8OBFtIrGo\n9AYhN9w/puAaIB6NkhoZvuh1dmdRwVR/r4FAgBq/G6/uonuWxaK0E3lQzqKamhoA6oJeDLfaDZaO\nOUG4snCmoc2DziKbW1Y2cuJ8Cne8jVtuuYWvf/3rGIbhxNCmFIvqw+ghtQEy02KRpql/m1QqNY0Y\nmo+BdI5MziQajbJx48bqiUXZPKHiJtHw8DCRojtK8wWcrwlCNTjWO8LJ82necfUCMpkMra2tFAoF\nvvSlLxEKhVi8ePFsL1EQZp1ypqG9x7KsJsuyPJZltViW9XeWZd1rWda9xce/alnWKsuy1lmWtc2y\nrKdKXvtTy7KWWZa12LIs8e4JwusYNQ2tMs4iGBWL5nrBtd+j01Tj50SJWDRef1Cpsyg3PDAmhgbQ\nkKjDSA2POomK2JGPQk79vQaDQTRNIx72Op1FMFvOotExzbazCKAu5GXY8uLxeEQsEoQrDGOexdAA\n3nxVPQAP7T/HRz/6Uc6cOcOTTz7pnAPPnVSbBC0tLeO+fnEyjCtYBbEomyfg0clmM1iWNS1nESj3\nKsD27dt55plnHEfsTDJimE78fGRkhLpaJcAVdOVgkyiaUC3sDbFYyEcmk+G6666joaGBs2fPsm7d\nOlyuSs2BEoTXL/JbIAhCWWQvKLierrPo6rY66iM+FtdfXudCNVmYCPFaj4qhDQ0NjRsn6+rqoqlJ\nlWBnh/udi247wtFcH6eQTfHqubEXwrZ4ZBpqjHEgoHZXE2GfMw0NZkkscgquxzqLYkEv/ekciURC\nxCJBuMKYbwXXAPU1fja21/Hgi6e57rrrAHjuuedIF6O4B/buprW1lfr6+nFfHwt5icfqcLndMysW\n5Uxnihgwjc4i9W9q9xZt376dXC7Hk08+WZmFTkIqmyfkU86ikZERElH1uZJ3i1gkVJfSASOZTIZg\nMMhtt90GjEbQBGG+I2KRIAhloQqutYo5iwJenWc+eRNvX7+gEsubUZY1RHjl3BBtbe0AzmjVUrq6\nuljQ0ormDZIZPE8qlXJcQgCtDXHA4vGdu/n0pz/N448/DozG0ExjNIYGkAh76RnOEg6HiUQisxRD\nGx1xPDAwMMZZdH4kRzKZnNEyV0EQqs98K7i2ec+WNl7rHuHVQY1FixYpsagomO99cTebNm2a9PWL\n6yP4wnUzW3CdzRP0up2o1nSdRXZv0XXXXYfH46lKFG3EUIKXaZqk02ni0Ro0DQzUBpSIRUK1sK+/\nbLEoEAhw++23Azjl1oIw3xGxSBCEsjDMQkU7iwBcLm3ax6gGVzVFSOdMOtZsIhwO8/nPf/6i53R1\ndRFLJNGDtaSG+i4aa7yoOQnAx++4ibvvvpu/+Zu/AdSNme7SyF0kFvnoGVLCXHNz8yzH0PQxMbRY\nyENfyqC+vl6cRYJwhWEUC4a9+vxxFgH86tomokEP3336OFu2bGHnzp2kDBMzM8xrrx1m8+bNk75+\ncTKEFozOeGdRqbPocsWiplr1b3ry/Ghcetu2bdURi7J5wj63E9WORMLEQz7SRbFoNiZ/CvOTTNFZ\n5Pfozrnutttu46/+6q/4zd/8zVlenSDMDUQsEgShLHL5sdPQKiEWvV5Y3qhs8t15P3/6p3/KD3/4\nQ+eiOm8WeGj/OTo7O4nGEujBWkYG+hxnkc2WTRvx1iRYd+t72Lp1KydPngSUDdrndpFOp4FRsSge\n9tE7ksWyLJqbmzl79mw13zIwKhZdGEOrC3oxCxbRWFzEIkG4wpiPnUWgbhjftamVhw50smL1ek6c\nOEFXZyd0HwGY2lmUDFPw13Dm7LkZW2M6ZxKogFgUD/toqvWz99SA87Xt27eza9eucWPWlUQJXu4x\n76E+4mO44AHEWSRUD8dZ5BkVxj0eD3/8x3/sXO8IwnxHxCJBEMoiZ1p4ijcPHo/HiVfNB5Y1hNE0\nePncIH/4h39Ie3s7f/RHf4Rpmvxifycf/ofn6OrupjYWxxWsZaiv9yKxaPPmzbznb35C860fYc2a\nNSViUWGMWGS/JhH2kjMtBtP5WXMWpQ0T3aXhcWljC66DSigMR2MiFgnCFYYzDc2tzytnEcB/2tpG\nwbLoCbYBcOTgXsyuwwBs3Lhx0tcuTobRg1HOnJs5scieJDbdziKAtS217D01Kgxt376dQqHAjh07\npr3OyRjJ5gn5xvYuJSM+Bk0Ri4TqYjuLdKuAaZrz6lwnCOUiYpEgCFNiWRaGOeosmk+uIlDTwBbG\nQxw6N4Tf7+eee+5hz549fOc73+HA2QEKmRHMfJ5INI4erGWwr/eiGBpARyLMke4RWlpa6OrqIpvN\nks0V8Ln1i5xFTqfEcNYRi8abwjaTpAyToEcnlUpRKBRGC65D6t8/GKljcHDQiSYKgvD6Z752FgG0\nx0O8cVmSpwYiuFwujh/aS/bcYTo6OojFYpO+dnF9GD0Upbe7e8bO1SlDOYum21kEsLYlyrHeFAOp\nHABr1qwB4NVXX53+QifBdhaVvof6iI+BvJqQJjE0oVrYziJM5ZgXsUgQLkbEIkEQpiRnqgvf+Xjz\nYLO8IcLLxUlm73rXu1i3bh3f/va3efnsEIWU2p2N1CVwBWvpL4pFpc4igMX1IdI5k0iiEYDTp0+r\nGJrH5fQ3lHYWgRptvGDBArLZbNXLpNO5PP5iXxEwGkMrikXeiBoVLe4iQbhyMMzR0tf5eL7/7WsX\ncj7roql9CWde2Ufq9CtTRtAAWusCeMJ15HPGjJ0TU4ZJqAIxNID1rer8vfe0+vyKRqOEQiHH9ToT\nWJbFiKGmoZW+h2TER39OTUgTZ5FQLWxh3MorwVTEIkG4GBGLBEGYklzx5sGja/PSWQSwoinCsd4R\n0oaJpmlcf/317N27l4NnBjBTqvchWBtDD0Yx83nOnDlzsViULEYGQmqH+uTJkxfF0MYTi1avXg3A\nSy+9NOPvs5RMrkDAc/GY5lgxhuYOilgkCFcadgxNxyKfz8+7G6g3LkvypuVJhmsXcvrQbjJ958oS\ni9y6i45VG9BcOrfffjs/f/4VzvSn+OUvf8mf//mfc+LEiWmvTTmL3BURi1YvULFiu7dI0zRaW1tn\nVCxK50wsizGCVzgcpj7iw3S58Xg8IhYJVSNTnHYoziJBmBgRiwRBmBKn8LQYQ5tvO80AKxojWBa8\n0qkuZNetW8fw8DDHjx/FHFE7s/6aOlxB5b45ceLERRfytliU9dYBpWLRxTG0eFgJMr3DBuvWrQPg\nxRdfnMm3eBFpwyRQjKHBaJ9SXUh1S2gBdbMhYpEgXDkY+QJul0Yup26g5tv5XtM0Pvf21fiblmJm\n1Xm5HLEI4OpNW1n1/j/jhRf3cPtbbmLTNdfz5je/mc985jMsXbqUP/iDP5hWgXTayI+ZhjadzqLa\ngIeORIgXT46uZ6bFopFsccLmRc4idZMeDIclhiZUDdtZVBBnkSBMiIhFgiBMieMsKsYS5qWzqDgR\n7VAxirZ+/XoAjK6jNHpUZ48rWIseVAKKYRgXOYsSYS81fjf9LnWsU6dOTTgNrS7oxaVB91CWRCLB\nggULqi8W5Uz83ovForDPjUfXKPgjgIhFgnAlYeQLeN1qOhDMzxuo1liQD/7azc5/X3311WW9riMZ\nYqhhPfE7/gwr1Uf3qWP87d/+La+++iof+MAH+OpXv8rnPve5y1qTZVmkciqGVonOIri45HqmxaKU\nkQe46D3U1yhBMhCMiLNIqBqZnIlH18gZ6hpuPp7rBGEqRCwSBGFK7N0Xzzx2FrXFggQ8OgfPqV3P\nVatWoblc5DqP0BbKARqnU270YjQLLr6Q1zSNjmSYk0MF6urqlLMoV8DnGRWL7IsV3aWxrCHC3z95\nlJ/vO8f69eurLhZlcib+cSa1aZpGXdBLzq12tUUsEoQrB8MsOP10MP+cRTb/831vweX2El+w0JkE\nORXXLk4Q8bv52h+9l/t+8jTNv3s/t77rgyxZsoT77ruPDRs2cODAgctaTyZXwLJwYmhut3vaGzdr\nW6J0DmbpHFTCYGtrK+fOncMwjGkddyKGs0Wx6EJnUTF27QuF6evrm5HvLQgXYju757MwLghTIWKR\nIAhTkrug8HQ+OotcLo1ljRHHWRQIBIgvWESh9xjhQgpXsIYDnSNODA24yFkEKor2WvcwLS0tnDx5\nEsMcjaH5/X5crtHT8nc+uIUlDRE+8sAucrVtvPzyy45wUw0yOTV550JnEaiJaCl86Lpe9eJtQZjv\n5MwCP993zokIVxIjryZfzvcbqFDAz3ve9Zt85LffW/Zr3rA0wd7P3sI7NrZw8/rFaG4vzxzpdR7v\n6OjgyJEjl7WekaIrx46hTddVBLCuVYlge4pRtNbWVizL4syZM9M+din7Tg9w/44j/OD5UwCESnqX\nwuGw4yyKNy9k3759Ff3egjARtrN7vp/rBGEyRCwSBGFK7Glo89lZBHBVo5qIZo9FDjR0YPYcIzvU\nhx6s5eDZQSeGBhOIRfUhOgezNC1oGXUWudU0NDuCZtNY6+d7/2Ubt61p4oWRWkzTZP/+/TP7JktI\n58bvLAIVk+vP5EkkEuIsEoQq8+O9Z/jIA7t47/3P0D2Ureix7RjafHcWATzwwHe5++67L+k1mqYB\n0FIXYEE0cJFYdOzYMUzTvOS1pI1i309RLJpOX5HNyqZadJfmlFy3trYCVDyK9tkf7ufunxzkO08d\nw6u7aKkLjHEWBb1uwj43sfblHD16VNxFQlXI5Ar4PeIsEoTJELFIEIQpKS24nq/OIlAl1+dHDLqH\ns1iWhVHbSup8J6++cohATQwjXyDg9zmRhfF2fu2S65p4w0WdRReKRQB+j85vbm7F29ABwJ49e2bw\nHY7FvpCayFl0fsQgmUyKWCQIVeZI9wguDV46PcDtX3mC/WcG2L9/P+9617uc39fLJStiUUXQNI2t\nHTGePXLe2WDo6Oggl8tdlnMn5YhFboaHhyviLAp4dZY1RNhzatRZBJUXizoHM9y2tom9d93C3rtu\nYWEixPDwMF6vF7fbDUAy4iPYtASA3bt3V/T7C8J42NNoRSwShIkRsUgQhCkxSgqu57OzaEObmmL2\nvZ0nOd2fxoq1A3DgwAHq4gkAAh6dZDIJTBxDA/DUJOjp6SGdTuOdRCwCWBgP4o424g+GqtpblM6Z\nE4pFdSEPfakc9fX1IhYJQpU53ptiQV2Af/3otZiWxZ//+ACf+cxn+P73v8/TTz89rWNnJYZWMbYt\nitM7YnC4S5U5L1q0COCyomhODM1XuRgawPrWKC+e7McsWLS0tACVF4t6hw2aavzU+D343OrW48L3\nkIz4IKH+fkQsEqpBJmeOKfOf6BpMEOYzIhYJgjAlzjQ0XZvXzqJ1rVFuW9PEVx49zC/2d+Kt73Ae\na2hoANSub319vfrzOGJRezyI26VRCMYBGDrf5XQWTXSh0hwN4NZ1Ghcur6pYlDEmjqHFgl76UwaJ\nhDiLBKHaHD+foj0WYlVzLe/a1MpTuw/wb//2bwA8//zz0zq2YRbweXRxFlWAbR3qPG9H0To61GfG\nVGLRY4e6nNJpGyeG5qmsWLStI8ZQJs/Bs4NEIhFqa2srKhaNZPOkcyaJiI8DBw7Q0NDAjh07LorS\nJSM+hqwAra2tvPDCCxX7/oIwEdm8xNAEYSpELBIEYUrsGJqv6Cyar2IRwGduX4lPd3HPzw6ih+uo\nL4pEbc2NAPg9LsdZNN7FvEd30RYPMuRWUbVU7zknhjaeuGS/pqUuQGTBEvbs2UOhUPlS2/HI5E38\nHpcjFpWKWXUhLwULautiUnAtCFXmeO8I7XF1vrhlVQP9Ox9E1900NDTw3HPPOc/LZDI8+uijl3Rs\nI2/iE2dRRWiNBWiu9fPMkfMAtLW14XK5OHr06ISvGUjn+NB3nuOjD+yiULCcr49k7YJrd8U6iwC2\nLhoraLW2tlZULOoZVqJjPORlz549dHd38/73v5+zZ8+O+Yysj/joGsqyYcMGEYuEqpDNjdYAgJzr\nBGE8RCwSBGFKRp1F8zuGBtBQ4+cTty4nZ1q0xgKsX7cOgMVtCwDVATGZswhU91F3QV3op/u78XnG\nL7gupS0WREssZGhoaNIbjUqRMwvkTMtxFnm9XnRddx6PhZRgGKyNMTAwMGOjlgVBGMtAKkd/KueI\nRQsCJiMv/Tsd227hxhtvHOMs+upXv8r27dt57bXXyj6+FFxXDk3T2NYR59mjvViWhcfjoa2tbVJn\n0XNHz1Ow4IUT/fzzcyecr6dzRWdRhWNojbV+FsaDjqA1U2JRIuJzNhaOHTvGL37xi4tiaMPZPGvW\nrefQoUNOAbYgzBQZcRYJwpSIWCQIwpTYziLPPC+4tnnv1na2LorxhiUJ1q9fD8BVHarrIehxT9pZ\nBLCisYbOgnrMGOieMoYGKr42ElKCVDWiaJnijUnAq8SiC99LNKh+BvyRKAA9PT0zviZBEOD4eXUT\n3RZTN9r33XcfhVwGY+WvsH7DRo4fP+5EQ3/yk58Al3bOMMzCmB4PuYGaHlsWxegZNjjao/7dFi1a\nNKlY9OzRXrxuF1sWxvj0N77Pu9/7PgqFQknBtV6xgmubbR1xdh7txSxYtLa2curUqYodu2dYbSQk\nwz46Oztxu9188pOfBBjjjqqPqJ+zRctXY1lWVYc5CPMT21kk5zpBmBgRiwRBmBK74No7zwuubXSX\nxj9/eBuf/421bNiwAYCrFrcT9rnxlziLJrqYX94YQXP7qa2LkR/qnnQams3CeAijpgWXy1UlsagY\nPfSMLxbFimKRN6xKv6W3SBCqw/FeFQtdmAhiWRbf/OY32XTtDVh17Xga1TSp559/nsHBQZ544gkA\n9u3bV/bxjWLBtTiLKsO6ViWo2+PpOzo6JnWHPnPkPBtao3z+HWvoeeEhvvdPD7B79+7RGJrHXVFn\nESixaLDYW9Ta2kp3d7dzAz1dHGdRUSxKJpPcddddXHPNNSxfvtx5XjKifs4aOlYASBRNmHGyedXP\nZv+sy7lOEC5GxCJBEKYkZ6reBK84ixxcLg2Ad7zjHfzgBz9g8+bNXL80wYrGiFN2PVGnxFWNNQBE\n4g2Ygz1liUVtsSAuj4+Fi5dV11k0gVjUFFU7cEOaWrOIRYJQHY732s6iIK+88grHjx/nA//pXUT8\nbk66GtA0jeeee45f/vKX5PN5dF3npZdecl5/8uRJ7rnnngm7z+wYmtxAVYal9WH8Hpcznr6jWy3x\nxQAAIABJREFUo4Nz5845XXClDKRz7D8zwLaOOIuTYfz9yoH0bz/8sVNwHfDqFe0sAtjaEQNUb1Fr\naytAxdxFPUPKWRQLeenq6qKhoQGv18uOHTu49957nefVF8UiLRQnmUzKRDRhxsnmTPzFc53b7cbt\nds/2kgRhziFikSAIU2LH0MRZdDEej4c77rgDTdP4xm9t5E9/5Sre9ra3ce+997JmzZpxX9NSFyDo\n1XGFE+SHeji6/wVOnjzpiEzjsTChdpFblqyoij0/PYVYlAj7WLOglpd6lZAoJdeCUB2O96aoj/gI\net08/PDDALz11rfwpuX1PH50mIa2Dv7l54/xvX/7ITU1Nbz1rW8dIxZ9/etf55Of/OSE55ELO4sk\nmjE93LqL1c21jrNo0SI1Hn48d9Hzx1Rf0baOOIODg/ScUs958Ec/ZsQw8egaumaRTqcr6ixqqg2w\nMB7k2aPnHbGoUr1FPcNZagMevG4XnZ2dzuecrutomuY8z3YWdUvJtVAllLNIiUVynhOE8RGxSBCE\nKSktuBZn0dQEg0F+93d/d8yFcCkul8byxghZX5R8/1m+9InfoaOjg0996lMTHrMtpsSaupZlnDx5\nkt7e3hlZu43tLLKnoY3Xv3TLygZeGVDvUZxFglAdjvemnHLrhx9+mEWLFrF48WJ+fcMC+tM5hiLt\n7N+7mx//5Ke8+c1v5uqrr+bw4cPOxJ8dO3YA8OSTTzrHLBQK9PX1AaOdRRJDqxxrW6LsPzNA3izQ\n0dEBjC8WPXv0PF7dxYa2KLt27cKyLLzNyznw4i56e7oJet2OI6mSYhGoqWg7j55nwQLVv1dJsSgR\nVtcMXV1dTkz7QmJBL26XRvdwlquvvpp9+/Y5P4OCMBNkciZ+ty5ikSBMgohFgiBMiS0W6ZpFPp+X\nm4cKsKKxhqyvDiuXxe328LOf/Yx4PD7h8/0enYYaH+56tSs90+4iJ/IwgbMI4JZVjWj+CJrLJWKR\nIFSJ4+dHaI+HyOVyPProo9xyyy0AvGlFPQc/dyuf+523URjpZ+R8F29961tZs2YNhUKBAwcOkMlk\neO655wCcPiOAe++9l5aWFo4fP0622Fl04MABfD7fhEX9Qvmsa60lkyvwSuewIxaNV3L9zJFe1rdF\n8Xt0du7cCcCKt34Iy7I4+PwTBIsRNKi8WLRtcYyBdI5ht4pJV0os6h02SIR9WJY1xll0IS6XRiLs\no2swy/r168nn87z88ssVWYMgjIc4iwRhakQsEgRhSrLFGBoFVbApzqLps6Ixgrd5OXo4xt3feMCJ\nJkxGezxEtkZFBGa6t8iOofknmIYGsKwhTHs8jC9UK2KRIFSBtGHSOZilPRbk2WefZWhoiJtvvtl5\n3O/RuXbbVue/N113oxOH3bdvHzt37sQwDBKJBE888QSWpWKk3/ve90ilUvzPP7ub4WweT6aP7373\nu3zwgx/E4/FU901egaxrUSXXe071k0gkCIfDF4lFg5kc+06rviKAnTt3snjxYm7cfhPuUJRXnt/h\n9BXBxJ14l8vmhaq36EBXhkQiUVlnUcTH0NAQmUxmQmcRQEOtnzMDaefz8Pjx4xVZgyBcSN4skC9Y\n+MRZJAiTImKRIAhTYjuLrLwSi8RZNH1WNEYItK9jwe/9b9ZuuLqs17THgpzL+Whubp5xsciJobkn\nFos0TeOWlQ0UfDWc7ZTOIkGYaU6cVxGktniQhx9+GJfLxfbt28c8Z926dehuN55EO91WhCVLluDz\n+XjppZecCNrHP/5xTp8+zYkTJ+jt7eWJJ54gEonwz9/935iD3Zzc8S/k83k+8YlPVP09Xom0x4PU\nBjzsPdWPpmksWrSII0eOcOzYMdasWcM3v/lNdh6x+4qUaLNz5062bNnC+vYYvoUbOLbnKYJubcac\nRQuiASJ+Ny+fG6K1tbViYlH3cJZEsdwamLSbb3EixJHuEdrb2wE4ceJERdYgCBdib4L6xVkkCJMi\nYpEgCFNi5Au4XRr5fA4QZ1ElWFGciKZpGj63XtZrFiZCdA9lWbN2XRXEInUhFZjEWQTFKFqwhteO\nn57R9QiCMDoJbWE8xMMPP8ymTZuoq6sb85xAIMDv/d7HiG79Dfae6kfXdVauXOmIRatWreLtb387\noKJoP/3pTykUCnzzW/djFgp4d3+PB/7+ft797nc7kSlhemiaxtqWWvacVCXXHR0d7Nmzh5tuuol9\n+/bx5W98i0/8yx7iIS9Xt9Vx5swZTp06xZYtW1jbEiXQsYncyADpM68wPDwMVF4s0jSNqxprOFQU\niyrh6snkTIYyeRJhH52dncAUYlF9mLMDGYI1dfh8PnEWCTOGLRbZzqLJptEKwnxGxCJBEKYkJ4Wn\nFac26KGpVu1k+dzlnYrtkuv2pVdx8OBBZ7T1TJAuo+AaYGN7HYGaGMdPHJ9wFLcgCJXheK9yFkXd\nOXbu3On0FV3Il//2b9h486+zpziBa82aNezZs4ennnqK66+/ntWrV1NTU8MTTzzBD3/4Q5qamvAv\nvYbw6pt47emfMzIywp/8yZ9U7X3NB9a21HKoc4hMzqSjo4MTJ07Q3d3Nhutv5sDe3UR1g3/96LX4\nPbrTK7VlyxZWNdcQXrwRNBedex+fMWcRwPLGCIfODbF27VoOHjzI4ODgtI7XO2IAkIj4HGfRZDG0\nxUn1no6fT9PW1ibOImHGsN3TPrc4iwRhMkQsEgRhSnKmhUd3YRjqwk+cRZVheWMEAJ+nvFPxwri6\nkI63LSefz3PgwIEZW1s5BdcAuktjyw03M3K+i0cffXTG1iMIgiq3rg142PfCTkzT5M1vfvOEz13X\nUsveU/1YlsWaNWvo7OxkaGiI66+/Hl3Xueaaa3jkkUf4+c9/zu23384Dz55k5Vvfj67r3H777U7X\nkVAZ1rZEMQsW+88MsnnzZiKRCF+8/58503oTWAX+85I0CxPqHL9z5050XWfDhg34PTpXLWwmuOwa\nDv/HDx3RpdKdRQArmiIMZfOs2riNQqHAU089Na3j9Q6rDaZynUUdSfWeXusepq2tTZxFwowxGkPT\nSafTIhYJwgSIWCQIwpRk82OdRSIWVQY7ilZuDK2tOC470KSiITM5ES2TH911S6fTk05E2v4rb8MV\nqOEb9947Y+sRBEE5i9rjQadQvq2tbcLnrm2J0p/KceJ8aozwc/311wPwhje8gVdeUbGmNddsZ9fx\nPj582zU89thjfOtb35rZNzIPsUuud5/o4z3veQ/nurr5l9MRFq3cQDgc5snHR8X2nTt3snbtWica\ns661lsimt5NNDfGNb3wDmBln0YriBkao5Srcbjf/8R//Ma3j9RTFonjY64hFyWRywue3x4O4NHit\na5j29nZxFgkzRjYvziJBKAf3bC9AEIS5T85Uo5RtZ5HE0CrDDcsS/L8XT5OMlPf3WRvwkAj76HXV\nEQqFLuotKhQKZLPZimTvM4aJpoGVV//mk4lFixqihFZv5/89+CDnzp2jsbFx2t9fEISLOTeQYXEy\nTGpIxdEm+71c21ILwJ5TA2wqikXt7e20tqqJim94wxsA8PkD3H8kRG3Awzs3tlIblJ6imaCx1s/y\nhghfeOgQ9TV+TvelOdQ5xP3v38TfPnMjDz/8MABDQ0Ps3LmTd7/73c5r17ZE8S24iualq3nyySeB\nmRGLljUosejEUIFNmzZNXywaUp8fybCKocVisUmn6/ncOm2xIK91j9DW1sbZs2fJZrNyzSFUHLuX\n0e+RaWiCMBniLBIEYUqMfAGPromzqMJcuzjB05+8ibCvfN1+66IYzx0fYO3atReJRffeey/t7e3k\ncrlpry2dM/G7lT0bJr8pbakLEFl3K/l8nr//+7+f9vcWBGF8UoZJyOcuq7dmeWMEn9vF3pP9NDU1\n0djYOGZy2pYtW9B1N3rrWuK1Yf7v711LbXDiG3lh+nz3P29hdXMtv//Pu/niQ4d4y6oG3ryygZtv\nvpnDhw9z7Ngx7r77bgYHB/nQhz7kvG5dSxRN07j+1z7gfG0mxKKI30NLXYCDZwe54YYb2Llzp/MZ\nUC4vnRrgxZP9gJqEBqMxtMkiaDaLk2Fe6x52JqKdOnXqEt+FIExNVjqLBKEsRCwSBGFK7IJrcRbN\nPls7YpzuT7NkxWpefPFFLMtyHnvkkUfo7u7mzJkz0/4+mVzBmYQGk4tFrXVBPPEWVm28lm9961tS\ndC0IM0TKyBP06o5YNNnvpUd3sbK5hr2nBtA0jR07dvDFL37ReTyneUi+/b9z0/v/kAc/dh2Lk5Xv\nwBHGUh/x808f3sb7trVTH/Fx19tWAXDzzTcD8LWvfY2//uu/5rd/+7fZunWr87plDWGW1od55zvv\noLm5GZgZsQhUPPrQuSFuuOEGcrkczz77bNmvNQsWv/vd57nzn17Asix6hrOEvDoBr05nZ+ek5dY2\ni+vDHO0ZYUGLcsBJb5EwE2TsaWgeEYsEYTJELBIEYUpyZgGPLp1Fc4FtHXEAAs1LGBwc5PDhw85j\nu3fvBqhIz4NyFrnKEosaa/24NNhwyx0cPXpUiq4FYYZIGSbBoojr9/txuSa/jFvXEmXfmQGMfIEl\nS5ZQV1fnPPbYoS58S6/ls++7hYhfHEXVwut28ee/tpon/2Q7TbUqMrxixQoWLFjAF77wBQKBAPfc\nc8+Y17h1Fw//0Rt5x+aF3HXXXWzduhW3e2aaJFY0RjjSM8LGLdvQNO2SomiPvNzFmYEMp/rSHDw7\nRO+wQaIYs+7q6irLWdSRCJHNF/DXqedKb5EwE4w6iySGJgiTIWKRIAhTks0XxkxDE2fR7LG0Pkws\n5CUdXQTAM888A8DAwABHjhwBKigWleks8ugummoD1C7fiqZpPPHEE9P+/oIgjMUsWGTzyvE3MjJS\nlrPkjcuSpAyT3/q7Z52yYZuHDnSSCPvY0BqdqSULk6Bp2pg/25Pt7rrrrklFlQ9/+MPOeX8mWNEU\nwSxY9Bhu1q9fz+OPP172a//h6WPEQ140DR46cI6e4SzxkNpcKjuGVq8cbimv6tya7PPsySef5Kqr\nrmJwcLDsNQoClE5DE2eRIEyGiEWCIEzJhTE0cRbNHpqmsXVRjMNGlHA47EQESvuLKiEWZXMmAU95\nYhHAgroAXWmNFStWsGvXrml/f0EQxpIu7oQHL0EsetOKev723evZc7Kft33lCQ6cUTfV2bzJ44e6\nuXllPS6XNsVRhGpw55138tGPfpQ777xzVtdhT0Szo2hPP/2089kPUChY/OuuU2SKP482R3tG2PFq\nD++/ZiEb2+p4+EAnPcNZEmEf2WyWgYGB8mJoxTjkyf4cTU1Nk8bQHn30UV5++WVefvnly3mrwjzG\n/vn16iIWCcJkiFgkCMKU5EwLb0kMTZxFs8u2jjhnBg3Wrr/aEYvsCJrP56ucs+gSxKKWugCn+lJs\n3LiRF154YdrfXxCEsaSMPAABr5tUKjXl76TN29cv4F8/ei2mZXHnP71ANm/y9Gu9DGfz3LJSJhfO\nFTZt2sTXv/71SaeFVYOF8RBet4uXz6mS63Q6zfPPP+88/sThHv7bD/bwg+dPjnndPz5zHLdL4z1b\nWrllVQP7zwxyrDdFIqImoQFlOYtiIS91QY8zEW2yz7PXXnsNkKiacOnYziLNUudVEYsEYXxELBIE\nYUqMvDiL5hJ2b1H9YlVynU6n2b17N42NjaxcubIyYpFxac6ilmiAc4MZ1q3fwOnTp+ns7Jz2GgRB\nGCVtFJ1FnvKdRTarF9Tyv+5Yx5GeEb7x2Gs8dKCToFfnmsXxmVqu8DrFrbtYWh/m5XNDbNu2DRjd\njAB45kgvoGKMNmnD5Ae7TvGW1Y3kh8/jPr2H9JFdDB7bTzzkdT4PynEWwdiJaLazyDAMfvGLX4x5\nXiWj18L8wnYWWXk1PVbEIkEYHxGLBEGYElVwrYmzaI6wtD5MXdCDVb+UfD7P7t272b17Nxs2bJhy\nJ7ZcMrnCJTqLghQsWLh8NYBE0QShwqSMS4+hlfLGZUluX9fM1x99jZ++dJYblyfxe/SZWKrwOmdV\ncw0vnR6goaGRaDTK/v37nceePXoegKdf62UgrW60f7TnDAPpHO/b1s4dd9zB7/ynd9D1g8/S+Y+f\n4Ohz/35JziJQYtGREmeRZVl84Qtf4NZbbx2zFlssOnny5ESHEoRxsZ1FmGoTVMQiQRgfEYsEQZgS\n44KCa3EWzS4ul8bWRXHOeFsAePzxxzlw4ECFxSITv6e8aWigYmgAta3L0DRNxCJBqDC2WBQoFs+X\nG0Mr5dO/ehU+j4v+VE4iaMKEbFkUpz+V49XuYVauXMmBAwcAFYXcc7KfrYti5AsWjx3qwrIs/uGZ\nYyytD9Pqy/D000/z+7//+3zsS/+EO7aAX/zTfY6zqFyxqCMZomc4S31TC9lslrNnz3LvvfcCsHfv\nXgAymQynT58GxFkkXDq2WGQaahM0EAjM5nIEYc4iYpEgCFNiFAuubWeRiEWzzxuWJujKB2ha0MK3\nv/1tTNN0xKLBwUEGBgamdfz0JRZct9Spx/tyOsuWLROxSBAqjBND87ovy1kEUB/x89nbV9FU+/+z\nd+dxVdX5H8df594L97JvwgUEEdwQxBUVzaU00Ranfc82y7JmsplpZsyZan62zUz7TNOMZtqemWbm\nTOWWmkuouKCAqMiiCBdkX+9+fn9cIB3LFbwgn+fj4aM4955zP7dULu/z+X6+Bq7od3ZLgkTXMzI2\nGIC0wxUkJCS0dvPsLKzC7lR55PJedPPVsya7lIyiGjKP1TJtVAwrV64EYMaMGcy681q6j72V3Oy9\nLF68GDj7ZWgDurt2QqvVuf759ttvt3YPtQRXBQUFqKoKSFgkzp3F5kB/wuda6SwS4qedMSxSFGWh\noihliqJk/szjdymKsldRlH2KomxVFGXQCY8VNB/foyhK+k+dL4To+GwOJ54ndBbJMjT3+8XgSLw9\ntfj3SCA3NxegNSyCC//wbLY5WjsY4MxhUXiAAY0CRVVNMuRaiHbQMuD6fJehtbh5WBQ/PDWRAG/3\nDlIWHVd0sDdRQV6k5VWSmJhIeXk5x48fJy2vAq1GgdKDxDbu56sVK3jzq234eGq5YUh3VqxYQa9e\nvUhISKCP0Y+cxS9iNBpZvXo1Pj4+Z/17NiUuhOhgL7Yfd/2Y8vrrr9O9e3f69OnTGly1LEFLTEyU\nsEicM4vdtdTebDYDEhYJ8XPOprPoPWDKaR7PB8arqpoEPAfM/5/Hr1BVdbCqqsnnV6IQwt1alqFJ\nZ1HH4W/w4Poh3an0cYVD/v7+xMbGEhMTA1x4WPS/u6Gd6YOUp05DuL+hdUe0o0ePcvz4cSwWC4sW\nLaK+vv6C6hGiq2uyXfgyNCHOVkpcCNvyK4iP7w9AVlYW2/IqibIdY8L4sSx96XGOLpnLB7+/nSl9\n/VCtTaxbt47rr78eRVEA1/eNWbNmAWe/BA1Aq1G4a2QM2XWuG1ONjY08/PDDDBw4sDUsatkJ7Yor\nrqCsrKz1h34hzoa5ubNIwiIhTu+MYZGqqt8Dlad5fKuqqlXNX6YBUW1UmxCig7A51Nbd0BRFQafT\nubskAdw9MgaNsR8AgwcPRqPRtElnkaqqJw249vb2bv3wfzpRQd4UVTUxdOhQwDXk+tFHH+WBBx5g\n7ty5512PEOLCB1wLcS5GxgZT1WjDy+i6AbFn7z4yiqrxNO1DURRWr11H1G3P4myqpXjtIr799lts\nNhvXXXfdSdeZOXMmvr6+Z70ErcWtydEYfPzw9PJBp9Px4IMPkpDg6qS1WCzk5eXh7e1NcrLrXnRR\nUVHbvHHRJUhnkRBnp61/4psOfHPC1yqwWlEUFZinqur/dh21UhRlBjADaP1hRwjRMVgdrs6iBqsV\nT0/PswoORPtLiPRn1PBhfLVEz/DhwwHX3VsPD48LCotaBj+2zCw628GPUUFebMuvZMiQYQD8/ve/\nZ9++fYSHh/PWW2/x61//moiIiPOuS4iurCUsMmhdg+clLBLtKSUuBID8Rj3+/v58v203tug4yg/u\nZPDgwUyaOIH768NYXn2Qzz5YSE7GTrp168bo0aNPuk5gYCDvv//+OS9fD/bxZOqgSOYZe3PT+CFE\nRESQmJiI0+nkwIEDHD58mLi4uJO6aXv37t02b15c8iz2ls6iJkDCIiF+TpsNuFYU5QpcYdEfTjg8\nRlXVocBVwGOKooz7ufNVVZ2vqmqyqqrJoaGhbVWWEOICqaqK1f7jgGuZV9Sx3De+L8a7X+Hy2x4G\nQKPREB0dfUFhUcsg3Zbd0M52uUtUkBclNU14+/rRp08f9u3bx9SpU/n++++xWq28+OKL512TEF1d\nU/PMIsXp2q5clqGJ9hQd7E33QNcNgMTERDIys1AcFrL3pDNhwgQA5l43gK2fzyMyMpI9e/YwdepU\ntFrtKde68cYbueaaa865hmkpMXS79TkmPvgnABISEgDXkOu8vDx69epFdHQ0IEOuxbkx25zoPWQZ\nmhBn0iZhkaIoA4EFwHWqqla0HFdV9VjzP8uA5cCItng9IcTFY3e6dhvx1CpYmzuLRMdx1YAIjD37\nsubwjzOBevTocWFhUctsFI9zm40SFeSNUwVTjZlJkyaRlJTERx99RJ8+fXjggQeYN28ehYWF512X\nEF1Zo9WBTqNgs7juhEtnkWhvrrlFlWiDoynIPUBv5zGsVisTJ05sfY6fnx9///vfAbj11lvb9PUH\nRweSEBnIl3tNAPTt2xetVktmZiZ5eXnExcURFeWafiFhkTgXFrsDg06WoQlxJhccFimK0gP4Apim\nqurBE477KIri1/LvQCrwkzuqCSE6LmvzkqSWAdfSWdSxeOo0TOxvZH1OGTaH6//VhYZF5vMcpBsV\n5FqudrSqkbfeeovdu3fj7+8PwNNPP42iKLzwwgvnXZcQXVmj1bVDYUNDAyBhkWh/KXHBVDZYyWry\nx9lYQ/fK3eh0OsaOHXvS82688UaOHDnClCmn2w/n3CmKwlUDwtlztJqyOjN6vZ7evXuz4uvVNDU1\nERcXh16vJzw8XMIicU6ks0iIs3PGsEhRlE+BH4B+iqIUKYoyXVGURxRFeaT5Kc8AIcDbiqLsURQl\nvfm4EdisKEoGsB34r6qq37bDexBCtKOWAKJlwLV0FnU8qQlGas12tue79iLo0aMHx44dw263n9f1\nWjqL9LpzC4viQn0B2FdUg6IoJy1HiI6O5uabb2blypXnVZMQXV2T1dHa7QcSFon2N75vKDEh3twx\n2TWHaMlnixk5ciS+vr6nPLdlOVhbS000oqqwbn8ZAH3j+5O52/WjRoHVF1VV6dGjB0ePHm2X1xeX\nJuksEuLsnM1uaHeoqhqhqqqHqqpRqqq+q6rqv1VV/Xfz4w+qqhqkqurg5l/JzcfzVFUd1PwrUVVV\nuZ0sRAdXa7bxxa4iVFXlmmuu4a9//StWh3QWdXRj+4Ri8NCwOsvVqt+jRw8cDgclJSXndb0TO4ua\nmprOOiwKDzCQEOHPmuzSn3x8xIgRmEym865LiK6s0eZo3QkNZGaRaH9h/gY2/u4KnrpzEgBNTU0n\nLUG7GPoZ/egR7N36/c0Z0B3X/jnw6X4Lc5ZnXnA3reh6LNJZJMRZabMB10KIzm/F7mP8ZkkGuwsr\nWLVqFW+88QZNFtcwVU+tdBZ1VF6eWsb2CWVNdmnrXVY4/xkOZpsrIDTozm3ANbjuAu88UsXxOssp\njw0dOhSA3bt3n1ddQnRlTVY7Xp46WYYmLrru3bu3Lim+2GGRoihMSjCyJbeCOrONw/ag1uP3TxnB\np9uP4BNs5MiRI6iqelFrE52X2e5AL51FQpyRhEVCiFZF1a7Bqau2ZeFwODCZTGzcsAFAdkPr4CYl\nGCmuMZNVXHvBYVHLbmjnOrMIIDUhHFWF73JO7S4aPHgwALt27TqvuoToyhqtrs4iWYYmLjZFUUhI\nSMDLy4uRI0de9NdPTTBidTh54b/7qdEbAYiKiuKeMb0B0PqF0tjYSGVl5Unnrc8pI7+84aLXKzo+\ni82JwUNDU5Prc6+ERUL8NAmLhBCtSqpdd1i+35nVemz5kk8B1zI06SzquCbGh6FRYHWWqXV2xBdf\nfNH6QehcnO9uaAD9I/yICvJiddapYZGfnx99+vSRsEiI89ASFskyNOEOjz76KM8884xbbhgNiwki\n2MeTxTuOEt4jFo1GQ1xcHLHdfPDQKlgMrm6jE2+Q2B1OZn68k5dX5Vz0ekXHZ7b92Fmk1+tRFMXd\nJQnRIUlYJIRoVVLjChb25hwCYMKECaz+eiVOm1kGXHdwIb56knsGsyqrFF9fX/7whz+wdOlShgwZ\nwvbt28/pWi0ziwznERa1LBnYlFtOg+XUAdtDhw6VsEiI89Ay4FqWoQl3mDZtGrNnz3bLa+u0GibE\nhwFw56jeXH755YwbNw4PrYbeYX5UawIAThpyXVDRiNnmZFtepSxPE6ew2J3oda6ZRdJVJMTPk7BI\nCNGquNqMj6eW+vIStFotTz31FI0N9TQd2ua6eyfL0Dq0qYMiOVBax+osE3/5y19Ys2YNjY2NTJo0\nCavVetbXuZCwCFxL0ax2J98fPH7KY0OHDqWwsJCKiopzuqYQXV2jzS7L0ESXdcuwKLoHenFXSg/W\nrVvH3LlzAYgP98PkcP1ZOLGz6ICpDoCKBiu5ZfUXv2DRYamq6gqLPLQSFglxBhIWCSEAcDhVSmvN\nTB4Qjr3GRGBoBBMmTCAsPJKG7A0y4LoTuH14NPHhfjz7VRb1FjtXXnklr7zyCrW1tWRmZp71dVqW\noXlqwWKxnHNYNLxnEIHeHqz+iV3R2nLI9ba8CjKP1VzwdYToDJqsjpMGXMsyNNGVjIwLYcvsCUQE\neJ10PD7cj+N2A3q9nsLCwtbjOaba1n9Py5ObE+JHFrtrEw/pLBLizCQsEkIAUF5vwe5UGRIdiK6h\nHM8gIxqNholTb6QpbydF+Qels6iD89BqeOGGJEy1Zl5fcxCA5ORkANLT08/6Oi27oamlt5NPAAAg\nAElEQVQ2145m5/pDqU6rITXByOosE3Vm20mPDRkyBGibsOh3S/fy56+yzvxEIS4BMrNIiFP1C/dD\nURSievY66abI/pI6eof5EhlgIC2v8jRXEF1NS1hkkM4iIc5IwiIhBADFzTuhRQR44agppUkfgsOp\ncuO0GWi8/PjT4w9RV1cnnUUd3LCYIO4Y0YNFW/LJPFZDbGwsQUFB5xQWNdkceGgVrBbXwPPz+aH0\nzpExNFgdfLn72EnHQ0JCiImJueC5RfUWO0cqG8ksrsHucF7QtYTo6FRVpcn2425oXl5eaDTyEU6I\n/hH+APToP4StW7ficLg6Yw+U1hIf7sfIuBC25Ve0HhfC0tw9LZ1FQpyZfNIQQgBQUuMKBoL0Kg3V\n5ai+oewvqcU3qBvdrv41h3KyKSoqks6iTuAPk+Px9/Lgn+tzURSF5OTkcwuLrI7WeUVwfmHRoKgA\nkroH8GFa4SnDRdtiyHXLPAqzzckhmUchLnFmmxNVBa/mziLpKhLCJcxPT5C3B74xidTW1rJv3z7q\nLXaOVjbRP8KflLhgCnesI9RopLT01KXRouuRZWhCnD0Ji4QQwI+dRbZq14cpXWA4mw6VY3WoePVK\n5oFHfgkgnUWdQIC3B7clR7M6u5SSmiaSk5PZt28fZrMrEMwvb2DFnmM/e77FfuFhkaIoTEuJ4WBp\nPdvzT14CMHToUA4ePEhtbe3PnH1mLWERwPLV39OnTx9MJtN5X0+IjqzR6tpZ0Lt5NzQZbi2Ei6Io\n9Av3wxLSF4DNmze3fn/oZ/QjJS4Ec8Fuqioq+Mc//uHOUkUHYbH/uImHhEVCnJ6ERUIIwNVZZPDQ\nUGEqAiChby9eXX2ApTtdXz/1zHPcfPPNXHHFFe4sU5ylu0bG4FRVPt1+lOTkZOx2O3v37gXgz19l\nMWvxHjYfKv/Jc1u26L6QsAhcu7MFeHnwQVrhScdb5hZlZGSc13XBNbzUV6/Dz6Djy2VLyM3NZfPm\nzed9PSE6skar64cbb08djY2NEhYJcYL4cH+OWL2Jiopi8+bNrcOt4yP86BHsjVpRAMDbb79Nfb10\nonZ1LXMZpbNIiDOTsEgIAUBJTRORAV4UFBQAMP/Rqxnbp1vr9ue+3gY+//xzbr31VjdWKc5WjxBv\nLu8byqfbjzBoiGsHsvT0dAorGth48DiKAn/6ch/pu/ZgsVhOOrfJ1jZhkZenlluGRbEq00Rprbn1\n+MCBAwHOaYe2/5VTUke/cD8GRgWwf/v3wIWFT0J0ZC07FMoyNCFOFR/uR5PNydARo9i0aRM5JbX4\n6XV0D/TCbrdjLs3HNyaJqqoqFi5c6O5yhZtJZ5EQZ0/CIiEEAMXVZiICDRQUFKDX6+kbG82Ce4fz\nqwm9ie3mQ6C3h7tLFOdo2qgYjtdZ2F/rSWhoKOnp6Xy87Qg6jcKrtwwiN7+QkcOTmTVr1knnmW1O\nDB6aCw6LAO5OiQHglVUHWo9FRUXh5+dHdnb2eV1TVVVyTK7hpdEeDdSXujqX9uzZc951CtGR/dhZ\nJMvQhPhf8c1DrqMThlJcXMyuzIOtu6Tt378fh92GYeBkho1I4fXXX8dut7u5YuFOFuksEuKsSVgk\nhABcnUURAV7k5+fTs2dPNBoNWo3Cb1P7sf7JyzF4aN1dojhH4/uGER3sxXtbCxg6dBg7dqSzJP0o\nkxPDuXFoFL0asnA6HcyfP/+koKXJduEzi1r07ObDg2Pj+HxnEWl5FYBrxkRCQgJZWee37X1JjZla\ns534cD8a81yDsuMTB0pnkbhktcws8mreDU3CIiF+1Nfoi6KAoXsCAHt3ptEv3A+A3bt3A+Bp7MW4\nm6dTUFDA0qVL3VarcD9zc2eR3kNLU1OThEVCnIaERUIIbA4nZXUWIgMM5OfnExsb6+6SRBvQahRm\njOtFemEVxR4RZGVnUVlT19rtY839Ac/g7hh8A3n88cdbdy0z2xytP5TChYVFALMm9iEqyIs/Lt/X\n2v6dkJBw3p1FLcNL4yP8yd21Ga1/KEnjruLo0aNUVlae4WwhOp+mE2YWyTI0IU7m7aljeEwwywsU\nDD5+VOdntnYb7d69G29vb6Ji4rBEDCY+Pp6//e1vp+zSKbqOls4ig4ers8jLy8vNFQnRcUlYJISg\ntNaMqkJEoJeERZeYaSkxvHhDEscN3VGdToy2UlLigjGZTGz7YSsjJ/0CvzF3s2nTJpYsWQK4wiKD\nru3CIi9PLc9dP4DDxxuYvzEPgMTEREpLS6moqDjn6+1vHl4aF2Jg88b1BPUdgSPQFYBJd5G4FMky\nNCFOb8F9yVweHw7GvliKsolv7izatWsXgwYNYlTvULYVVPOb3/yG3bt3891337m5YuEurZ1FOplZ\nJMSZSFgkhKCkxjV82E9jpaqqSsKiS8ydI3uw8MnbAOhlyUVRFJYvX46qqjz5yD0YBlxJdJ8EZs+e\njdPpdA24bsPOIoAr+oUxOdHI/E15NFrtJCS4lgucT3fRAVMd3QO9yNqdTl1dHYNGjaPM0wjI3CJx\naWrpLGoZPC9hkRAn8zd48M49yUwYPw5bxRH8bNU4nU727NnDkCFDSIkLobzewmVTbsBoNPLyyy+7\nu2ThJjKzSIizJ2GREILi6iYAHDWlABIWXYKuGjmA66+/nmUL/0FaWhrLli2jb9++TB0/kpFxoXgn\n30BBQQFbtmyhyepss5lFJ3pobBx1Zjtf7Sm+oLAop6SO+HA/vv32W3Q6HZMmXkmRRY8xPFw6i8Ql\nqWVmkXQWCfHzNBqFf/35CTw8PHjztZfJy8ujrq6OIUOGMDIuBIDdxQ3MmjWLVatWsXfvXjdXLNzB\nYneFRR4asNlsEhYJcRoSFgkhWjuLGsqLAQmLLlULFy4kKiqKW265hQ0bNnDzzTejKAp3j4qhMXww\neoMXn332GRabA4OHhqamJrRaLR4ebbMT3rCYIOLD/fjgh0Kio6Px9fU95yHXVruTw8fr6Rfux9q1\na0lJSWF0QjSqCjF9EqSzSFySGm3NWz3rXLsUyswiIX5ajx49mD59Ou+++y4rVqwAYOjQofQM8cbo\nryctr5JHHnkEHx8fXnnlFTdXK9zB3Pz3KQ4bgIRFQpyGhEVCCEqqm/DT6ygvLQFcH7bEpScoKIgl\nS5ZQWlqKw+HgpptuAmBKYjhhwYEYE0exdOlSGi3W1uUu3t7eKIrSJq+vKArTRsWQXVLL7qM19O/f\n/5w7iw4fr8fuVOkT6s3evXsZOXIkQ3sEodMoeEfEkZ2djdVqbZN6hegomqwOFAVwuH5vS2eRED/v\nqaeeAuBPf/oTOp2OxMREFEUhJS6EtLwKAgMDeeihh/j00085fvy4m6sVF1tLZ5Fqd/19KmGRED9P\nwiIhBMU1ZiICDZSUlKDT6QgJCXF3SaKdDB8+nPnz53PLLbcwZMgQADx1Gh4cG0tj1AhKS0upL9yH\nXquwc+dOAgIC2vT1rx/cHV+9jo/SCklMTDznsCinebi1obEMi8XCoEGD8NHrSIoKoME3GpvNxv79\n+9u0ZiHcrdHqaA1wQcIiIU6nR48ePPjgg5jNZhITE9Hr9QCkxIVwvM5CfnkD9957L3a7vbX7SHQd\nZpsDnUbBbpOwSIgzkbBICEFJTRMRAV6UlJQQHh6ORiN/NVzK7rvvPpYsWXJSx9DD4+KY+8tpKB4G\nGvdvYutXH7Fx48bWO7RtxUev46ah3fnv3hJievWlpKSEqqqqsz4/x1SHp1ZDxdGDAAwcOBBw/RBg\n0oYBsiOauPQ0Wh2t84qg7eaICXGpmjNnDp6eniQnJ7ceS2meW/RDXgWDBg2iV69eLF261F0lCjex\n2J2tw61BwiIhTkd+IhRCYKoxExFgoLi4mMjISHeXI9xAURRmXpnAlVOupunAJpbP+xtTp05l5syZ\nbf5ad46MwepwUucVDpzbkOuckjp6hfmSnZmJTqejf//+gOuHACUwEr3BS+YWiUtOk9V+0g6F0lkk\nxOlFRUWxZcsWnn/++dZjPUO8ie3mw7ub87E6nNx8882sW7eOyspKN1YqLjaL3YHBQ8uRI0cA6Nat\nm5srEqLjkrBIiC7O5nBSXm/F6O9ahhYREeHukoQbPTb9HhzmBkJCgnn33XfbbF7RifoafYnr5kOe\nPRA4NSzaericzYfKf/LcA6Y6+of7sXfvXvr374+npycAyTFB6HQ6ovomsXLlSlRVPeVcVVXPqYtJ\niI6i0erA20PX2lkkYZEQZ5acnEx4eHjr14qi8OzUBPKON/DvDXnccsstshStCzLbXJ1F69atQ6vV\nMmbMGHeXJESHJWGREF1cWZ0FgPAACYsETJkyhVtuuYXFixcTGhraLq+hKAqTEozsq/HA29v7lB3R\n/rg8k4c/TGdT+l569erV+nhVgxVTrZl+4X5kZGS0LkED1/K2gVEBBA+ZQm5uLuvXrz/ldb/88ksi\nIiI4evRou7wvIdpLk82BlyxDE+KCXd4vjGsHRvDPDbkE9ehHz549ZSlaF5Nf3kCov4G1a9cyfPjw\nNp/NKMSlRMIiIbq40lrXmu1gg0JFRYWERV2cXq9nyZIljB8/vl1fJzXRiN2pENmzD5mZma3HS2vN\n5Jc30GB1MOefi8nLy2Pu3LmAa14RQKSXg6KiIgYNGnTSNUfGhlARNpigoCDmz5/fenzd/lIyj9Ww\nZcsWLBbLTwZJQnRkLTOLZBmaEBfumWsT0Gs1PL0ik5tuuok1a9ZQXV3t7rLERXC8zsKuI1WMjvJi\n+/btXHnlle4uSYgOTcIiIbq40hpXWKS11ABIWCQuisHRQXTz1eMZ3ov09HScTtdWtml5FQBcOzCC\njL17Afj888/JycnhQPNOaLbjBQAndRYBpMQF49B4cuV1t/LFF19QVlaG3eFk1uI9vPj1fvbt2wfA\npk2bLsZbFKLN/O+AawmLhDh/Yf4Gfn9VPFtyKwgdOB6bzcbixYvPeF5GRkbrn0HROa3bX4qqgk/l\nAZxOp4RFQpyBhEVCdHEtnUWOetcsFxlwLS4GrUbhyv5h1PjFUVNT0zq3KC2vEj+9jlduGYSu5hiG\nbtEYDAb+8pe/kGOqI8jbg6O5+wFO6SxK7hmMVqMQM/oX2Gw23n//fbKKa6m32Nl1pKq1g+n777+/\nuG9WiAvkGnCtk2VoQrSRu0b0YHB0IJ8V6BkydBi/+tWv+Oijj0553pGKRr7YVURNTQ3Dhw/njTfe\ncEO1oq2szi4lOtiLnJ1b8Pb2JiUlxd0lCdGhSVgkRBdnqrXgoVVoqHINFJbOInGxpCYaUY39ANiy\nZQsA2/IqGBEbjF6nwVl5BF33BMZcexsfffQRu7IO0i/cj3379hEaGorRaDzper56HYOiAsgx+zN2\n7Fjmz5/P1tzjADTU1lBcXExERAQHDx6ktLT04r5ZIS6Aa8C1LEMToq1oNAov3pBEjdnO+CfeYMyY\nMUybNo1XX331pOfN+/4wv1mSwYa0XdhsNtLT091UsbhQDRY7m3PLmdQ/nHXr1jFu3Dj0er27yxKi\nQ5OwSIgurqzWTJifAZOpBJCwSFw8o3t1wz+sO94BwWzZsoWyWjN55Q2kxIVgMpmoqaqkZ+94muKv\nRqPRsG3JW/QL820dbv1TO7VNSghn37EabrrzHnJzc/l6/RbC/Q3YywsAmDFjBiBL0UTn0mQ9ecC1\nhEVCXLiESH+mj4lleVYNL/z7E2688UaefPJJcnNzW5+TUeSaZbR83Q+urzMy3FKruHDfHzyO1e5k\ncIiTnJwcWYImxFmQsEiILs5Ua8bor6ekpASNRkNYWJi7SxJdhMFDy1UDItCEx7Nx02bS8isBGBkX\n3Lpk7MYrR3HU6s119z5GbdZGNr77HJmZmacsQWsxKcHVbaSNHgzAji0bmdA/jCCLq5Po3nvvxdvb\nW5aiiU5DVVUabSfPLPLy8nJzVUJcGp64sg9hfnrmbTnKP/7xD7RaLQsWLADAbHOQU+LaWOGHnXsA\nyM/Pp7a21m31ivO3OruUIG8PKg66usMkLBLizCQsEqKLK601Ex5goKSkhLCwMLRarbtLEl3I76fE\n49MjkSMF+axJP4CfXkdChH9rWPTgL8YT4OXB4eirCBh9Bxv/8zlms/mU4dYteof5EhfqQ1qJg779\nE6k5vJuUuBC864+hMfgSGdWDUaNGSWeR6DSsDicOp9q6G5qXlxcajXx8E6IteHvquHNkDzYePI5N\nH8C1117LokWLsFqt7C+pxe5U6RPmy5HDB1r/3LVsliA6D5vDyXc5ZVzRL4xPPv6Y0NBQkpKS3F2W\nEB2efNoQoosrrbUQ5ucKi2QJmrjYwgMMPHjTFACWfbOO4bHB6LQa9u3bR1hYGNGR4dyaHEVlo42g\ncXcx94UXCQgIYMyYMT97zdSEcNLyKjDGJ2M5tp/BEd40lRXg0a0H+47VMHbsWDIyMmSrZNEpNFkd\nAK0DrmUJmhBt644RPdBqFD5KK2TGjBmUlZWxcuVK9ha5don9bWpfrMcLGTjC9X1HlqJ1Pou25FPT\nZENzcB1r167l6aefltBdiLMgf0raSV5eHmvWrCEvLw+73e7ucoT4SfUWO/UWe2tnkeyEJtxhzj1X\no9F5Un8ki5S4YAAyMzNb7/rdNTIGgJhgb56e8xQVFRX06tXrZ683KcGI3amS7xmHardyaN9OivIO\n4hHak7S8CsaOHYuqqmzdurX935wQF6ixOSxqWYYmO6EJ0baM/gYmJxpZkl7E+AlXEh0dzfz588ko\nqibUT8/gbhqcjTV4xQ0jKCiIvXv3urtkcQ6Kqhp5fc0hRoTY+Pdfn2XixIk89thj7i5LiE5BwqJ2\n8vnnn5OamkqvXr3w9vZm0aJF7i5JiFOU1poBWmcWSWeRcAdvLwODhw5DKTvIpIRwnE4nWVlZDBgw\nAICe3Xy4Y0Q01wx0/f4801LJIdGBdPPVo0T0R6PV8d5771FbU0N0r36k5VWSkpKCTqfju+++a/f3\nJsSFOjEsamxslM4iIdrBtJSe1DTZ+DqzlOnTp7N69WrS9uxnUFQA2dlZABxTQhmQlCSdRZ2Iqqo8\nuyILcHJk+StotVoWLVokXUVCnCX5k9JOpk+fzvr161mwYAFJSUn88Y9/xGq1urssIU5SWuMKi0K8\ndZSVlUlYJNxm0hXjaCo+RLiPhvz8fBobG1vDIoCXbhzI7ybHn9W1NBqFSQlGNHpv+g4YzGeffQbA\nyKGDSS+sROdp4Oqrr2bRokXU1dW1y/sRoq20LkPz0MoyNCHaSUpcML3DfPkwrZD7778fjUZD9sYV\nDIwKbJ2h5wyMpluPvuzbtw+n0+nmisXZWJVlYl1OGRO9j7Hthy289tprREdHu7ssIToNCYvaSbdu\n3bj88suZPn06L774IiUlJSxevNjdZQlxktI6V1iks9bhdDolLBJuM2bMGGw2G++8807rB/MLGT55\n2/Bo4sP9uHZKKjabDYBrx4/AbHOyo6CSP/3pT1RWVvL222+3Sf1CtJe6JgtNhRlgNcsyNCHaiaIo\nPHBZLHuLasio0pEyfiL1e9eQYPQmMzOTkJAQfINCcAT1oKGhgby8PHeXLM6gzmzj2a+y6B/hT/aa\nxURHR3Pvvfe6uywhOhUJi9pJxtFq/rh8H06nSmpqKgkJCbz22muoquru0oRoZaqxAOCod21ZLmGR\ncJfJkydzzTXXMGvWLJ577jkAEhISzvt6g6MD+faJcVx7VSoAUVFRXJ3cB4OHhjXZpQwfPpzJkyfz\n6quvtm5HLkRHtHb1KsoW/5FfjE4gPT1dOouEaCe3DY8mqXsA/7cymz7jrsdRX4kpc2vrDL3knsGU\n6YyADLnuDF5dfZCyOgv391dYv/47fvnLX6LT6dxdlhCdioRF7STHVMvH246wdGcRiqLwm9/8hoyM\nDJmRITqU0lozvnodNRXHAQmLhPt4eHiwbNkypk6dys6dO+nZsyd+fn4XfN2UlBS8vLwYMGAAXp5a\nxvQOZXWWCVVVeeaZZzh+/Djz5s1rg3cgRNvbllfB/K82AXDzrbeh1+tJTEx0c1VCXJq0GoWXbkyi\nssHC9+ZoPP1D+Pj9hWRmZjJgwABS4kI4pnRDo9FIWNTB7S2q5v0fCpiWEsOqzxbh7e3Ngw8+6O6y\nhOh0JF5tJ7cMi2bpziJe/GY/E/uHcddddzFnzhz+8pe/cNlll2EwGNxdohCU1pqbh1sfAZDd0IRb\n6fV6li5dyowZM4iKimqzay5YsICYGNeOaqmJRtbuLyWruJbRo0czYcIEXn75ZR577DH0en2bvKYQ\nbeGLXUX8fuleqC8jIDCIj95fhKqqKIri7tKEuGQN6B7AvaN7smhLAQMnXM+3X77rOj5gAMlxwWg8\n9HSPiZMd0TqgvUXVfLHrGADfHzpOqK+ee4cEkXjbxzzwwAMEBwe7uUIhOp+z6ixSFGWhoihliqJk\n/szjiqIof1cUJVdRlL2Kogw94bF7FUU51PyryywU1WgUXrwhiQaLnRe+3o/BYOC3v/0ta9euJTIy\nkscffxyTyeTuMkUXV1prJjzAQElJCQBGo9HNFYmuztPTk/fee4/nn3++za555513ctlllwEwMT4M\njQKrs0sBmDVrFiaTic2bN7fZ6wnRFt5an0t8hB8JfhbiYnsCSFAkxEXw29R+DO0RyKMPz2j9Mzdg\nwACSugfi5aHFv3tv9uzZ4+Yqxf96ekUWH28rZPnuY9Sb7bxwXX/+8tyfsVgsPP744+4uT4hO6WyX\nob0HTDnN41cBfZp/zQD+BaAoSjDwLDASGAE8qyhK0PkW29n0MfoxY1wcX+w6xvqcMn73u9+xdu1a\npkyZwrx587jttttkNwXhVqW1Fox+rrCoW7dueHp6urskIdpViK+e5JhgVme5wvoJEybg4eHB6tWr\n3VyZED9SVZVjVU2M7tWNoiOFxMbGurskIboMX72OLx69jPunjGDy5MkAJCYm4qnTkNwzCGd4fwoL\nC9mxY4ebKxUt9hZVu+bFXt2fjGdTWX5ff55/7E4WLFjArFmziI8/u91UhRAnO6uwSFXV74HK0zzl\nOuAD1SUNCFQUJQKYDKxRVbVSVdUqYA2nD50uOb+a0Ie+Rl8e+iCdj9IKmTBhAp988gn/+te/+P77\n73nnnXfcXaLoopxOlbI6M8bmziKZVyS6itREIzmmOo5WNuLr68vo0aNZs2aNu8sSolV5vRWL3Un3\nQAMFBQX07NnT3SUJ0SW9/PLLvPnmmwQGBgKQEhdCfdQofH19+ec//+nm6kSLj9IK8bDUUPDdJ0yd\nOpX+/fuzc+dOPvjgA9544w13lydEp9VWA667A0dP+Lqo+djPHe8yDB5aPn9kNOP6hvL0iixmL9uH\nxe7g/vvvZ+LEifzud7+jqKjI3WWKLqiy0YrNoWL001NcXCxhkegyJiW4lluuau4uSk1NZffu3ZSV\nlbmzLCFaFVU1AuDjbKCpqUk6i4RwkwEDBpy0hGlkbDAavTfjr7mJxYsXU15e7sbqBEB1o5UVe4rx\n27+C/3vmTxw6dIhbb72V9PR0pk2b5u7yhOjUOsxuaIqizFAUJV1RlPTjx4+7u5w2FeDlwYJ7kvnV\nhN58ln6U2+enUVZnYf78+TgcDh599FF3lyi6oNJaMwDOWhOZmZn06tXLzRUJcXHEhPiQGOnPF7uO\noaoqqampAKxdu9bNlQnhUlTVBICz1jVbSzqLhOgYBkYFYvDQ0OOy67FYLCxatMjdJXV5S3cWYbE7\n8XfUMnjwYHJycliwYIEsPROiDbRVWHQMiD7h66jmYz93/BSqqs5XVTVZVdXk0NDQNiqr49BoFH6b\n2o9/3z2UA6Y6rv3HZqq0QcyePZuVK1dy5MgRd5coLmG7du2id+/eJ/0+K601o6pO3vrzb/H09GTO\nnDlurFCIi+uukTFkl9Sy60gVQ4YMISQk5KznFn224wgHS+uoq6uTmRWiXbSERY0Vru436SwSomPw\n1GlIjgkmzxHMuHHj+Ne//oXD4XB3WV2W06nyUVohyTFBNFSXEx4e7u6ShLiktFVY9BVwT/OuaClA\njaqqJcAqIFVRlKDmwdapzce6rCkDIlj+6GV4e2q5ff4PGPqMApDhqqJd7dixg8OHDzNv3rzWY1ty\nK2jc9RW7t//Am2++2WZblQvRGVw3OBI/vY4PfyhEq9UyceJEVq9ejaqqpz2v1mzjD8v2MXdlNi+/\n/DIpKSkUFxdfpKpFV1FU1UiQtwclRa6APyYmxs0VCSFajOoVQo6pjrvuf4j8/Hy+/fZbd5fUZZXU\nmimoaOQXgyMxmUwSFgnRxs4qLFIU5VPgB6CfoihFiqJMVxTlEUVRHml+ytdAHpALvAM8CqCqaiXw\nHLCj+dfc5mNdWr9wP756bAyje3Xjrd1m/ILD+Ea+0Yh2VFrqWsqwcOFCbDYbTVYHH327laqNHzJ1\n6lTuueceN1coxMXlo9dx07Aovt5norzeQmpqKiUlJWRlZZ32vH1FNQBszi3nu42bcTqdfPnll7y/\ntYDcsvqLUbroAoqqmogK8qagoIDQ0FB8fX3dXZIQollq89w7j94pBAcH8+mnn7q5oq6rZaRC9wAD\nJpNJ5m8K0cZ0Z/MkVVXvOMPjKvDYzzy2EFh47qVd2gK8PVh433BeWX2A574ZxMqvV1NcVU9kkHwg\nFG2vJSwymUz85z//wRw5hMIVb+Dj7cW8efNQFMXNFQpx8d2dEsN7WwtYkn6UaydNAmDVqlUMGDDg\nZ8/JKKoGQKvAzp07AXjnw8+oOhLDdYMjuTPWyn/+8x+ee+659n8D4pJVVNVIX6Mfh/PzZV6REB1M\n7zBfYrv5sP5gJddddx3Lli3DarXi6enp7tK6nNIaV1ikdzZit9uls0iINtZhBlx3RVqNwh+mxPPL\naTdha6pj0lOLyDHVursscQnKP1pMaPeeRHaPYt68ebz42ltYirJ47dVX5C6M6LJ6h/kyulcIH6cd\noXtUNIMGDeKTTz457Tl7j9YQE+LNZWF2zA21RERGkrF9Cw5zPev2l/LIzJk8/wwKlSsAACAASURB\nVPzz5ObmXqR3IS41qqpyrLqJqCAv8vPzZV6REB2MoihMSjDyw+Fyrpp6HbW1taxbt87dZXVJLZ1F\nNLpu5EhYJETbkrCoA/jdAzejKApVB3fw688ysDuc7i5JXEI2HTrOxoxD1Gp80fWfwOrVq8n68m0S\nho3mgQcecHd5QrjVtJQYjlU3sT6njAcffJBdu3a1dgz9lL1F1QyMCqSvtgwA35TbUZ0OxuoLOZ6d\nxp7duwGZQyfOX0WDFbPNSWSAgcLCQuksEqIDSk0wYnOoaKIG4ufnx7Jly9xdUpdkqrXgoVVoqCoH\nkBugQrQxCYs6gJCQEIYPH05g5X72l9SyaEuBu0sSl4hPtx/h3oXboamGEf1jCRw8GRUFnA4++eBd\nWX4murwrE4wY/fV8mFbI3XffjZeX10mD4E90vM5CcY2ZQVEBVORno/HwxBI3Fr8QI/U5W6lNW0JA\naAQ9e/aUsEict5ad0LxsNdhsNuksEqIDGtIjiG6+nmzIrebaa69lxYoV2O12d5fV5ZTVmgnzM1BW\n5hq3IJ1FQrQtCYs6iMmTJ3Ng3y7G9jDw2pqDHKtucndJ4hLwrw2HGRgViM5Sy+B+PVnz9I0Mu/ER\n7v39CwxKiHd3eUK4nYdWw50jYth48DjVdg9uv/12PvnkE2prT10SvLd5XtGg6EB27txJ3/5JJMeF\ncfvNN/Lf/6zEXLSfoFE3M3nyZL777jtsNtvFfjviElBU1QiAs/Y4gHQWCdEBaTUKE+ONrM8p4xfX\n30B5eTmbNm1yd1ldjqnWjNFfj8lkAiQsEqKtSVjUQUyePBmn04mxaCNOm4VnV2SecQtnIU7H6VQx\n1ZgZ2t2H2tpajEYjYf4G0pf+k0UvPOnu8oToMG4fEY1Oo/DxtkIefvhhGhoafnJ2UcbRajQKxBt9\n2LVrF5PGj2bZzNHcfuvNOJ1OAkPCcPa5gvhhY6irqyMtLc0N70Z0di2dRQ0VxQDSWSREB5WaaKTe\nYiegTzJeXl588cUXZ32u06kyb+Nhqhqs7Vjhpa+01kx4gIGSkhJ8fHzw8/Nzd0lCXFIkLOogRo4c\nybBhw3j1pec4+s9pLHnrBb7ckefuskQnVtFgxepw4u1wbedtNBrdXJEQHZPR38DkxHCWpBcxcMgw\nBg0axLx5804J7DOKauhr9KPw8CEaGhoYPnw4AOPGjWP48OH839y5aD08qe8Wj1arZdWqVe54O6KT\nK6pqJNDbA9OxowDExMS4uSIhxE+5rHc3/Aw6vsmpZsqUKSxduhSLxXJW5x4oreOlb3JYtqsIu91+\n1ueJk5XWWgjzM2AymaSrSIh2IGFRB6HT6di+fTvr1q3juqnXUrfzK+68ejzfb5U70+L8lNS47k57\n2uoACYuEOJ27U2KoabLx+c4iZs6cyZ49e9iwYUPr4+vWrePLv80izsfGjh07AEhOTgZ+/Pv78Ucf\nZnjPYL4vaCAlJUXmFonzUlT1405oERERGAwGd5ckhPgJBg8ttwyL5pvMEu6870FMJhMLFiw4q3Nb\nPqMdMNXx5JNPMmHChJMe31FQyaosU5vXfCmpt9ipt9gJD3CFRTLcWoi2J2FRB6LRaJgwYQKffvIJ\n7yz+CpvVwhXjxrJo0SJ3lyY6oeJq13aiSlMNIGGREKeTEhfM8J5BPPtVFubYMURERDB37lwALBYL\nDzz4ELUH0ljx4iN88803+Pn50a9fv1Ouc83ACA6W1jMoZRzp6emUl5df7LciOrG6ujo2fvIPDn72\nF/773//KvCIhOri7Unpgc6iU+PRm7NixvPjiizQ1nXnuaMtntAOldezYsYP09HSczh93Q/77ukP8\n6cvMdqv7UlBa6/pvaPTXU1JSIp1FQrQDCYs6qAdvvZZZb3+JZ3QS06dP58MPP3R3SaKTablrZW+o\nAiQsEuJ0FEXhgwdGMnVgJK9/V0DE2FvYsGEDd7/wPlc/8jRHCvIJGH0HlaZjfP755wwbNgyN5tRv\nodcP6Y6Xh5aa4P6oqspXX33lhncjOqt33nmHgrUfUXZwN7GxscyYMcPdJQkhTqNXqC9jenfjk+1H\nefbZP1NcXPyzO2qe6MTOovz8fKxWKyUlJa2PF1Q0cLzOQkW9LE/7OT+GRbIMTYj2ImFRB/bMTSMY\n+uCLGGIGcu999/HZZ5+5uyTRiZTUmPHUaWiorgAkLBLiTLw8tbx5+2D+eHV/tAmp6HwCWTH/ZTZ+\n9m/8+yRz+Z2PsXzFCgwGAxMnTvzJa/gbPLh+SHe21weRkDiAmTNnsnTp0rN6/fr6eo4dO9aWb0l0\nIqqq8u7CRXhG9OWN5VtIS0vjvvvuc3dZQogzmDYqhpIaM/bwBCZMmMBLL71EQ0PDac8pae4sampq\nag2J8vJcs0qtdifHmgfd7y+uYeHChZjN5nZ8B51TS1gU6AnV1dWyDE2IdiBhUQcW4OXByicmcO1v\nX8czsj933nnXOe20ILq24uomIgIMlJWV4e/vL3MvhDgLiqLw0Lg4tj97DS888xT1R7JQLQ1sXraQ\nLx+7jCmpkzCZTMyePftnrzEtJQarU2HGX98nOTmZW2+9lTfffPOkgdn19fUUFRWddN7s2bMZOXKk\n7ITZRe3evZvsrEx8k64kKsjb3eUIIc7SxPgwIgMMfPhDIXPnzqWsrIwPPvjgtOcU1zThq9fhqD3e\neiw/Px+AY9VNOJu/DaxcvZ7p06ezZMmSdqu/szLVNHddNVYDSGeREO1AwqIOLtjHk09mjueXf12A\nR3gfbr3tNlauXOnuskQnUFJjJiLAQGlpqXQVCXEeZs6cSXh4ODNmzCApKan1eEBAADqd7mfPS4j0\nJzkmiOXZNaxevYbrr7+eJ554ggceeICmpiY2bdpEQkICgwcPxmaztZ733XffcezYsZOWIoiu4733\n3kPr4UlA4jgSIv3dXY4Q4izptBpuSY5my+Fy+g5Mpm/fvnz55ZenPaekxszoXiE4aktbj7V0FhVW\n/NiVlL5rFwB79uxph8o7t9JaM356HbVVrtmAEhYJ0fYkLOoEdFoNL946glGPvoJXeC9uvvlm1q9f\n7+6yRAdXUt1EZICXhEVCnCc/Pz8OHTrEW2+9dc7nThsVQ0FFI7//Moc+dzzDVff8ivfee4+kpCQu\nv/xyqqqqqKioYOfOnczbeJjM/GPs378fgH379rX1WxEdnMVi4f0PP0LfayS/nDKYyEAvd5ckhDgH\nUwaEo6qwbn8pU6dOZf369dTW1v7kc1VVpaTGTGw3HwLsrrmSXl5eJ4RFjQD0NfqSm5MFQEZGxkV4\nF51Laa2ZMH89JpNr1zhZhiZE25OwqJPw1Gn4212jCLzp/wgIi+LOO++krKzM3WWJDsrhVCmtsxAR\nKJ1FQlwIX19ftFrtOZ83ZUA4w2KCSC+sZP3BcrIjJjPqkb9SXV3D3Xff3XqXeMnKVbz0TQ6vfPBj\nx6iERV3PF19+RW11Fb0uu4ZHr+jt7nKEEOcoPtyPqCAvVme7wiKbzcbq1at/8rkVDVasdicRAQa8\nLZUoWg+Sk5Nbl6EVVjTi7anlst7dKCs4CLjCIlmifLLSWjPhAYbWblzpLBKi7UlY1IkM7xnMXWP7\n4zn5N1RWVXHfffedtM2mEC3K6sw4nCoR0lkkhFvodVqWzRzNtjlXsv2PV/KPO4ZQ1W0gvX79KU+/\n/E969epFQkICa9a5ukS3bt2KVqslJCREwqIuRlVVnnnpVbS+wfzjyfsweJx7OCmEcC9FUUhNCGdz\nbjmDk0cSFBT0s2MjWoZbRwR6QV0ZWv9QYnrGnrQMrUewN31DvbEcL8TXz5+KigpZovw/SmstGP1c\nO6EpikJoaKi7SxLikiNhUScz+6p4jDF96feLR/nmm29444033F2S6ICKmz+IhHprqKqqkrBICDeb\nOiiSZTNHU2+x8+5m193jyy+/nAMZO1CdDo7m7GHgoMEMGzZMwqIu5qXX/0luxjbG3PQg4+Pl72oh\nOqvURCNWu5OteVVcffXVfP311zgcjlOeV1zj2uksMsCLxooSdAFGfEO7U1xcjNlsprCykZgQb7yb\njqParYy+8hpAlqKdyOlUKaszYwxwhUVhYWGnnSUohDg/EhZ1MoHenvzp2v7UxE5g2LhUZs+ezc6d\nO097zvb8SpbuLDrtc8SlpaT5g4inrR5AwiIhOoCESH8u7xfGmuxSnE6VcePGYzM3ElhfiKXkILGJ\nQ0hKSiI7Oxu73e7ucsVFkJeXx7Nz/oBPz0Es+fuf3V2OEOICJMcEEeTt0boUrby8nLS0tFOeV1Lt\n+owWEWjgeEkRukAjGv8wAPLy8jlS2UhMiA81x3IB6H3Z1YCERSeqbLRic6gY/fSUlJTIEjQh2omE\nRZ3Q9YO7M6ZPNxpSHiI0LIzbb7+durq6n33+C1/vZ/ayvZRUNfDmm29SVVV1EasV7tDS4qwxu4Yr\nSlgkRMeQmmikvN7C7qPVRPYfBoDXwVWoNguekf1JSkrCYrGQm5vr5kpFe3M6nUy95S4cqsqLb7xN\nmL8MtRaiM9NpNUyIN7JufykTJ6Wi0+l+cilaSY0ZT50GT6eFqsoKvEMiaTJ0A2BnZg5Wu5OYEG9y\nsjNRNFosQXHExMRIWHSC0lrX59zw5s4iCYuEaB8SFnVCiqLw3HUDcHj4EHPzUxw+nEfKNbfz6r/f\nY8qUKfziF79obXs11ZjJOFqN3any/IJlPPHEE+e1s4/oXIprmvD21FJf7dpOVMIiITqGy/uFodMo\nrMku5VCtBo+QaLZ/9zUAlb49SUpKAmTIdVfw6dLlZO9KY8gts/jl1FHuLkcI0QZSE43Umu0cqHQw\nfvx4PvzwQzZs2HDSc4przEQEGCgoKAAgJiaGciUQgD3ZroHWMcE+ZGRkENQ9ltwKC4MGDZKw6AQt\nYVGYv2vAteyEJkT7kLCok4oL9eXPUxNRwvvTfcLdZG/6midn3s8P23awcuVKPvjgAwDW7C9tfr4P\ny//7DQDLli1zW93i4iipdn0QadkxT8IiITqGAC8PUuJCWJ1tIi2vgm59hqCqKgHdwsltNBAd1weN\nRiNhURfw/N8XoPHy5/2XfodGo7i7HCFEGxjXJxRfvY6lO4t47rnn0Ol0XHHFFdx4441UVlYCrmVo\nJ4ZFwwb0I7tawcvLi5xDrq7SmBBvMjIyiO2bQGFlIwkDkjhw4ABNTU3uemsdSmmtBYAwX09KS0ul\ns0iIdiJhUSd258gebJk9gYJVC/m/F//K2F+9RuBDi4jpP4g5c+ZQX1/PmuxSYrv5MHtKPBUHdwGu\nNc+HDx92c/WiPZXUNBEZ6NoJDSQsEqIjSU00kne8gQ0HjzMs5TIAho1IweFUySptok+fPhIWXeI2\nZBVxYPsGki+fwoDoYHeXI4RoI16eWm4a2p3/7i2hb9JQcnJyeOGFF1ixYgWvvvoq4FqGFhngRX6+\na7OD+6eMwO6EgLDuFBYU4KFV0DsaOXbsGIMHDUJVISS6D06nk6ysLHe+vQ7DVGPGWprLw/fchs1m\nIy4uzt0lCXFJkrDoEqDVannmqd+z9rVZ3DI8BsuwaZhMJua+8CI/HC4nNcHIsAg9VlMusaOuAuCL\nL75wc9WiPR2raiQiwEBpaSk+Pj74+Pi4uyQhRLMr+7vCW6vdyQ1Xp2IwGLhp6hR0GoW0vEqSkpIk\nLLqEWewOfvXyQlSbmWcfn+7ucoQQbezulBisDidL0ovw8vJizpw5TJo0icWLF2N3ODHVmokINJCf\nn4+Pjw/D43sypnc3zIYQTEWFRAd5k5Xp+h5wxehk10VDYgAZct3i/YXvUPLeE/ywdSsvvPAC9957\nr7tLEuKSJGHRJcRTp+H56wfQd+BQwgZP4I3XX6OpqpRJCUY2fb8RVCeNseMZMGiILEW7hG3Zmsau\nuVPJWPEOxcXF0lUkRAcTGehFUvcAAFKT+1JQUMAjMx5iUHQgP+RVkJSURF5eHg0NDW6uVLSH+Rvz\nyNu2lsDgEFKvnODucoQQbayP0Y+UuGA+3laIw6kCcMcdd5CXl8fqDZtxOFUimjuLevbsiaIoTBsV\ng8M3jKrSY0QHe7WGQhNGDyfI24NSNQAfHx/27t3rzrfWIWQeqyF73VJ6xidRUFDAnDlz8PT0dHdZ\nQlySJCy6xBg8tDx//QA8Rt2N3aHStOVDhvQIYu3atXh7exPcMwGPXils27aNoqIid5cr2sFX36xC\ntVtZ/dE/WbJkiYRFQnRA08fEcu3ACKKCvDEajWg0GlITjGQcrUYT0gNVVcnOznZ3meI8qKrKN998\ng91uP+Uxs83B/O/2Y83bwR233YpOp3NDhUKI9jYtpSdFVU1sPOiaHXnDDTeg1+v58OOPAYhs7iyK\njY0FYGJ8GMHG7jgtjQTYKlm2bBlhYf/P3n3H13i+Dxz/3NkyJJFERBJBUCP2SNSmQVG7Zik1viha\n3ZQWLVW6FF1arRrVVq2qGrVHjFBCSJApEklkyZ7P749zmh81GiQ5JNf79corOc+8ntyv58nJde77\nuivj4uJCIzc7zkan0rBhQ/z9/Q12TY+KJRsPkhsfzv/GjKJixYqGDkeIMk2SRWVQu9pO9G/XBJuW\n/UgM2MuJ48f466+/6NChA6/38CLWoQkAGzduNHCkoiQcP3kKE7sqzPzoS2xsbKhbt66hQxJC/Evf\npq4sHdbslmWj2lSnppMVmyN1CYTRo0fz1VdfkZqaaogQxQPy8/OjR48efPfdd7et+/1MNNcC/cjL\nyWLQoEEGiE4IURq6NnCmso05yw+EkZtfQMWKFenZsyfbt2xEK8inSkVdget/kkUmxkb4ejcCYPkr\ngzh69CjvvPMOAI3dbLkYm4pvt+4cOXKEixcvGuy6DC0lI5eNm3T/vwx9doCBoxGi7JNkURk1s1c9\nOg8ai6OTM2PGjCE4OJinnnqKka2r06xhfSwqV+fzJUs4ffq0oUMVxWhvUBxHjp/Eqmotpk14gaio\nKJYsWWLosIQQRWBuYsy8vg2JV/YMffMjTE1NmThxIm3btkXTNEOHJ4ron+EjK1euvG3d6qMRaMF7\ncXZ2pl27dqUdmhCilJgaGzGpoyd+oQmM+O4YCWnZDB06lOSEeLIizxJ+7iSpqamFySKAsc/ongnu\n7u4cPXqUF198EYDG7nYUaNC6xyBMTU358ssvDXJNj4L1p6JIuXCY+o2a4OHhYehwhCjzJFlURlW2\nsWDjy0/x4YL5hUMZunTpgrGRYn6/hth2eJ6r1+Jp1qwZ48aNk6k4y4DVRyMYtfwgOYnRjOndkUpW\nZlSsWFGKWwvxGGnt6cCAZm4cN6rHz3/u57PPPiMgIECGHjwGDlyM57eTUZw7dw7Q9TAKDg4uXH/m\nSjJH/vqDhKBjTJs2DWNjY0OFKoQoBaPa1OCTQY05FZnMM0sOcSDLDWNzSxL++Jie3brg7OxMr169\nCrf3burF6dOnCTh9iubNmxcub+RmB8DVbHMGDBjA999/Xy5r2uUXaKzY4U9OdDDDBg00dDhClAuS\nLCrjnn/+eZo2bYqzszMNGzYEoKGbLS8MHYDL2K/536QpfPvtt+X6U4qyYtney3gaJ4Cm0aF1S0OH\nI4R4QG/3rIeZiRHLD4YxcuRITE1N+eWXXwwdlvgPS/dc5vX1Zzh28jS1a9fGyMjolt5FX+/8m6Rd\nX9CseQteffVVA0YqhCgt/Zu58duEJ3G0MefU1Qycmj6FUW4Wc+bM4fLly9SuXfuW7Rs3boyFhcUt\ny5xszKlqa8GZqBRefPFFUlJSWKOvfVSerDkWQdCxvQD079/fwNEIUT5IsqiMMzY2ZuvWrezevRsj\no/9v7hfaVCffzIqGA6fQvHnzcvlHpyyJS80iJiWLqgW6QopNmjQxcERCiAdVycqMvk1d2XImGmVu\nRdeuXfnll19kKNojLiQ+jfwCjYCz5+jUqRPdu3dn1apV5OfnE5WUwaqP34GcTH5c+YMUthaiHGno\nZsuWyW059GZnrhz8jZSkBN555x2sra2LfIxGbnYERCXTpk0bGjduzLJly8rV34TYG1ks3B6MWdQJ\n6tatS7169QwdkhDlgiSLyoGqVavSoEGDW5bVqmzDk54OrDkaybDhwzl16pTMvPMYC7iSAkBGTAh2\ndna4u7sbOCIhxMMY4eNBdl4B609GMWjQICIjIzl+/LihwxJ3kZSeQ0J6Dg3s8snNuEG6VVVGjRpF\nVFQUb837hAY+nUm7cIiX35xx299jIUT5YWJiQoUKFe57v0butkQkZJCSmcuLL75IQEAABw4cKIEI\nH01zfz9Pxo0k4i/+Tb9+/QwdjhDlhiSLyrERPh5cTc7ErdlTGBkZSe+ix9iZqGSMjRRRl8/TpEkT\nlFKGDkkI8RDquVSkZXV7Vh2NoFevZzAzM5OhaI+w0OtpAHSsnA3A4YQKHMyqhrlVRT569w3SI8/x\n5rvv8+GcWYYMUwjxmGqsr1sUEJXC8OHDcXJyYsGCBQaO6uFkZmYWaWa3vcFx/HE2hub5F8jPz2fI\nkCGlEJ0QAiRZVK49Vd8Z54rm/BGSia+vL2vXrqWgoMDQYYkHcCYqhVqOFTh39qwMQROijHjOx4OI\nhAzOXs+jW7du/Prrr/KMfkSFxOmKzabGhAHwRL36/B2Tjnv3sTTuPpTg4GAWzH5biloLIR6Il6st\nAAFRyVhaWjJt2jS2b9/OyZMnDRzZg1u6dCmNGjUiKSnpntt9uTcEN/sKRJ3YScOGDWnUqFEpRSiE\nkGRROWZqbMSwVh7svxhPtz7PEh4ezpEjRwwdlrhPmqYREJWMu/ENMjMzJVkkRBnxtJcLjtZm/Hgk\nnEGDBnHlyhW++OILcnNzDR2a+JeQ62mYGRtxNTQYZ2dntr/Vi4NvdObS+o85/edaPKu5GjpEIcRj\nzLaCKTUdrTitLzswadIkbG1t+eCDDwwc2YMLCgoiOzv7nsPpgq7d4Hh4Ik97KI4ePcrw4cNLMUIh\nhCSLyrmh3u5Ymhnzt6qFpaXlLTO3iMfDlcRMkjNysUiNBHQzaQghHn9mJkY837o6u4PicG7YlubN\nmzNlyhQ8PT354osvyM/PN3SIQi8kLp0ajlYEBgZKTSIhRIlo7enAocvxpGTmYmtry+TJk9mwYQMX\nLlwwdGgPJDJS97517969d91m9dEIzE2MSA/cD8CwYcNKJTYhhI4ki8q5yjYWvOJbhwPhaXTsOYBv\nv/2WFStWGDoscR/ORCUDkHUtDFNTU+rXr2/giIQQxWVc+5pUd7Bk/q5wDhz2Y+vWrXh4ePDiiy/y\n5JNPcvLkSfbs2cNrr73GsmXLDB1uuRUan0YNhwoEBgbi5eVl6HCEEGXQMO9qZOXqJj4AePnll6lQ\noQIffvihgSN7MBEREcDdk0WpWblsPHWVXo1c2PDrOjp06CATuAhRyiRZJBj1ZHXqu1QkvsFQuvh2\nZezYsfz444+GDksU0f5T58kM2MG+7VuoX78+ZmZmhg5JCFFMLEyNeb9vQ8Kup/PVgTB69uzJgQMH\nWLt2LWFhYbRo0YIuXbrw8ccfM23aNBITEw0dcrmTk1dARGIGlbQbpKenS7JICFEiGlS1pbmHPauP\nRlBQoOHo6MjgwYPZvHnzY9fTtKCggMjISCwsLAgICCA+Pv62bTb+fZX0nHxaWCUTHBwsQ9CEMABJ\nFglMjI2Y378h8VkFNHr+PTp37sLo0aNZunQpmqYZOjxxD7t27eKTsd2J+3MJ2dnZTJkyxdAhCSGK\nWdvajvRr6sqX+y4z9ae/efnn0yS5tOTsuUAWLVrEpk2bOHDgALm5ufz8888GjTUvv4DvDoXhF5Jg\n0DhKU2RiOvkFGiTphlRIskgIUVJG+HgQdj2dI/pnbNeuXUlOTsbf39/AkRXdNwdC2Hv6MtnZ2fTv\n3x+A/fv337JNQYHGKr8IGrnZsm/LT5iZmTFw4EBDhCtEuSbJIgFAE3c7JnTwZMPZeNwGvUP3Hj2Y\nMmUKEyZMICcnx9DhiTvQNI3p06djUtGRF5dtITIykjFjxhg6LCFECXi7Zz2ae9gTEJXMqcgkFm4P\n5tUtoYyZOJU+ffrQtm1bvLy8WLVq1T2PU1BQUGKfQCel5zDq+xPM/T2QhVsDiImJIS4urkTO9Si5\nrJ8JLf2abiY0qVkkhCgpTzesQiUrM370CwegS5cugO7Dw8dBZk4+87cFMe27vwAYOHAgVlZWtw1F\n++lEJJfi0nimpinff/89Y8aMwd7e3hAhC1GuSbJIFHqj2xPM7dOAQ+GpZLSfxtRXXuebb76ha9eu\nXL9+3dDhlXsZGRm89957hV11t2zZwsmTJ6nYegidfZqilDJwhEKIkuJobc668a3Z93onDr7RmYUD\nGnE8LJHeyw5xJTEDpRQjR47Ez8+PS5cu3bJvZk4+H2y7QHJGDiNGjKBXr17FHl9MSia9lx3ieFgi\nmVvmsunlzlStWhVXV1fCwsKK/XyPkpD4NDStgLMnjuDu7k7FihUNHZIQoowyNzFmcEt3/roQS3Ry\nJk5OTjRt2vSxSRZFJmYAEHP1CgCenp60a9euMFn01Vdf0b3nM8zbcILWNR04vvFblFLMmDHDYDEL\nUZ5JskgUUkoxsnV11oz1JuZGNtlNBrN69WqOHj1Kq1atOHfunKFDLNf27NnDO++8Q4cOHYiKiuLV\nt97GrJIr7q2607aWo6HDE0KUokEt3fn5fz4kp+cyY+NZNE1j2LBhKKVu6120NziOrw+EsvZICJs2\nbWL79u1cvXq1WOP56fgVriZl8nkfD+KDTmBZ50lefHMOeXl5bNiwoVjP9agJjU8n128Ne/fsZurU\nqYYORwhRxg33roYG/HRcN/TV19cXPz8/0tLSDBtYEUQk6HpiVlapAGSa2dGpUycuXLjAyy+/zMSJ\nE9mxbSuhq2YwrFYBP/zwA+PHj8fNzc2QYQtRbkmySNzGu6YDL3Wpw/bAazg3fYr9+/eTmZlJ69at\nCQ4ONnR45VZoaCgA4eHhPFHfi5CgQOr2GM2Wqe2pXNHCwNEJIUpb02r2YwuAJwAAIABJREFUvN79\nCQ5eus6WM9G4urry1FNPsWrVKgoKCgq3Oxqqq23x87bdZGToPtVdv359scayM/AaLTwqce38cQDs\n2w6lRufBNGnShI0bNxbruR41u9avJObgz0ycOJFXX33V0OEIIco4N3tLutStzE/Hr5CTV4Cvry+5\nubm31f0pDWHX0/lwexD5BRp5eXm3/O25k4gE3d+glo75GJlb8ubvIfjnVAVg8eLF1GnbE6f+M8mN\nC+PZHp0xNjZm+vTpJX4dQog7K1KySCnVXSkVrJS6rJR66w7rP1VKndZ/XVRKJd+0Lv+mdVuKM3hR\ncsa2q8ETzja8uyUQrybNOXr0KNnZ2XzzzTeGDq3cCgsLw8rKiu5vfklWbj6VXGty+JtZuFeyNHRo\nQggDGe7tQWM3W97bep6UjFxGjhxJeHg427ZtK9zmn2TRmaMHMTY2pnbt2vz666/FFsOVxAyCrqXi\nW9+ZHTt2UKVKFZo1bcLR0AT69u3LkSNHiI2NLbbzlYTIyMgHmtAhMDCQs79+Rp1WnViyZIkMBxZC\nlIrnfDy4npbN9sBrtG3bFgsLi1IfilZQoPHKL6f5cl8Im/f7U61aNWbPnn3PfSIS07GtYEpSXDQe\nHh6YmRgRb+ZCRY8GuHcYTNVnXqFvnz6sXrOWvLw8Jk2aRNWqVUvngoQQt/nPZJFSyhhYBjwN1AeG\nKqXq37yNpmnTNE1romlaE2AJcHOf88x/1mma1rsYYxclyNTYiPn9vbianMlnf13Ew8ODXr16sXr1\nanJzcw0dXrnyR0AMk9eeYvPBv8GmMqezHFn4024unPLDuoKZocMTQhiQsZFifv+GJGXk8uGOIAYM\nGED9+vUZNWoUERERXE/L5mJsGr0auZAZ/je1vJoycuRIDh8+XGxD0Xae1yWCOj/hyM6dO+nWrRut\nPR04fSWZp3v1RtM0tmx5dD8rio+Pp1atWixduvS+9/32h1WgFJNmLsDY2LgEohNCiNu1r+2Eh4Ml\nq/0isLCwoF27dqWeLFp7PJK/I5PJS73OuKH9iImJ+c9hxxEJGXg4WBIZGUn92jXZOa0De9/oQkr4\nOSL3rWPvG535ZmQLhg5+lvDwcBYtWlRKVyOEuJOi9CxqBVzWNC1U07QcYB3Q5x7bDwV+Ko7ghGE1\n96jE0FbVWHE4nMDoFJ5//nni4uLYsWOHoUMrV5btvcy+4Hjioq9g5ejCjy9482rfVlSuXNnQoQkh\nHgENqtoy+snqrD0Wyfm4TDZu3Ehubi79+/fn4AVdQqh/Aztyrl3GskZTnn32WQB+++23Yjn/zsBr\nPOFsQ0JEEImJiXTr1g2fmg7k5mvkVHSjRo0abNq0qVjOVRIuXrxIbm4u33zzzX31LtI0jZ/W/YxF\ntYZ0aFKnBCMUQohbGRkpnvP24Hh4IkHXbuDr68v58+c5dOhQqZw/7kYWH24PooWLGckbZpOaksSQ\nIUMIDAwsnIjlTiISMqhWyZKIiAg8PDzueQ43NzdJwgthYEVJFrkCV256HaVfdhullAdQA9hz02IL\npZS/UuqoUqrvA0cqDOKt7nWxtzRlxsZzdOv+NE5OTqxcudLQYZUbBQUaodfTGNzCDZUax5DOLWhb\nW4pZCyFuNc23DlVtLZix4Rw1PGuxatUqTp06xew3p1HB1IjYoBOgacTbPoFbdU8aNmxYLEPREtNz\nOBGeiG99Z7Zv345SCl9fX1p42GNspDgelki/fv3466+/uHHjRjFcafH7Z7a2c+fOcerUqSLvd+rU\nKWKjwqnl05XGbrYlFZ4QQtzRwOZumJsYsfJIBAMHDsTe3p527drRoUMHjh8/TkpmLu9vPU9adh7v\nvfcen3zySbGde962C2TnFVD3xknSr4XjMnAWk16cDMCBAwfuuE9ufgFXkzOpUkEjKSmJatWqFVs8\nQoiSUdwFrocA6zVNy79pmYemaS2AYcBnSinPO+2olBqvTyr53ysjLUqXraUpM3vW58yVZH49Fc2w\nYcPYsmULiYmJhg6tXIhOySQrt4DKZrmkpaVRo0YNQ4ckhHgEWZmbMKePF8GxqXx7MIzevXszZ84c\nAvZuwezsRvbu3o2VtQ1GlWtz8FI8gwYN4tChQw89acGeoDgKNOjaQFevqEWLFjg6OmJjYYqXqy1H\nQxPp27cvOTk5bN++/Y7HyMnJ4fTp0w8Vx8P4J1lkbm7O999/X+T9Fn+zEoyMmTpmuNQqEkKUOnsr\nMwY2d+MX/ytkWTgQFhbGxx9/zMWLFxk6dCjbAqL59lAYv/pdYv78+bz33nvk5OQ89Hlz8gr48+w1\nhrZ0J/RCAE4urijXhpi51MbS0pJ9+/bdcb/o5EzyCzQq5CQB/GfPIiGE4RUlWXQVcL/ptZt+2Z0M\n4V9D0DRNu6r/HgrsA5reaUdN077RNK2FpmktnJycihCWKC19mlSlbS1HFm4P5pkBQ8jJyWHdunWG\nDqtcCInXTTFqlqlLoEqySAhxN771nela35nFuy9yPvoGk6a9gZVXZwI2L2fNmjU81aUzdlYW/Hnu\nGiNGjMDOzo42bdqwZ8+e/z74XewMvEaViha4WRZw9OhRunfvXrjOp0Yl/r6SROPmrahSpQozZ84k\nMjLytmPMnTuX5s2bF1sNpaL6OzKJZXsvczkkFBcXF/r378/atWvJzs7+z301TWPTxt+wrtmM5zp4\nlUK0Qghxu9e6PoFtBVNmbDyLjU1FXnnlFebNm0doaCib/zoIwMqfN5CVlUVycjK7d+9+6HMGX0sl\nJ7+AljUq4e/vT6uWLQE4dSWVNm3a3DVZFK6fCc0oXTfpgiSLhHj0FSVZdAKorZSqoZQyQ5cQuq1S\npVKqLmAP+N20zF4pZa7/2RFoA5wvjsBF6VFK8X5fL7LzC/gt0pTGjRszf/58Ll68aOjQyryQuDQA\n8m/EAZIsEkLc25w+DbCtYMrAr46wcEcwDt2n0PLJ9mRkZNCtWzf6NqnK1oAY0kztOH78OJUrV6Zr\n166sWLHivs+VmZPPgUvx+NZ3ZuPGjRQUFNCtW7fC9d28qpCbr/H1wTDWr19PXFwcbdq0ISgoqHCb\njIwMvvrqKwoKCvDz87vTaUrM94fDWbQjmG1HzuBWzYNRo0aRlJRUpGLc2/ceJDU+Gt+efalgJjU1\nhBCGYW9lxsye9fg7Mpm1x3XJ+P79+2Nqasr+P3W14k7u205lZ2cqVqxYLMOPz0TpJr2ubgOXLl2i\njU8rale25mhoAh07duTcuXNcv379tv0iE3QfgOam6N7TyjA0IR59/5ks0jQtD5gM7AAuAL9omhao\nlJqrlLp5drMhwDrt1uqQ9QB/pdQZYC+wQNM0SRY9hqo7WjG5Uy22nb3G5DmfkpOTQ/v27Tl79qyh\nQyvTQuLTsK1gyvVoXdkwSRYJIe7FxbYCv09uS90qNvziH4WlhQXbft/EokWLGDFiBK/4PlFYh66m\nZy2OHTtG27ZteeWVV0hLS7uvcx26fJ2s3AI6eFZkzpw5tGjRgtatWxeub1bNngHN3Ph6fyhOtRqx\nf/9+cnJyaNeuHeHh4QCsXr2ahATdp8zHjh0rtt9DUUQkZuBqV4GUuKuEZFri7tUKNzc35syZw5w5\nc1i1atVdZ//8cNn3YGzCu1OeL9WYhRDi3/o1deVJTwc+3B5EfGo2dnZ2dOjSlfgze+lWx5b0yydo\n2bE7vXv3ZtOmTQ89q3FAVDL2lqbEhl4AoHnz5vjUdMA/PJG27doDd65bFJ6QgYWpEYmxVzE1NcXF\nxeWh4hBClLwi1SzSNG2bpml1NE3z1DRtnn7ZO5qmbblpm9mapr31r/2OaJrWUNO0xvrv3xVv+KI0\n/a9DTTydrPghSGPnX3sxNjamY8eOXLhwwdChlVkh8Wl4OlkRHh6Og4MDNjY2hg5JCPGIq1zRgp/G\n+zC2bQ3Gt6+JYyV7XnvtNaytrW+pQ7f2WAQ2NjbMnz+flJQUVq1adV/n2Rl4DRsLE47/8RNXrlxh\n4cKFGBnd+rbi7Z71sLYw4e2NZ2nYsBEHDhwgJyeHwYMHk52dzWeffUbTpk3x9vYu/WRRQjrtPO3I\nT72Omb0zb204x/TpM4iPj2f27NmMHDmS2bNn37ZfcOQ1Dv7xCzWad6Sx5x3n+xBCiFKjlGJunwak\nZuWx5lgEAPXbdic/LZH0w6vQ8rKxqNOGZ599lqSkpIceihYQlUIjNztOnjwJ/H+yKD0nH4t71C2K\nSMjAo5IVkZGRuLu73/b3Qgjx6JG7VBSZuYkx8/o1JCopk99CNfbvP4CJiQkDBgy470+kRdGExKfj\n6WRNaGgoNWvWNHQ4QojHhLmJMTN71Wea7+1Tut9chy72RhatW7emefPmfP7550WeOj4vv4C/LsTS\n2tWMhQs+oGfPnnTq1Om27SpZmTGjRz1OhCex/mQUTzzxBCtWrOD48eP4+vpy4cIFXn75ZXx8fPD3\n93/oT7yLKiUjl+SMXGzyUygoKGBAh2aciUrBqsnTxMbGkp2dTf/+/Vm6dCnJycm37Pv8Gx9QkJ3B\nkg9ml0qsQgjxX2pVtqF9HSd+Oh5Jbn4B+W7NMTK1YM2Kb6hQ0Z4gXOnU5SlsbGweaihaRk4eF2NT\naexmi7+/PzVq1MDBwQHvmpUAOKGvW7R3714KCgpu2TcyMZ1qDpZERkbKEDQhHhOSLBL3xaemA6Pb\nVGfV0QgW+SWxYuVqgoODGTduXJH/yRBFcyMrl/jUbGo6WRMWFiZD0IQQxeLmOnRzt55HKcVLL71E\nUFAQf/31V5GOcTIiiaSMXOIO/ERqaioLFiy467bPNnejsZstX+4PoaBAY8CAAUydOpWDBw/i7OzM\n4MGD8fb2JjMzk3PnzhXXZd5TRKKudoZRmq6uRr/2TWlX25FFO3QJNDMzM2bNmsWNGzdYunRp4X5/\nnI7E/4/VPNHsSXp2blMqsQohRFGM8PEg9kY2u87HcjI6g5otOgDQqVsv0nI0zkRnPPRQtMDoGxRo\n0MjNDn9/f1q0aAGAo7U5Lavbs+JQGD5t2nPu3DkqVqxIy5YtWbBgAampaUQkZFDZLIfLly9LcWsh\nHhOSLBL37Z1e9ZnZsx5/XYhj0VkTWg6cxLp16+jUawDz5s1j7dq15OXllUosp06dIi4urlTOVdpC\n9TOhVa9kQUREhCSLhBDF5p86dH8ExLA3OI5Bgwbh7OzM4sWLi7T/rvOxmBop/HZtYcCAAXh53X1G\nMKUUo9vUIOx6OodDdMmZRYsW0aJzL8a/9g7m5ub4+PgARa9btHDhQk6fPl2kbe8kQj8rT17KNQBq\n1qzJe328yMkvYM7vgQA0adKEXr168emnn5KWlkZmTj4vvb+E/LREPnl/1gOfWwghSkLnupVxtavA\nRzuDiUnJos+zQwB4+X+jsTA1YntgDIMHDyYxMZENGzbc8RgRERF3LE79jzNXdD0t3a3yCQsLK0wW\nAczu3YDkzFzSaz3FN998w9ixY7GwsGD69OnU9PQkasOHfDSqC7GxsXTp0qUYr1wIUVIkWSTum1KK\nse1q8uMLrbCtYIpNq/44Nu/Owd07mDlzJsOHD2f8+PEl3tMoNzeXDh06MH369BI9j6H8MxOadUEq\nubm5kiwSQhSrf+rQzdp0jgJlwoQJE/jjjz/YuXPnPffTNI2d52Np4pBPXGws7du3/89zPd2wCpWs\nzFjlp6unse9SIvEtJxBeSfePRvXq1XFycuLo0aP/eaykpCTefPNNXn311SJc5Z1F6GflSbseg7Gx\nMe7u7lR3tGJqZ91EDnuDdB9CvP322yQmJjJz5kze+ugrIvb+RO16Xjzdvdu9Di+EEKXO2EgxzLta\n4YeN/xs2gLCwMHy7dKJHQxd+ORFF3ZbtqVevHu+9995tw8Ty8/Np164dgwcPvus5AqJScLG1IPKi\nLql+c7KoQVVbxrStwW9nE2jqO4DPPvuMgwcPcvjwYTw865B56Si+zwzgzJkzjBgxogR+A0KI4ibJ\nIvHA2tRyZPPktux6tRPn926iwVsbGLBkLzNnzuT777/nzTffLJHzhl9P54M/L3Am4CxpaWns37+/\nRM5jaCHxaZgYKXKTdJ98S7JICFGcbq5D9/meS0yZMgUvLy+efvppPv3007sm/INjU4lMzMA1Lxq4\n9Z+Fe51rcEt3/roQy+W4VN7dovtHwz88kdz8ApRS+Pj43LNnUfC1VD7eGcz587pJVffs2fPAEyxE\nJGRQ2cacqMgI3N3dMTExAWB8e09qVbZm5qZzZOTk4ePjg6+vL4sXL+bztyeTn3yNRR+8j1Lqgc4r\nhBAlaXBLd8yMjXCwMqNWZWuqV68OwFtP18Xc1Ih3f7/ArFmzCAwM5Lfffrtl3507d3LlypXbnq3H\njx/n8uXLgG4mtEb6ekUAzZo1u+UYLz9VG1e7Ckz96W8mrDrJhFUn+THEHNfnFlDt1d/44qtvaNSo\nUQn+BoQQxUmSRaJYONmYM71HPfyj0mnUZzyTJk1i0aJF96xj8aDWHIvg6/2h/PrnXgBCQkKIiYkp\n9vMYWkh8Gh4OllyJ1H0SL8kiIURx86npwMDmbiw/EMr1XDP8/Pzo27cvr7zyCjNmzLjjPsdCEwHI\njwvBxMSExo0bF+lcw72roQFDlx8jJiWLMW1rkJGTz7mrKQB4e3sTFBR0W0Hpf/x2Kooley6z9YB/\n4bIvv/zyPq72/0UkZODhYHlbPTgzEyPm9fXianImi3dfAuDnn39m+S9bcXlhGcu2+dOnT58HOqcQ\nQpQ0R2tzXnqqNuPa17wlqV3ZxoI3u9flSEgCJrWepG7dusyZM+eW3kU//PAD9vb2mJmZFT5bw8LC\n6NChA82bN2fbrj2EJ2QU1iuqVasWdnZ2t5zf0syEjwc1xsHanLDr6YVfWTn5dKlbGVf7CqXzixBC\nFAtJFoliM7iFOy087Jm/7QKvzV7AsGHDmD59OnPnzi3WIWlH9f+o7Np/uPAP4aFDh4rt+Pfj0KFD\nD/zPyr1cuXKFDQumol0+RGhoKEopmTlCCFEiZvSoh42FCTM2nsXS0opff/2VwYMH8/nnn3Pjxo3b\ntj8TlYyjtTkXz53By8uLChWK9ubfzd6SLnUrE5+azTDvakzs6An8/zPd29sb0H2KfSfh13VDK7Yd\nPIm5uTlDhgxh5cqVDzQbZ0RiOh4OVnecPMC7pgODWrjx7cEwToQnYm9vz/kCVyq5eTKi491rMwkh\nxKPgxU61mNDB87blw1pVo2k1Oz7YfpGJL79R2LsoMDqFV1cdYtOmTYwYMYKBAweycuVK0tPTmTZt\nGkZGRlSpUoV+z/Qk9dRWtn7+Nr///nvhM/vffGo68PuUtuyY1v6Wr+9GtcTYSHplCvE4kWSRKDZG\nRooP+jekQIO+X/gxdubHjBo1infffZe33nqrWBJGN7JyCYzWfQodfPY0Xbp0wdLSkoMHDz70sR/E\nZ599xtSpU8nIyCjW406ZOpXr5/3Y+9UsFixYgKurK+bm5sV6DiGEgP+f3v5kRBI/+1/ByMiIl19+\nmYyMDH7++efbtg+ISqGRa8VbZsIpqsmda9PxCSfe7FYXR2tzale25mhoAgAtW7ZEKXXX53lkou45\ne/lSMDU9azNlyhRu3LjBmjVrinz+rKwspkx9iSuXL+BiZcS1a9cKh2ncbPrT9XCzr8Dw5cdYfiCU\nrQEx9G/mirW5yX1drxBCPCqMjBQL+jciL7+A72Kq4OFZh3ETJvHM+7/ww6q15OTk0Ny3H5MmTeLG\njRu88MILbN68mVmzZvHaknUoezcSd33F4d1/Mm7cOBYtWmToSxJClDBJFoliVdvZht8nt8XF1oIx\nP56k1cgZTJgwgYULFzJixAiysrIe+NiZmZkcC4mnQIMeT9iSERtOnUYt8PHxMVjPotDQUPLy8u76\nSfi9pKWlkZqaesuyzaev0uP1z9m8aRN27UYwYdYi7OzsaNmyZXGFLIQQtxnY3A3vGpX4YNsFEtKy\n8fb2pn79+nz33Xe3bJeWnUdIfBquJqkkJibed7KoibsdP4xuha2lKaD7BNo/PJG8/AJsbW3p1q0b\ny5YtIzEx8Zb9NE0jIiGDrvWdybl+BTMHN1q3bk2TJk1YsmQJ2dnZRTr/zJkzWbrkc+I3L8Tohq7m\n0p2G+NpbmbH5xTZ416zEvG0XyMkvYISPTPUshHi8PVHFhi2T2+Jsa0le51dIzcrl2rqZVAzbjXVV\nT+YeyWDFJVMqudfil19+wbZKNf62bcO8PdH0nfk1q376hejoaJYtW4aLi4uhL0cIUcIkWSSKXTUH\nSzZMepKnvVz4cMdFjNuNY/bc91izZg2dOnXi2rVr933M/Px8GjZsyMw3XsXM2IhOTumARm6lmrRr\n144zZ87ccbhESdI0jZCQEIAH6tk0btw4atSoQWCgrtBrVm4+szb8zZ4VH2Lp5Ebb/qOZ+cqLREVF\nsW7dumKNXQghbqaU4r2+XtzIyuOn45G6WS/HjuXYsWOcO3cOgPXr1/Pjhj/RNDBKCAV46ES2T00H\n0nPyORete34vXLiQlJQU5s6de8t28anZZObm06qaDfkpscSZOJKbrzFz5kwCAwPp16/fbR9GpKSk\nMHToUL7++ms0TWPfvn188sknNGzhQ15iFN8t0NVkuls9ODtLM34Y3YqXutRmbNsa1Ha2eahrFUKI\nR0F1Rys2TmrDsK4+TFywAnMth/DLF5k5bRJ9mrhyNTmLKq37AlCrz1RSsjWmdK7F6gkdeW7Is1hb\nWxv4CoQQpUX6U4sSYWlmwtJhTWmwvyKLdgRTr0oHflz7MxPGjsbX1xc/P78i/bEJu57OyiPhtDKL\nIiQkhLCISHp0GEb4hSAAQqnCoLY1KCgowM/Pj27dSn464/wCjQV/XqCbp2Vhgup+ezZpmsauXbtI\nSEjA19eXAwcOsC8khbDNS8hOjGb79u1069apJMIXQog7quNsQ9tajqw9FsmEDp6MGDGCN998k+XL\nl2NsbMynn36KpY0tlUZ9QVJEEGZmZnh5PVwNn1Y1KgFwNDSBJu52NGzYkLFjx7Js2TImTZpEnTp1\nAIjQD0EzuhGDphWQa+3Cn+diGDBgAMuXL2f8+PH06dOHjRs3YmlpSU5ODgMGDGD37t2sW7eOX3/9\nlUuXLlGrVi3Gv7+ct15/hcAzu4B7Tx5gbKSY5lvnoa5RCCEeNVbmJiwc2BhozIhWrixevJjxY0Zj\nb28PgPZSOy6/P57atWsbNlAhhEFJzyJRYpRSTOpYi++eb0HQtRtcsKjH5s2bOX/+PM8///wtMzDc\nzZLdl/jhSDjvfvIVVlZWFOTlkXl6G8eOHcOxqjuXU41wf6IRxsbGpVa3KOx6GssPhvHhrwcAcHd3\n58iRI+Tl5RX5GJcuXSIhIYFp06aRm5uLt7c343t4kxawk4kTJ5ZK0ksIIf7tOR8PolOy2BMUh6Oj\nI3369OHzzz/n008/Zfjw4WSmp5F3bC1nT5+icePGmJmZPdT5nGzMqXVT3SKAuXPnYmFhweuvv164\n7J/i1hlxkQDUqlOHhduDycjJY+zYsXz33Xfs2rWLOnXq8NVXXzFu3Dh2797N999/z5dffsmxY8e4\nevUqq1at4lqmhkeP/1GlShXMzc2pUqXKQ12DEEI8zry9vVm7dm1hogh07+ElUSSEkGSRKHGd6zrz\nQpsarD0WiX3tZixatIgNGzYwd+7ce9aZSEjLZmtADObkcnL/Dpp0eBrLOq05vm0dhw8fxkc/C8Ph\niHSaNm1aasmiiATdJ9wHT+qGZowcOZK0tDQCAgKKfIwjR44AMHbsWHbu3EkV12rYNO/NBz/t5osv\nvij+oIUQogieqlcZF1sLVh2NAGDKlClYWVmxePFiVq9eTZXWfbl2Yht+fn7FVkvNp2YlToQlkpuv\n+wDB2dmZ119/nS1bthAaqhvuFpmYgbGRIj4qDKUUH455+pbp7UePHs3evXvx8PBg4sSJ/Pjjj8x8\nZzajRo1iwoQJnD9/nsOHD+Pt7U1EQgaebs5s3LiRpUuXYmQkb4WEEEIIIf5N3iGJUjHNtw5VbS2Y\nseEck6e+xHPPPcecOXOoUKECrq6uvP766+Tm5t6yzy/+UeTkFzDcJR4tJ5PLts2o1HogqSnJXLt2\njS7t21DfpSK/+F+hbdu2HDt2DD8/v/+MpSg9mu4lXJ8sykqMAXTJIri/ukV+fn7Y2dlRt25dmjZt\nSs93fqBqt/FM6tvuoWITQoiHYWJsxLBW1Th46Tqh8Wm0b9+elJQUpk6dSkJaNiYtB1PR3oHs7Oz7\nLm59N52eqEx6Tj67L8QWLhs6dCgA27ZtA3TP3ap2FlwMDqJ69eq0r+fK4BbufHswjAsxuuHAbdu1\np8+sb6n87BwqdZ3EUdsOhT2S3N3dC6d5jkjIoFolS3x8fBg7dmyxXIMQQgghRFkjySJRKqzMTZjT\nx4vg2FSGLj+GScdJPD11Pq+89TY+Pj589NFHdO3albi4OE6cOMHc995j8fIf8a5hz4m/tlCpsgvm\n7l609vGhTZs2ALRq1YrnfDwIupZKu95DqVKlCm3btmXWrFm3JZ7+MWfOHFxdXTl27NgDX0tkQjrW\n5iY45CdhauNATc9aeHh43FfdoiNHjlCtbmPGrzrF2JX+bD4dTd+mrlS0MH3guIQQojgMbuWOqbFi\n0hrd8+nVXwMIv55OQFQKRuaWvDprHiYmJrRrVzzJ7Y5PVMbVrkJhbyaA2rVrU7t2bf744w9A99yt\n7mDFhQsXqFu3LgDTe9TFroIp41f5M3alP32XHeaLfaG8MKQv6xe/S3xaDr2XHmLsSv9bvqKSMqju\nYFUssQshhBBClFVS4FqUGt/6zkzs6Mn+4HgycyDCtinXTI1ZtvBl+vXrx7hx43Bxcbml548W8Duh\nQWeZNm0axt7VedLTAdv685k/fz7NmjWjiZEJH2y7wP5YUwICApg6dSrvv/8+WVlZLFq06Jbz79q1\ni9mzZ2NqakqXLl3YvHkzXbp0ue/rCE/IwMPBksjs6xjZOrM7KI5TtbVPAAARjElEQVR27dqxa9cu\nNE1DKXXP/a/FJ3IuMBDbNsOoFJ9GBVNj6rlUZFy7uxdZFUKI0lLZxoJJHWux63ws0cmZXEnMYE9Q\nHM087FEKXpn4Aq+OG46VVfEkXIyNFMO8q7FoRzCX49KoVVk3+UHPnj358ssvSU9PJyIxgx4NnFkf\nHFz43LazNOOjQY35dNdFopMzMTZSzO/XkGHe1QD4fXJbZm0+R3Ry5i3n83K1pXO9ysUSuxBCCCFE\nWaU0TTN0DLdp0aKF5u/vb+gwRAkLiU9j/I/+hCdk0L62I0mRQVw6uBXHmg3IquJF3Dk/so+uJSYm\nhoCAABo2bHjH48zeEsiaYxH4Te+Co7U5Q4YMYfv27URFRWFtbY2macxad5gvpw7AxdmJLVu20KdP\nHy5evMj333/PsGHD7ivuTh/to56LDZvf6E1OFS98J8yhQ8GZwroY9erVu+u+GTl5dHx5MSe+fI3J\ni37g81dH/mdySQghDOlKYgbjfvQn6FoqtStbs+uVDsV+jutp2bT+YDfDvT2Y3bsBAH/99Re+vr78\n9OsG3vI3439NrZkxpCPLly+X4WNCCCGEEA9IKXVS07T/rCcgw9CEwXg6WbPpxTb0a+pKXGo2ufY1\nqN57CtZenXF0rMzCGS9x6dIlTp8+fddEEehm78nN1/j5xBUApk6dSkpKCmvWrAHgRFgCH8+YSlJy\nMit+XE3NmjXZv38/3t7eDB8+nMmTJ9+z0PbN8vILiErKoKq1MdHR0bRpWp8jIQkYu+gSRPXr16dq\n1ao899xzpKam3rb/rvOxXAw4iZGREfPG95NEkRDikedeyZINk55k1JPVGdO2ZHpAOlqb06OhC7+d\njCIjRzezZPv27bG2tua3zVsAyEuMAigchiaEEEIIIUqODEMTBmVjYcpHzza+5zaNG997fa3K1jzp\n6cDaY5GMa1eT1q1b07RpU5YsWcL48eN5Zdb7ZIX/TaVuL7IrxoxWQKVKldi9ezfTp0/n448/5syZ\nM+zbtw9jY+N7nismJYvcfA2LzOsA9O/YnKzrNqwIzGX9xs0EBZ4lODiYtWvXEhAQwNatW6lWrVrh\n/rvOx6LFXsTLy4uKFSsW7ZckhBAGZmlmUtjjp6SM8PFg8+loNpy6ynM+HpiZmeHr68u+XTuwHNGX\nE3/pkkb36r0phBBCCCGKh/QsEmXCuPY1uZqcybeHQlFKMXnyZAIDA3n3/Q84vG4p9Vr7Mm7ceFYc\nDicwOgUAU1NTPvroI5YvX86hQ4dYvXr1f54nQj8TmnZDN2tPnVq1mNfPi+iULC6Y1OLtt9/mxx9/\n5M8//yQyMpJWrVqxdOlS4uPjyc7LZ8+5KLKjg3nyySdL7pchhBCPoeYe9jStZsdnf10kOSMH0NUt\nuh4bw7XVr/H7hl946623cHBwMHCkQgghhBBln9QsEmXGhFUn2Rscx65pHXCyVLi5uZGYmIhxRSeO\n+5/E07UKXT7Zh7mJMXWr2GBspJjUqRaN3Wxp2bIl169fJzg4GHNz87ueY/XRCGZuOsdo2/PMnvEG\ncXFxODk5MWPjWdYdj6TjE5VRQKsalWjnlM3IkSM5efIkxsbGODq7EBt9FdBYvXo1w4cPL7XfjRBC\nPA4Co1PovfQwg1q48UH/RsTExFC1alWUsQnLv/6KMWPGGDpEIYQQQojHmtQsEuXOu73rY2KkmLX5\nHBYWFvxvwgQwMqLzxPdpVtsdW0tTPhnUBEcbc2JTszgensjktafIyi1g/vz5REREsHz58nueIzIx\nAzMTI65HR2JjY4OjoyMAb3arS+e6zsSlZhF6PZ0P/gwi1tgRf39/zp49y+uvv46jZyMc2w9n9dp1\nDBo0qDR+JUII8VhpUNWWF9pU56fjV/APT8TFxYWWI2fS6ZVlkigSQgghhChF0rNIlCkrDoUxd+t5\nnvR0IDcvH79zl/l2Yje6e1W5bdujoQkM+eYoEzt68ka3J+jUqRNBQUGEhITcdUro8T/6E3o9HfPd\nC4mOjubvv/++bZvsvHx6LD5Idl4Bu6Z1oIKZMQUFGj4f7KZFdXu+GN682K9bCCHKivTsPHw/2U+B\nBvWrVsQvJIGejVz+s76dEEIIIYT4b9KzSJRLzz9ZncEt3EnNyiMrT6OXjxdP1at8x219ajowsLkb\nyw+EcjE2jXnz5hEbG8uSJUvuuP369evZ+vkMbLPjCAkJwdPT847bmZsYM69fQ6KSMlm8+xIAZ6KS\niUvNpmv925NWQggh/p+VuQmfDm5CVTsL4lOzqeNsTc9GLoYOSwghhBCiXJGeRaJcS0zPocvH+/B0\nsubXCa155plnOHz4MGFhYdjZ2RVuFxMTQ926dblx4wZGxiagFfDaa6/x4Ycf3vXYr/96ho1/X6Vt\nbUeikzMJiU/n1ExfbC1NS+PShBBCCCGEEEKIW0jPIiGKoJKVGa/41sE/IomTEUm8//77JCcn89FH\nH92y3bRp08jOzsZ5+CI6PDMYgFatWt3z2DN61KPjE5VJTM/BwtSYce1qSqJICCGEEEIIIcQjT3oW\niXIvIycP73m76VyvMouHNGXIkCFs3bqVkJAQnJ2d2bFjB927d2f8tLfYYdaWH0a3pJW7NRUqVEAp\nZejwhRBCCCGEEEKIIpGeRUIUkaWZCQOau7HtbAzX07KZO3cuWVlZjBs3jpdeeonRo0dTp04dOgzU\nzcTj4WCFpaWlJIqEEEIIIYQQQpRJkiwSAnjOx4PcfI2fT1yhTp06jBkzht9//51vv/sOrJ2oNWg6\n3x6JwthI4WpXwdDhCiGEEEIIIYQQJUaSRUIAtSpb86SnA2uPRZJfoLF06VK2Hz1Lw+kbqTh4ASZV\namNTwZTnvKthZiK3jRBCCCGEEEKIssvE0AEI8agY4ePBxDWnGPy1HxXMjDkWloiTtTm/TWxFg6q2\nhg5PCCGEEEIIIYQoFZIsEkLvqfrO9GhYhejkLFKz8ujeoAqzezegkpWZoUMTQgghhBBCCCFKjSSL\nhNAzNTbii+HNDR2GEEIIIYQQQghhUFJ8RQghhBBCCCGEEEIUkmSREEIIIYQQQgghhCgkySIhhBBC\nCCGEEEIIUUiSRUIIIYQQQgghhBCikCSLhBBCCCGEEEIIIUQhSRYJIYQQQgghhBBCiEKSLBJCCCGE\nEEIIIYQQhSRZJIQQQgghhBBCCCEKFSlZpJTqrpQKVkpdVkq9dYf1o5RS8Uqp0/qvsTete14pdUn/\n9XxxBi+EEEIIIYQQQgghipfJf22glDIGlgG+QBRwQim1RdO08//a9GdN0yb/a99KwLtAC0ADTur3\nTSqW6IUQQgghhBBCCCFEsSpKz6JWwGVN00I1TcsB1gF9inj8bsAuTdMS9QmiXUD3BwtVCCGEEEII\nIYQQQpS0oiSLXIErN72O0i/7twFKqQCl1HqllPt97iuEEEIIIYQQQgghHgHFVeD6d6C6pmmN0PUe\nWnm/B1BKjVdK+Sul/OPj44spLCGEEEIIIYQQQghxP4qSLLoKuN/02k2/rJCmaQmapmXrX34LNC/q\nvjcd4xtN01pomtbCycmpKLELIYQQQgghhBBCiGJWlGTRCaC2UqqGUsoMGAJsuXkDpZTLTS97Axf0\nP+8Auiql7JVS9kBX/TIhhBBCCCGEEEII8Qj6z9nQNE3LU0pNRpfkMQZWaJoWqJSaC/hrmrYFmKqU\n6g3kAYnAKP2+iUqp99AlnADmapqWWALXIYQQQgghhBBCCCGKgdI0zdAx3KZFixaav7+/ocMQQggh\nhBBCCCGEKDOUUic1TWvxX9sVV4FrIYQQQgghhBBCCFEGPJI9i5RS8UBECR3eEbheQscWjx5p7/JH\n2rx8kfYuX6S9yx9p8/JF2rt8kfYuf6TNHw0emqb956xij2SyqCQppfyL0uVKlA3S3uWPtHn5Iu1d\nvkh7lz/S5uWLtHf5Iu1d/kibP15kGJoQQgghhBBCCCGEKCTJIiGEEEIIIYQQQghRqDwmi74xdACi\nVEl7lz/S5uWLtHf5Iu1d/kibly/S3uWLtHf5I23+GCl3NYuEEEIIIYQQQgghxN2Vx55FQgghhBBC\nCCGEEOIuyk2ySCnVXSkVrJS6rJR6y9DxiJKhlApXSp1VSp1WSvnrl1VSSu1SSl3Sf7c3dJziwSil\nViil4pRS525adsf2VTqf6+/5AKVUM8NFLh7UXdp8tlLqqv4+P62U6nHTuun6Ng9WSnUzTNTiQSml\n3JVSe5VS55VSgUqpl/TL5T4vg+7R3nKPl0FKKQul1HGl1Bl9e8/RL6+hlDqmb9eflVJm+uXm+teX\n9eurGzJ+cf/u0eY/KKXCbrrHm+iXyzO9DFBKGSul/lZKbdW/lnv8MVUukkVKKWNgGfA0UB8YqpSq\nb9ioRAnqpGlak5umZXwL2K1pWm1gt/61eDz9AHT/17K7te/TQG3913jgy1KKURSvH7i9zQE+1d/n\nTTRN2wagf64PARro9/lC//wXj4884FVN0+oDPsCL+naV+7xsult7g9zjZVE20FnTtMZAE6C7UsoH\n+BBde9cCkoAx+u3HAEn65Z/qtxOPl7u1OcDrN93jp/XL5JleNrwEXLjptdzjj6lykSwCWgGXNU0L\n1TQtB1gH9DFwTKL09AFW6n9eCfQ1YCziIWiadgBI/Nfiu7VvH+BHTecoYKeUcimdSEVxuUub300f\nYJ2madmapoUBl9E9/8VjQtO0GE3TTul/TkX3ZtMVuc/LpHu0993IPf4Y09+nafqXpvovDegMrNcv\n//f9/c99vx7oopRSpRSuKAb3aPO7kWf6Y04p5Qb0BL7Vv1bIPf7YKi/JIlfgyk2vo7j3mxHx+NKA\nnUqpk0qp8fplzpqmxeh/vgY4GyY0UULu1r5y35dtk/Vd1Feo/x9aKm1ehui7ozcFjiH3eZn3r/YG\nucfLJP3wlNNAHLALCAGSNU3L029yc5sWtrd+fQrgULoRi4f17zbXNO2fe3ye/h7/VCllrl8m9/jj\n7zPgDaBA/9oBuccfW+UlWSTKj7aapjVD1431RaVU+5tXarrp/2QKwDJK2rfc+BLwRNelPQb42LDh\niOKmlLIGfgNe1jTtxs3r5D4ve+7Q3nKPl1GapuVrmtYEcEPXK6yugUMSJezfba6U8gKmo2v7lkAl\n4E0DhiiKiVKqFxCnadpJQ8ciikd5SRZdBdxveu2mXybKGE3Truq/xwEb0b0Rif2nC6v+e5zhIhQl\n4G7tK/d9GaVpWqz+zWcBsJz/H4YibV4GKKVM0SUO1miatkG/WO7zMupO7S33eNmnaVoysBdojW6o\nkYl+1c1tWtje+vW2QEIphyqKyU1t3l0/BFXTNC0b+B65x8uKNkBvpVQ4urIvnYHFyD3+2CovyaIT\nQG19JXYzdMURtxg4JlHMlFJWSimbf34GugLn0LX18/rNngc2GyZCUULu1r5bgJH6mTV8gJSbhrGI\nx9i/6hf0Q3efg67Nh+hn16iBrkDm8dKOTzw4fa2C74ALmqZ9ctMquc/LoLu1t9zjZZNSykkpZaf/\nuQLgi65O1V5goH6zf9/f/9z3A4E9+p6F4jFxlzYPuin5r9DVr7n5Hpdn+mNK07Tpmqa5aZpWHd3/\n23s0TRuO3OOPLZP/3uTxp2lanlJqMrADMAZWaJoWaOCwRPFzBjbq66KZAGs1TduulDoB/KKUGgNE\nAIMMGKN4CEqpn4COgKNSKgp4F1jAndt3G9ADXQHUDGB0qQcsHtpd2ryjfppdDQgH/gegaVqgUuoX\n4Dy6WZZe1DQt3xBxiwfWBhgBnNXXuACYgdznZdXd2nuo3ONlkguwUj+DnRHwi6b9X3t3bIJQDEBR\n9L0h3M0R3MAF3MTGAaxdQSsrd/kW/5tOECxEPadJkyIQkuJCyHRse01yaLtLcs4cELOM+7a3zB8d\nrD+xaN7ybM9PbVdJmuSSZLPMd6f/pm2c8a9U8Q4AAACAh395hgYAAADAC8QiAAAAAAaxCAAAAIBB\nLAIAAABgEIsAAAAAGMQiAAAAAAaxCAAAAIBBLAIAAABguAOLx5utQIcLdwAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAAHwCAYAAAAW3v7qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd8XNWZPvDnzIxkSbYsF7nbkjs2\nGOOGsQHTYkgIgRDS6JBAIJv8dtN72yzJJtnsslmSzQZCSRYIJCwEAoRQYjDN3ca99yrJkiVNu/ee\n9vvj3pFGVi+jUXm+fC6WZu7MnBlLsufx+75HWGtBRERERERERETUklC2F0BERERERERERD0fQyQi\nIiIiIiIiImoVQyQiIiIiIiIiImoVQyQiIiIiIiIiImoVQyQiIiIiIiIiImoVQyQiIiIiIiIiImoV\nQyQiIiKibiZ8jwghTgkhVmd7PURERERtEcn2AoiIiIiaIoQ4AGAUAJ128XRr7bHsrKhthBATAewH\nkGOtVc2cdiGAywGMt9bGu2lpRERERJ3CSiQiIiLqya621g5KO9oVIAkheuo/mJUCONCRAKkHPyci\nIiLq4xgiERERUa8jhLhGCLFVCFEthHhDCDEz7boDQohvCCE2AYgLISJCiLFCiKeFEBVCiP1CiH9K\nOz8shPi2EGKvECIqhFgnhJgQXPdfQojDQoja4PIlabdbKIRYG1xXJoS4N7jqzeDXaiFETAix+LS1\n3wHgQQCLg+t/GFz+GSHEHiFElRDiL0KIsWm3sUKIzwshdgPY3cxrcqEQ4t3gNTkshLg9uPx3Qojf\nCCFeDZ7fciFEaXDdxOC+I2n384YQ4s52/6YQERFRn8cQiYiIiHoVIcR0AE8A+CKAEQD+CuB5IURu\n2mk3ALgKwBAABsDzADYCGAfgfQC+KIR4f3Dul4PzPwhgMIBPA0gE160BMAfAMAB/APCUECIvuO6/\nAPyXtXYwgCkA/hRcflHw65CgempF+vqttQ8B+CyAFcH1PxBCXAbgJwA+AWAMgIMAnjztqV8L4DwA\nZzbxmpQCeAnAL4PXZA6A99JOuQnAPQCKg8sfP/0+iIiIiFrDEImIiIh6smeDyppqIcSzwWWfBPCi\ntfZVa60E8O8A8gGcn3a7+6y1h621SQDnAhhhrf0Xa61nrd0H4LcArg/OvRPAd621O61vo7W2EgCs\ntY9Zayuttcpa+x8ABgA4I7idBDBVCFFsrY1Za1d24nneBOBha+16a60L4FvwK5Umpp3zE2ttVfCc\nTncjgNestU9Ya2Ww5vQQ6UVr7ZvBfX8nuO8JnVgvERER9UMMkYiIiKgnu9ZaOyQ4rg0uGwu/UgcA\nYK01AA7DrzJKOZz2cSmAsWlhVDWAb8Mf2g0AEwDsberBhRBfFUJsF0LUBLcrgl/NAwB3AJgOYIcQ\nYo0Q4kOdeJ6nP6cYgMoWntPpmn0Op982uO+q4DGJiIiI2oyDGYmIiKi3OQbg7NQnQggBP0Q5mnaO\nTfv4MID91tppzdzfYfjtaFvSLwzmH30dfvvbVmutEUKcAiAAwFq7G8ANQogQgOsA/J8QYvhpj92e\n51Sa9tgDAQxv4Tk19RwWtnB9XdWREGIQ/Pa8YwCc4OICALXBx6PbvGoiIiLqV1iJRERERL3NnwBc\nJYR4nxAiB8BXALgA3m3m/NUAosGw7fxgkPYsIcS5wfUPArhHCDFN+GYHYVAhAAWgAkBECPF9+DOT\nAABCiJuFECOCSqjq4GITnG8ATG7Hc3oCwKeEEHOEEAMA/CuAVdbaA228/eMAlgohPhEMEh8uhJiT\ndv0Hg8HbufBnI60M2v0q4AdVNwevy6fhB2pEREREjTBEIiIiol7FWrsTwM3wh0ifBHA1gKuttV4z\n52sAH4I/bHp/cJsH4bemAcC98IOpV+BX4zwEf8bSywD+BmAX/FYzBw1byj4AYKsQIgZ/yPb11tqk\ntTYB4McA3gna5xa14Tm9BuB7AJ4GcBx+kHN9izdqePtD8AeDfwV+q9p7AM5JO+UPAH4QXDcf/uuX\n8hkAX4PfPncWmg/jiIiIqJ8T1nak4pqIiIiIegMhxO8AHLHWfjfbayEiIqLejZVIRERERERERETU\nKoZIRERERERERETUKrazERERERERERFRq1iJRERERERERERErWKIRERERERERERErYpkewHtUVxc\nbCdOnJjtZRARERERERER9Rnr1q07aa0d0dp5vSpEmjhxItauXZvtZRARERERERER9RlCiINtOY/t\nbERERERERERE1Kqsh0hCiLAQYoMQ4oVsr4WIiIiIiIiIiJqW9RAJwBcAbM/2IoiIiIiIiIiIqHlZ\nDZGEEOMBXAXgwWyug4iIiIiIiIiIWpbtSqRfAPg6ANPcCUKIu4QQa4UQaysqKrpvZURERERERERE\nVCdrIZIQ4kMAyq2161o6z1r7gLV2gbV2wYgRre42R0REREREREREGZDNSqQLAFwjhDgA4EkAlwkh\nHsvieoiIiIiIiIiIqBlZC5Gstd+y1o631k4EcD2AZdbam7O1HiIiIiIiIiIial62ZyIRERERERER\nEVEvEMn2AgDAWvsGgDeyvAwiIiIiIiIiImoGK5GIiIiIiIiIiKhVDJGIiIiIiIiIiKhVDJGIiIiI\niIiIiKhVDJGIiIiIiIiIiKhVDJGIiIiIiIiIiKhVDJGIiIiIiIiIiKhVDJGIiIiIiIiIiKhVDJGI\niIiIiIiIiNrBWgtrbbaX0e0YIhERERERERERtZEjJWoSDpQ22V5Kt4tkewFERERERERERD2dVBoJ\n6UGr/hcepTBEIiIiIiIiIiJqhtYGCSkhpcr2UrKOIRIRERERERER9UvWWnhKQxsDC4vUmCNbd72B\n1gb9cPxRkxgiEREREREREVG/IZWGMgZSK6h+3JrWEQyRiIiIiIiIiKjPUtpAaj84Ukr3y13VugpD\nJCIiIiIiIiLqM1KVRn5opNiK1oUYIhERERERERFRryaVhqcVpDIwhi1qmcIQiYiIiIiIiIh6FWNs\n3VwjT7JFrbswRCIiIiIiIiKiHsVaC20sjLX+zmnWQlsLYw0Md0vLGoZIRERERERERJQVxlhIraGN\nSQuJLCuLeiiGSERERERERETU5VJBkLX+xza4LDX0WmvOL+ptGCIRERERERERUadZa+FIBVcqhkN9\nFEMkIiIiIiIiIuowqTRcpSCV4qyiPo4hEhERERERERG1i9IGyvjhkVasOuovGCIRERERERERUZNS\nu6RpY6CNHxxp7o7WbzFEIiIiIiIiIuqnUnOMPK1gTWoYdv1AbKJ0DJGIiIiIiIiI+hlXKnhaQ0qV\n7aVQL8IQiYiIiIiIiKiPs9bCUxrKaHiSA7CpYxgiEREREREREfUxWhtIo6GNgdQGRnP4NXUeQyQi\nIiIiIiKiPiA138hViqERZQRDJCIiIiIiIqJezFMarlKcb0QZxxCJiIiIiIiIqJew1kJpA20NjPHn\nHBnDqiPqHgyRiIiIiIiIiHqg9LlG2hgYAwZGlFUMkYiIiIiIiIh6AKk0lDH+oTQst1CjHoYhEhER\nEREREVEWWGv9WUbaQCkFZkbU0zFEIiIiIiIiIuomWht4WkNqBaXYmka9C0MkIiIiIiIiogxR2kAZ\nHfxqYDSDI+q9GCIRERERERERdRGlDaTWnGtEfRJDJCIiIiIiIqIOSoVG2hhIhkbUxzFEIiIiIiIi\nImqBVBrG2uAwMBb+r9oyNKJ+hSESERERERER0WmUNvCUgisVgyKiAEMkIiIiIiIiIgDWWjhSwdMK\nmjunETXCEImIiIiIiIj6JR3smKaNv4Oa1gYsOiJqHkMkIiIiIiIi6hfqd07TUMqwTY2onRgiERER\nERERUZ+VCo5cpWA0W9SIOoMhEhEREREREfUpWht4WnO2EVEXY4hEREREREREvZ61Fp7ScJWEYnBE\nlBEMkYiIiIiIiKjXksqvOPKk4lBsogxjiERERERERES9htL+Tmoq2FmNc46Iug9DJCIiIiIiIuqx\npNJQxg+MlNLcUY0oixgiERERERERUY+QmmukjV9tpLVhixpRD8IQiYiIiIiIiLqNtRZKGxhrYayF\nNgbGGhgDGMPWNKKejCESERERERERZZwrFTytoRQHYBP1VgyRiIiIiIiIKCPqd07jLCOiviBrIZIQ\nIg/AmwAGBOv4P2vtD7K1HiIiIiIiIuoajpRwpOLOaUR9TDYrkVwAl1lrY0KIHABvCyFestauzOKa\niIiIiIiIqIM8pZGUHrRieETUF2UtRLJ+LWMs+DQnOFjfSERERERE1MvIIDxSDI+oF7JGA1YD1sBa\nA1jrH7CwjYa918cWNrcYiIS7da3ZltWZSEKIMIB1AKYC+G9r7aomzrkLwF0AUFJS0r0LJCIiIiIi\nomZJpeEoBSlVtpdC1Dpr/cAIGlYrwBpAS7Q06V20fIddvMCeL6shkrVWA5gjhBgC4M9CiFnW2i2n\nnfMAgAcAYMGCBf3vd4iIiIiIiKgH8ZSG1ApSGZhGVRpEWWQtrJGwRgXVRCaoJLIQqQoj6pQesTub\ntbZaCPE6gA8A2NLa+URERERERNQ9rLVBcKQhleL7cMquumqioN1MK78VLVVZdJqWK4movbK5O9sI\nADIIkPIBXA7gZ9laDxEREREREfm0NvC0X3HEOUfUbRq0m/lziqwxfhURLCuJeoBsViKNAfD7YC5S\nCMCfrLUvZHE9RERERERE/ZbSBlJreFpxdzXKmAZDrI1pGBSxkqjHy+bubJsAzM3W4xMREREREfV3\nMmhT87SG0QyOqItZC2sUrJZBy1nTQ6wZFPUePWImEhEREREREWWetRZSGw7Gpg5LVQ+lKoga7FCW\nFhBZoyEMd+3raxgiERERERER9VFSaShjoI2BMobVRtQmfsuZAWCC2UTGD4WsbvNcIlYX9U0MkYiI\niIiIiPoApQ2U0Q0CI84hphQ/GFJ+KNRgSPVp1UPWsOWMmsUQiYiIiIiIqJdKehJSK2gGRnQaq1UQ\nGqlgFlHrVWgMiqg1DJGIiIiIiIh6GUdKOJ7iTKN+KrXDmTXKrxoKAiK/ksi2KTAi6giGSERERERE\nRL2EIyUcqTjbqJ+wWgHQwVwi3WK7GcBKIso8hkhEREREREQ9mLUWrlIMj/qoBkOsjQaMgTWqybCI\nIRFlG0MkIiIiIiKiHkZpA6k1pFZQisFRr2StHwrBBLubmSAssqwool6LIRIREREREVEPoLWBoySk\nNqw46gWslrBGnjaTyPjhUIPdzxpjSES9FUMkIiIiIiKiLLLWwpEKjudxh7UerC40MjrY7azxbxbD\nIerrGCIRERERERFliSsVkp7kLms9jD+nSNUNtG4uNCLqbxgiERERERERdTOlDRKey3lHPYG1sEbC\nGhVUGam69jQiaoghEhERERERUTdR2sCREp5U2V5Kv5TaCc1vSwt2QTM628si6jUYIhEREREREWWY\nKxVcJVl5lGH+DmgqqCpqfSc0zjAiah+GSERERERERBmQGpjtKsXd1jLAagVAp80taroNjUERUddh\niERERERERNROShtIraGMgU4fim398Cj1CWcxd5K1flURTF1YZI1mCxpRljBEIiIiIiIiaoUxFp5W\nUNpAacPd1LrY6buhWWMgrGYLGlEPwxCJiIiIiIioCZ7SUFpDGg3NWUZdJ6gu8odbN92GxqCIqGdi\niERERERERISGLWpKKbaidYLV0g+JrK0LiFoacE1EvQNDJCIiIiIi6neMsZBaQxsDZTS0Nsw2Oslq\nCas9QHkccE3URzFEIiIiIiKifkNrg7jnQrE9rfNSbWktBEdE1LcwRCIiIiLqIGMsDlYlsPVYDfaU\nx/CBWaMxY/TgbC+LiJqR9CQcz2PFUUdZC2s8WK1gtYIwKtsrIuowbTSM9YfkGxgYU/+DQYjUrwIi\nqKGz8K+3aT9ACrRCbvctuUdgiERERETURq7S+Ovm49h0pAZbj9Vi27FaxNz6N1EPvbUfv/v0Qswv\nHZrFVRLR6ZQ2SLD6qEVWe7DK83dJ8y9pcL1Im20EsDWNeiZrLZTRsHWhkPX/s6kACLDWBEfn0+Su\nuI/ehiESERERURs9tfYIvvvsFuTlhHDmmMG4bt44nDV2MM4aW4TCvAhuf2QNbn1oFR6+/VycN3l4\ntpdLRGD1UbNSVUXKA7SsG3bNcIh6g1QVkTYGxmoYY/ywyDAozjSGSERERERttHJfJUYPzsM737wM\n4VDjt1p/vGsRbnxwFW57ZDUevPVcXDitOAurJCIA8JRGUnrQ/bD6yGoFWOVXFdWlZ6elaGnBEVFP\nY62FsUEwZAEL4wdHxviXMyzKGoZIRETUrx2vSaIgJ4KigpxsL4V6OGst1hyowsJJw5sMkABg5OA8\nPHnXItz84Cp8+vdrcP/N83HpjJHdvNK+K+YqnIp7mDCsINtLoR6sv4VH1mjASFij/TlFVjMcoozy\nq4AsjNHBnCD/z8TUn4xCiAYlbdY0/HoMGsv8MChoL6ubOGRtv2wR600YIhERUb8itcG6g6fw+s5y\nvL6jHLvKYphbMgR//twF2V4a9XCHq5Ioq3WxcNKwFs8rHjQAT3xmEW55eBXuenQt/vvGebjirNHd\ntMq+7VvPbMbzG49hUvFAXHLGCFw2YyQWThqGAZFwtpdGPYAMwqP+MPfIH2ztwWoPom6GEVvRqH2a\nHiydCnBO/2qysMG51L8xRCIion7h+Y3H8LctJ/Dm7gpEHYWcsMDCScMwqXggXt5aht1lUUwbVZjt\nZVIPtmp/JQBg4cSWQyQAGDowF4/fuQi3Pbwan3t8Pf7r+rm4avaYTC+xTzPG4q3dFZgzYQiGFOTg\nD6sO4ZF3DqAgN4wLphbjfTNG4po5Y1GQy7/e9jee0nCVhJS69ZN7Kb8tTcNqCSivbsA1QyNqC2VU\nXVikjYENZggRdQT/lCUioj5vb0UM//jEBowoHIAPzhqDS2eMxAVTh6MwLwcVURevbS/H0+uP4ptX\nzsj2UqkHW3OgCkX5OZg2clCbzi/Kz8GjdyzEbQ+vxtf/byMuml6Mwrze3Tb53HtHsf14NCvfKztO\nRFGdkLjlqlJ8dP54JD2NFftO4vUdFVi2oxyvbivDv728E3dcOAm3Li7t9a81tcxTGlIreFL1qc6t\n+tY044dGRkNYw/Y0aiBVOZSaFWRN3ebzsLD1u5KxcogygCESERH1eTuORwEAj9x+LmaNK2pw3YjC\nAbh4+gg8u+Eovvb+M5qddUO05sApnDtxGELt+BopzMvB968+C9f+9zt4dsNR3LJ4YuYWmGH/u+IA\nvv/cVgDAlbNG45wJQ7r18Vfu8yvBFk3xd73Lzw3jshmjcNmMUfgXa7Hu4Cn89+t78POXd+L+5Xtx\n+wWT8OkLJmJIQW63rpMyRyoNTyt4UvepmSn+LCMXVkkIoxpcxz+R+obUDCHABruI+b+3qdlBwv8s\nONsGQ6Vt3Tb19TODbKP5QkTdjSESERH1ebvKoggJYGozFSTXzRuHZTvKsWJvJXfT6uGstdhxIoqZ\nYwZ36+OWRx3sPxnHDQsntPu254wvwtnjivDYykO4eVGp/6ahl3nwrX340YvbcdmMkVi5rxKPrTzY\n7SHSin2VKBlWgHFD8htdJ4TAgonD8MinFmLzkRr86vXduO/vu/HQW/twy+KJmDmmEBVRFxVRF+VR\nF+VRB+W1LooHDcCjdyxEJBzq1udCbWeMhasUXKVgdN+pqGgqOOp9PxkotYNY+pBpf1i0H/xYDomm\nPoghEhER9Xm7y6MoHT4QeTlND99dOnMUCvMieGb9EYZIPdzD7xzAPS9sw2N3nNetv1dr9p8CAJzb\nhnlIpxNC4OZFJfjG05ux5sCpVgdz9zSp6p6rzh6DX1w/B99/biueWX8E373qzG7b1dAYi9X7q/D+\ns0a1eu7Z44tw/y0LsPNEFL96fQ/uf3NvXSdQbiSEkYUDMLJwAIoHDcCKfZVYtqOcg88zQGkDV0l4\nMghIQiGEBBASIYSEgBCiwa8hIRpU+blSwdOqT805YnDUu6TvQGYaVQSBW8xTv8UQiYiI+rydJ6It\nzrHJywnjQ7PH4tkNR3HPtQoDB/CPx57ocFUC//7yTgDo9sBvzYEq5OeEG7VDttU154zDj17cjsdW\nHuw1IZK1Fv/56i7ct2wPPjJ3HH7+sdmIhEO4eVEJnlh9CE+tO4w7l0zulrVsP1GLmqTE4qCVrS3O\nGF2IX94wF9+6cgbirsLIwjwMzo/UVYIpbXDhz17HoysPMkTqQq7UcFXjHdKsNvAvafmNd6pQr6cX\nb6QGXcMa/2MAgIAIhYInEYLfpyQYHPVAqYCofp5Q/Swhv4LIsIKIqBms3SUioj7NVRoHKhOY3srO\nax+dNw5JqfHSlhPdtDJqD2stvv3nzQgJ4NIzRuDlrSeQ9LqvQmHV/irMKx2CnA62PeXnhvGx+ePx\n0pbjqIi6Xby6rmetxU//tgP3LduDTywYj3//+Dl1LV9njS3C/NKheHzVoWB4a+at2BvMQ5rc9hAp\nZeyQfEwbVYiigpwGrYSRcAg3LCzBW7tP4sDJeJettT/S2iDpSVQnkog7TqMAqT2s7VkBktUKVrsw\nXhzGjUInq2HilbDJalgnCuvGAekERxLWjcM6MVinFtapgU1WA16y0awj6j7aaHjaQ1ImEXfjiCZr\nEXdiSLpxOG4SrnTgSRdSetBa+m1pPemLkKiHYYhERER92v6TcWhjMW1UyztqzS8dipJhBXhm/ZFu\nWhm1x9Prj+Kt3SfxjStn4K6LpiDuaby6vaxbHrsmKbHjRG2HWtnS3byoFFJb/Gnt4S5aWeb89G87\ncP/yfbh5UQl+et3sRgPnb15Ugv0n43g3CHcybeW+KkwcXoAxRY3nIXXG9QsnIBISeHzVwS693/5A\nKo2kJ1GTTKImkUTS9XrfzCJrg5BI+kGRTMB4CRg3Vh8WOTWwTswPiZQHYfpOe11vl5o3ZK2FMgpS\nS7jSDcKiBGJOrC4wctxkEBIpBkREncQQiYiI+rRdZTEAfmtLS4QQuG7eOKzYV4mj1cnuWBq1UUXU\nxT0vbMOC0qG4+bxSnDdpGMYU5eG5DUe75fHXHzwFa9HpNrQpIwbh/CnD8YdVh6B78O46MVfht2/u\nw3Vzx+GeD89qcje6K2eNwbCBuXhsZebDF20sVu+v7FAVUmtGDc7DFWeNwlPrjsDpQ7N3MkVpg7jr\nojqeRDTpIOl60J2oOsoWq10/JEpUBSFRrR8UeUlAJgHlMizqZtpoSK3gaQ9OEAQlvATibhwxJ4qo\nU4vaRE2DI5qsrTsSThxJNwFXOqwoIsowhkhERNSn7ToRRTgkMKl4YKvnXjd3PKwFnu2mcILa5p+f\n34qkp/HTj85GKOQP373mnLFYvqsCVXEv44+/an8VcsICcycM7fR93bKoFEerk3hjZ3kXrCwzNh6u\nhrHANXPGNruTXF5OGB9fMB6vbi/DiRono+vZfrwWtY7KSIgE+BVi1QmJFzYdz8j99wXWWsRdF7WJ\nJFxPwfTGgcLW+pVGiVOwTowhUYYZYyC1hCNdONKpC4X8YKhxOJTeXuYFQZBSElr7X2/c1p6o52CI\nREREfdqusigmDi/AgEjTO7OlKxlegIUTh+Hp9Uf4r5c9xKvbyvDipuP4x8umYmracPQPzxkHZSxe\n3Jz5N/5rDlRh1rgi5Oe2/jXUmqVnjsLIwgF4tBsqeDpq/UF/J7q5JS2HZjctLIWxFk+sPpTR9azc\n1/F5SG2xePJwTBkxsEf/nmSTIyWq43541CtZ67eoJU/5lUa2FwZgvYAyCq50kfASiDlRxJwokm4C\nXtq8IaVkEAwxHCLqzRgiERFRn7a7PNbqUO10180bh30VcWw8UpPBVVFb1DoS3312M2aMLsTdF09p\ncN3MMYWYPmpQxlvaHKmx6Uh1l+2olhMMc16+qwKHKhNdcp9dbf2hU5g2chCK8nNaPK9keAEunj4C\nT6w+BJnBWTgr91ViUvFAjC7Ky8j9CyFw86JSbDxcjc38vq+jtEFtMomE4/W+UN1af8aRG/XDI5ns\nWdO6e7BUW5kyCrqJdjBrLaRWcOoCo1hdO5krHSgle2elGhG1GUMkIiLqsxypcbAy3q4Q6YOzxyA3\nEuKA7R7gZy/tQEXUxU8/Ohu5kYZ/ZRFC4MNzxmHtwVM4XJW5MGbDoWpIbbGwk0O1092wsAQhIfD4\n6qYrX5KexoNv7cOqfd0ztDqdMRbrD1VjfmnbWvduWVSK8qiL17ZlZsi5Nhar9ldh0eSue/2bct28\n8cjPCXfLjKd0ShtIpeEFhysVHCnhSJnV4CbheqhNJDu1y1o2pAdH1okByutX4ZE2OhgwXT9k2pUu\npJZQzewOl9q5LFVBlGorSzhxxIOAqDZRg6gT9Y9kLZJuHF5dYMS5Q0T9DUMkIiLqs/aUx2As2hUi\nDc7LwRVnjsJfNh6D18veQPUlK/ZW4vFVh/CpCyZhzoQhTZ7z4TljAQB/2XgsY+tYc6AKQgALSrsu\nxBhdlIfLZ47CU2sbDnO21uLFTcex9N7l+NGL2/GjF7d32WO21b6TcdQkJea10sqWcskZIzFuSH7G\nWsG2HatFNIPzkFKK8nPw4Tlj8dzGo6hJyow+VkrSk6hN+AOqY8ERd1wkHA8Jx0N1PImk171hkrUW\ntckkHK/rXgOrM9MG5++q5sJ4cT84SlT1q+AoVQ0UdxOIOtG6uUL+gOn6IdOudJB0E0g48bowKObE\ngt3LonU7l7VWQWSNgWWFERGBIRIREfVhu8ujAIDpowa1cmZDH50/HtUJidezOPz49R3l+M6fN2e0\nTagn0sbit2/uw22PrEbJsAJ85YrpzZ47fmgBzp04FM9uOJqxN9prDlThjFGFKCpoubWrvW5eVIqq\nuIeXtvgznbYfr8X1D6zE5/+wHoPzc/CRueOw+WgNjnXzToHrD/nzkOaVNh3cnS4cErjxvBK8u7cS\ne8pjXb6eTM9DSnfzolI40uDpdZmvQkx6Ekm35aHw1lokXQ/V8QQSrgeT4dkxUmnUJJxOVx9ZrfwB\n1nXBTg1MogrGjcIqB7aDA62t9mC8OHSyJm1XtRggnT4XHKVXE3nagyvduh3L4m68QTWQ1rJd4Y41\nBsboYPey/vXnCxF1DYZIRETXDCvPAAAgAElEQVTUZ+0qiyEnLDCxDTuzpVsytRjFgwZ0y5vJpry4\n6Tg+879r8fiqQ/2qre5gZRzXP7ACP/7rdlw0bQSe/ofzUZAbafE2H54zDrvLY9h2vLbL16O0wbqD\np7psHlK686cMx+TigXjknQP43rNbcNV9b2FXWRQ/unYWXvjHC/H/LpsKwB8s3p3WHzyFovwcTC5u\ne/D6yXMnICcs8Piqrq9GWrGvEpOLB2LU4MzMQ0o3a1wR5kwYgsdWHcxo9Y8rVasBUjprAceTqEkk\nEHddqAwEy46UiDlO+0MFa2G1hFUOjBsLdj6r8QdYpwc71gLKg3XjsMlq6GQ1jBf3QyXt+dVKp8/e\nMTq431QYFQWkA2Ean9vbKZOqKoqnbVfvVxM5bhKudOp2LNNasX2MqAewsDD9dJfHlv9mRkRE1Ivt\nLoticvEg5ITb928mkXAI184Zi9+vOICquIdhA3Mzs8Am/HnDEXzlTxsxr2QoXGVw39/34Nq549q0\nu1xvZa3FY6sO4V9f3I5IWOA/Pn4Orps3rtnt5dNddfYY/PNftuK5947hrLFFXbqurcdqkfB0RkKk\nUFDB86MXt2PrsVrcungivrR0el3F05QRgzBlxEC8su0Ebjt/Ypc/fnPWHzqFuSVDEAq1/tqnFA8a\ngCtnjcH/rTuCr73/jFaDv7ZS2mDN/ipcHbQtdodbFpXiK09txIq9lTh/anGX37+nNOKOCyBox1JJ\nAAIQoeCXcPB5OPi4nrWA6ym4nkI4EsKASAQDIpE2fZ+0JO66bd55zWoJqyVgNaBVh3c6E0YDRiM9\nCrEAIASsCNWf00dpo6GthtLB8GpWBBF1GQsLq7X/Q8XatDA7+KW5n1vp4axN+9wa/wKLIMC1QFpl\nqClu+z8K9BUMkYiIqM/aWRbFOePb1pZzuuvmjceDb+/HC5uO4dbFE7t2Yc3405rD+MYzm7Bo0nA8\neNsCrDt4Crc+vBp/XHO429bQ3Y5VJ/GNpzfhrd0nsWRaMX720dkYOyS/zbcfOjAXl5wxAn957xi+\n8YEZCDcRfry6rQy7yqL43CVT2vWGe82BKgDo0qHa6W48rwS1jsJVZ4/BGaMbz+264qzReODNfahJ\nyC5vp2tKTVJid3kMH5rd/tDm1sWl+MvGY3jgzX344tLmWxDbY9vxWkTdzM9DSnfV7DG458VteGzV\nwS4PkaTSiDsOgCBAcmsbV9+kfxzJhcgpaBQmAYBWBgnlISk85OZEMCCSg0haWG6thbWAsdb/OP3y\n4DNrAU8r6Da0r/mzh4IqoEyyFsL2nPDIGAMD478Phb8dffDq+f8Fr3NKOBSCgEAoFIIQAmERhhAC\nyigoraGNhrEMjah/SFXpiOD7oslztAK08UOfYO6WAFD3PxEChECjmzf4YWkBa/yAx+iG11FGMEQi\nIqI+KeEpHK5K4uPzJ3To9meOHYwZowvx9Pqj3RLgPLryIL737BZcNH0EHrhlPvJywlgyrRgLJw7D\nL5ftwcfnT0B+bt+oRrLWYu3BU/jjmsN4cdNxCAH8+COzcOPCkg5VVXx4zji8tr0cq/ZX4vwp9W/8\naxISP3x+K57ZcBQAMHt8EZZMG9Hm+121vwqlwwswMkOtVAW5EXz58uYDlyvOHIX/eWMvlu0sw0fm\njs/IGtK9d7ga1qLNO7OlWzBxGK6dMxa/WrYHl80YidkdDG/TrdgbzEPKQCVYc/JywvjEggl46O39\nKKt1uqyNTiqNmOP473W0hHWjgLWQWkIIgUioib+SKw9WebA5eQjlFPhvpE6TXp0UCoWCUKOL3kFZ\nC6OSgHQBa5p5C9j7WGvhKQ9SS9hm321a2A7MoNI9J/8iajcLWx9wCoGQaLqK21gDGONX4xjrV/aY\nVIAT/AxqKigNCfjBUPDTpJlvGGZAPR9nIhERUZ+UGvLb3qHa6T42fzw2Hq7OyMDgdA+9vR/fe3YL\nls4cWRcgAf429l+5Yjoqom6bth6X2iDRxrYUwH8z9c2nN+Glzcc7vPb2qIi6uH/5Xrzv3uX4+G9W\n4KXNx3Ht3LH42xcuwk3nlXa4LWfpzFEYmBvGcxvqd2lbvqsC7//Fm3hu4zH802VTMaYoD/f9fXeb\n32AbY7H2QFXGqpDa4pzxQzCycABe2do9c5HWHzyFkADOaWY3vNb88JpZKB40AF/+08YGu8511Mp9\nlZgyYmDGQrzm3HReCYy1bfqeawutDWKO2yBAssYg5sQa7ZoVd+NIeAm40q2/A+nAJE/BeIkWZwEZ\nY7osQDJeAiZ5yp9t1MGWtZ5GaunvZJashSsdf2v6oPKh8cG3sdR3pGb3GKVgpIRxPWjHgU4koWMx\nqGgUqrYGuroGpjbqHzW1UNXVUDXVULW19Ud1NUxNLUw0BhOPwyQTsI4D67mwStVVFDXJBOGS1kxc\nezmGSERE1CftKvODn2mjGrcJtdU1c8YiJNDm4dabjlS3e7v5B9/ah3te2IYrZ43Gr2+qD5BSzps8\nHEumFeN/lu9FzG0+IKqMubjyv97Cx/5nRZt3cXp3byWeXHMY3//LViS9zP2F7nhNEnc/uhaLf/J3\n/OSlHRhWkIt/+9hsrP7OUvzkutkoGV7QqfvPzw3j/bNG469bjqMq7uHbf96M2x5ejcK8CJ793AX4\n8hVn4B8umYI1B05h5b6qNt3n3ooYTiUkzu3GKpjThUICl585Cst3VXRJKNOa9YdOYfqoQgwa0LFC\n9aKCHPz847OxpzyGn7+8s1NrUdpgzYFT3drKllI6fCCWzhyFx1Ye7JLvi4SUfoVQECBprRB3Y1DK\nfyNnpISxfnihtYJSEq50EHOikDr4nrcWkEmYZDWMbDlM6gyrFXSyGpDJTj2GMQae9up2E3Ol2+3D\noG1Q6ZWUSUSdKJJuAlrLbl0DUXsETZIw1t9BzxgNo5Uf/qQCIClhPK8+CHIc6GTSD4TiCehYDDoW\nDYIhP/SpC4diTQc/0LrBjJ/TFhVUHZnmwyHqd9jORkREfdKusihyIyGUDut4QDGyMA8XTR+BP284\niq9ecUaLw4a1sfjSH9/DwcoEFk0ehpGFrVdP1CQkfv7yTiydORK/vGFug5km6b58+XR85Nfv4vfv\nHsDnL53a6PpaR+K2R1Zjb0UM1gKvbS/DFWeNbvXxf/vWPhTkhusqnT5z0eRWb9MRP/zLNry56yQ+\nfeEkfGLBBEwd2fHqsOZcO2ccnll/FBf//HXEXIW7L56MLy2dXhfKfWLBBPxq2R7c9/fdWDyl9WBi\n1f7MzkNqqyvOGo3HVx3CO3tO4n0zR2XscYyxeO9QNa7p5BDrJdNG4NbFpXjo7f1438yRDdoL22PL\nsVrEunkeUrrPLJmMV7eV4en1R3DzotIO349UGlIqfwcyNwalJZJeEtrzYBIJfwZIcK4JhSDCYSAc\nhohEgEgESTcOGclBfk6+X6lnDeAlYaQDRPIQyslvss2tI4yXAGSyTW1r1vpvdNPnK1lroIwK3vw2\nfLOptYKnXEQiOcgN5yLcxJynriC1gjb+sGqtMzy/ifoNY9JCltSg5uBrPvVxkwTShjv7w5lt+ucs\neKNeipVIRETUJ+0qi2LKiEHNBjNtdd288The42DlvsoWz/vr5uPYWxGHMhb/t65tlUt/3nAErjL4\n4tLpLa5zbslQLJ05Evcv34uaZMN/SU96Gnf+bi12HI/igVsWYMKwfPz6jb2t/qv/7rIo3thZgc9e\nPKVNlU4dteVoDf629QTuumgyvv3BmRkJkADg/CnDMX5oPoYNzMVTdy/Gt66c2aCqKy8njLsvnoIV\n+yrrBma35N29JzGycABKO1kl1VmLJw9H4YBIxlvadpfHEHUV5pW0fx7S6b555QxMKh6Irz21CVGn\nY5Ufqe+3bIVI504citnji/Dw2/vbXNnXlKT0ggqkGKSSfjWM48DEY5Cugps0kK6BVgZGKVgpYR0H\nJhaDjidgrIFSEjE3Bk+l7QBUV5l0CsaLw3ZiJzO/+qjGrz5qhjEGjnQRc6J+612yFnEnhoQTr9uO\n3vGSUEo2CpDql2whpYe4E0PcjUO2syrIGAOpJVzpwpEOkjKJhJdA3I0j5sQQTdYi6cbhSZcBEjVg\nYf2KntNbueKJ+iMWqz9SVTw11X77VqqKJ1XJk0jUV/O4rl/R09SRuk56fquXCtq4DAMk6t0YIhER\nUZ+0uyzWqXlIKVecOQqFAyJ4ev3RZs8xxuJXy/Zg6shBWDhxGP645nCrbzyttXhyzWGcPa4Is8a1\nvjX9ly6fjlpH4aG39tVd5imDzz2+DmsOVuHeT87B5WeOwl0XTcF7h6vrKmma89Db+zEgEsJN55Xg\ny5dPR1Xcw+/e2d/qOtrr3ld3oSg/B3csmdTl950uEg7hpS8swatfuhgLmqkeunFhCYoH5eK+v+9u\n8b5e2nwcf918AtecM7bT26d3Vm4khEtmjMRr28ugMzinZd3BUwCAeR0Yqn26gtwI/uMT5+B4TRL/\n8vy2Dt3Hir2VmDpyEEYUDuj0ejpCCIE7l0zGvpNxLNtR3qH78JSGkhrWjcFTLhwvAZVMQsfj8BwD\nlVBQSQfKUZCuhZe0cJMGXhAqWen5c0ekhDUGjpcMwpe0gMRaQDqwTg2MGw2OmH948eBIwMgErHJg\ntetXRWkJq5V/uVPT7K5rqTlCMScKTzrNBkTtpbVCMphPFHNiSHgJONKF1KouAFdGwZUuEp7/+LGg\nJc2VDjzpQkoPSklo7Vc/dXe7HHVMo/k8qfasoEWrUZtWeqtWU+1atTV+2JN+1NYEhx8E6eqapmf4\nSK/+UKr+YNBD1CKGSERE1OdEHYmj1UlM78Q8pJS8nDCumj0GL205jngzlTqvbDuBnWVR/L9Lp+LG\n80pwsDKBFa1ULm04XI0dJ6K4YWFJm9Zx1tgiXHX2GDz09n5UxT1oY/HlP72H13dW4MfXno1rzvHb\nkD4+fzyKB+Xif97Y2+x9VURdPLPhKD46fzyGDxpQX+kUbCffVdYdPIVlO8px98WTMTgv81vUF+bl\nIDfS/F9t8nPD+MySyXhr90lsOHSqyXN2l0Xx1ac2Ym7JEHztA2dkaqntcsWZo1AZ97C+mTW35oE3\n9+LHL7Yc5qw/dArDBuZiYhdVXs0rGYrPXTIVT607gle3ta+K6nBVAmsOVGHR5Oy2En5w1miMG5KP\n36YFt+2RlB6MF4frJeG4SahYHDqRgHQtVNLzAyXXg3YdqEQC2nWhPQWjrB8quX51konH66qS/PAl\n3nSYpLzgcP1DOsGRBLwkrBuHdWKwThTWqYV1avzB2aex1sKRTrfMEbLWDxSUkvCkg6QbRzRZi2iy\nFgknDlc6LVY39XfGaBjPqw9Zkkm/0s3z/K8do1vYga5rNAqFPK/hnJ5U6JMe6KTP50lV9gTVPXUh\nT6rKJ72ap6mKHhO0k6Ufwa5hDIKIMoMhEhER9Tm763Zm63yIBPgtbQlP4+WtJxpdZ63FfX/fg0nF\nA/Gh2WPwgVmjUZSfgydWH2rxPp9cfQgFueF2zaD50uXTkJQav1m+F999dgte2HQc37pyBm48rz6I\nyssJ41MXTMLyXRXYeqymyft5bOVBeMrgjgvrq4O+dPl0RB2FB9/u2Bvmptz76k4UD8rF7edP7LL7\n7KybF5ViaEEOfrlsT6Prah2Jux5dh/zcCP7npvkYEMnM3Jb2uuSMEcgJC7zSxNdfazxl8Ktle/Db\nt/bXVRs1Zf2hU5hXMqRLK6/+6X3TcOaYwfjWM5tQGXNbvwGAjYer8ZFfv4OccAg3Luz4LKKuEAmH\ncPv5E7FqfxU2H2n6e6k5rlRQbhLSjSHpJfw30UkHbsLCSzh+BZKUUEpBuh60lP6cJNeBSsSDQMlA\nuv7ubn5VUhTG81vaGoZJXRfyuNL1W+ekW7/VdwfUhRtJP9wwsn1r7I6qotTA4kyHLF2hbtCyUn6l\nTjwBVVvrhzGJRH3I4rp+O2Qi4Yc0tVHo6hp/l63aGqhoFDoW9YOd9Fau9hythUKJ09q8UqEPAx2i\nPiNrIZIQYoIQ4nUhxDYhxFYhxBeytRYiIup51h08hcv+4412v3kD/GoSAF3SzgYAC0qHYsKwfDzT\nREvb37eXY9vxWnz+0qmIhEPIywnjunnj8PLWE82+cY46Es9vPI5rzhnbrp2wpo4sxLVzxuGBN/fh\nidWH8PlLp+Dui6c0Ou/mRaUYNCCC3yxvHAg5UuPRlQexdOZITBlR//qkKp0eDiqdOuvdvSfxzp5K\n/MMlU1GQ23P28Rg4III7l0zGsh3l2HK0/mvLGIsv//E9HK5K4Nc3zcPoou7dVr4lhXk5OH9KMV7Z\nVtbuN9dv7a5AraOQExb46Uvbm7z9qbiHfRVxzO2CeUjpciMh/Ocn56A2qXDbI6vx3uHqFs9/dVsZ\nrn9gJfJywnj6H87HmWMHd+l6OuKTCydg0IBIu8PVhOtAJmuQcGIwsTi8pIQXV0GliAvpedDKhfaS\nMNr1AyWpIF0JLTWMJ4OKEgXpWEjPwGoDk/ADKaP8KqRUW1jMicGVLjztQWoFFQyXbiupFWJOFK50\nmgyPLKwfCgUBQt3smHjCrzZJHbEoVE11fbjh+uGGiceholEYt/M/WzrDSAmdSPoBTNSfcaOr/dYn\nHYvWVfMY16tvsZKyfnes1KEbHx0Joyysf3+p6p14oj6gSbVppbZUTwU1yQSs9Nq/U5axgNawSvvB\nTnorV3sOhkJE/V42K5EUgK9Ya88EsAjA54UQZ2ZxPURE1ENoY/H957ZgX0Uc33l2c7tnwewqiyEv\nJ4QJQ7umNScUEvjI3PF4Z+9JHK+pb/+w1uKXy3ZjwrB8fDitouiGhSWQ2jYZOgHAc+8dQ1JqXN/G\nVrZ0X1g6DQNzw7htcSm+ekXT7VZF+Tm4aVEJXtx0DAcr4w2ue2b9UVTFPdxxYeOd2FKVTvcvb74V\nri2stbj3lV0YPTgPN53X/ueYabcuLsXgvEiD2Ui/XLYHr20vx3evmomFk7LbRtWUK84ahYOViboq\nu7Z6fuMxDCnIwXc+OBNrDpzCa9sbz/fZcNivUJrfBfOQTnfG6ELcd8NclNW6uPa/38FXn9qI8qjT\n6Lz/XXEAdz+6FtNGDcKfP3dBxgawt9fgvBx88twJeGHTcRyrbn7wdDpHSniJGsTjtZA1tfDiEjLu\nt69J14WSDoxysbtWYWWVRdLzYJQLIx0Y7fnVSVLCKAntOn7wIf0WN2MMrNJ++BGL1YVJxmi40oHj\nJpF0/WHXcSdWNwS74dwhWRcwaaMRdxNIuvFGLWN1wVE8Dl1T44dCQYBQNztGeg0HCSvdfLCgNUzS\nr6DRjgNjM9+iZnQQ0MQTfrgVj8N6buMAxlj/eQXVPCaZqG+xisfrhyqnjmjjQ1fXQEejfgglZaNQ\nKRUY+WFR3H8dqmv8+0tV70ivPqBJtWkREfUwWQuRrLXHrbXrg4+jALYDGJet9RARUc/x9Loj2Hqs\nFledPQabjtTgD620hp1uV1kUU0cOQijUda05H503DtYCf95QHwwt31WBjUdq8PlLpiInbXe16aMK\nMb90KJ5Yc6jJyo8n1xzCjNGFOGd86wO1T1c6fCDWfe9y/PDDs1psPbrjgkmIhEIN5rkYY/HQ2/sw\na9zgJufNpCqdfr/iAMprG7/Rb6vluyqw9uAp/L/LpjbYIa2nKMzLwacvnIRXtpVh+/FaLNtRhl/8\nfReumzsOt/Wg1rt0l88cBQDtamlLehqvbivDlbNG46ZFpZhcPBA/+9sOKN3wDfT6g9UIhwRmd+Dr\nsS0+MGs0Xv/qJbj74sl47r2juOzfl+P+5XvhKQNjLH784jZ8/7mtuGzGSDx516KsDdNuzqcumAgA\n+N27B1o911qLRCyKRM1JeKdq4MVV0L6WhOe60NJBVcLD/Qdy8M87h+CX+4fgq1uL8MKJEGKeBy09\nGOnAKhdKaeigSkW5Lozyh29LaYIwSdWHSS3sRtZ47lAC8WA3s4QbbzTzyGjlV8SkgiMpuzbMMMZv\nuaqthY7H/aqfTuwuB6TN5Um10KUqoqJBQCO9bglkrNZ+CBWP14dK8YTfRhYERn5YJNtfSURE1EP0\niJlIQoiJAOYCWNXEdXcJIdYKIdZWVFR099KIiKibRR2Jf3t5J+aVDMEvb5iLxZOH4+d/24GTbZyp\nAvghUlfNQ0opHT4QC0qH4pn1R2GtDWYh7ca4Ifm4bt74RuffsLAE+yriWH3aLmmbj9Rgy9Fa3Hhe\nSYfnz7QlmBk5OA8fnT8Of1p7BBVR/7V7Y1c59lbE8Zklk5t97C8snQapLX7dwmDullhr8R+v7ML4\nofn4xIIJHbqP7vCp8yehcEAE//yXrfjCk+/hzDGD8a/XnZ313diaM3JwHuaWDMEr7RhS/frOcsQ9\njatnj0VOOISvf+AM7CmP4en1Rxqct+7gKcwcU5jRtsNBAyL41pUz8cqXLsZ5k4bhJy/twPt/8Sbu\n+P0a/Pat/bh1cSnuv2VBj2p9TBk/tABXzhqNJ1YdQqyZ4fopSddFbeUxxCpOwalJwquNQSaSkK4D\nz03ipePA17YV4Z3KfFwxMoF/nFSD4bkaTxwdjC9tHYY/HstBlSf9YdLS8VvcPAnrSahkElZpaM9C\nuoCUfghhlfIrYWJRv6UsbbBySy1WqZ9jKanwyERjzYYuHZlV1OxtLGCl9Kt+av3dtnQyWbfuuhlA\nXtqW7E3tzFWdNpcn1ULXUkVUN7Lar26C7lxIRkTUk2Q9RBJCDALwNIAvWmtrT7/eWvuAtXaBtXbB\niBEjun+BRETUrX79xl6cjLn4wdVnIRQSuOfas5DwNH760o423b4mKVFW63Z5iAT4A7b3lMew+WgN\n3t1bifWHqvHZS6Y0uSPYVWePQWFeBE+uOdzg8ifWHEJeTggfnpP54tu7LpoCqQ0eeWc/AOC3b+7H\nmKI8fPDsMc3epnT4QHx8/nj8YdUhHG1j+066V7aVYfPRGnzhfdNa3Ckt24oKcnD7Bf7Q5EhI4Dc3\nz++RVVPprjhzNDYdqWlzW9XzG4+heNAAnDd5OADg/WeNxrySIbj31V1Iev6bWqUNNh6pxvwunofU\nnEnFA/HQ7efikU+dCwHg9Z0V+M4HZ+KH15yFcBdWDna1O5dMRtRV+ONp38/ppNIoP7oX1YeOIVlZ\nDSdaA+nGob0Etp6S+N7OQXj0SCFK8yV+NKMat05QWDQM+P70OL47vQrTBnp4vmwQvrJlOH53eACi\nnvLb3LSCCubyaNeBdl1YbaE9CzdpoFUqTNJ+S1naYGV/3k+tH744Tl37W7pG4VEaay20MZDSwHMM\n3ISBE9dwk/7n0vWv08pAawMlg3Nd/3on4d9Guqb1HdZSVTzBuutmACXStmRvamcuIiLqVln95x4h\nRA78AOlxa+0z2VwLERFl36HKBB56az+umzcO50wYAsBvsbpzyWT8ZvleXH/uBCyY2PK8mq4eqp3u\nqrPH4J+f34pn1h/FtuO1GD04D59Y0LgKCfC3k//I3HF4cs1h/ODqMzGkIBdxV+G5DUdx1dljUZSf\n+S3vJxUPxAdnjcGjKw7ioukjsGJfJb515YwGrXdN+cf3TcMz64/iV8t24yfXzW7z4xlj8Z+v7sLk\n4oH4yNye36F+x4WTsO1YLe5cMhkThnXN/KxMuuKsUfjZ33bgte1luHXxxBbPjToSy3aU44aFJXXh\njBAC37xyJj5x/wo8/M5+fP7SqdhxIoqEpzEvA/OQWnLpGSNxwZRinKhxUDK857/2cyYMwbkTh+KR\nd/bjtsWliIRDUNrgvcPVWLajHK/vrMD247WICIuCsEV+WCA/nIv8kB+cbI8NwNAcjc9PrMXioRrh\nnAggciBCIYS0xMxChTMGJnDIieOvZfl4/WQBdsVz8dUptSiGBcI5sAAiNowQ/PAvlJODUE7E38FN\nGYQjgAgBodBp39/G+MOylfJ3PxeACIeBcMSfBXRacGSMgdaA1YDRTYc01jSscWqtzkYrC62AcI6/\nzkZrJCKiXiObu7MJAA8B2G6tvTdb6yAiop7jJy9tRzgk8PX3z2hw+T+9byrGFuXhu89uaTTP5XQ7\ngxBp2siur0QqKsjB5TNH4YnVh7B6fxXuvnhyi9vAX39uCTxl6uYovbDpGOKexg0Lu6/N67MXT0HU\nVbj70XUYmBtu0zDvcUPyccPCCfjT2iM4cDLe6vkpL24+jh0novjC0mmItBJU9QRDCnLx0O3nYvGU\n4dleSptMGTEIU0YMxCtbW29pe217GVxlcPU5DavOFk4ahqUzR+I3b+xFVdzDhkP+UO153VSJlC43\nEuoVAVLKnUsm48ipJH7y0g780xMbMP9Hr+Fjv1mB+9/ch8F5Edx1YQmuLg1jwVCFifkagyMG0gpE\nVQgfGhXHz2fW4sIRAuHcfIRz8pCTm4tITgThnFyEIgMQzsnFxIIwPlvq4ItTqlHuhnHPriIcThgY\nLWG1C6U1pCeDgdEulOO3uBntD972krZhpZDnVwc1qAKyQdVSsHNaiqmrOAK0Z5sNkDpDSwvPQd1c\np2zSJvtrICLqjbJZiXQBgFsAbBZCvBdc9m1r7V+zuCYiIsqSlfsq8dKWE/jK5dMbba9ekBvB968+\nE599bD1+v+Ig7rhwUrP3s7sshoG5YYwbkp+RdX50/ji8uPk4igcNwA2tBDJnjh2McyYMwROrD+H2\n8yfiD6sPY9rIQRnZBas5Z48vwpJpxXhr90l86oKJba6A+vylU/HkmsO47++7ce8n57R6vqcM7n11\nF84YVYirZ49t9XzqmCvOGo0H3tyHPeWxFncwe37jcYwbko+5Exp/rX3jAzPw/l+8iV8t24NTCQ8j\nCgdg/NDMfL/0JUtnjvLb8d7ej+JBuVg6cxQunTECS6aNqPu+KisfivK9e+DWxCGTCVijYY2BCIUg\nQnkIRyIIhcMIhUMQYf+v4SGlEAqFoVUIRkQQMhLzh2h8Y2oN7t07GD/aVYQvTanBjEJAGAcinAtr\nLcLhEEImDK0dQEcQDpECfSgAACAASURBVEcgglC7rlIorUQoFDYQYSAcblgJlKo8+v/svXecJFd9\n7v0951R1dZiwWZu0u9ImJRTQSoASEphgLAw25trY1yTb2MY4x+uLr19seN/XvsbYYO57Xxsc8MeY\nYGNACDACAQoESShnrbK02l3tandSh6o659w/qjrNdE/Ynd2Z2f19Z3e6Z6a66nRPT6hnnuf52QSY\n3F/k814fD95lTiYF2f1ROnM0zTWF6D02BqsUxji06eOgmmesc7imw8rRvq/KoTUoA9qAVmrRdqMJ\ngiAsBhZMRPLe38Tcf+wIgiAIJyDWed53zf1sWFbiF66YOnoesj6XK3eu5kPXPczV567jlKFiz+0e\n3jfGtlMG53UyWyeXb1/Nizct46cu2jSrDp23XHQqf/C5e/iX7z/FXU8f5o+uPuu4n6D8xg/tYM/h\n2rTi22TWDBV52yVb+LsbH+OXr9zK9hk6pj7x3Sd4/MAE//COi47ZYy/AOy89jU9+/yn+2+fu5tPv\nelnPx/pwNeaGh5/n5y47refHt58yyJsvPJV//t4TDBVDdm1ZLifNs8BoxT//3MW8MBFzzvrhno/t\n8hXraDTqTATPUR8JsI0GNrUorXLxKECHAToIQSuUApdaSBK00djUYq1GO8vOwZj37hjhLx4d4s93\nL+Pdp41w4ZBF+UYuQIU46zBBFnGzaQox0BR4mpe5sOSsB5vpSk1BCaaKRy612bQ368BPdep4JnVW\nKw1Gt36p9zT35yG/uQ4DdDhJwPZZxK05WK6fyDW5AByyaGa/56xzLlujJRe/JolGU+6Qx1lajw14\nVP65yQ7WcaHab7c+/Tp/9wKKT83HR76OBeHY0vxaO5IhAycSi28EhiAIgnDS8dnbnuaB50b5yFsu\n6CvMKKV434+ezas+dAMfuPYBPvyWC3pu9/C+ca7aeewGMYRG87l3Xzrr7V9/3nr+9Ev3875r7qMQ\naH58AbqCLty8nG/89pVzvt0vXnE6//K9J/mrrz/CR3/mxX23Ozje4K+/8QhX7lzNVTvXHMVKhZlY\nPRjxR1efxe989i7+5ftP8rM9upH+8769pM7z+vP6O8J+81U7+MJdz3JwIj6uzrilzsblZTYu7x/B\nKwSG4eVrcEkDNCTjIWm9AVqhTYgODdqorBfIqKy4WhuU1jgdgIrRWmNtJgacWo75o1xI+vCjy3jH\n5lGuWGExeJxLM1dSCso6TO5wwjo8ri30NIAgQOsAHWTOoaag1IlLLM7GmXg0F7yD1E07DM3FMc6m\nmKDQErWmbNMhcqFcf9EnOygAqtX3le9jOrFoDkzufOrFlB4oBdp4zBydVU2RzAPkd9uTi1T5/5ae\npbLnjM87xb1r/m8/Hkplx1cqc1cppINKOD4046Gdz+Um/fTNrm78mb719NNIFfT9gvUdF9N8UU+j\nMc/4PcUmJ18sVkQkQRAEYUEZqyf8xdceYtfm5Vx9bv+pYZBNDvvll2/lr7/xCJduW8nV566nErV/\nlL0wEXNg/NhMZjtSKlHAj56/gX+95SnecP46llcKC72kWbNyIOKdl53GR67fzbv3jHD2+uGe2/3l\ndQ9TjS3v/ZEzj/MKT07e9OINfOHOZ/l/v/IgrzzzFNZPim5ec9dznLaqwtnrh/ruY+1wkXdeehr/\n61uPiog0z5SKFeLBlZnIo0ZaookOOlw2WqOCELxH6xgdONJc5LFxA5VmrpYUWAW8d/soH3psgI89\nOcy++hhvWFenqAKUb6C1wesw+8t4mgkNWuuWM0ZpBWmKI8UlgMkFpdCAB5sk+DSd4jrKhBTfOvvy\n+aVSCvJjzAnrsLaOsgE6LLQEoJ7MUghqiieLwhPgPS4FN8lZpTWZKSs3Z/mOy+lOUHuXlU9/T3vF\nGJt7U1q1xaVcaJp8Uj75M3Ik4lPTCcak4XmTnVutNTdNa81tXfteTnmG5KKabgllJ0f0sEto7PUU\nmOELwHm6RJ2m2NolwjbFyuan3E+67Lza+b6mSCOTEk8qREQSBEEQFpSPfvNRDozH/P3bL5rVL4O/\nfOVWvnLvc/z+v9/DH33+Pl5y+gqu2rmGq85Yw77ROgDbj8FktqPhrS/bzJfu3sPbL9my0EuZMz9/\n+en803ee4EPXPcLH3rZryscfeG6Uf73lKd76si1sOwZl5sJUlFL83z/2Il79oRt47+fv5eNv29X6\n2nl+rMF3Hj3Ae67aNuPX06+9cjvnnbpsQUq1T2QKgSGqDGHTOt47FGMoVCYchSEqDNFB+1dwl4RQ\nq6KUxSYKVIQ3Aajs+1kKDAC/u3Wcjz9luWbfIHeOFPm5zSOcVs5/mXcOZQwqL/axtq0iNEUlrfUk\nQSl/fnRG2fJJbnYWbqSsG6kpWOnWCWnnyWTTz9MVT0tTrLX5dLljP6VyoehyVi0CvPO90okzYHtG\n+7IdTtq/n15ImM/Hob2vqdHD1hI7ooctYaopeOQCXktQU4DucH/1EP2muNyUmuKumfIttyvj2aZV\nx9W57s71NtfsZ35cj4ZFJcIKSwoRkQRBEIQFY/9onX/8zuO88fz1nLtx2axuUwwNX/rVy7ntiRfy\n0dr7+ZMv3c+ffOl+BovZj7WdaxeXmHHmuiHu+b9es9DLOCKGSyHvuuJ0/uJrD3Pn04c5/9T258l7\nz/uvvZ+hUshv/ND2BVzlycepK8r89qt38P5rH+CLd+3hDednMcmv3PsczjNtlK1JMTS85uy1x3qp\nJyXFQkRSGqLsLBP5GVpTONJaY0xAoAOcczQAzACqWkPrFB060kaApwg0hSRFEfilLXUuXNbgE08P\n8acPreR1p4zz+rVVSjpE4/GkgGr1ITWtMNbaTLjRCq3z2FuneGQd1to59Xx4spNQ1ywUmgZjsvvc\nPqn2WcQtidvOqOAISrqPAu/89G4oAZhdtG8hOZr1NaODTeYkdHk/xUQ213Us5sdVEKZDRCRBEARh\nwfhf33qUxHp+44d2zOl2hUBzybZVXLJtFe+9+iyeOljlmw9lgpL3sLZP6bZwZLz90tP4+5uf4INf\ne4h//rmXtN5/3f37uHn3Qd73o2ezrLx0YnonCu+49DSuufs53nfN/Vy+fTUrKgWuuWsPZ6wdnLEI\nXTi2FAJDGJXwaUzROayzBNoQmACjOzqBDGhtqCc1/IDB1huYRg0VObJf04vg244k0gYvWebYOfAC\nn3ymwjX7BrljpMg7Nh1mayVFo9EYMg+QBRJA5S6lAIfOYnYpaNMs3LZdJ7PeObxPUX6SS6FZ3qwV\nqAClZx4s0MRah7MxJgy6I1KetjMqJu9uMijT3KZb5MmidLM+bBc+tXjvst6WZmm4UmAMWgcoo0VU\nEgRBmAUiIgmCIAgLwp7DNT75/ad484Ub2bKqclT72rSyzNsu2cLblmBcbCkwEAX88su38oEvP8D3\nHzvIS05fSSO1fODLD7BtzQA//ZJNC73EkxKjFX/2phdx9Ydv4v1fup/fec1Obn3iEL/7mp0LvTQB\nKIYFkrBM0SaTYjCarFk7AGcJgUAPUI2rUAQXGqjWCEmAAHynIwm8jVmuFb+0pcpFyxv809NDfODh\nVfzQ6gmuWFllXTFBu0xM0mQxNm9TPDZzIKmw5U7qxLsEbzOhBabpqbUANhN0dCZOqVl053ggTVKM\nMZg+5dpNQWlaVB4NVJnjijxKp5TO1p/dmUwMy6/3LQv3vvuYRqN0dn+yDiEppBYEQZiMiEiCIAjC\nvDFSTbj+oX284bwNM455/8j1uwH41VdKDGop8F9fupm/u/ExPvi1h/n0L76Uf/rOEzx5sMo/vfNi\nQiMnWgvFGWuHePeVW/nw9bs5XEsAZiyoF44PhcAQFEJSX8HbFGWCng4epzUqrlGJKtSTOjHAQAXG\nJwhJ8D53JOVCktU6c/UAFw17dlRe4F+frXDd8xW+9vwAG4sJu5bV2bWsxrpignKaAIPRAc5m0TOl\nDUoHgAKf4KxjruEa7z3YFE/a1YnUNQ2JZllv2BJkrLU45zCBObKpYd5DLhbNexzIOryNu/er2k3O\nCnLRSreEJkEQhJMNEZEEQRCEeeMvr3uIf/rukzx5sDptRO3JgxN89ran+ZmXbGLDpMlSwuKkVDD8\nylXb+OMv3scX7tzDR76xm6t2rublO1Yv9NJOen7lFdu49p7nuP7B/Zy3cZjNK4/O2SfMH6WwwHjq\nUCbqu40Oy3ht8I0JimERow31pA6VciYkFVMSAqAZGbVAAa8MLo1ZVgj5hc1V3rh2nB+MRNx2uMQX\n9g7w+b2DLUHp8pVVlhdsS0zyzuLd1AYY6xwOi8vbYZoT2brWqwwG0xXL897lDqWpZJO6HNoEKBPm\n2/vclZR1N+nFLER7DzYbbzVlYFWXK0oicYIgnBws4u/YgiAIwlKiFlv+445nKYWGv/r6I3zjgX19\nt/3rbzyC0YpfuWrbcVyhcLT81MWnsn64yG995k5qieW//8hZC70kAYgCw5+96Vy0gjdesGGhlyN0\nUAgMJuj+dVspMIEmKgStjykToaJBUJrQhJQKJYwJ0OUyxmjCCHQYosICJjAEeXeQDiKUNgQ6YG0U\n8sNrEv5wx2H+51n7ecuGEUrG8/m9g/zB/Wv4l6cH2B9bGq5O6tqRMecciUtouDqJbxC7lGdrhsOx\nwvUo2nbekvg4294lWcfQjHicTXBpA9+xvbWONE1JGjE2TXNH1BKi6YpKU1xcx9aqpPU6Nk7w6WKZ\nyyYIgjC/iBNJEARBmBe+fM9zjNZT/vEdF/EXX3uI3/j0nXzxPZdx2qS+o937x/j8Hc/y85efzhop\nwF5SRIHh1165nT/43D287ZLNbFszsNBLEnJ2bVnBDb93FeuGxdm32CiHBVLjMFpjlMJ0uG6894zW\n69jUZS6d4hCuMZZVahdK1LyHcgUmJiByQIhTGpI6SoVYm+KcxtsER4pBYYC1kee1axJevabO3rri\n2n0DfPNAmW8fLHPFyio/vGaclVE2yc17R80q7huLuGMk4u7RIlWbi1t4BgPHUPN/aDlzIObi5TUK\n2mNJsaStDiaV30p1Xutw5mQOKIcOwjxOl7+fTFACh0rJO47a88+zGFn+SnFkMbgOsolefsr65gVr\n8dZmXq5Yw3Quqy6RbrJgl819b4+s162R8L2G6GUfy7eRqJ0gCMcQEZEEQRCEeeFTtz7F6asqvHzH\naratGeD1H7mJX/zn2/iPd19KJWr/uPnQ1x+hFBp+8YrTF3C1wpHy5l2nsqwc8vIdaxZ6KcIkNi4v\nL/QShB6EgSGkd5G0UoqhYpGRWh1nHUobTHEYF48TAi4s0gAol6FaxftcKjIlbNwg0AqXWlLAmBBv\nkyymph0BARBwatHx85snuPqUca7dN8C3D5S54WCZy1dW2VBMuXMk4sHxiNQrKsZx/lCdnQMxsVeM\nJprRVDOSGEZTzZ7xiO8dKvPZPUNcvrLKlauqrCpYnHc4eruIlFMEhB3xN49LY7S2XV1JtD6aiTwz\nNR4ppdAtsSm79Eya2Z6/4b3P/+ddTh1orTJX17GI1HkH6dG5q6aTmfptBzTLqCB/jJQ22aUxRzzh\nThAEAUREEgRBEOaBR/aNcesTh/jD152BUoqNy8t85C0v5q1//31+79/v5m/ecgFKKe7fM8q1dz/H\nr75iGysH+neECIsXoxWvPUeKmwVhvmgKSaP1TEhCKXRhAOtGiMIIhyMBvHME1FHKkcSGoFjCNhpo\nINAKm1gwIcqE2WQyn+KtRWlNiGZD0fHOzWNcfco4X95f4YaDZaxXrC6kXLVqgguGG2yrxBiVrWmy\n2AKZA+bB8QLXH6jw1f3Z//OHG7xy1QRnDMQtp0z3bTwJMc4FBAQth4xzNutK0hr01MLxmfDeY+3R\nV2s753EuRaWgl0JH02zJyqjA5sJc59Q7lTmkuj5dSncIcojYJAhCX0REEgRBEI6aT936NKFRvOnF\nG1vvu2z7Kn7/tWfw/3zlQc7dMMwvvnwrf3ndwwwVA37+cnEhCYIgNNG6t5DkG6OUwlLWO1QsYp3H\n0EBpRxoriCKcDiCpo7XGWYdzFodGUQAD3qV4m6I1FIhYV7S8bdM4r187Tt0q1kY2H0CmyeQmjdYa\n7zwOT/O1x+GV58zBmDMHYw7EpuVqumOkyPLQsrqQsqJgWVlwrAxTVhQca6KUUyKL9SlOOUIXdsTR\nfC4m2WzCmzEoHS7I56AzUkfajOJlgprKo2XzEaVbFOQOqckS3FQ3U1tsUjrIRKVcnGp2W/nm/rIb\n9Ing6WYSMZt0dyxihIIgHDdERBIEQRCOinpi+ffbn+HVZ6+d4i561xWnc/ezI/zZVx/Ees/XH9jH\n77x6B8OlhTlJEARBWKxorRiMIsYajSzaZgKIBvD1McqFMhONcSiXsAp0o0EYedIY6Ii3aTI3jXce\n5xzO2tzlE2S9STbF6Gy62upCisejKaCZ2qGjtMpbjrpFE+sslpRVBcub1o/x+rVj3HKoxAPjEQdj\nzSPjBW5JDK7DxnLZiir/deMIoXbENDAuIJwkFnnv8KkD0kxMago3qDm7lOYDj8+1kW5pJRNUVCZ6\nKXViuJb60SE2dTmZZrpZn+tTUDp7eqncFaUyJ9hkB1Tnmyo4/s8FQRC6ERFJEARBOCr+8769HK4m\nvOWiTVM+ppTiz990Lrv3jfPnX32IFZUCb7/0tAVYpSAIwuLHGD1JSCrgwxIqqVEqlKnGVUyphAsC\nXHWCMFJo40gamqBYwqUWZ1NUmotFgcFZi02zqJvWAbgYZy2B7nUaoLKOIqXA+9xt0i0DNEUo6xyW\nlIK2XLayxmUra61tnIfDieZgbLhztMhX9w/wbD3g3VsOsaLgMleSc3lX0mQRxuNt2kN8yGNWSmfi\ngzJT+pSOB+3Opnz6WtrsZ8ocXOKwmQPe5Q9j2xU1Y0CxwSSHlOkoYe+4fceOsrJxtSDPF0E4ERER\nSRAEQTgq/vWWp9i0oswlW1f2/HglCvj/f/ZCfvrvvsd7XrGdgUh+9AiCIPTDGM1AFDFWq+E96EIZ\n5y0mjSmGJepxFR2GMDCAq9YwgNKOpAE6MOjA4MMQlyT4NEUbg9YGay3WWjARWjm8S/DOoXTT/dFb\nlPHOgbfgXeYWyruSjNYYCjjnsFistzTP3LWCFQXHioJj+0DC1nLMx55axp8+vIpf2nKYnQMx3jsS\nGlinMQQdxdv9aBZjWzLlIaEteumefUyTbt5xkb1WSndNiTtSsn6m7PE9pkXdQsYROqSAlrsN3RG9\na/ZBdUbx6CVIebp8UarrYvold11pFscf45hf86CiawrzjPwmLwiCIBwxjz0/zvcee4Hffc1O9DS/\n+GxZVeHmP3hF118LBUEQhN4ERlOKClTrMUCraDsEdFShFleBADU4gJuooZOYqAQ2daQJgMZEET4s\n4JIYn6aYwKC1xto060zSsxtukAlLmSCiAO9sNgUu78HRWpO1KWWF3s0GpVaPEp4XL2vw3uJB/ubx\n5Xxw9wp+csMor1hVRSnyyW4xqdMEsxKTOvHZNDrszA6WnrcGSI643LsXvYq6mwJYdplfbxaXq9xh\n1VITVC6INaeqyc/NecXnAk5uJJu1A+p4opoil+4WuVDZ153PnVveZ7Y/3JHdgZagRvtYrY/p9ibk\n20Hr+NDRh9WsxOrSTZsK26SYbM91tG84+XhTbtR1P/N1tL+UZoHqc73jzWbvV2Y7bD/WPfHYdI5C\n5gmAiEiCIAjCEfPpW58m0Io379o447YiIAmCIMyeYhiSWkecpF1F20YbKtEA1biGtQmmUsY1Alyt\nigk0JoA0cdj8vCYTk0Js3EDhCHSIsw6bpm1fhVLofBR8U7zw3rW6lTpPn5Q2KG0yJ5NNu6a4Ka2Z\nLMN450lUwvpiynt3HOBjTy7jk88O80Q15GdPHaGQnz9mzqRMTDJknUitl2MqpLTLvSHvOFIG0EcV\nf+oq6p52w7bA1I92D5Nq7dx3bO89raifUiI+LXm8B5uJQ8dU5OoS1KYWrc/5uHYWhzzKjx+r2wpz\nQ0QkQRAE4YiIU8e//eAZXnnmGtYMFhd6OYIgCCcclahA6tyUom2lFJWoTD2pEycNdFSAQONrdXya\nEoQaE3jSFFwKkHcmJQkuidFGo00B73xfsUFhyP9l0+F8Xtbt8iiYDlE6xLsEl6b0O4VTWlGgQOIS\nyiblPacd4pp9A3xx7yC7Jwq8cd0YFy2r01yG9450svBiVWtKmkZjjlLg6Y/PyshbZ8OqFXOiJc4c\n/8EQ7R6m/qfJmRDVPos/qQrABUE4roiIJAiCIBwR192/j4MTMT918dRCbUEQBOHoUUp19SMpU4Di\nIL4xDt5TDIsYbajHNbQJsp6kNMXXa5BawlDhA0+agE08OgxRxmCTBNK0t4DUjLj4tpDTHGuvjWlN\nfesUk0whxLs0j7r4vD+pW/AIdYh2ioSEN6wdZ2s55jN7hvjbJ5fzlX0JP7ZujHOHGn0iKXkMDMjq\nvEE5nQtKprW++Sc7bnefUpr1SGm9IILSbOlVAJ71NenceSaikiAIR4aISIIgCMIR8albn2LDshJX\nbF+90EsRBEE4YZncj6RMAaIhfGMMvCM0ISpS1OMazjl0EMDAYOY6qtdR1hIWFDpwpA0ATRBFOB3g\nXdoaq64UKGNavSDeOby1mQupo/OjOYWsMxIHoHQwpe/EO4v3Fp9n64wOwGlSYs4Zijlr8AC3HCry\n+b2DfPjxFWyrxPz4ujF2DsQzPi7eO2wuKSmXeZSatcjty/brqeS3mHPsK+thyrqYloag1CTra8pE\npWaMMTNZNWOM+UcUIjIJgtAXEZEEQRCEOfPUwSo3PnKA3/yhHRjpXRAEQTimdPUjQRZtKw7hGmMo\nZwl0wEBxkHrSIEkbeJ+5jnQY4hoxrl7FaI0udrqSDExpMGrTFEc0QCHCpRbn0pag1IzE2TSf+tZz\nHwaFwSuNSxPAY7RGuQKJStA4Xrqizq7ldW46WOaLewf4890r2VlpsLWS9ShtKCasK6aE02gamUtp\nFoUsU1eIceYo3EzdgtJ8FnQfa5plwf36mJpxOK00aHEuCYLQRkQkQRCEk5j9o3Xu2zPKs4drc7rd\ndx49gFbwXy6auVBbEARBOHo6+5EgE2hMcRhbH0VlxUcUw4jQBNSTBtYmAK2+JFetTXEleddZiq3a\nUTIFLu0QFhTo0KAxeBNg0xjydTSnvmV9SVNjbNm+A3SgcGkMeLTWFFyBVKVYnxIouHJVlZetqPLN\nAxVufqHEf+6vYFteIs+ayLK+mHLWYIMLh+sMhzMUVs8Kj/Vp7mbSBBiMMrMd8zRlX82C7qw7KQBl\njlF307GnGYdzWLC9nUv5u3L6jdBSrYtjX5IuCMLxQEQkQRCEk4TnRmrc9fRh7n12lPv2jHDvnlGe\nH2sc8f5e96K1rBsuzeMKBUEQhH60+5HqbaFGKUxpGNcYgzSLgGXT28okNqGR1LOImwlQgwO4ah0f\nN1quJOezU/xeLhMXOppDy5ztEJsCQxCUsHGCT/KInVYYnTl6AJx1+Sj7ziJugw4ivM2cUkorQkKM\nM6SkOG+JNLx2zQSvXTNB6mBfI2BPPeDZenb5dC3kjpEin3xmiB2VmF3L6ly4bH4EpWw6nCMlRfvm\ndDh9RJE37z3eJkCCUrqvKKUAnxeGZ9scq8Lwo2cm59Jc6B2lUyI0CcISQUQkQRCEE5TUOm5/6jDX\nP7ifbz64n4f2jQFgtGL7mgEu376Kc9YPc/b6Ibasqsz5D68rK9ExWLUgCILQj8BoBktFxuuNrKso\nR0eDOFWFpO0qDU1IaMLWBDeFwpRLuMDgatXs7Wm+8WfdR0CYTWezNpv01nQvmUKIDww2brRcSa3b\ntiaBGbzzpGmaC0caiMDGWQl3fpwCBaxzpCSt9wcaNpRSNpRSLurY97O1gNsOF7n1cJF/eXaYTz6b\nCUpnDsYsDy3LQsuy0DEcWgaMn/PPNu99Xt3dRjndkpQ0ek7RrqxsvM/HJl12HDFzMykFSmf/UYtW\nYJorsxGk2tPlOkQ26WoShEWBiEiCIAgnEN57vnjXHq67fx83PPw8o/WUQCsu2rKCP3zdGbzktJXs\nXDtIMVz8fQ2CIAjCVAKjGSxGjDUarWgbgC6U8aaAiyda8Taga4Kb9x5dKIDJ4m1M7jLKztyz6657\nOltTUEpih02a7iJNUCxlJd5J0pwz371LrQiCoEtIUrqISxt5l1CG0RpDhHUpKbYlJk0mE5bGecO6\n8ZagdNtIVs495bFSnqHAUTSOovYUjc8utaNoPGcMxFwwXGcm44v3rjUZDmhF3zTmGLlm8ml0Hujq\neuoov4aWwylzNOUF6Uugj2k2tKfL9XhOKYXWTZFN+poE4XgjIpIgCMIJxDV3P8evf+pOVg9GvPac\ntVy1cw2XbV/FYHHxT40RBEEQZocxmsFoqpCkTJDF2+KpriQdaWpxtSve5tO87EYp9CTxwcUxrl7v\nEpMAwoJGG0cat11JrRLvNJvE5q2DDhFIaUVYCEmTpBVv00GEs0k+ua0tFBgdYAjyPh6Px+FweKb2\nLXUKSrGDkcRwONEcTrPLkcQwkmjqTlN3irpVHE40DRtQtZrrD1TYWEx4w9oxLhhuzNq11Iy+QYJx\nmZhkjot4M8m903Vh88vMsZTF6JZuJ9N0eO+xtvu5MO20ua6LXHiTyJwgHDEiIgmCIJxAfPPB/ayo\nFPjef3ulTE0TBEE4gTFGM1wqMlqvY9NJcbIerqSsK2mAalzD2iTrngn6nwroQgFdKGTT3RrdYpIx\nGhU50lh19SXpwECQiSk+tVnRdpq2BKUgDLFJis33pU2IVwZc0ho930Rphckam1rv885hcdgeTqWC\nhtWRZXVkgWTGx896+P6hEtfsHeCjT6xgUykTk84bmr2YlO3HYrGkTmMwBEdczD1f5BPjaD4OuVNH\na5Q+cf+gdCSdTU3hSevuXqb2DrMrndplU5jKytPl9yzh5EREJEEQhBME7z03PnKAy7atEgFJEATh\nJEApxVCxt5DUIBAVPgAAIABJREFUy5WklKISlVs9SbNBRwVUFOLqMT6uQ9NJpDWFIiSJw8Y9IkdB\nXrRdCEnr9VZ0zoQBpCm2NWVOg47QzuJt3HO6W2ufWhOgCQiyniZs5lLqE32bDqPgkhU1XrK8xvcO\nlfjS3gE+8vgKNpdirj5lnBcNNQjnYOLx3pHisHkxd0CwSESG9tS4VtG31ihlTpjo25HSFJ4mu5rm\nQmd3U/fEunZReGvbRfF8EISjR0QkQRCEE4QH945xYLzBZdtXLfRSBEEQhONEU0gabzRIEjvl45kr\nyeDr4633FcMiWmvifLraZDwe3+E8UihMMcIXC7iJWmsqG0AYZvE2G3dPceskiIqkjQ4hKQgAi+3o\nZFLaoHQJZ2O8tczkJtE6K7kGsC6Pu3W8NHuFZsIouLQpJr1Q4pp9mTMp0o5zBhtcMNzg3KE6lWB2\nQkOzmNuSYlyAxqBh0cTKvHdgHb5VHt4u8fbNMm9OzBjcsWC67qbp6I7f6b7CU2t7EaCERYSISIIg\nCCcINz1yAIDLRUQSBEE4qVBKMVgsUtMJtcZUYUiZCIoK3xhvlV8XTIGCKfTdZz1pkKSNLiFGoTCV\nMq4R4GrV1vuN1phie4qbt5MEJdVLSDIopbBp2nX6rU0BDFkky2fdSpmg1f8k3WhNZ+ytE+/ashJN\ncSl/7bCt+xcouGxljZeuqPHAWMSdIxF3jBT5wUgJjWfHQMyLh+vsWlZnOJyd88n6tD3pzXZ09XS8\nbs59W7jR9p0l3s1HuTsGJ6LS/NMdv5sq/s7ElGdKR4RyNmlKhZq0E8WUt3p8XGJ8AoiIJAiCcMJw\nwyPPs23NAOuGSwu9FEEQBGEBKBVCAq2ZiOOuwm0AZQoQDeIbYz2nqE2mGEYUTEg9rZOm3R1DOmpO\neKv2neLWFJRcmjs1eghJ2miUCnHOtuJtrfVqg6Idt/LOgbdtcWmWKK16OjuyfQakKsX69jS7QMGL\nhhq8aKjBz2wc5YlqyB0jRe4cjfjks8N86tkhzhlqcMmKGucP1ecYeWuLWE26Zq+5bK0K3XpZuBP2\nqTG4bC0aTqApcEuVKV/BHV/Ts/jy7rWHOZGJnnTF+Pru33c/65vra4pd3YJWe+Lg5Pf13T+d9zmX\niyeJ3732Nf0xfNc+fb/H1/suR+XJgohIgiAIJwD1xHLL4y/wlos3LfRSBEEQhAUkDAzDpsh4IyZJ\n0q6PKRNCNJQLSTMLMVpryoUyaZBSj+td5dc6CGBwAD8xkU1563FbrcEHnqSRO5N6CElKK4wOUMpN\ncSV1rT13GykTZkKSTY6oC6l7n4qQEO00KcmU+JtWcHol4fRKwpvWj/Fc3fCdF8p891CJ//1EkbJx\nXLysxqUrapxWTo66T9v7pmfKtcQl5TR6EYhK3ju8hU7ZKyui1lksq/MkvGuJmubEOOHEIYu8ZteO\neB+ThJ9jx7He/8mHiEiCIAgnALc9cYhG6rhih0TZBEEQTnayeFtETWvqcdw9XcoEUBzCNcZQbnZ/\nQQ90wEBxgDiNaST1ltiilYaBQWythm/0LupWShEUfHuSWw8hCaZ3JU3Zp85Kob2zeJfiZ3k/+mG0\nyYSkSa6kyawrWt60fowfWzfG/WMFvnOozM0vlPnWwQqbSzE/sX6MswZ790wdKd43J9LltGJx0HZt\nZC8Gk0XQjhPee3JlaRan6Vn/T5fo1OUCad8nEZwEYXEjIpIgCMIJwI27nyc0ipectnKhlyIIgiAs\nEprxtvF6vVtI0gZTHMbbRt47BC0ZwGcj4pWbKqYUggJaa2pxrat425RKuDDExwk+aUxRFLTWBAVH\n0lBd0TYbN/Bp+zgtV5J24D3OubzTqDddYpK3KO/bkbE5jHpvHjtzJZncldRfyNIKzhmKOWcoprpR\nccuhEtfuq/DBR1dyzmCdn1g/xqml/mLU0dJ2TPmO12BJUU5nYhL6uApKM5N/TmYpOrXic0o6mQRh\nsSEikiAIwgnATY8c4MWbllOJ5Nu6IAiC0CYMDIOlEmO1endcSylUUOzTFgQ+rePj6pSClUAHlAtl\nanFtarwtCHA+wjdifBxP6UsKo24hyUQRTge4pNF1nKb4oU3Wu+OcA+dx3uHcVPmhsz+p8/60C7kd\n3vtMZMo+0FdkMlpjiPAuK952+Uu/SW9l47lyVZVLV1S5/kCFL+0b4H0PreKly2u8cd04qwrHty/F\ne0dK9rgvXkFpZrrjc0k+QU7LBDlBWATI2YYgCMIS58B4g/v2jPI7r96x0EsRBEEQFiGB0QyWilOF\npGlQQRF0iE+qkHZHtIw2VKIK1biKtd2OG600FItQLOKSBN+otzqTmkJSXFct0UiHBmVK2CSGtLd7\nJ5sSBhqTu5PcjJE3oENkMHQHwDKcTfA2pZeYpLTCELSqva1zNINlvR7DUMNr1kxw2YoqX94/wNef\nr3Dr4RKXr6yyuZSwsmBZWbCsCO2cyriPhhNFUIK8L6rLxZRNkFO5qNQWl6T0WxCONSIiCYIgLHFu\n3n0AgMu3r17glQiCIAiLlSMSkrRBRYN4M9WVpJSiElWoJTWSpHcPkA5DCEPs+Hgrtqa1Jiw6kg4h\nSWlFEEU4rXFJPG3WqTl2Xms/q/6k6dAmxCuDt/GMJd2ZQ0njXYBVFkva83GsBJ43rx/jlasm+Pze\nQb59oIzrmgjlGQ4dK0PL+mLKplLCpnLCxmJK0Ry7AuBeglJrFtwSFJUyfC4uNd/qJBeVVNbF5Ons\nYZKyb0E4GkREEgRBWOLc+MgBhksh52wYXuilCIIgCIuYIxGSYHpXUiksodDESb3v7fVABTc+3nIk\nGa0hj7Z1xdjCEGUMNkn6upJaa8r7k45WTFJao3QRbxNcH1fS5OMG+Yt1KSm2pwC1ouB456YR3rpx\nhEOJ4WBsOBAbDnZcv2OkyI0vlLP94jklspxaSji9nHDOUIN1UXrUE9960SkoAXlZt26LSmhMXoC9\ndMn7sXz7M9r7M9stNoEWoUkQZkBEJEEQhCWM956bHjnAZdtWYRZo7K8gCIKwdDhiISl3JTnGIe2e\nxFYMIwJjiNOYNE2m3haFqlTw4xOtiWzGaFSxoyOpdRxNEEX4sIC3Kc7ariluU9eViUkmyLuTZlHI\n3XM/JkTP0pXUxOgAQ4B1lpS05+0CDasjy+po6n3wHg4lmqdqIU/WQp6qhjw6EXLr4RKf3gOrCinn\nDDY4d6jBGQMx0TF2KrULuiHxCqM0GoM5oeNhk8WmXs+1fAqeyq8rhQK8ak/HQ0mMTjh5EBFJEARh\nCbN7/zh7R+tctn3VQi9FEARBWCI0haRakpCmvTt++qGjgczDMklICnRAUAiwgSWxCUkad+1XKw2V\nMm58olW43exIShOFSyeFkbRC6RAdhnjncKnFuxSmcRxNLuT2rhl38plI4pn2vrZcSS7BO4d3syvF\nNtpgMLkzqXfMrefxVOZYWlFocP5w+/E8EBvuHY24ZzTiu4dKfOtghUB5tldi1hVTVhVs/j9lZcFS\nMf4YmIY81lsslsQ2BSWd+ZROOndOPgWvWcbuu11NndczV5POnU2arKPpZHu8hBMdEZEEQRCWMDc+\nkvUhXbZNRCRBEARh9gRGM2giAKx1pM5hnSNxFmcd0+kgOhrAKQU9ImxGZ86VKIhopDGJjfMpaaC1\nyYSkiQnI3UdaawoRJNph4z6BI60xBQ2EuNTi0mRad1L7dnkPTray1vub4pK1vQU0pUOUzqa7eW/B\nzU4YMjpAO0OqUqyfPo43HasKlitXVblyVZXEwSMTBe4ZjXhwPOK7L5SouW5RoqQdWysxL1tR44Lh\nOtG8axZtQQkAq9CqGXzLLhV5HGxJR+COnszV1FkA3qRHR1NeBC6xOWGpISKSIAjCEuam3Qc4bVWF\nU1eUF3opgiAIwhLFGI0x7ZNYax3jcQObTuP6KVQyR1KfLiSlFMUwIjQB1bjaFpJMAOUKbmK86yw7\nDDXaONIGXfG2KccNDDowuZgUT+tM6kdTXNJGY9O0b5+S0pnzBhNmriSXZpG5aYJySitCQgJnSEmx\nfnZupn6EGs4ajDlrMAbGAJhIVdavFBsOxAH7Y8NdIxF/9+RyIu24cLjOy1bUOGMg5tgk3T3Oe8B1\nh7/yhyUTR7ID61bL0snoYOpkNh1Nqh2Zg1ZsLv9Ql/Ak0TlhIRERSRAEYYkSp47vPXaQN71440Iv\nRRAEQTiBMEYzVCwy3ohJkv6OmkxIUpDU+u9LG0qFErVGteXm0UFTSJqYtK1GRY40Vjg7vfMnE5NK\nRyUmAZggQCmHTdNpO5SUNqAN2jm8T/HWMr2YpAkpYJzDd7w4XP44HHm/USXwVIKUzeUUyGJwP70h\ncyx994UStx0u8p1DZZaHlpcsr3H5iipri0cnZs2FzvtnO14r1xaUWi4m6XPswLcjc/nF5GdJP3dT\n9lYPcvGJpiev9Sp/30kt7AlHiohIgiAIS5TbnzpENbZcLn1IgiAIwjyjlGKwGFHTmloj7rudLpRz\nR1J/ISnQAVGhSL3R3kaHIQwM4KrtaBvk8bZiVpJtbZYMmk5QaopJPrU4m+Ktg1kWY7f2YTRKhaTp\nzLG1zJ1UAAPOxjOKSf3cN95lglLzZbZl3n2Po2DnQMzOgZif3jjCXSNFvnuoxNf2V/jq/gG2Vxpc\nsbLGhctqxyDuNju893hsl38pE5Y6InEiLs2Btrspe2umrXvRLA3vjtqJ6CRMh4hIgiAIS5QbH3ke\noxUv3bpyoZciCIIgnKCUCiFaKaqNRt+eJF0o443BN6p9BZyCKeBCR5y0C6R1EGRC0kR1SseR1hqd\n1SC1BCWX9o+6qcBggrxQO7X5hLbpi7i7bq8VYSGcNt42GW0yMcnbBGdT5uIuUlph8hdoikoW13Ir\nHbmoVNBw0fI6Fy2vczjRfOeFEjceLPPxp5bxyWeGMnfSyiqbS+mCVxhlwlIWjeuk6VrqfH1yx+GO\nFc3S8OkLw7tpx+4y8YluIav1jcLT5Y+aFM9rHS93rnV+f2mJWvm2viVkTesXnOLG8nhUc995yX7H\nclr3wau8P01NvjPt/XQfqcMt5o5OAF6KiIgkCIKwRLnpkQNccOoyhorhQi9FEARBOIGJwgCtFBON\nOO8EmooyEapUwCXVvj1JxbCIdQ5rk9b7tDYwUMFPTODT3pGrTkEpSRw2gemav1XQFGeyyW7eerxL\nM2FmBoHIBAFKO5y1uGm6mbqOZ0KMCfFpAzfLiW5T9qEVhqBV/+1c5lCy2KMSlJaFjtedMsEPr5ng\n4YkCNxwscfMLZb51sMJQYNlWSdhWidlWidlcSggWiU7TdC0Bbd+SBZVPiRNhaSFpx+5m7pvvUmJm\nLbP2ErVmt7LZvS87RvZRP1UzmtNxjtZFuBQREUkQBGEJcrgac/ezI/z6K7cv9FIEQRCEk4AwMAzp\nIqO1el8hCaXQhQreRLh4AuWm9imVCyUmGrZrH1ppGBjETlTxSf/oHGQF3MbMrjcJ8viZhq7pbE2n\nUpr2dE5lopXO3EHOztqZpIII7fKOpqPoPGqtAU1A0OFSch2dSnNDdcTdfmbDKLeNFHlovMCjEwVu\nHykCECrPlnJW4n3xstpx7VGaLd677kBcx6S49iw+nc08E4FJEI4JIiIJgiAsQW7efRDv4fLtqxd6\nKYIgCMJJgtaKSlRgvF6f1oGgTIApDePTOj6udQk1SilKhXLXxLYmplLG1jW+3tvJ1F5H1puUJo50\nBldSz/XlTiUfBNgkhrR3ebjSCqMDtPaZM8jaGaUhpQ2mUMr7kvqXks9pvZNcSt615KQjir6VA88V\nK2tcsTLrqDqcaHZPFNg9EbJ7osAX9w7whb2DbC7FvGR5nYuX1VheWKxui/akuCnkzqV2w4+a+iLd\nS4IwZ0REEgRBWEJ477n1iUN8/KbHGCwGnLdxeKGXJAiCIJxEhIGhHEVM1BszbquCIugQXx/pEnqM\nNhTDEvW4OsVVY4pFXBDgGzE+jac19AShRs/BlTRlfVoRRBFOB7ik3vdYmZiUdS45a7HpzGKSNgW8\nMnibzHvcRWmNQbe9Vd5jfVNYsnN2Ki0LHbuW1dm1LBPvDsWaWw6XuOVQkc/sGeKzewbZMRBz8bI6\nOwcanBJZlor24r2bvkVnSrG3CEyCMBMiIgmCICwB9o/V+dztz/KZW5/msQMTDEQBv/3qHQRGrNqC\nIAjC8SUKA6xz1ONkxm2VNhBV8PXxrveHJoBCuaeQpIMAggDnixCn+LiRT0GbStOVZJ3DpeBs//Lt\nfujQoEwJG8dTCr6nbGsM2sxOTFLaZPcf8M7ivQXXjKMdXdyt+0AKo9o9UNa5VvztSASs5QXHa9ZM\n8Jo1E+ytG75/uMT3D5X452eyP1yVjeP0cszplYSt5ZjTywnlYB7vz3GkX7E3ZAJTp3uJ1lvZtS5/\nkwhOwkmEiEiCIAiLlP1jdW5/8jCfu/0ZvvHgfqzzXLRlOb985VZ+5Nx1lAvyLVwQBEFYGMpRAesd\nSTJzb44yET5MpxRuhyZARWVqca3nhCOtNEQFiAq4NMXHCT7u7YAyWmMK2XXrHG6GaW5T1qg1QbGI\njZMZe5lgbmJStn+DwrSqmY6lqGRypxLkk+2wWH9k0bq1Rcsb1o7zo6eM81wj4NGJkMeqBR6bCLlm\nb5RPzYLhwLIstCwPHcsLluWhZVnoOCVKOa2cYJagxtL8vMzmM6Ncs/DbYKSLSTjBWdAzEKXU3wNX\nA/u99+cs5FoEQRAWCu89zxyqcd+eUe7bM8K9z45w355R9o9lvyivGijw85edxpt3ncq2NQMLvFpB\nEARByBiIIkZcHTeL4mldqGBtgpo0vSzQAeVCmVpc7V/YTYc7qRDiqlWYZlujNSaf5uacw85BUDKF\nEB8YXJJkxdsz3a+mmJRa0hlcTJ1MLyrNX/ytVdDtAlLSI4q7QVbMvb6Ysr6YcnnepVSziserIY9X\nQ55vBBxKNM/HhocnClRtW0gpaceZgw3OGWxw9lDMqsLiK+w+WtqF3ympU2QyXj5FTkQl4QRjof+M\n/Y/A3wCfWOB1CIIgHBec8zx+cKIlFGWi0SgjtSwSYLRi+5oBLt++mrPXD3HOhmEu2LSMUGJrgiAI\nwiJDKcVAFDFWq82q21oXBvCN0SlF2EYbSrMQkiATk9TQIK5a7+tK6tpea/QcBSWlNSaK8GGITZK+\nxdvd6zIEWmWupCMRaTpEJe8c3qd5hG9+HEpKK0JCsrhbSoo9arGqZDxnDWbT3CbTcHA4MTxdC7l3\nNOK+sYjbR0oArI1Szh5ssGMgZms5XsSl3UeG9x5L2jFBLvtaIW9ekoJvYamzoCKS9/4GpdSWhVyD\nIAjCfFBPLLc8/gLXP7ifW594gaTHX2W9h2cP16jG2a8VhUBz5tpBXveidZyzYYhz1g+zc+0gxdBM\nua0gCIIgLEYCo6kUi4zXpp+oBtnUtl79SJAJSZVogInGBM5N71RRKEy5hAsDXK02rSupk8mCUhoz\nbSG30pogivAmwNp0RjFJa40uaGxqsXNwJfU6rqKQC0oW79I87jc/gpLRAYZg0pS3IxO/+hFpOCWy\nnBJZdi3Lpvk91wi4b7TAvWMRNx4s840DFQBWhClbKwnbKjHbKgkbSwnBCaapNKNx/Z4Vzf4lTf8/\nGorwJCwWFtqJJAiCsGTZc7jGtx56nusf3M/Nuw9QSyxRoLloywoGi72/vV66bVXLYbRtzYA4jARB\nEIQlTyEwDJSKVBvxjE4iZSJ8kEA61UWklKISVaglNdJ05tJuHYYQGHy1Pqseo67b5oXcSeywyfTi\niQoMQWBwJsClMcwQ3zOBQWmFTdKjln2a5dzee3Bp1tDjs/9H26XUPeUtxLn2hDc33xPlOuJwr1pT\nJXXwdD1k90TIoxMFHp0ocOvhzKlUUJ4t5bglLG2tJAwGJ5ZbaTJtkWn297MtPGWXrfd3VH/TitSJ\n4CTMH4teRFJKvQt4F8CmTZsWeDWCIAjZD/o//uJ9fOK7TwKwYVmJn7hwI1edsZqXnb6KUkGcRIIg\nCMLJRSEwhKbIRCMmTmZw7BQqWJdO6UeCTEgqF8rYwBLbmDRNpnXIaKWhUsalBXy9Pqseo07CgkZr\nRxIzJWY35ViBQQelrHw7jafVbzJXUgFrLc66WdYz90cpBSaklxQwX/G3Zn8SBHiXuZMsLheU5nf6\nWqDhtHLCaeWEV62uAvBCrHm0WuDRiZDdEwW+9nyFr+zPuiDXFFK2D8ScP1Tn7KEGkfwNbkZ3Uyed\nTqf2tDnVIT+J0CTMnkUvInnv/xb4W4Bdu3YtzdmRgiCcUPzvbz/GJ777JG+5eBPvvHQL29YM5Fl3\nQRAEQTh5UUoxUIxomIBqo9Ff/FEq70cagz6OF6MNJV3CB0UaaUxi454T3JroIICBgWyKW6OBT2Z2\nMrWOFWiUdqSxmjbe1to+L9+esS9JZa4kExi881l8zDvcLCfGzZbO+JuzCd6mHK3oo7TCEGQuJe+x\nvu1Sms/YWycrCo4VhToXLcuikbGDJ6shj1YL7J4ocMdIkZtfKFNQnnOGGlwwXOe8oTqVQE4RZ2JW\nTqeO7qaWsDTlmjibhCUgIgnzS5w6/u0Hz/DKM9dwylBxoZcjCEuOa+9+jj/76oO8/rz1fOCN56Dl\nh6ggCIIgdBGFhkJQmtaVpEwAxSF8fbSvkATZSW0xjCiGEY2kQZxOI07RMcXNpvh6POuYm9aaMPKk\nMdh0ZlGi2ZfkdIBL4mnvQ7a9QuksPOZdFkVzzmbXZ7XC2aFNCCbE2wQ3D2ISAEphlMFgyIq588gb\n8ztJbjIFDdsHErYPJMAEqYeHxzMx6Y6RIrePFDF4dg7E7BiI2VJO2FRKGA5P7OjbsaQpNs34rLEK\npVSHq6lbcqLD6ySC04nHgopISql/Ba4EVimlngH+2Hv/8YVc04mMdZ7f+PQdfPmevQx/NeRP3nA2\nP3re+iN2UDxxYILf+7e7eenWlbznqm0UAvGVCic2tz91iN/6zJ1cuHk5//MnzhUBSRAEQRD60HQl\n1bSm1ugt5ChtoDiEa4yj3MwxtCiMMMZQj2szT3EzAVQCnIvwcZI5k2You1ZKEUYKbRxpMv0Et9Zx\nwmbErTHrKJ3S2em2znsRnc3EmCz2Nj8oE2JMiHcJ3h79JLZOTN6lBPnEOyw+fwF/zJxKgaI1De4t\nG0Z5ohpy+0iRu0YjPr93sLXd8tCyqZSwuZywpZSwqZywXISleSb7PM/mM92M0nW/tOXN5l6az5/e\nDijV2qa9vWtd6+yEYtJbU9fY3r57Wl7nLX3H+nrvpcl894ctBdSx+iI/FuzatcvfdtttC72Mo8I6\nz3s+eTuvOGMNP3LuOsqF46Pjee/5/X+/m8/c9gzvvnIr33vsILc/dZjXvWgtf/qGc1g5EM1pfz94\n8hC/8InbqMYp9cRx9vohPvhfzuOMtUPH6B4IwsLy9AtV3vjRm6lEAf/x7kvm/DUjCIIgCCcrY/UG\nyXQ9Sd7j4nFIZ+ca8t7Puny7E2fTtqA0i4luNp29mATgEotL6kdl/nHO4Z3DzlDePVe8s+DSGSff\nzd/xmqf7uWfJH9vj1qziqVrIk9WQJ2sBT1ZD9jYCfC4KDAeWTbmotLmcsLmUCUvSRiAcLWe89Eo2\nbNm20MuYF5RSP/De75pxOxGRji/PHKry1o/fwmMHJhiIAl5/3np+8qJTOW/j8DHrVPHe8/5rH+Dj\nNz3Or71yO7/1qh1Y5/nbGx7jQ9c9zFAp4AM/9iJec/baWe3vq/c+x69/6k7WDhf5x3dczMP7xvjv\n/3EPo7WU33zVDt51xekYcWgIJxAj1YQf//9u5sB4zOfefQlbVw8s9JIEQRAEYcngnGekWpvRoeIa\n4z2ntvWjkTRoJPUjW1Oa4mq1Gd1JAGnisOnsxCTvHDZuzDjBbeb9+GxamrXzGnebrxLuuR+3s6j7\n+AhZdat4uhbwZEtcCtlTbwtLg4FlcylhcznNLksJKwtWhCVhToiItMg5EUQkyESd2548xKdueZpr\n79lDPXHsPGWQn7zoVN5w/vp5dzh8+BuP8JfXPczbL9nCH7/+rC6x6sG9o/z2Z+7ivj2j/PgFG/ij\nq89ieaXQd18fv+lx3n/t/Zx/6jI+9tZdrbUeHG/w3s/fy1fu3csFm5bxwTefx+lyoi2cAMSp4+3/\ncAu3PvECn3jnS3jZ1pULvSRBEARBWHI0kpSJ+swCkYurkNRmvd/EptST2rSl232P5R1+YgKfzixq\neO9JU49NmHGKG4BtzD7eNv2BwVmLnWcxCXJ3kk9zYel4C0rZSxZJOnYRuMk0HDzTISo9Wc2EJZsL\nSxXjWFdMWRlaVhay/6sKaet6Qdo7hEmIiLTIOVFEpE5G6wnX3LWHz9z6NHc9M4JScMGpy7hq5xqu\nOmMNZ68fOiqH0j/c/Djvu+Z+3vTijX07XOLU8Tff3M1Hv7kbBezaspxXnLGGq3auaU2dss7z/mvv\n5x9ufoLXnr2Wv/qp8ymG3WPMvfd88a49/I8v3EcjtfzOq3fytku2EBr5bissPZzz3PPsCH97w2Nc\ne89zfPDN5/GmCzcu9LIEQRAEYckyXm/0LdruxKd1fFydlVgDRx5va2InqrMu4HYui7i5WZRvu9Ti\n4plLt2dLszvJez/vhdyZkGTBzW9/0lyO7zoDcMdxDYmDZ+ptYWl/w3AgNhyKTUtcAlB41kSWDcWU\nDcUkuyylrIlSAnEvnbSIiLTIORFFpE4eeG6Ur967l289tJ+7nhkBYM1gxFU713D5jlWcurzMmqGI\nVQPRrISZf/vBM/zOZ+/iNWefwkd/+sUEM9zmwb2jfOHOPXzzwf08uHcMgI3LS1y1cw3PjdT5+gP7\n+LnLTuMPX3fmtHG1faN1/tvn7uH6B/ezfc0Af/z6s7ls+6o5PBKCsDCM1BJufOR5vvng83z74f0c\nGI9RCn77VTt4zyu2L/TyBEEQBGFJ473n8MTMsTbIXDKzLdxukrqURhJj7dzFJFuv4+uzj8ZZ60jj\n2UXcXGqNa8+wAAAgAElEQVTxNsVbN2+CEtCa8pZNeps/N5F3Dlxy3PqT+mGdbTuWFkDYch4OJ5qD\nseFgbNjXCHi2HrCnHrK3YVqxuEB5NpUStlVitlYStlZiKfI+iRARaZFzootInTw/1uDbDz/PNx/c\nzw0PP89Yo/0DVClYUS6wejBi9WBEaZIjCMB5z/UP7ufSbav42Nt2EQVTt5mOPYdrfOuh57n+wf3c\nvPsA9dTyP64+i3dcetqsbu+957r79/H+ax/gqReqvPqsU3jvj5zFppXlOa1DEI4VznmeeqHKvXtG\nuG/PKD948hA/ePIQ1nmGSyEv37Gaq85Yzct3rGHFNBFPQRAEQRBmz2xjbU3mGm+DppjUwNq5xclc\nHONq1VlXBbUibvHsz6eOlaAEeewtnb/Y22IRk7K1NDuVjq9LqR+Jg72NgGdrAU/XQx6dCHmiWiDx\nmbC0MkzZVslKvNcVU9ZFWSTu/7B3/zG25/d911+fH99fZ2bu7Nr7w96NN5g4/rmYBDktITSxQ0hD\nSYGmCkRCKrQqBkqkIiEhIFL/oCABVREoCVKtFrUgRARSQkuT0iTYbUhJRJI2bez1Otk6ceL1j7t2\ndu+9M3O+vz6fD398z5k5M3fuvWdmzs85z4e1mjtz75zzmXOv157Xfb9fH2pjbx9CpA23SyHSrC5E\nvfrlB/rK/Vp3H9R640Gjuw8a3b3f6I0HtZr+8n+Rvue5ff3Xf/zD2itudgNc3QUdNb2euUZXU90F\n/ZVf/G39+KdeUx+T/p0/9G79mY++58ZnAq7qft3pF3/ra/q1L7ypT79+T6986f5pOJs5o/e/446+\n873P6GPve07f8q6nnji5BwAArmfetbapFHrF9kjmimFGF3o1XX2lECT2veLJyVy3t51+ThymkmK4\n2vdVsQ+KoZcW0Z00+7i3OEyShkApTP6zjgmlR+mj9LvjIVD6xye5XjvO9WZ39hf5mUl6vuiHUKns\n9VLV6aWq09u4JW6rESJtuF0NkW6Dr9yr9d/8X6/qJ//B63ruoNC//OF36mPve05/8J9825WnpIB5\npJT0W3eP9KlX7+qTr97Vr33hTfUxqcysPvDOO3r5hUO9/OIdfeiFQ733+QPlntAIAIBVSCnp3kmt\neMUy7NgeS9e4ja0Lvdp+/smkmKLSST13T5I0fE1dm+bqSnroc2MagrLQ3/hWt1lLCZPSENwMRebr\n/z4yxunC22ZMKF101Bt9ufb6cuPPvf16e7YOt+ei3jUJlL6x6vRC2esdZU+J95YgRNpwhEjb79e+\n8KZ+/FOv6e+99jU1fdQod/qO9zwzKRJ/Vu88rNZ9RCzRL/zmG/r/fvv3hxDnxTt66W2jGxXHz2r7\nqN/86gO98qX7+vUvvqW/+7k39Ppbw/j7B955Rx9737P67vczZQQAwCZo+6Cj8dUDoRQapeZ47tLt\nWVcOk7pOcTy+0lRS18UrrbddlCbTSSn0C8toFh0mTaUYJmXc0z6m9X5fOXvr27p6lOZVB6Mv1l6/\nO870uyeZfnfs9XqdqZ+swxklvT0PemcxBErvLHs9nwc9lQU9nUUVbnu+h7/tCJE2HCHS7TFug37p\n81/Tp14depem3+y//x0Hw81w739O38o3+wt13PT67JfvKybp2/6JpxcW3szrr/zib+u/+OlXzv1/\nvoPS64PvvKOXXzzU+95xoOKK00D3xp0+8/p9febL9/S5rzxQNxkj3y+8vv2b3q7vfv9z+uj7CCcB\nANhE47bTuJl/2mfquuttU1cJk5KS4kmt1M7f4xT6qK654fdYSYp9t9DppGWFSVPDdFIYAqWUpLS4\nsu/rnWcIldLF/2xouNQn6Su1f2hy6au1V5vO///2ykY9nQc9lUU9nQU9kwc9l/d6pgh6Lg868KzI\nrQoh0oYjRLqdUkp67e6RPvnqXX3qc3f1q78zrB0dVpm+873P6rvf/6z+0Dc/e61Opsueq+mjykvK\nyG+T+3Wn3/jiPX3mS/f06dfv69Nfuqff/trxaYDz8ot39MMf+2Z97wefl11yw1+ISX/+b76iv/r/\n/o7+pZffof/qj39Yv/f7J/r06/dOS60/++X7qrvr/Q/606NML794qA/NrKd949tGS/+6AADAzV03\nSFJKiu2R1F/jcyfqrlbbzRcOXbUrKcQ4bN4t4Hut0+mkBXUnxRAVQlhJwHO6Ahc3q78oxqhpxBS1\nmtfiumKSfr9zeqNxeqtzerOz597+fjd8fFZho57Ng94+M700vB2Cp6eyoD2XCJoWgBBpwxEi7YZp\nAfInX72rv/O5N/S1o+F/3F84LPWhFw/1oReGPpsPvXhH77hTzjVRk1LS3/3NN/Rjn3xNv/qFN/Ud\n73m7/vWPvEt/+EPvuFWBUtNPisw/+ZqO2+Fv5158qtIHXzjrAPr6Uav/4e+8pt/5+one+/y+/oOP\nvUff/+EX5JYQuozboD/7E/9AP/vKV/Wn//l36z/7Ix+4NNzpQ9Trb43Vz3FN7qy93Ov5O8XKp6oA\nAMDiXDtI0vVub5t1lSDpqlNJ1y3cfuTzx6QUomLspQWsu8UYh2mduJqJoU0NlKTZUGkIlqS00cHS\nRV2U3mi93mic3mid7jZeb7ROv98OAdNReHjaPzdJT2UPh0zPFkHPFUHP5r0ylkKeiBBpwxEi7Z4Y\nkz79pXv65c9/XZ/50n19+vV7+vzMRM0z+7m+/Zue0cfe96y+673P6u0XppViTPq5z35VP/bJ1/Qb\nr9/TC4elvvdD79DPf/ar+uKbYx1Wmf61b3lB/8a3vaQPvnBnDV/hYqSU9H9/9q7+/E+/oi98/UTf\n84Hn9Se+/Rv18ouHl15P34eon/6NL+vHPvmafuvukd79zJ7+/e/6Jn30/c/quYNyIWf62lGjP/3X\nflX/8Itv6c99/wf1J7/j3Qt5XAAAcPucNK3qtrvW56bQKjVH1576qbtG7RUKu2PfD11JYb51uhij\nQpBSWFygNJwjKIVeKYQbTzylOKx5xRgVr/iXetd7vmH1TSmePvemSfGhRbiN71p6lC5Kb3VOb3VW\nb3ZOb878eHaqqZ9ZmzNKejoLer4Ieq7o9UwedJhFHfphmukwC9pnmokQadMRIkEaun1e/cp9ffr1\n+/qHv/eWfuG3vqavHTUyRvqWdz01lHS/7zn9zteP9eOfek2vfuWBvvHtI/2Zj36T/ti3foNybxVj\n0i99/uv6iV/5Pf3tT39FbYj6p1481Eff9+zpWtSLT1VbMeHy2t0j/ed/8xX9wm++ofc8t68/9/0f\n1He+99m5PjfGpJ995Sv60U++ps986b4k6bmDQi+/eKiXX7ijD05ei+fvlLrKK/E7Xz/Rn/qrv6Kv\n3q/13//Qt+r7Xn7HNb4yAACwS46bRk17zZWtlIbb2/r5u4tmNV2j5gpBUlJSHNdKzdWeb5j+kWKY\nZFAL+l4sdr1i10kLCDiG6aSgGOJKq7JT7IeAJm52UJNivFDgvT3fTz9OStJRMHqj8brbOH219bo7\n/XHjdXzJNJMzSXf8MMV06IdgaQiaJh+bhE53sii/+d9WXQsh0oYjRMJlptNKn3r1DX3yc3f1j774\n1un/Hr/nuX398Mfeo+//8DsfWdL95nGr/+PXX9dP/v3X9Zkv3dP0L18Oq0wvvzisgX3z8wd67qDQ\nc3cKPXdQ6ulRdi5gSinp3rjT3QeN7t5v9MZRLWetnjso9OxBoecOCu0X/sahVNtHvXHU6O79Wncf\nNPrlz39d//MvfUFV7vQffs979Se+/RuVXaOMPKWkX/vCm/r133tLr3xp6FB67e6RbvIXUW/by/WX\n/62P6J956enrPwgAANgpR3Wjtrt+908KnWJ7IhOv/hhXDZKkq08lnfvcyYRS7Ifg5saSFLpOqW8X\nclHadEJomWXcj3/+TorDdNS6b357nNl+JSkNVd4bHIJdVxOM3uqt7ndWb/VO9zqre5OJpvv9MMl0\nr7d60F9eFbLvphNMUQc+KrdJhY3K7bBaN32/dEkjl1S5OPM2KjfayKknQqRHP9h3XvbxlNIvXONs\n10aIhHl87ajR//Nbb2gv9/qeD1ytOHrcBr36lfv6zJfun5ZSf+4rD9ReuBUjc0bP7Bd6epTr3rjT\nGw+ah37NRVXm9NydQk+Ncl21fui46XX3QaO3Ts6PeRsj/dC3vUv/0fe+byHF47Omr8Wnv3Rfbx1f\nrafAWqN/5Z9+Qe9622ihZwIAALffTYMkSYrdidTVV570aUOrurlax1JSUjweK3XX63VKKSn0aag5\nWkCYlGJS7NqFFXFLQxl3jGElq26XSTEqpcnq3gYHSrOGcOncItytDJcu6pN0v7O6dxo0nQ+d7vVW\nR71VG43aaNREozjHzoPT+WCpckmjydvMJGU2Kbc6/fHpx0ySn3w8t7M/N/Oxya/11wiqCJEe/WD/\n58y7paQ/IOnXUkrfff0jXh0hEtah7YfS5zceNLr7oJ5MGg0TR2+etHqqyvTsZEJpOnX07EGhGNMw\nmTT9nAeN7j4YPueqpgHUcwflzHRTqReeKh/qgQIAANh2dTeUbd9kaSLFoNSdXPkGty70qrvxpLdn\nfqGuleqrTTI99Bh9VOgX052UYlToOmmRYVKMw+M+4S9PlynFTilsXjn3XFJSTGcV3jFdfYLtNuqT\nhkApGI2j1UkwGofHvI3n3++i1CWjbs5A6nFmQ6iz0EnnPuZnQqvnX3hRf+Hf/OcW9Eqs17whkp/n\nwVJKf/TCg79L0n93zbMBWyX3Vu9+Zk/vfmbvyp/7zc8fLOFEAAAAt1uZZfLW6ahpFK8ZWBjrZIoD\nJX+1FbfMeTmzp3FXK4T5y75dWSpaqzg+ufawjPNWzi8mTDLWyheFovOKfSstIPix1krWytrhVrcY\nVr/qZmwmY7PJbW/d5M/HdkwnyRhZY2Q11E+kmBQVFHY8UPJG8pM1tqd1sz+nIUldNJNQaQinpgHT\noz9m1M18Xhsf8bFkdNJZtTOhlR/fX9CrsD3mCpEu8UVJH1jkQQAAAABgyjurw6rUcdPeaL3NuEyu\nOlTqa6X2ZK4VN2ut9orRlW9us3kuWat4ciJdcZJp1iLDJOudrK8Uu6DYtQsp3zbWyFkn591QwD3p\nLlpllGOslVTIuYul3EM30TYw1sjJy2kaKJ2twEmavJ15b4v6jNfFGcm5pHJFfwbe/89+dCXPs0nm\nCpGMMT+qs/8mWknfIunvL+tQAAAAAGCM0X5ZqHb2xuttxpcyrjjrS5pDmRXyzqlux5OC5yez3kv7\ne4rHJ9cq3J610DApG8KkRZZvS5J1VnL2NAhJaej+iXF1oYexflhimnQ6pxiUUpBSmqwlbn74MgRK\nl5dSTw1BU5rWd5/2LREuYZXmnUSaLSLqJf2vKaW/t4TzAAAAAMA50/W2B+P6Zt8wGyOb7ym5Qql5\nMNdUjrdee8W+xt1YfT/fepu1TuZgX/GkVuqaG2cYp2FSiArdDcIkI7k8U/Jese+VYr+QNbfTh7dG\nRkbSWagUp1NKKww6jHUyM4FMir2UwqSge3sDlyFoGl7fWQ+HS5O3W/y1YnPN24n014wxuaT3a/hX\n4OeWeioAAAAAmOGd1X5Z6KiubzSRJEnGeak4UGruz7XeZozRKB+pda2arp7rFjUjIzeqFFMhtb1S\n1yj1N5xMclbODQXXoZsMOl3jxTDWyOWZpEypD4phcvPZgkOH07U3uUkpd1pTj5KX5GWcJl1KQzH3\ntkwpPcnjwqWz9bghWpLOFuQufu1J2s7CcqzUvOtsf0TSX5L0jyUZSe82xvy7KaW/tczDAQAAAMBU\n5p32y3KBQdK+Uv1g7s/JXS5nnOquVgjz9TRZY6Uil4p8CGvaTqlrpTmCqEc+prWyheRiVAhGsddc\nwdZljB+6jSQNvUlhMSXcFw2l3Bp6lCa3vMWw2h4ladqlZE/v8JqGSkpxsrK4/aHS1Nlk2ODxy3Jn\nQoyKCkqKioRKuGDedbb/VtLHUkqvSZIx5psk/bQkQiQAAAAAK5N5p72y1NF4/sLrRzEul4o9peZ4\n7s9x1mmv2FPTNWr75korQ9Z5qfJSVSk2rWJT36iA21ora6XohjAptDcLQGzmZLNJCXff3uhsj32e\nyS1vzksxRMUYFG8Qqt3ENFSSzkKWFIdQKSkN01kpTkLL2xMwPY6zVu7cDXLxQtm3Zn6cmGDaMfOG\nSA+mAdLE5yXNH9kDAAAAwILk3mmvLHRcNzd+LOPLYRqlG1/p84qskHde43asGK++pmaLXLbIFdtW\nsV5MmORcVN9JsV9UmNQrdt1CbnR75HM5K+vspJQ7nq69rTOuMdZJkwWxWdNwaQiVtrtfaV7zFH5P\npRg1/EmZvj2/TrcLr9cumLtY2xjzM5L+Nw3x6w9K+hVjzA9IUkrpJ5d0PgAAAAB4SJF5JSWd1O2N\nH8vmo2Ftp79aKOWs0365r5P2ZO7S7YefO5fNJ2FS09zoRjdrrfJCCllUaG92m5sk2czLZl6h7ZT6\nbuGdSbOG1Ssn6yardTFKKW1EqDQ1DZckzazDTW6COy3t3oSTroexdvLq2EfGTrM9TQ/3NaWdmvja\nVvOGSKWkr0r6rsn7b0w+9kc1/A4TIgEAAABYqTLLlJI0bhYQJBX7wzey/dUfa5SPNDZjdd31z3Eu\nTKrHN+pMctbKlVLoo7pWNw5/XJ5JWabQdUp9v9TJpClrh3Wq2VApxaiwhL6mmzi9CW6SmhAqPd7F\nnqZHmYZNknS2SDcz1cQa3drMGyJZSX82pfSWJBljnpb0F1NKf3JpJwMAAACAJ6jyTNYYjdtuUox8\nfTbfV9TRtYKkKqsk6UZB0nCGXMq80rhRam+2rue8lbFRfWduvOImMwmT8mypBdyPctqj5KQYg0LY\nzHWyx4dKBB7zmjdski6fbnrS7NoiVuyMme98t828IdKHpwGSJKWU3jTGfOuSzgQAAAAAcysyr9w7\nnbStmna+W9MuZYxscaBoTq7ckSQNQZKRUdvdLPyxxkqjSrHIlMZjpX4BK25uMVNJ0llnUurDcEtd\nf4PX/KrMMJ1knTtddYshbOy8z8OhUj+ESYRKC3OVwOkysyHUY55FRtM1RiNjhx85M2+kcnvMPYlk\njHk6pfSmJBlj3naFzwUAAACApTLGaK8olDuvk65V6G9QVJ2PlFym1BxdeXWrzEpJunGQJE1uc9s/\nWEj59kKnkiaMd/LeSUWh2AelMAlIVjShNEwnSc47xTBZd1vSjXKLYqwfgghCpY1x0xBq18wbBP1F\nSb9kjPnfJ+//oKT/cjlHAgAAAIDrybzToa80bjvVbXvtwRvjMpnqKcX26uttQ5Bk1Hb19Z78Apvn\nMnmm1HSK7fXLt2enkkJ/8+Ltc4/tneSnyYiG6aDQK4V+JbVA1lnJWbk0rLvFGBVv0Cu1Ko8PlehU\nwuaZK0RKKf1PxphflfTdkw/9QErpleUdCwAAAACur8ozZc7puG2uP5U0XW+zJ1J7tfW2MitkrVHb\ntYrx+utop0eRkSly2SJX7DqlphlKrq/BeSvnpRCiQrfYMGly2NNQKcVcse9XVsg9u+6W4tB5k1JU\nDE/uydkED4dKYXjdUpx8LQRLWK+5V9ImoRHBEQAAAICt4J3VYVXppGlVt921H8dmIyWbKTUPrtQp\nlLtcucvVhV5daNX31z/D+fMMt6XF0Cs13bULuJ2bFlUPYVJY0JrbLGPNhULu7tqTVNd57mFNaQjN\nhlBp0qMU41ZEMcY6TROl6cJVilHSECoZwiWsGL1GAAAAAG61UZHLO6fjurn2bUzGZVJxZxIkXW2i\nJnNemfOKPqoNrbrQTYKAm7HOSyOvmGeKJyfX7kyy1soWksuiQpBCp4UUcD/0PJmTzZxSH4YALMTV\nTCdNDKHSUHLtpKFHKcXh7cpOcXPGWkn2NFQ6Hy6lyWsaTyexCJewSIRIAAAAAG693Dv5UaWjplZ/\nzfU247xU3lGq718r/LDWqrSlyqxU3dXq+nYh19Rb72XuHCgej5W6q/U3XTyftZL3SX0vxX6Y3lk0\n453cpD9pXYGSNOlRmkwpDTe9DT1Ki/g9WYchXJJOJ5dOV+KilIIIlrAIhEgAAAAAdoK1RneqoXR7\n3FwvbDHWSeUdxeaBzA26jsqslHdeTdcohOt1G507l4zc3kix9YrjkxtlBMYYZZmRMin0iy/hPvdc\nM4HS6Q1vKyrjnjXc9GblpJkupUmf0hYUdD/OdHJJuhAszU4tJU16lyQCJjwOIRIAAACAnVLlmVJK\n1+5JMtbJlYcK9X2ZeP0AyFsvXwxBUttff9Vuls3zodD65ESpv3n30GkJd4wK7fLCJGnmhrdUKPad\nYuilsPpr789f+T4JuGKUUtqqPqXHeWhqaebnpp1LQ6J0MWCSCJl2GyESAAAAgJ0zKnL1MVx7tU3G\nyJV3bhwkSVKRFcpcprqvF1K+ba2T9g8U6lqprm/8eJLkrJUrVxMmyQzl4TbLZtbdwlJ6muZlp6HL\npE/p/M1v2x8qzZqdXJLOB0xTp5NMisNAk5LMTME3E023FyESAAAAgJ20X5S6F8bXnwCaBEmxPZL6\n63cRSUNIMcpH6lyvphsPky835MpSMfNKJ+MhhFmAlYZJmll3Sxqmk7p+5d1Jl57rws1vMUTFGLZ+\n9W1ej5pkeuREE7fI3RqESAAAAAB2krVGe2Who/ENpnWMkc33FXXzIEma3uR2oLpr1C1gxc06Lx0c\nKIzHSk1z4/NNzYZJsZNC0HInhWamk2IXFEO7llW3R7HOyjp7uu4WQ9j5qORJE01nNxROX6mzqaYh\neCJ02kSESAAAAAB2Vu6dqiK/dtG2pIUHSZJUZoXyBa64uapSzDLF8XiS+CyGs1aukDJJIUTFXopx\nObe6TdnMyWaVUh+GUvL+5sXki2KskbPD9NTsTWinRd0xEYlMnE0zTT3czzT1+J4mXtFVIkQCAAAA\nsNOqPFMfo7ruBmHEEoKk8ytuteINboOTJOu9zMG+4rhe6FTSlHNWbnL7V4hRoZNiv7xv8I138t4p\nZblS6NdWxP0o5wu6zwzhUlQIcSFl6rvgaj1NZ8GdSYk1ugUjRAIAAACw8/aLXPfiUJJ8bcbIFgeK\nerCwIEmarrjtD7e4hXZmDegaR5QZppKKXGncKHWLO+es6YRSzKL6ZYdJ1sjYSRF3jIp9UOo3ozvp\nMkO45GSdG256i0OghJu5ONl0sadpdpqJIvDrI0QCAAAAsPOMMdrLcx3V9Y2rfZYRJEnDLW65z1X3\ntbobhj/WOmlvpBhypbpR6m6+Mnf581jlKwqTpCFIcLmV8s252e1xrLWStbJ2mE5KKQ3l3Im1t0Wb\nnWa6rAhcutjTNPknXfzF5vQd63YvUtm9rxgAAAAALpF5p1FR6Li++arXsoIkY4yqrFLmMtXtAlbc\nnJf2vGLfK9X1MMGzBKsOk6SZm92koYw7blZ/0qzpdJI0bQbSQ51K8fR9LMvDPU24iBAJAAAAACaK\nbPgWaVFBUvKtYnsic8Ow5yJvvfbLfbWhVdPVNy6ytt5L+/uKXTeUb99gZe6xzzMTJoVOCisIk6RJ\nGbecUpZt/Lrb1MVOJaezYGkIlehUwuoRIgEAAADAjEUGScblclWu1NdK7XjhwUXucjnjVHf1cFPZ\nDdksk7xTOqmX1pckDWGSLSSXRYUghU4rWTnbtnW3i2aDJTeZWYpx0vPDKhxWgBAJAAAAAC5YZJAk\nScaXMq5Q7E6krl7IY04567RX7KnuGrULeGxr7NCX1GVLnUqSJmGSlZyLCsEo9rrxVNW8zq27TQIl\nhX7r+pXtzArWxVW4lCJrcFgoQiQAAAAAuESReSUlndQLmsgxRjbfU3KFYnssExfbz1NmhZx1arrx\nMJ1yQzbLZDKveFIrtYsJ0x75XJMwKfmkvl/dZNLp83sn652kYlh327IJpYvOJpbsabAUY5TicDPZ\nEDBNfmLyg+38SrFqhEgAAAAA8AhllknS4oIkScZ5uepQsT2RuvHCHleSMufl7b7G3Vh9f/Mb14yM\n3KhSzLOlFm+fPp8xyjJzOpm06jBJGgIlTSaUTlfeUpTCZncoPclwE9zjf81pmXeaCZsi63E4Q4gE\nAAAAAI+xjCBJkmw+UnJeqTleaFeSMUajfKTWtWraeiGrTKfF232vVI+V+sUWhT/0fBfW3NYRJknn\nV96UpBTCpNB6EipteDn3VV0s857ipjhMESIBAAAAwBOUWaaUpHGz2CDJuFymyhTbI6lf7GPnLpct\nrOp2Mett0jRMOlDsOqWmXm2Y1BuFbo3BhZmESqcLYkO4Evt+K257u4nLboqTpqXe0hAuTd8OPyZk\nup0IkQAAAABgDlWeKaWkur35mtg5xsgWB4r2RGoXu97mrddesbj1timbZVKWTcKkZulrbtZa2Vxy\nPqrvpNhvRkBhrJHLMynPzsq5l/xabJLZUu/LXJxgYj1u+xEiAQAAAMCcRkWumJLabvFBgc1GSjZT\nao6Wst7WmEZt3yx0QuQ0TIpBqWmVulZa4u1q1lrlhRSyqNBKMWxOHDEt505ZPkwnxX7re5Ru6vHr\ncXFYjQuRUGmLPKFWa7mMMd9njPmcMeY1Y8x/ss6zAAAAAMA89stCWeae/AuvwbhMpryjZBf/9/1F\nVqgqRk+cHrkOa51cVcnfOZQdjWT8cl6fKWet8tIqK42sN5J5OKhYl+l0ki8ruWokm5cy3ktmrd9+\nbxRjjaxzct4rK3JlWSbvvbx3cs7JOStrjYwZQigjXRJFYR3WNolkjHGSflzSvyjpi5J+xRjzN1JK\nr6zrTAAAAAAwj/2i0P1UK/SLnzQx1g23tzVHUt8s9LGXtd42y+a5lOcrKeF2zspN8qoQo2IvxTBM\numwCY42MdZq2CKUYT8u5FcJaysI30aMmlh5r0ruUNLlNbtLJFGN64uvKq35961xn+wOSXkspfV6S\njDE/IelflUSIBAAAAGCjGWN0pyx1b1wrLmllyRb7Z7e3LdB0va1znequVlpQ6fZFsyXcsa6H0GSJ\nnNcJPuYAACAASURBVLVy+fDjGKNCkGK/OYGSJBlrZaw9XQlK/extbz3pxlUYnU4qzZpnBm7oZUrn\nSsHTZIX0NH+aCaL4bTmzzhDpRUm/N/P+FyX9wTWdBQAAAACuxBijg6LQg7pZ2O1nDz2HLyXjFt6T\nJEmZy+StX+pUkjT0JtksU2zbIUxa0mt17jknt7opk0KICv3mlHHPOn/bW0GotCKXTz49OX6aDSST\n0lJWQzfdxhdrG2M+LunjkvTSSy+t+TQAAAAAcMY5q/2y0IPxeGmbScZlMtVTiu3xwtfbVjWVJA1r\nbjbPFepaqW2WWsA9a7ryFrNhOimFzSrknvXIUCmGpU9y4cmMPQuejIbOpl2zztjsdUnvmnn/GyYf\nOyel9ImU0kdSSh959tlnV3Y4AAAAAJiHd1Z7ZbncJzFGttiflG4vvrQ6c5n2i315ny38sS9yZSl7\ncCBTFCttS7bWKssmhdyVkXWbHwAY7yYl3aX8aE+2oKQb67XOP3m/IumbjTHvNsbkkn5I0t9Y43kA\nAAAA4Fpy71QV+dKfx7hMrnpKyquF30g2nUqqipHMktd0rLFyVTWESXmx1Oe6zPR2t7wycn7zwyRJ\nkpGsd3JFIT+qhtcvz4dQybmNuqEOt9fa1tlSSr0x5ocl/W0Ny4f/Y0rpM+s6DwAAAADcRJVnSimp\nbpfXLzRls5GSK5S6E6lvF/rYmcvkjNO4qxXCcr8Wa500qhSLTGlcK/X9Up/v4ee3soXkss0s4n6c\naUn3rBTTsJKYIjfAYSnW2omUUvoZST+zzjMAAAAAwKKMilwhJXXd8sMQY51McaBoTqRuvNDHttZq\nrxip7Vs1Xa205CDCOi/t7yuGXqnplLpmpaXSs0Xc05vdNrk76VGMNTLWSXLnb4AL/aSse/ml5rjd\nNr5YGwAAAAC2yX6R636KCv1qvmG3+UjJWqXmeOGPnftczjrVXa0Qlh+MWeelkVdSqdR2Sm2j1K+2\nUPpioJQmAz0xaCuneox3cn7o0UoxKoWhqDuFuPAb/3D7ESIBAAAAwAIZY3SnLHVvXCuuaPLD+FIy\nRqk+WvhjO+u0V+ypDa2arlnqDW5TRkYmz6U8H6Zo6lapW+za3jystZKV3OQ75xCi4iRQ2pa1t1ln\nK3DDFzSESkkp9oRKmAshEgAAAAAsmDFGh1WpB3WtfkUTScYVUmmUmqOlTMzkLldmMzV9o65vl77i\nNmWdl/a8YpcpjsfSCkKsR3HOyk0ux9vmtbepIVSShpriQYpJinHyRygOQdPwE6zDgRAJAAAAAJbB\nGKM7VaWTpl1J2bYkGZdLxYFS82ApQZIxRmVWKnOZ6q5ZevH2LJtlkndKJ/VappIeOs8la28xDBnX\nNk4pTRlrJOs03PXmHvr5FOPw9aVJwES4tFMIkQAAAABgiUZFLmetTppmJZU6xmVScWcSJC3nm/th\nxW2kLnRq+3YlfUmSZI2V9kaKrVesx9KGhDUX195ijAq9FHptZY/S41w2vaQkxRCUQj9MqMWw0mJ0\nrA4hEgAAAAAsWZF5OWt11DQr6UkyzkvlHcXmSCYuL+DJXKbMZepjry506vtuJWtuNs+lzG/MVNJF\n1lrZXHI+KgSj0OnWhUnnGMl6J/nZtbhhYikNo1mTcCne7tdhBxAiAQAAAMAKeGd1WJU6ahp13fJv\nHDPWyVWHis2R1DdLfS5vvbz1Sr5U27fqQqu45O6i06mkWAw3uXXdcI3aBpmuvDk3hEmx3+5Vt6u4\ndGJpYngN0mQtTsOPUzqdnDvtYIqSFJlq2iCESAAAAACwIsYYHZSlTszqepJssa9ordSOl/5cxhgV\nWaEiK4bb3Np66ZNJ1jqpdFJZKva9UjcJlNZYwH3RNExKPimGIeuKQTs7lWOskWQmIdOTnZtomhZ9\nc5vcWhAiAQAAAMCKjYpc1hqd1KtZxbLZSMn6pd3cdpnc5XKFU93Vq+tM8l7yXqoqxa5TahqlfjXP\nPQ9jjJw3p91JIcahPmiLb3hbBWONjHV6VNG3Ynr4Njlp5s/65O2TMidCqSciRAIAAACANSizTNZY\nHdf1igq386UXbl80FHDvqe4atV29kuecslkmZZliDEpNu3HTSZLkrJWbueEtEChdmZmUmj/qNrmr\neuj2ueGDMwHUbq/XESIBAAAAwJrk3slW1UoLt031lGJ7JPWrK6Qus0LeOdXteOldSRdZ66SqmplO\nqpX6zepOks5W3mYDpV3qUNoUj+tyOidJzu9epDLnBiIAAAAAYBmmhdver+jbM2NkiwOZYk8yZjXP\nqaF8e6/YV5blK3vOi2yWye0fyO7vy2xwAGCtVZZZFZVVVhm5zMi61f1eYQ47+tuxuf+tAQAAAIAd\nYYzRnarSUd2o7VbT4WN8KRmv2B7JxNVM5hhjVGWVcper7hqFsJpy8Yus99L+/lDEXdcb1Zt0kbNW\nbpK7pZQU01DOneL0HyaVsDqESAAAAACwIfbLQmNrNW5Ws2pmnJernlJsj6UVdhYNXUkj9bFX0zUr\nK96+aJvCJGlSzG3M0KM0ca5LKWpnb3zDahAiAQAAAMAGqfJMxkjjpl1ZHmDzPSWXrfT2NmlYcfOF\nVxd6NV2tuKKJqItOw6QYlNpuKOEOm9ebdJnZLiWJG9+wXIRIAAAAALBhyiyTM1ZHK7q5TZrc3lYe\nKjZHMnG1EzmZ88rcvtrQquma4dr2NbDWSaWTynKYTuq6jbzV7XG48Q3LRIgEAAAAABso804HK7y5\nTZKMdXLVECSpb1bynLNyl5/2JXV9o7TG1SzrveT92a1ubTsESlvk4o1vcbLyRpcSrosQCQAAAAA2\n1PTmtgd1rb5f3TSMLfaVnFdqT9bSsVNmhXKXqQmNum41/VCPY7NMyrKzdbe23arpJGkmUJqIMSql\n2VCJYAlPRogEAAAAABtsenPbuO1WVrgtTW9vc5OepNUHJtZaVbZS5rK1lm+fP9PMulvXTfqT1h9y\nXYedJErOnf/4NFxKUUoiYMJ5hEgAAAAAsAWqPFPmnI7bRmFFU0nGZTLVU4rtkdSvJyyZlm8PfUn1\nxoQZZ9NJhVLdKnXNkLpsuWm4pAvhUkpp+CfOTC8lwqVdQ4gEAAAAAFtiWG+rdNK0qtsV9fMYI1sc\nKPlWsR2vvHR7Kne5vPEad7VC2JxuImudNKoUU6FUN8Nk0i0MVowxMsZI9ny+FGMcgqXE1NIuIEQC\nAAAAgC0zKvLJVFK7utJtl8tVuVJoJmFSWMnzzrLWaq8YqQud6q5e2y1ul7HGSlWlVJVKTafYNlJY\n/Wu0atbay4OlSd+SJhNL3A53OxAiAQAAAMAWyrzToSt1v65Xtt4mScYVclWh1NdK7XgtfUmZy+St\nV93X6vturbe4XWRkZIpctshPi7jVd0r97Q+Uph7btzSZWpqGS6zEbRdCJAAAAADYUsYYHRSl7sda\nccVTOcaXMr5UbE+kvl75LW7GGFVZpeRLNX2rPrQrfw2e5LSIW6ViDFIXlLpmpwKlWZdNLUk6/X1j\nLW7zESIBAAAAwBaz1mivyHVU16vOcYbnz0dKvlDqTtZSvm2MUZkVUlaoC7260CqEfqOmk6RJoFQ4\naWZCKbXtZOdrt52WeV8ImM6VeSdJk8klTVflNuz3eBcQIgEAAADAlsu806godFw3a3l+Y53Mafn2\nyVr6kiQpc16Z80opqekbtd16Xo8nOZ1QKkvFvh8CpVtyu9siParMe+riBBMh0/IRIgEAAADALVBk\nXjEljZvVTwNNTcu3Y3cidatfcTs9hzEqs1LeedVtPaySbSjrveS9ksrT6aTUr+cGvG3zqAmmqRjj\nkMtd6GEiYLo+QiQAAAAAuCWqPFOIUW233hDCZiMlt74VtylvvfbLfdVdo65vNm7FbZaRkclzKZ8p\n5O46pR244W1ZHhcyzZZ8p0DB97wIkQAAAADgFtkvC91LcaU3tl1muuIW7XqnkiSpzAp55zZ+Kmnq\n3LpbmKy79b1EoLQw50q+s7OPn67ISWc3yM3++HRlbjcDJ0IkAAAAALhl1nVj22VsNlKyuWJ7LBPX\nNyE1nUpqukZtaJU24LWZh3VeqoZv3U8nlPpuZ294W7bT6SVJso/+dTFGWW+Wf6ANQ4gEAAAAALeM\ntUb7ZaEH43ojVriM83LVoWJ7InXjtZ6lyAoVWaE2tGq7dismk6ZOJ5RUKqYotb1SR4fSOlhrh9Lv\nHUOIBAAAAAC3kHdW+2Who7remM0bm4+UXDaZSlpveJO7XLnL1YVebd8qhG6t57kqa6xU5FKRKylN\nbnjrlfqWW96wNIRIAAAAAHBLZd5pryx1vEFBknGZXHl4doPbmmXOK3NeIQZ1oVMXuq1ZdZuaLeWW\nRordTKBEWTQWiBAJAAAAAG6x3DulotBx3az7KGeMkc33lFym1BxLaf2hjbNOzjqVWXkaJoXQb8Q6\n4FXZLJOyTFKl2E+LubvJ3fbA9REiAQAAAMAtV2ReSUkndbvuo5xjXC5TZYrtkdRvztkylylzmVJK\navtWXei2qjtplvVe8l6ngVLHTW+4PkIkAAAAANgBZZYpJWncbE5YI2mYSioOlHwzmUranMkfY8xp\nEXcXOjVds7VhkjQbKA03vakLFHPjSgiRAAAAAGBHVPkwXVO3m1cibVwhlV6pO9moqaSp6XRSF7pJ\nEfd2By/WOqlwZ8Xc3XTtjWJuPBohEgAAAADskFGRy1mrk6bZpKEfSZKxTqY4UPLtxnQlXXQWJvVq\n+2brwyRpUsx92qM0KeYmUMIlCJEAAAAAYMcUmZe3Vsdto77fvKDmtCtpQ25wu8z0Vrcu9Gq6eqvX\n3C6yFwOlvh9ueUtBKSYKuncYIRIAAAAA7CDnrO5UlcZtt3k9SdLMDW6FYnsks6EhzRAm7d+KzqTL\nnAVK58UYpJiGgKnvlEJgamkHECIBAAAAwA6r8mwyldQqhs2bMDHOy1VPKbbHGzuVJJ2tubWhVds1\nird8WsdaJ1lNirpLSRpuf+t7qe+VQk+odAsRIgEAAADAjsu806Er9aCuN3K9TdJkKinb2K6kqdzl\nyl2+M2HSrNnb307Lurteqe9YgbslCJEAAAAAADLG6KDc7CDJuFwq3cbe4DZrl8Mk6WJZdzVMKXWd\nFIKkNJS6T5vdU2RqaUsQIgEAAAAAJG1JkDS5wS3aE6kdr/s4T7TrYdLU7JTSo8Sum0wutUORNzYO\nIRIAAAAA4NQ0SLpf1wobGiRJks1GSjZTbI83tnR71jRM6kKntu8UQrfuI20ce3Fyqe1YhdswhEgA\nAAAAgHOMMbqzBUGScZlceajYnWx06fasaQF3iEFd6NSFTomQ5CFnk0vVcBNcH4Yb4EI/vF5MKq0F\nIRIAAAAA4CHbEiTJmK0p3Z7lrJOzTmVWMp30BNY6KXfnPnYaLMUohSilSchEtrRUhEgAAAAAgEtt\nTZCkoXTbVJlie7TxpdsXzU4nNX2jEHqlRBryOJcFS9IkXIppKO1OSUpSSvH0x5ImRd7xrNybYu+5\nESIBAAAAAB7JGKPDqtJJ06puN3xSxhjZ4kDJN0rNydZMJU056zTKR4oxqg2tur4lTLoia51kr/55\nSUmpD1KIw0RT7JlsugQhEgAAAADgiUZFrsw5HbetYtjscMa4QmZUKPW1YldvRfH2LGutSluq8IWa\nvlUf2p291W1VjIyM9w+lJDH0Uh+V+l4pdDvfxUSIBAAAAACYS+adDl2pcdtt/lSSJONLOV8qhVap\nb7Zuzc0YozIrpKxQSkl97BViUIhBMQamlFbAOi85SUUuScOtcX0v9b1kzHoPtwaESAAAAACAuRlj\ntmoqSZr0JblcyfdK/XjrwiRpeN2n3UlTfezVh54b3lbo7NY4yfrsCb/69iFEAgAAAABc2XQq6bhp\n1Xb9uo8zF+O8jDtQ8p1ie7x1a24XeevlrZ/c8Narj5360BMoYWmuUTd1c8aYHzTGfMYYE40xH1nH\nGQAAAAAAN2OM0X5ZaFTmW7XZY1wmVz0lZdW6j7IwmfOqskoH5YGqYk95Vgwl08ACrWsS6dOSfkDS\nX1rT8wMAAAAAFqTMMnnrdNQ0W7HeNmXzkZLLt3bF7VEy55U5L2VSjFF9GtbeQgxMKeFG1hIipZQ+\nKw2pNQAAAABg+3lndVht13qbNLvi1ig1J1K6XSGLtVa5cuVuKIYeepSCQuwVwvb8PmEz0IkEAAAA\nAFiI6Xrb2FrVbattujzMuEJmVCj1tVI7vnVh0tS0R0kabnzrJj1KTClhHksLkYwxPy/pHZf81I+k\nlP76FR7n45I+LkkvvfTSgk4HAAAAAFiWKs/krNVxXW9VkCRJxpcyvlTqa8Wu3vry7ccxxih3Z1NK\nbWjVdq3iLf6acTNLC5FSSt+zoMf5hKRPSNJHPvKRLfvXDwAAAADsptw72arSUd0obuGEi/GlnC+V\nQqPY1jLx9q9+TQOlPvZq+1Yh9ErblgJiqVhnAwAAAAAshXdWB2Who7ZR6LcvSJKGNTdXFUqhVwrN\nUMB9S1fdprz18rlXjFFtaNWHnukkSFpTiGSM+WOSflTSs5J+2hjz6ymlP7yOswAAAAAAlsc5qztl\nqQd1rX5LgyRpWsDtpXxPKbRKfXOrbnS7jLVWpS2lbHi/j71CCAopKMaolCKTSjtmXbez/ZSkn1rH\ncwMAAAAAVssYozuT1bZturntUYzLZVyulAWl7uTWh0lTZ6XcZy4GS0ws3W6sswEAAAAAVmJ6c9u4\nuR2hi7FOpjhQcrVSe6KtaxFfgIvBUkpJfQzqJ7e+cePb7UKIBAAAAABYmSrP5K3VcdsqhtsRMBhf\nSjZTbI52ooD7cYwxypxX5ryUSV3o1PadYqSk+zYgRAIAAAAArFTmnQ5dqeOmvRXrbdIwleSqQ8Xu\nRGrH6z7OxshcpsxlSimp7Vv1cSjpJlDaToRIAAAAAICVM8ZovyzUOKeTpr01oYLNRko2V2yPd34q\naZYxRkVWqFAhSepCrxB7hRgIlbYIIRIAAAAAYG2KzCtzTsdtq+62TCU5L1cdKvW725X0JKcrbxPT\nUKkPPeXcG4wQCQAAAACwVtYaHZSFToxR3XbrPs7CGF/KuGJYcevqdR9no832KMUY1achUAoxUM69\nQQiRAAAAAAAbYVTkknSrgiQZI5vvKbmCFbc5WWuVK1fuhj8PIQbFFBViVExBMUalFFmBWwNCJAAA\nAADAxhgVuYwxGjftuo+yUKcrbqFV6lsptKy5zclZJyenzJ3/OOHS6hEiAQAAAAA2SpVnknTrgiRJ\nMi6XmUzYnAVKnZRY2bqqx4VLYRIqUdy9WIRIAAAAAICNc5uDpKnzgVKn1NdSf3u/3lWZhkuaCZcI\nlhaDEAkAAAAAsJF2IUiaMi6TcZmS7ydhUrPuI90qTw6WoqQ0CZaShngpSbM5kzHDm9N3jXYNIRIA\nAAAAYGNVeSZrjE6aZicqhIzzMm5fKauUujFh0hJdFixdhXe7F6ns3lcMAAAAANgqReblrdVR2yj0\nu9EdZKyTKSZhUt8ohY6b3bB2hEgAAAAAgI3nnNVhVemkaVW33bqPszLGOpl8JElKMUixUwrdpIx7\nB0azsFEIkQAAAAAAW2NU5PLO6aRpFeNuTCVNGesk62R8KWm43S22YyaUsDJ23QcAAAAAAOAqcu90\nOCqVXbzbfccYl8tVhzLlvpLd7dcCq0GIBAAAAADYOsYYHZSlyskNbrvMuEKuekqm2JMM3+ZjeVhn\nAwAAAABsrVGRyxijcdOu+yhrZ3wp4wrFfix1jZR2a90Py0eIBAAAAADYalWeyRqjk6aha9oY2Wwk\nZSOl0CmFVupbAiUsBCESAAAAAGDrFZmXNUZHdU2QNGFcJuMyKd8jUMJCECIBAAAAAG6FzDsdVJWO\n6mbnbm57kocDpSFUMjGs+2jYIoRIAAAAAIBbwzurO1Wp47ZR1xGQXOY0UNJIKQYpDqGSenql8HiE\nSAAAAACAW8Xa4ea2zgeNu1Z9z1TSoxjrJOtkfKnkO8X2RCb26z4WNhQhEgAAAADgVsq8U+Yrtf0Q\nJgXCpMcyLpOrDpVCo9iOWXXDQwiRAAAAAAC3Wu6dcl+p6XqNu04xECY9jnGFXFUo9bVSO6aIG6cI\nkQAAAAAAO6HIvHLvdNy0ajtWtp7E+FLGFcNkUtew5gZCJAAAAADA7jDGaL8sNLZW44Yi6ScyRsaX\ncr5UikEpNEp9R6C0owiRAAAAAAA7p8ozeWt1VDdKKa37OFvBWCdjR1ImpdArhVbqG9bddohd9wEA\nAAAAAFiHzDsdjio5z7fGV2Wcl81HsqOnZco7ki8kY9Z9LCwZk0gAAAAAgJ1lrdFhVem4adS0rGhd\nh3GZjMskabLu1ko9q4K3ESESAAAAAGDn7RWFcud10rUKPetZ12VcMZRxZ0GpryfrbqwL3hbM7AEA\nAAAAoMl6W1WpKnI2s27IWCeb78lWT0t5JRnih9uASSQAAAAAAGZUeaYy8zppW1bcbsoY2WwkZSOl\nvlYKnRR6yri3FCESAAAAAAAXGGO0VxQqfKbjtmHFbQGML2V8ObyTklIMkoJSCFKKSjHIpEjAtMEI\nkQAAAAAAeATvrO6UpY6bVm3HVNLCGCPjvCQv4x7+6RSDlCbhUuil0NKttAEIkQAAAAAAeAxjjPbL\nQmNrNW64dWwVjHWShnTJTJKLFNrh5rfQMa20JoRIAAAAAADMocozOWt1XNcMxayBcbmMyyVJKXRD\nqBQ6mRjWfLLdQYgEAAAAAMCccu9kq0pHTaMYmIZZF+MyGZdJmqy+xW5S2t2x9rZEhEgAAAAAAFyB\nd1aHVakHda2ewu21M9ZJ1p2WdqfQTjqV4qSwO8qkQLi0AIRIAAAAAABckTFGd6pKJ02ruu3WfRzM\nGNbeLvmJR94IR8A0L0IkAAAAAACuaVTkctbqpGnIITbdY26EGyaX+pnibn4zL0OIBAAAAADADRSZ\nl7OWnqQtNr0NzrhC0rS4e/jHpChpEirteLhEiAQAAAAAwA1Ne5KOm1Zt16/7OLih2eLuS6X0+J+/\npey6DwAAAAAAwG1gjNF+Wagqchmz7tNgqXb0N5hJJAAAAAAAFqjKM+XOqe47tV2/6xtQuEUIkQAA\nAAAAWDDnrPZcodJnqvtOTcuKG7YfIRIAAAAAAEtCmITbhE4kAAAAAACWzDmrvaLQnVEl6/hWHNuJ\nP7kAAAAAAKzI9Ba3PGMxCNuHEAkAAAAAgBWa3uK2Vxa7eskXthQhEgAAAAAAa1BkXgdVJef51hzb\ngT+pAAAAAACsybDeVqnMs3UfBXgiljABAAAAAFizUZEr915116ntuMENm2ktk0jGmL9gjHnVGPOP\njDE/ZYx5ah3nAAAAAABgU3hntV8ON7hRvI1NtK51tp+T9HJK6cOSflPSf7qmcwAAAAAAsFEIk7Cp\n1hIipZR+NqU0nc/7ZUnfsI5zAAAAAACwqaZh0kFVUr6NjbAJfwr/lKS/te5DAAAAAACwiTLvdFhV\nGpW5jDHrPg522NLm4owxPy/pHZf81I+klP765Nf8iKRe0v/ymMf5uKSPS9JLL720hJMCAAAAALD5\nyixT4b3Gbae67dZ9HOygpYVIKaXvedzPG2P+bUnfL+lfSCmlxzzOJyR9QpI+8pGPPPLXAQAAAABw\n2xljTm9yO2kb9X1c95GwQ9bS0GWM+T5J/7Gk70opnazjDAAAAAAAbCvvrO5Ulbo+qO57dV3/5E8C\nbmhdNe8/JqmQ9HOTfc5fTin9e2s6CwAAAAAAWynzTpl36rNMTd+p7Xo9etcHuJm1hEgppfes43kB\nAAAAALiNvLPyrlCV5aq7Tk3XESZh4TbhdjYAAAAAALAA1g6dSU/tjVTmmbjMDYtEiAQAAAAAwC0z\nLeAmTMIiESIBAAAAAHBLESZhkdZVrA0AAAAAAFZkGiZVeaa669V0vWKM6z4WtgwhEgAAAAAAO8IY\noyrPVOWZmq5X03fqe8IkzIcQCQAAAACAHVRkXkXm1YeouuvUdv26j4QNR4gEAAAAAMAO885q3xXq\nvNdJ1yowmYRHoFgbAAAAAAAo806HVaWqyCngxqUIkQAAAAAAwKkqz3SnqpRlLC/hPEIkAAAAAABw\njnNWB2WhvbKQdUQHGBArAgAAAACAS03Lt9s+qO5abnLbcYRIAAAAAADgsXLvlPtKfYhq+uEmt5TW\nfSqsGiESAAAAAACYi3dW3hUa5bnqrlfdtoRJO4QQCQAAAAAAXIkxRlWeqcy8xm2npusIk3YA7VgA\nAAAAAOBajDEaFbkORyMVuZcx6z4RlokQCQAAAAAA3Ii1RntFoTtVpTxj6em24ncWAAAAAAAshHNW\n+65QyDLVFHDfOoRIAAAAAABgoZyz2nOFqixX3dGZdFsQIgEAAAAAgKWwduhMqvJMdder6XrFGNd9\nLFwTIRIAAAAAAFiq6W1uVZ6pD1FdCOpCr74nUNomhEgAAAAAAGBlvLPyzqr6/9u79xBLz/oO4N/f\nzsxuIuKFNOBlxYhRVCwJkkpQsF5Ro9RCFVsSbbTxBq3Ff5RCoa0oRBTjBVS84iVFS72iaVE0eAGb\nqDVe08oqSNMKsWoCSzC755zHP8672ZPxnH2jmZkz876fDxz2vTwDz/Llmf3tb573nWyltZYTk2km\ns2lOTmZ2Ke1zmkgAAADAWlRVjmxt5kg2kyOxS2mf00QCAAAA9oVVu5Qms1mmmkprp4kEAAAA7Dt3\n2qWUpLWWyXSWyaz7TKZpfuXbntJEAgAAAPa9qsrW5ka2snHHtcXH36bTWfSUdpcmEgAAAHAgbX/8\n7eR0lsl0mhPTaWZTj7/tNE0kAAAA4MCrqhze3MjhzY3cI6d3KZ2YTrxPaYdoIgEAAACDs7hLaTqd\n5cS0e0H3dJbZTFPp96GJBAAAAAzaxsahnL1x6I7zafeC7ulslsls6n1Kd5EmEgAAADAqGxuHsrHQ\nVEqS209OcmI6ycmT0zXNav/TRAIAAABG78jWZo5sbWa6NX/07fbJxMu5t9FEAgAAAOicevTtNag8\nBgAAB6xJREFU7MNbOTGZZjqbpbWWWWuZtVlmLWkjfaeSJhIAAADAEoc3N5JsrHsa+8ah/iEAAAAA\njJ0mEgAAAAC9NJEAAAAA6KWJBAAAAEAvTSQAAAAAemkiAQAAANBLEwkAAACAXppIAAAAAPTSRAIA\nAACglyYSAAAAAL00kQAAAADopYkEAAAAQC9NJAAAAAB6aSIBAAAA0EsTCQAAAIBemkgAAAAA9NJE\nAgAAAKCXJhIAAAAAvTSRAAAAAOhVrbV1z+Euq6qfJ/npuuexQ/4gyf+vexKshezHTf7jJv/xkv24\nyX+8ZD9u8h+3g5b/g1tr5/YNOlBNpCGpqm+21i5a9zzYe7IfN/mPm/zHS/bjJv/xkv24yX/chpq/\nx9kAAAAA6KWJBAAAAEAvTaT1efe6J8DayH7c5D9u8h8v2Y+b/MdL9uMm/3EbZP7eiQQAAABALzuR\nAAAAAOilibQLquqsqrq+qr5TVT+oqn/qrl9dVf9dVd+vqvdX1VZ3varqbVV1rKq+W1WPWe/fgLtj\nVf4L999WVccXzo9U1ce6/K+rqvP2es7sjDOs/aqq11fVj6rqxqp65cJ1a38gzpD/U6rqP6vqhqr6\nWlWd31239gemqjaq6ttV9dnu/CFdtse6rA9312U/QEvyV/eNxPbsF66r+UZgydpX943IkvwHX/dp\nIu2O25M8ubV2QZILkzyjqi5OcnWSRyT5wyRnJ7miG//MJA/rPi9N8s49nzE7aVX+qaqLktx32/i/\nSvKr1tr5Sa5K8oa9nCw7alX2lyd5UJJHtNYemeSj3Xhrf1hW5f/OJJe21i5M8s9J/r4bb+0Pz98m\nuXHh/A1Jruoy/lXmmSeyH6rt+av7xmN79mq+cdme/+VR943J9vwHX/dpIu2CNnfqpw5b3ae11q7p\n7rUk1yc52o15TpIPdbf+I8l9qur+ez9zdsKq/KtqI8kbk7x625c8J8kHu+N/TfKUqqo9mSw7alX2\nSV6R5LWttVk37uZujLU/IGfIvyW5V3f93kn+rzu29gekqo4meVaS93bnleTJmWebzLP+0+5Y9gOz\nPf8kUfeNw7Ls1XzjsSz/qPtGY0X+g6/7NJF2Sbet7YYkNyf5QmvtuoV7W0lekOTfu0sPTPI/C19+\nU3eNA2pF/n+d5DOttZ9tG35H/q21SZJbk5yzl/Nl56zI/qFJnl9V36yqf6uqh3XDrf2BWZH/FUmu\nqaqbMv/ef2U33Noflrdk/h/GWXd+TpJbumyTO69v2Q/P9vzvoO4bvGXZq/nGY1n+6r7xWJb/4Os+\nTaRd0lqbdlvYjiZ5bFU9euH2O5J8pbX21fXMjt22JP8nJHlekrevd2bsthVr/0iSX7fWLkryniTv\nX+cc2T0r8n9Vkktaa0eTfCDJm9c5R3ZeVT07yc2ttW+tey7svbuQv7pvoJZlX1UPiJpvFM6w9tV9\nI3CG/Adf922uewJD11q7paquTfKMJN+vqn9Icm6Sly0M+9/Mn5s95Wh3jQNuIf8nJTk/ybFu1+I9\nqupY90zsqfxvqqrNzLc9/mJdc2ZnbFv7NyX5RHfrk5n/g5JY+4O1kP8zk1ywsBv1Yzm9G8HaH47H\nJ/mTqrokyVmZb2N/a+aPKmx2P3FcXN+yH5bfyr+qPtJau0zdN3jL1v4PMn9Hnppv+Jau/aj7xmJZ\n/p/L/F1Yg6777ETaBVV1blXdpzs+O8nTkvxXVV2R5OlJ/uLUM7KdzyR5YffG/ouT3Lpk+ysHxIr8\nv9Vau19r7bzW2nlJbuuKiWSe/192x89N8qXu/QkcMKvWfpJPZd5ITJI/TvKj7tjaH5AV+d+Y5N5V\n9fBu2KlribU/GK21v2utHe2+v/955llemuTazLNN5ll/ujuW/YCsyP8ydd/wrcj+vmq+cVi19qPu\nG4Vl+Wf+3qPB1312Iu2O+yf5YPdSvUNJ/qW19tmqmiT5aZKvdz+Z+ERr7bVJrklySZJjSW5L8qL1\nTJsdsjT/M4x/X5IPV9WxJL/M/JsQB9Oqtf+1JFdX1auSHM/p39Bj7Q/LqvxfkuTjVTXL/Dd0vbgb\nb+0P32uSfLSqXpfk25lnnsh+LN4VdR93Zu2Pw5VR941Sa20yhrqvDmjzCwAAAIA95HE2AAAAAHpp\nIgEAAADQSxMJAAAAgF6aSAAAAAD00kQCAAAAoNfmuicAAHAQVNU5Sb7Ynd4vyTTJz7vz21prj1vL\nxAAA9ki11tY9BwCAA6Wq/jHJ8dbam9Y9FwCAveJxNgCAu6mqjnd/PrGqvlxVn66qn1TVlVV1aVVd\nX1Xfq6qHduPOraqPV9U3us/j1/s3AADop4kEALCzLkjy8iSPTPKCJA9vrT02yXuT/E035q1Jrmqt\n/VGSP+vuAQDsa96JBACws77RWvtZklTVj5N8vrv+vSRP6o6fmuRRVXXqa+5VVfdsrR3f05kCAPwO\nNJEAAHbW7QvHs4XzWU7XXoeSXNxa+/VeTgwA4O7wOBsAwN77fE4/2paqunCNcwEAuEs0kQAA9t4r\nk1xUVd+tqh9m/g4lAIB9rVpr654DAAAAAPucnUgAAAAA9NJEAgAAAKCXJhIAAAAAvTSRAAAAAOil\niQQAAABAL00kAAAAAHppIgEAAADQSxMJAAAAgF6/AXKxx2yMobIVAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "model_a = pf.ARIMA(data=data_train_a, ar=11, ma=11, integ=0, target='cpu')\n",
- "x = model_a.fit(\"M-H\")\n",
- "model_a.plot_fit(figsize=(20,8))\n",
- "model_a.plot_predict(h=60,past_values=100,figsize=(20,8))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAHiCAYAAABoTExbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl8VPW9//HXyWQjIQkhZIMQskIW\nEsImoiwqm9ZuilRt1V5r69Jqrbettb33ttde/WnbexXvrdVa27q3eq3eWlsVRAUBCUICIUBCEghk\nmZCFkH3P+f0RZgwkgcwkM5PA+/l48CiZc+ac71AMk/d8vp+PYZomIiIiIiIiIiIiAF6eXoCIiIiI\niIiIiIwdCotERERERERERMROYZGIiIiIiIiIiNgpLBIRERERERERETuFRSIiIiIiIiIiYqewSERE\nRERERERE7BQWiYiIiIiIiIiIncIiERERERERERGxU1gkIiIiIiIiIiJ2CotEREREBmEYxnTDMN4w\nDKPGMIw6wzB+bRjGPxmGse3U7xsMwygwDGNFv+eUGoaxst/X/24YxkueeQUiIiIizlFYJCIiInIG\nwzAswNvAUSAOmAb8+dThRUAJMAX4GfCGYRiTPbBMEREREZdQWCQiIiIy0EXAVOCHpmm2mKbZbprm\n1lPHqoH1pml2mab5KlAIXO2phYqIiIiMNoVFIiIiIgNNB46aptk9yLEK0zTNfl8fpS9YEhERETkv\nKCwSERERGagMiDUMw3uQY9MMwzD6fR0LVJ76fQsQ0O9YlIvWJyIiIuIyCotEREREBtoJWIFHDcMI\nNAzD3zCMS08diwC+axiGj2EY64BU4B+nju0Bbjh1bAFwndtXLiIiIjJCCotEREREzmCaZg/wBSAJ\nOAaUA9efOpwNJAO1wMPAdaZp1p069m9AIlAPPAi84sZli4iIiIwK4/Qt9yIiIiIyFMMw/gn4pmma\nSzy9FhERERFXUWWRiIiIiIiIiIjYKSwSERERERERERE7bUMTERERERERERE7VRaJiIiIiIiIiIid\nwiIREREREREREbHz9vQCBjNlyhQzLi7O08sQERERERERETlv7N69u9Y0zfBznTcmw6K4uDh27drl\n6WWIiIiIiIiIiJw3DMM4OpzztA1NRERERERERETsFBaJiIiIiIiIiIidwiIREREREREREbEbkz2L\nBtPV1UV5eTnt7e2eXsp5zd/fn5iYGHx8fDy9FBERERERERHxgHETFpWXlxMUFERcXByGYXh6Oecl\n0zSpq6ujvLyc+Ph4Ty9HRERERERERDxg3GxDa29vJywsTEGRCxmGQVhYmKq3RERERERERC5g4yYs\nAhQUuYH+jEVEREREREQubOMqLPI0i8VCVlYW6enpzJkzh//6r/+it7f3rM8pLS3llVdecdMKRURE\nRERERERGRmGRAyZMmMCePXvYv38/Gzdu5J133uHBBx8863MUFomIiIiIiIjIeKKwyEkRERE888wz\n/PrXv8Y0TUpLS1m6dCnz5s1j3rx5bN++HYAHHniAjz/+mKysLB5//PEhzxMRERERERERGQvGzTS0\n/h78234OVDaO6jXTpgbzsy+kO/SchIQEenp6qK6uJiIigo0bN+Lv709RURE33ngju3bt4tFHH+U/\n//M/efvttwFobW0d9DwRERERERERkbFgXIZFY1FXVxd33303e/bswWKxcOjQoRGdJyIiIiIiIiLi\nCeMyLHK0AshVDh8+jMViISIiggcffJDIyEj27t1Lb28v/v7+gz7n8ccfH9Z5IiIiIiIiIiKeoJ5F\nTqqpqeHOO+/k7rvvxjAMGhoaiI6OxsvLixdffJGenh4AgoKCaGpqsj9vqPNERERERERERMYChUUO\naGtrIysri/T0dFauXMnq1av52c9+BsC3v/1tnn/+eebMmUNBQQGBgYEAZGZmYrFYmDNnDo8//viQ\n54mIiIiIiIiIjAWGaZqeXsMACxYsMM9s+nzw4EFSU1M9tKILi/6sRURERERERM4/hmHsNk1zwbnO\nU2WRiIiIiIiIiIjYKSwSEREREfGQnp4e4uPjee655zy9FBERETuFRSIiIiIiHlJdXU1paSnvv/++\np5ciIiJip7BIRERERMRDrFYrAHl5eR5eiYiIyGcUFomIiIiIeIgtLCooKKCrq8vDqxEREelzzrDI\nMIzphmF8aBjGAcMw9huGce8g5/zQMIw9p37lG4bRYxjG5FPHSg3D2Hfq2K6BdxARERERuTDZwqKu\nri4KCws9vBoREZE+w6ks6ga+b5pmGnAx8B3DMNL6n2Ca5q9M08wyTTML+DGw2TTNE/1OufzU8XOO\nZxvLLBYLWVlZzJ49m3Xr1tHa2ur0tT766CM+//nPA/DWW2/x6KOPDnnuyZMn+c1vfmP/urKykuuu\nu87pe4uIiIjI2GALi0Bb0UREZOw4Z1hkmqbVNM2cU79vAg4C087ylBuBP43O8saWCRMmsGfPHvLz\n8/H19eXpp58+7bhpmvT29jp83S9+8Ys88MADQx4/MyyaOnUqr7/+usP3EREREZGxxWq1EhwcjLe3\nN/v27fP0ckRERAAHexYZhhEHzAWyhzgeAFwJ/KXfwyawwTCM3YZh3O7cMseepUuXUlxcTGlpKbNm\nzeKWW25h9uzZlJWVsWHDBhYvXsy8efNYt24dzc3NALz77rukpKQwb9483njjDfu1nnvuOe6++24A\njh8/zjXXXMOcOXOYM2cO27dv54EHHqCkpISsrCx++MMfUlpayuzZswFob2/n1ltvJSMjg7lz5/Lh\nhx/ar3nttddy5ZVXkpyczP333w/0jWf9p3/6J2bPnk1GRgaPP/64O//YRERERKQfq9XK9OnTSUlJ\nUVgkIiJjhvdwTzQMYyJ9IdD3TNNsHOK0LwDbztiCtsQ0zQrDMCKAjYZhFJimuWWQ698O3A4QGxt7\n1rV873vfY8+ePcNd+rBkZWWxfv36YZ3b3d3NO++8w5VXXglAUVERzz//PBdffDG1tbU89NBDvP/+\n+wQGBvKLX/yCxx57jPvvv59vfetbfPDBByQlJXH99dcPeu3vfve7LF++nDfffJOenh6am5t59NFH\nyc/Pt7/m0tJS+/lPPvkkhmGwb98+CgoKWL16NYcOHQJgz5495Obm4ufnx6xZs7jnnnuorq6moqKC\n/Px8oK9qSUREREQ8w2q1Eh0dTUREBFu3bvX0ckRERIBhVhYZhuFDX1D0smmab5zl1Bs4YwuaaZoV\np/63GngTuGiwJ5qm+YxpmgtM01wQHh4+nGW5XVtbG1lZWSxYsIDY2Fhuu+02AGbMmMHFF18MwI4d\nOzhw4ACXXnopWVlZPP/88xw9epSCggLi4+NJTk7GMAxuuummQe/xwQcfcNdddwF9PZJCQkLOuqat\nW7far5WSksKMGTPsYdGKFSsICQnB39+ftLQ0jh49SkJCAocPH+aee+7h3XffJTg4eFT+bERERETE\ncbawKCMjg2PHjumDPBERGRPOWVlkGIYB/B44aJrmY2c5LwRYDtzU77FAwMs0zaZTv18N/Hykix5u\nBdBos/UsOlNgYKD996ZpsmrVKv70p9PbNo12JdRw+Pn52X9vsVjo7u4mNDSUvXv38t577/H000/z\n2muv8Yc//MHtaxMRERG50JmmSVVVlT0sAsjPz2fJkiUeXpmIiFzohlNZdClwM3CFYRh7Tv36nGEY\ndxqGcWe/864BNpim2dLvsUhgq2EYe4GdwN9N03x31FY/Bl188cVs27aN4uJiAFpaWjh06BApKSmU\nlpZSUlICMCBMslmxYgVPPfUU0NdfqKGhgaCgIJqamgY9f+nSpbz88ssAHDp0iGPHjjFr1qwh11db\nW0tvby9r167loYceIicnx+nXKiIiIiLOO3HiBJ2dnaeFRepbJCIiY8E5K4tM09wKGMM47znguTMe\nOwzMcXJt41J4eDjPPfccN954Ix0dHQA89NBDzJw5k2eeeYarr76agIAAli5dOmgA9MQTT3D77bfz\n+9//HovFwlNPPcXixYu59NJLmT17NldddRXf+c537Od/+9vf5q677iIjIwNvb2+ee+650yqKzlRR\nUcGtt95qn9r2yCOPjPKfgIiIiIgMh9VqBSA6Oprp06cTEhKisEhERMYEwzRNT69hgAULFpi7du06\n7bGDBw+SmprqoRVdWPRnLSIiIuJ6GzduZPXq1WzevJlly5axdOlSTNNUo2sREXEZwzB2m6a54Fzn\nDavBtYiIiIiIjK7+lUUAGRkZ5OfnMxY/zBURkQuLwiIREREREQ84MyzKzMykoaGBsrIyTy5LRERE\nYZGIiIiIiCdYrVYmTpzIxIkTAdTkWkRExoxxFRapJNf19GcsIiIi4h5Wq9VeVQQwe/ZsAPLy8jy1\nJBEREWAchUX+/v7U1dUpzHAh0zSpq6vD39/f00sREREROe+dGRaFhIQQGxuryiIREfE4b08vYLhi\nYmIoLy+npqbG00s5r/n7+xMTE+PpZYiIiIic96xWK/Pnzz/tsczMTIVFIiLiceMmLPLx8SE+Pt7T\nyxARERERGRVnVhZBX9+id999l87OTnx9fT20MhERudCNm21oIiIiIiLni6amJlpaWgYNi7q7uyko\nKPDQykRERBQWiYiIiIi4ndVqBRg0LAJNRBMREc9SWCQiIiIi4mZDhUWzZs3Cx8dHYZGIiHiUwiIR\nERERETcbKizy8fEhNTVVYZGIiHiUwiIRERERETcbKiyCvq1oeXl57l6SiIiIncIiERERERE3s1qt\n+Pn5ERoaOuBYRkYG5eXl1NfXe2BlIiIiCotERERERNzOarUSFRWFYRgDjmVmZgKQn5/v7mWJiIgA\nCotERERERNzOarUOugUNNBFNREQ8T2GRiIiIiIibnS0smjZtGpMmTVLfIhER8RiFRSIiIiIibna2\nsMgwDDIyMlRZJCIiHqOwSERERETEjdrb26mvrx8yLIK+vkX79u3DNE03rkxERKSPwiIRERERETeq\nqqoCOGtYlJGRQVNTE0ePHnXXskREROwUFomIiIiIuJHVagXOHRaBmlyLiIhnKCwSEREREXGj4YRF\ns2fPBhQWiYiIZygsEhERERFxo+GERcHBwcTFxSksEhERj1BYJCIiIiLiRlarFS8vL8LDw896XkZG\nBnl5eW5alYiIyGcUFomIiIiIuJHVaiUyMhKLxXLW8zIyMigsLKSjo8NNKxMREemjsEhERERExI2s\nVutZt6DZZGRk0NPTQ0FBgRtWJSIi8hmFRSIiIiIibjTcsCgzMxNQk2sREXE/hUUiIiIiIm403LAo\nOTkZX19f9S0SERG3U1gkIiIiIuIm3d3dVFdXDyss8vHxITU1VZVFIiLidgqLRERERETcpLq6GtM0\nhxUWQV/fIoVFIiLibgqLRERERETcxGq1Agw7LMrMzKSiooITJ064clkiIiKnUVgkIiIiIuImjoZF\nGRkZgJpci4iIeyksEhERERFxE4VFIiIyHigsEhERERFxE1tYFBUVNazzp06dSmhoqMIiERFxK4VF\nIiIiIiJuYrVaCQsLw9fXd1jnG4ZBZmamwiIREXErhUUiIiIiIm5itVqHvQXNxjYRrbe310WrEpHz\nwcmTJ2ltbfX0MuQ8obBIRERERMRNnA2LmpubOXr0qItWJSLng8WLFxMXF8f69etpb2/39HJknFNY\nJCIiIiLiJs6GRaAm1yIytJqaGgoKCvD29ua+++5j5syZ/OEPf6C7u9vTS5NxSmGRiIiIiIgbmKZJ\nVVWVPSzq6TXZW3aS3289QtmJobeOzJ49G1BYJCJDy83NBeCll17i/fffJzo6mttuu43Zs2fz+uuv\nY5qmh1co443CIhERERERN6ipqaWrq4ujbb588/ldZP18A196chv/8fYBbn3uU1o6Bq8ACAoKIj4+\nnry8PDevWETGC1tYNHfuXFasWMGOHTt44403sFgsrFu3joULF7JhwwaFRjJsCotERERERFzANE2O\n1LbwcvZRvvNKDpf9/E0A3i/tpKi6ic9nRvPfN87lqa/N43BNMz/6S96QP8jZmlyLiAwmJyeHuLg4\nQkNDgb5Jitdccw15eXk8//zz1NXVsWbNGi6//HI++eQTD69WxgNvTy9AREREROR8UXmyjU9K6thW\nUssnJXVYG/qazEYG+5Ea3MNB4Ok7VrD2c5ef9rwfrJnFL98tZF5sKN9YEj/guhkZGfz973+no6MD\nPz8/d7wUERlHcnNzmTt37oDHLRYLt9xyC9dffz2/+93veOihh7jkkkv4whe+wMMPP2zviSZyJoVF\nIiIiIiJOqmvu4JPDdWwvqeOTkjqO1LYAMDnQl8UJYSxODOOSxDDipwTywgsVvAHMmTkwDLpzWSI5\nR0/y//5xkMyYEBbETT7teGZmJj09PRw8eJCsrCx3vDQRGScaGxspKirilltuGfIcPz8/7r77bm69\n9VaeeOIJfvnLXzJnzhy++tWv8uCDD5KYmOjGFct4oG1oIiIiIiJOOFLbwsWPbOLuV3L5255KEsMD\n+bfPp/HOvUvZ9S8refJr87jp4hkkhE/EMAysVivAoNPQvLwM/usrc5gWOoHvvJJDTVPHacdtn/6r\nb5GInGnv3r0Ag1YWnSkwMJCf/OQnHD58mPvvv5833niDlJQU7rrrLiorK129VBlHFBaJiIiIiDgh\n52g9XT0mz96ygNyfruLZry/ktiXxpEYH4+VlDDjfarUSFBREYGDgoNcLmeDDU1+bT0NbF/f8KYfu\nnl77seTkZPz8/NS3SEQG6N/cergmT57Mo48+SklJCd/61rd49tlnSUpK4kc/+hEnTpxw1VJlHFFY\nJCIiIiLihIKqRvy8vbhsVjjelnO/rbZarYNWFfWXNjWYh7+cwY7DJ/jPDYfsj3t7e5OamqqwSEQG\nyMnJITIy8pzfXwYTHR3Nb37zGwoLC1m7di2/+tWv+MpXvuKCVcp4o55FIiIiIiJOOGhtYmZk0LCC\nIhheWASwdn4Mu4/V8/TmEubGTmJNehTQ17do48aNI1qziJx/bM2tDWNgReNwJSQk8OKLLxISEsLz\nzz+PaZojup6Mf+f8l80wjOmGYXxoGMYBwzD2G4Zx7yDnXGYYRoNhGHtO/fppv2NXGoZRaBhGsWEY\nD4z2CxARERER8YSCqkZSooKGff5wwyKAn34+jcyYEH7w2l570+yMjAysVit1dXVOrVdEzj/t7e0c\nOHCAefPmjcr1Zs6cSXNzM9XV1aNyPRm/hvMxSDfwfdM004CLge8YhpE2yHkfm6aZderXzwEMw7AA\nTwJXAWnAjUM8V0RERERk3Khp6qC2uZPU6OBhnW+apkNhkb+Phd98bR4Wi8FdL+2mtbPb3uRaW9FE\nxCY/P5/u7m6H+hWdTXJyMgBFRUWjcj0Zv84ZFpmmaTVNM+fU75uAg8C0YV7/IqDYNM3Dpml2An8G\nvuTsYkVERERExoKCqkYAUqKHV1nU1NREa2urQz1FYkIDeOKGuRQeb+Jf3sxXWCQiAzjT3PpskpKS\nACguLh6V68n45VCDa8Mw4oC5QPYghxcbhrHXMIx3DMNIP/XYNKCs3znlDBE0GYZxu2EYuwzD2FVT\nU+PIskRERERE3KrA2gRAStTwKousViuAww1ol88M53srZvJmbgXvH+0kLCyMvLw8xxYrIuet3Nxc\nQkJCSEhIGJXrxcXFYbFYVFkkww+LDMOYCPwF+J5pmo1nHM4BZpimOQf4H+D/HF2IaZrPmKa5wDTN\nBeHh4Y4+XURERETEbQ5WNRIZ7MfkQN9hne9sWARwzxVJXDYrnP94+wDxMzURTUQ+k5OTQ1ZW1qg1\no/bx8SEuLk6VRTK8sMgwDB/6gqKXTdN848zjpmk2mqbZfOr3/wB8DMOYAlQA0/udGnPqMRERERGR\ncavA2jTsqiKAqqoqwLmwyMvLYP31WUQE+VPOFPLz8+nt7XX4OiJyfunp6SEvL2/UtqDZJCcnq7JI\nhjUNzQB+Dxw0TfOxIc6JOnUehmFcdOq6dcCnQLJhGPGGYfgCNwBvjdbiRUTGsqNHj/Lkk09qmoSI\nyHmmq6eX4urmYfcrgpFVFgFMCvDl6Zvm0xsaS0tLCyWHjzh1HRE5fxQWFtLW1jZqk9BskpKSKC4u\nxjTNUb2ujC/DqSy6FLgZuMIwjD2nfn3OMIw7DcO489Q51wH5hmHsBf4buMHs0w3cDbxHX2Ps10zT\n3O+C1yEiMma0d/XwZm45V37rJ9x9993ExsbyjW98g71793p6aSIiMgoO17TQ2dNLqgOVRVarFT8/\nPyZNmuT0fTNiQrhn7RUA/L+X3nX6OiKe1tvbe94EEcXVzVzyyCb++dU97Dhc59bXlZOTA4xec2ub\n5ORkmpqaUC/hC5v3uU4wTXMrcNYNkKZp/hr49RDH/gH8w6nViYiMI/kVDbz6aRn/t6eCpvZuTlZW\nYJk4mS9++cu8+uqf+eMf/8jy5cu59957+eIXv4jFYvH0kkVExAm2SWip0Y6FRdHR0SPuK3Lvuiv4\nt9vgzU2fcPMN13FFSuSIrifiCUuXLmXJkiX84he/8PRSRmxbcS2VDe1sOHCcN3IriAsLYN2C6Vw3\nP4bIYH+X3js3Nxd/f39SUlJG9bq2iWhFRUVERESM6rVl/HBoGpqIiJyuobWL57eX8rknPubz/7OV\n13aVsSIlgle+tYjU4C58Jk/j0q8/QHl5Ob/85S85cuQI1157LUlJSTz22GOcPHnS0y9BREQcdNDa\nhI/FICE8cNjPsYVFIxUUFER8QgITmiv53p/3UHaidcTXFHGn+vp6tm/fzu7duz29lFGxv7KBsEBf\nPv2XlTz2lTlEBvvzq/cKWfzIJm577lPe219FV49reozl5OSQmZmJt/c5a0AcYguL1OT6wqawSETE\nQb29JtuKa/nun3JZ+P/e52dv7cfLC/7jS+ns/JeVrL9hLpckTqHKWklYRBRbimoIDQ3lhz/8ISUl\nJbz++utMnz6d73//+8TExHD33Xdz6NAhT78sEREZpoKqRpIigvCxDP+t9GiFRQBzMjMJbKkE4M6X\ndtPe1TMq1xVxh08//RSAiorzY+7RAWsjaVODmeBr4dp5Mbx6x2I+/MFl3LE8kX0VDdzx4m4WP/IB\nj/zjICU1zaN2X9M02bNnz6hvQQOIi4vDYrGoyfUFTmGRiMgwVZ5s4783FbH8Pz/ka89m81FhNTcu\nnM7fv7uEt+9Zys2L4wiZ4AP0/QNeWVlJcvwM9pSdpKGtCwBvb2/Wrl3Lli1b2L17N2vXruV3v/sd\ns2bN4uqrr2bDhg3nzR5+EZHzVYG1idSo4Te3htENizIyMjhSUsSjX5rF/spGfvZXtQSV8SM7OxuA\n8vJyD69k5Lp6ejlU1Uza1NO3pMZPCeRHV6aw/YErePaWBcyNncSzW4+w4r82c91T23ltVxmtnd0j\nundpaSknT54c9ebWAL6+vsyYMUOVRRe40a1XExE5z3R29/L+weO8+mkZHxfV0GvCpUlh/GD1LNak\nR+HvM3jfodraWjo7O5mflsiRdpPtxbVclXH6Dwnz5s3j+eef55e//CVPP/00Tz31FGvWrCE1NZXv\nfve73HzzzQQGDn+Lg4iIuF59SydVje0OTUJrb2+nvr5+VMOi3t5eoswT3H15Er/+sJh5MyZx/cLY\nUbm+iCvZwqLm5mYaGxsJDh5+76+xpri6mc6eXtKG6F/mbfFiZVokK9MiqW5q542cCl77tIz7X8/j\n5387wBfmRPOVBdPJmj7J4X5mrmpubZOcnKzKogucKotERAZxvLGdh94+wMWPbOLbL+dw6HgTd1+e\nxMf3X87L37yYL2VNGzIogs8+LbtodhIT/bzZUjT0NInIyEh+9rOfcfToUV544QUCAgK46667mD59\nOvfffz/Hjh0b9dcnIiLOOXiquXWKA5PQqqqqAEY1LALYt28f962ayZKkKfzbX/eTX9EwKtcXcRXT\nNMnOzrYHROO9umh/Zd/3g/SpIec8NyLInzuXJ7Lp+8v53zsXc+XsKP4vt5JrfrOdNeu38OzHh2nu\nGH61UW5uLhaLxf79YLQlJSVRXFysivcLmMIiEZFB/Ov/5fPc9lIWxU/mj7cuZOuPruCfV89i+uSA\nYT3ftg9/xvTpXJIYxpZDtef8x9bPz4+bb76ZTz/9lK1bt7Jy5Uoee+wxUlNTOXr06Ihfk4iIjFyB\ntQlwfBIajF5YlJSUhL+/P/v27cPiZfDEDVmEBvjwyDsHR+X6Iq5y5MgRamtr+fznPw+M/75FByob\nmeBjIX7K8CvBDcNgYdxk/nPdHHb+ywoeuTaDCb7ePPT3g6x+bDMfFlQP6zq5ubmkpaXh7++aiWvJ\nyck0NjZSUzP0B55yflNYJCIyiKLjTayZHcVTN83n8lkRWLwcKw22vfmJiYlh2cxwKk62cbi2ZVjP\nNQyDSy+9lNdee42tW7fS2trK5s2bHX4NIiIy+gqqGpky0ZfwIL9hP2e0wyJvb2/S0tLIy8sDIGyi\nH2vnxbDj8AkaWrtG5R5yfuro9mwz9J07dwJw7bXXAuO/suiAtYGU6CCH3yfaBPn7cONFsfz1O5fy\n+p2LCfDz5tbnPuV7f87lREvnWZ+bk5Pjsi1ooIloorBIRGSA3l6TipNtxIROcPoa5eXleHl5ERkZ\nybLkcAC2HHL8k5mFCxcSGBhonxwiIiKeVVDV5NAWNBj9sAj6tqLt27fP/vWqtEh6ek0+KDw+aveQ\n88vbeZXM/tl75JWf9NgasrOz8ff3Z82aNcD4riwyTZMDlY1D9ity1IK4yfz9u0v47opk/r7PysrH\nNvPXPRWDVqZXVVVRVVXl0rAoOTkZUFh0IVNYJCJyhuNN7XT1mEwPHd6Ws8FUVFQQFRWFt7c3sWEB\nxIUFOBUWWSwW5s+fr7BIRGQM6Ok1KaxqIsWJSWgWi4Xw8PBRW0tGRgZVVVXU1tYCMCdmEhFBfmw8\noLBIBiqubuL+1/Po6jH5295Kj60jOzub+fPnM3HiRKZMmTKuK4vK69tobO8eMAltJPy8Lfzzqpm8\nfc9Spk8O4N4/7+Ebz31K5cm2087Lzc0FcMkkNJu4uDi8vLzU5PoCprBIROQM5fV9/yCPpLKooqKC\nmJgY+9fLZoaz4/AJp8q/Fy63aJv0AAAgAElEQVRcyJ49e+jsPHs5soiIuFZpXQsd3b2kOFhJYLVa\niYyMxMtr9N56Z2ZmAtiri7y8DFamRbK5sIb2Ls9uNZKxpbmjmzte3M0EHwtzpk9iw4HjHmla3NnZ\nSU5ODosWLQL6tuqP58oiR5pbO2pWVBBv3HUJ/3p1KjsOn2DVY5t54ZNSenv7/n+zTULLysoa9Xvb\n+Pr6EhcXp8qiC5jCIhGRM5SdaAUYdjPrwZSXlzNt2jT718uSw2nr6mFXab3D11q4cCEdHR3k5+c7\nvR4RERm5g1bbJDTHK4tGcwsafDYRzda3CPq2orV09vBJSd2o3kvGL9M0+dFf8jhS28L/3DiXdfNj\nOFrXSlF1s9vXkpeXR0dHhz0smjZt2riuLDpgbcTLgFmRjn0/GC6Ll8E3lyaw4b5lzI0N5ad/3c/1\nz3xCcXUzubm5JCYm2qfKuUpSUpIqiy5gCotERM5gqyyaNmlklUX9w6LFiWH4WAyn+xYB2oomIuJh\nBdYmLF4GSRETHXqeK8KiyMhIpkyZclrfoksSwwj0tbBBW9HklD9sK+XveVZ+uCaFS5KmsCotEsAj\n2xVtza3Pl8qiA5WNJIZPZIKvxaX3mT45gBdvu4hfXZfJoePNfO6Jj/loezZZLuxXZJOUlERxcbFH\nKtHE8xQWiYicoexEKxFBfvj7OPePf3NzMw0NDadtQwv082b+jFA2OxEWxcfHExYWprBIRMTDCqoa\nSQwPdPjfB1eERYZhDGhy7edt4bJZEbx/8Lh9u4pcuD4tPcEj/zjIqrRI7lyeAEBksL99K5q7ZWdn\nExERQWxsLNBXWVRTU0NHR4fb1zIaDlQ2jGq/orMxDIN1C6az8Z+XsWxGAHXWcvLaQl3erDw5OZmG\nhgZ7bzS5sCgsEhE5Q3n9yCah2T4l619ZBH19iwqqmqhubHfoeoZhsGDBAoVFIuJRJSUlzJ07lz/9\n6U+eXorHHLQ6Pgmtu7ub6urqUQ+LoK9vUX5+Pr29vfbHVqdHUtPUwR4PTrwSz6tuauc7L+cQEzqB\n//rKHAzjs9Huq9Mi2Vt2kuMOvh8ZqezsbBYtWmRfi+1DtcpKzzXcdlZ9SyeVDe2jNgltuCKC/Llp\nZl8QbEyJ58tPbuPhvx+grXNkfcp6ek3K61v5pKSO13aVkXOsr21CUlISoIloFyqFRSIiZyirbx1R\nv6Ihw6Lkvik4Hxc5/unMggUL2L9/P62trU6vS0TEWYcOHWL58uXs2bOHDz74wNPL8YjG9i4qTraR\nEu1Yf5Lq6mpM03RJWJSRkUFrayuHDx+2P3bZrAi8vQxNRbuAdff0cs8ruTS2d/HUTfMJ9vc57fhq\nD2xFq6+vp7Cw0L4FDT57nzQe+xYdsLquufW52Jpbv/3vN3P9wlh+9/ER1qzfwvbiod9fmqZJTVMH\nOcfq+eueCp78sJgH/pLH157dwbJffsisf32HJb/4kBt/t4P7X8/jjhd309trkpycDCgsulB5e3oB\nIiJjSXdPL9aG9lGpLOq/DQ0gLTqYKRN92VJUw9r5MYM9dUgLFy6kp6eH3NxcLr30UqfXJiIXrrIT\nrcSETjitwmA4Dh48yIoVK+jq6iIuLu60YOJCUljVBECqg5VFVqsVwGVhEfRNRLNVAIRM8GFRwmQ2\n7K/iR1emjPo9Zez71YZCso+c4LGvzCF1kMqXpIiJxIUFsPHAcW66eIZb1mSrjh4sLBqPfYsOnJqE\n5q5taP3l5uYydepUkuNieCQuhi/OmcqP38jjq89mc/2C6VyeEkF5fStlJ1opq2+j7EQr5fVttJ0x\nJXHKRD+mT55A1vRJfGFONNNDA5g+OYCCqib+4+0D7Ck/yez4eLy8vNTk+gKlsEhEpB9rQzs9vSbT\nQ0c2CQ0GVhZ5eRksSZrClqJaentNvLyG/wNb/ybXCotExFHbS2r56u+yeebm+axOjxr28/Lz81mx\nYgWGYfDRRx/x8MMPs2PHDheudOwqsE1Cc7CyyJVhUXp6OoZhsG/fPq655hr746vTovjZW/spqWkm\nMdyxZtwj1dPTQ319PVOmTHHrfaXPu/lV/HbzYb62KJZr5w3+wZRhGKxOj+KP247Q1N5F0BmVR65g\na25tez8Dn32oNl4ri6JD/Jkc6Ov2e+fm5jJv3jz714sTw3j3e8t4/P1DPPvxEV7dVQZAkL8300MD\nSAgPZPnMcKZPDmD65AlMDw0gJjRgyMbcs6eF8Mg/DrJh/3HmxaYwY8YMVRZdoLQNTUSkH9sktJgR\nhEUVFRVMmjSJgICB11g2M5wTLZ3sP/WJ1HBNnTqVqVOnsmvXLqfXJSIXrv/Z1PdG/8PC6mE/Z+/e\nvVx22WVYLBY++ugj0tPTSUhI4NixY3R3d7tqqcNSUlLi9u1wB6xNhEzwISrY36HnuTIsCgwMJDEx\nkby8vNMeX+mhiVf19fWsWbOGuLg4Tpw44dZ7CxyuaeYH/7uXOTEh/PQLaWc9d1VaJF09plODN5yR\nnZ1NSkoKISGfbdsKDg4mMDBwXFYW7a9ssPcrqqio4HOf+xxVVVUuv29raysHDx5k7hmT0Px9LPz4\nqlQ+/P5lvH3PEvb+dDX7/n0N/7h3Kb+9eQH/+vk0vn5JHFekRJIcGXTWCW626sSNB/peT1JSkiqL\nLlAKi0RE+imr7+sJNH3yyLahnbkFzWbpqb5FW4ocf3O2cOFCNbkWEYftKj3BJ4fr8PfxYutZelr0\nt3v3bi6//HImTJjA5s2bSUnp284UHx9PT08PZWVlrlzyOT344INce+21bh3nXFDVSEpUkMPb+Gxh\nUWRkpCuWNWAiGsC0SROYPS3YrWFRUVERF198MZs2baKlpWXAmsS1Wju7ueulHHwsBr+5aT5+3mef\n2DcvNpSwQF827Hf93xHTNO3NrfszDIOYmJhxV1nU3tVDSU2LfQvapk2beOedd3jxxRddfu99+/bR\n29s7ICyyiQ0LYPa0EEICRlYttjotipKaFkpqmklOTqaoqMit329lbFBYJCLST3l9G4YB0SHOh0Xl\n5eUDtqDZhAf5kRYd7NQneQsXLuTQoUOcPKkJNyIyfL/+sJiwQF++t3ImZSfaOFrXctbzs7OzWbFi\nBcHBwWzZssXe4BQgIaFv/Lan+xYVFRXR0NBATY17qiJ6e00Kq5oG7f9yLlarlSlTpuDr65rtKhkZ\nGRQXF9PW1nba46tSo8g5Vk9Nk+vHkn/wwQcsWrSIuro6Xn75ZQAOHDjg8vtKH9M0+Zc38zlU3cQT\nN8xl2qRzv4exeBmsSI3gw8Jqunp6z3n+SJSWllJTUzMgLIK+LfvjrbKosKqJnl6T9FNhUWFhIQD/\n+7//6/J75+bmApy2Dc0V+lcnJiUl0dDQQF1dnUvveSbTNCkoKHDrPeV0CotERPopP9FKdLA/vt7O\nf3usqKgYMiyCvq1oOUfraWrvcui6tn3+u3fvdnptInJh2VfewEeFNdy2NJ5Vp978n626aPv27axa\ntYqwsDA2b95MfHz8acdtXx85csR1ix6GkpISALdtjSirb6W1s4dUB/sVQV9Y5IotaDYZGRn09vYO\nCGdWpUVimrDpoGsrR5555hnWrFlDdHQ0O3fu5MYbbyQoKIj9+/e79L7ymZd2HOXN3AruWzmTZTPD\nh/28VWlRNLV3k33YtVsGs7OzAQYNi8ZjZZFtElpadN+WOltY9Omnn1JaWurSe+fk5BAaGkpsbKxL\n79O/OtFTE9Hee+89UlNT2bt3r1vvK59RWCQi0k95fRsxk53vV9TV1UVVVdWQ29AAls2cQnevyScl\njn1Cs2DBAgBtRRORYfufD4oI9vfm5otnkDAlkOgQf7YWDR4WbdmyhTVr1hAVFcXmzZuZMWPglKSY\nmBi8vb09WlnU1NRkryhyV1h00No3CS3FwUlo0BcWRUUNv6m4ozIzMwEG9C1KjQ4iJnSCy7ai9fT0\ncN9993HHHXewcuVKtm/fTkJCAoZhkJaWpsoiN8k9Vs/P3z7A5bPCufvyJIeeuzR5ChN8LGw44Npe\nOzt37sTf398+va+/adOmYbVa6enpGeSZY9OBykaC/LztLQsKCwuZPXs2AK+//rpL752bm8vcuXMd\n3g7rDFt14uTovmDK3X2Ltm/fDnxWTSXup7BIRKSfsvq+0dLOqqqqwjTNs1YWLZgxmQBfCx8P8QPb\nUCZPnkxiYqLCIhEZloKqRjYcOM6tl8YT5O+DYfRNZNxeUkdP7+m9Jz744AOuuuoqYmJi+Oijj4YM\nvL29vYmNjfVoZVH/oMpdP7wUVDViGDAzcuxVFiUmJjJhwoQBPYIMw2BVWiQfF9fS0jG6DckbGxv5\nwhe+wPr167n33nv529/+dlrj4vT0dFUWuUFdcwfffjmHyGB/Hr8+y6Epq9DXFHlp8hTeP3Dcpf1o\nsrOzmT9/Pj4+A/voxMTE0N3dTXX18Jvve9r+ygZSpwZjGAY9PT0UFRVx5ZVXMm/ePJduRevq6iIv\nL8/lW9BsbNWJJW0T8PLycntlkS0k0lY0z1FYJCJySkd3D1WN7Uwf4SQ04Kxhka+3F4sTwtTkWkRc\n6skPSwj0tXDrpXH2x5YkT6GhrYv9lQ32xzZs2MDVV19NfHw8H330EVOnTj3rdRMSEjwaFtm2oHl5\nebmxsqiR+LDAs04QGoxpmlRVVbk0LLJYLKSlpQ3aUHp1WhSd3b187MS/N0M5cuQIl1xyCRs2bODp\np59m/fr1eHt7n3ZOWloa1dXV1NY69qGIDF9Pr8m9f95DXUsnT980n0kBzvXEWpUWSWVDu8NTWoer\nq6uLnJwcLrrookGP294vjZe+RT29JgVVTfZJaGVlZXR0dDBr1izWrVvHzp07OXr0qEvuffDgQTo7\nO4dsbj3abNWJHxWfJDY21mNh0cGDB916X/mMwiIRkVOsJ9sxTUZUWWR7s3O2bWjQV/p9tK71nI1m\nz7Rw4ULKyso4fty945BFZHwpqWnm7bxKbl4cd9oPkZckTgGwVzb+4x//4Itf/CIzZ87kww8/HNbE\nrvj4eI9uQ7Pde9GiRW6sLGoixYl+RXV1dXR1dbk0LILBJ6IBLIwLZVKADxtGaSva1q1bueiii6io\nqOC9997jjjvuGPS89PR0QE2uXWn9+4fYWlzLf3wpndnTQs79hCGsSI3Ey4AN+12zFS0vL4/29vZB\n+xXBZ++XxkvfotK6Flo7ewY0t7aFReC6rWi28MRdYVH/6sT4hES3bkOrqamxv6dWZZHnKCwSETml\nrL4VgOkj6Flke7NztsoiwN6AcouDU9FsTa5VXSQiZ/PURyX4eXvxzaWnN6gOD/IjJSqIbcW1vPXW\nW3z5y18mLS2NDz74gPDw4TXGjY+Pp6amhubmZlcs/ZxKSkoIDQ1l4cKFFBcXu3ycc0tHN0frWp3u\nVwS4PCzKzMzk+PHjA7byeFu8uGJWBB8UVNM9wolXL7zwAitWrCA0NNQ+MW8oaWlpgMIiV9l08Dj/\n80ExX1kQw/ULR9boeHKgLwviJo9aoHimszW3hvFXWXTgVAVW2iBhUWJiInPnznXZVrScnBwCAgKY\nOXOmS64/mFVpkXR29xIQHuPWyiJbMLZ48WJKSkro7Ox0273lMwqLREROKa/vGzs80soiPz8/wsLC\nznpe/JRAYkInsPmQYyX68+bNw8vLS2GRiAyp7EQrb+ZWcONFsUyZ6Dfg+NLkKXz47t9Yu3YtWVlZ\nbNq06Zzfs/pLSEgAPDcR7fDhwyQkJJCcnExzc7PLKy0Lj/c1t06NHrthka1x8KBb0dIjOdnaxael\n9U5du7e3lx//+Md8/etfZ8mSJezYseOcP6xOnz6diRMnqm+RCxyra+W+V/eQPjWYn39p9qhcc3Va\nJAVVTZSdaB2V6/W3c+dOIiIiBm2YDxAREYG3t/e4qSzaX9mIj8UgOaKv0rCwsJCQkBB72L5u3Tqy\ns7M5duzYqN87NzeXOXPmYLE4th12JC6Km0zIBB+afMOor6+nrs6x4SzOsoVFN954Iz09PW7fAid9\nFBaJiJxSdqIVby+DqGB/p69RXl7OtGnTzjmlwjAMls0M55OSWjq7h/9pb2BgIGlpaQqLRGRIT28u\nwWIY3L4sYdDjHYe2UvXmo8zKyGLjxo2EhoY6dP34+L5qJU+FRSUlJSQmJpKU1Df5ydVbIwrsk9Cc\na24Nng2LliaH4+vt5dTEq+bmZtauXcujjz7K7bffzrvvvsvkyZPP+TxNRHON9q4e7nxpNwBPfW0+\n/j6jExqsTuub1ueK6qLs7GwWLVo05PsiLy8vpk6dOn4qi6yNJEcE4evd92N0YWEhs2bNsr8+V21F\n6+3tZc+ePW5rbm3jbfFiRUoEx3r6tjq6K7TJzc0lNjaWSy+9FFDfIk9RWCQickp5fRvRk/zxtjj/\nrbGiouKcW9BsliWH09LZQ84xxz7ttTW5dvXWCxEZf6oa2vnfXeVctyCG6JCBVZIvvfQSD//gLvxj\nUln7k6dOm2A1XLbKIk/0Leru7ubo0aMkJiaSnJwMuCEsqmpkop+3U1Wn7gqLIiMjCQ8P56mnnuKB\nBx7g5ZdfZu/evXR0dBDo582SpClsdHDiVVlZGUuXLuWtt95i/fr1PP3004NOsxqKJqKNvp/+NZ8D\n1kbW35BFbJjzW+bPFBsWwKzIIDY6ESiezcmTJykoKBiyubVNTEzMuKksOlDZaN+CBnDo0CFmzZpl\n/zopKYmsrKxR34pWUlJCU1OT2/oV9bc6PZLOCRGA+yZQ5ubmMnfuXPufrfoWeYbCIhGRU8rqW0c0\nCQ0cC4suSQrD4mU41beotrbWZdM2RGT8embLYXpMk7uWJw449txzz3HLLbewfPlyrv7hf/NpRZtT\n9wgLC2PixIkeqSwqKyuju7ubhIQEZsyYgbe3t1sqi1Kigs5ZMToYq9VKUFAQgYGBLljZ6X784x/j\n5+fHY489xk033URWVhYTJ04kPT2dgy//nPy//5Enn/szJSUl9PaevaJ1586dXHTRRZSUlPD2229z\n7733Ovz609LSOH78uNu2rZzv3ttfxWu7yrnniiSuSDl3I3pHrU6PZOeRE9S3jF5vGFsV9FD9imym\nTZs2LiqLqhvbqW3usDe3bmlpoays7LSwCPqqi3bs2EFZWdmo3dvdza37W5oczoQpU8Ew3FJZ1Nzc\nTFFREXPnziUwMJDY2FhVFnmIwiIRkVPK69tG1K/INE3Ky8vPOQnNJtjfh3mxk+xTiYZLTa5FZDC1\nzR28svMoX86aNqBRf1FREd/4xjdYuXIlb7/9NpelT+eAtZHa5g6H72MYBgkJCR6pLCopKQEgMTER\nb29vEhISXBoWmabJwapGpyahQV9Y5OqqIpv77ruPvLw8WlpayM/P509/+hM/+tGPSEpKwlq8n4aP\nX+Keb3yVpKQkgoODWbRoEbfddhvr169n06ZN9t5Pr776KsuXL2fChAl88sknXHXVVU6tRxPRRtf2\n4loCfS18b6VrmhuvSouk14QPCqrPffIw2Zpb2963DMVWWTTWK6b3W081tz7Vv8z2vefMHl6u2IqW\nm5uLj4+P/b8rdwr082ZZSjR+IRFuqSzKy8vDNE17MJaSkqLKIg9RWCQiQl8fgJqmjhFVFp04cYKO\njo5hVxZB31a0/MoG6hz4gS0zMxNfX1+FRSJymt9vPUJHdy/fvnxgVdH27dsxTZMnnniCgIAAliT3\nNWPdXuJc1Ud8fLxHKotsAVViYt9rTE5OdukPLxUn22hq73ZqEhq4Nyyysf1AecMNN/DQQw/x17/+\nldIjh/niYxu55J+f5tlnn+Wb3/wmEydO5O233+a+++5j5cqVREVFER4ezg033MCCBQvIzs4e0Q+m\nmog2ug4dbyY5MgiLl+MVbja9vb288847g1aWZUwLISrY36neVkPJzs4mJSWFSZMmnfW8adOm0dra\nSkNDw6jd2xVsk9BSB5mE1l9ycjJz5swZ1a1oOTk5pKen4+c3cGiBO6xOi8QIiWbfwUKX3+vMKqrU\n1FQKCgrOWREpo09hkYgI/SahTR7ZJDTAsbBoZjimCVuLh19d5Ovry5w5cxQWiYjdydZOXtheytUZ\n0SSGTxxw/MyRyxnTQgj292abg5WNNgkJCRw5csTtlQAlJSX4+PjYv88mJydTXFzssnXYmls7MwkN\nPBMWDeWqefFU+MRw5dqvnlZNdPz4cTZt2sT69ev50pe+xE9+8hPef/99+3QnZ8XGxjJx4kSFRaOk\nqLqJmZED/9t2xMsvv8znPvc5XnvttQHHDMNgVVokWw7V0t7VM6L7QF9V3s6dO8+5BQ2wV2SP9a1o\nByobiZ0cQLB/X++uwsJCDMOw90/rb926dXzyySejshXNNE17Dx9PWZEaic/kaEqKS1x+r9zcXMLC\nwux/L1JSUmhpaRnzfz/ORwqLRETo61cEjKiyyNaccbjb0ABmTwthUoAPmx3sW7RgwQJ2796tT1lE\nBIDntpfS0tnDdy5PGvR4Tk4OWVlZ9pHLFi+DSxKnsLW41qmgJT4+ntbWVqqrR2/LynCUlJQQHx9v\nfx3Jycm0trbaG0mPtoKqvkqCWU5MQjNNc0yFRavS+vrcvH/GxKuIiAiuuOIK7r33Xp599lkefvjh\nUaleMAyD1NRUNbkeBXXNHdQ2dzIz0rntkDa//e1vgb5G94NZlRZJW1cP2xz4AGsoR48epbq6+pzN\nreGzD9nGepPrA9ZG+xY06GtuHRsby4QJAz9otG1F+8tf/jLi+1ZUVFBTU+P2SWj9hQf5MSM+kdam\nk5w4ccKl97IFY7Y+aampqYAmonmCwiIREfpVFo0gLHKmssjiZbAkaQofFzn2A9vChQtpamqyl0CL\nyIWrqb2LP24rZVVa5KAVMLaRy2d+Kn1p8hQqTrZRWtfq8D3j4+MB3L4V7fDhw/ZpbNA3eQhcN6Hn\nYFUTsZMDmOjn7fBzm5qaaG1tHTNhUWL4RBLDA9nogvHoQ0lLS1Nl0Sg4dLwZgOQRhEX79+9n27Zt\nTJ06lXfffXfQoPfihDCC/LzZsH/kf0ds/YrOl8qi5o5ujtS22JtbQ19l0Zlb0GxmzpxJZmbmqGxF\n82Rz6/6WzJ8NwCe5+S67R1dXF/n5+ae91pSUFEAT0TxBYZGICFB+ohVfby8igpz/NLWiogLDMBz+\nwWDZzHBqmjo4eGq7w3CoybWI2Ly04xgNbV3cc8XgVUXFxcU0NzcP+FR6SdIUALYWOVbZCNgDG3c2\nuTZNk5KSEnu/IsC+/cNVYVGBtZEUJ6qKAHu101gJiwBWpUWx43AdDW1dbrlfeno6VquV+vp6t9zv\nfFVU3ff+YCTb0J555hl8fX155ZVX6Onp4dVXXx1wjq+3F5elRLCp4Dg9vSPb2pmdnY2/vz+ZmZnn\nPHfq1KnA2K4sKrA1tz4VFpmmSWFh4YDm1v2tW7eO7du3j/h15ebmYhgGc+bMGdF1RupLy+YD8NaW\nHJfd48CBA3R2dp4WFkVERBAaGqrKIg9QWCQiwqlJaJMm4DWCxpHl5eVERkbi4+Pj0POWnWo0u8WB\nH9hSU1MJDAxk165dDt1LRM4vbZ09PPvxYZbPDCczZvAmsjk5fW/szwyL4sICmDZpgkM90+zPjYsD\n3FtZVFdXR2Nj42lhUWxsLL6+vi4Ji9q7ejhS20LKCPoVwdgKi1anR9Lda/JRoXu2D6rJ9eg4dLyJ\nID9vooL9nXp+W1sbL7zwAtdddx3Lly8nKyuLF198cdBzV6VFUtvcyZ6ykQV82dnZzJs3b1jviXx9\nfYmIiBjTlUX7TzW3Tp8aAkBVVRVNTU1DVhbB6G1Fy8nJYebMmUycOLKeVSN12YLZYBh8kuu6raWD\nVVEZhqGJaB6isEhEhL6eRdNCnW9uDX2VRY5sQbOJCvFnVmQQWxzoW2SxWJg3b54qi0QucH/aeYy6\nls4hq4rgs5HLth/cbQyjbxvs9pI6unsc638WEBBAVFSUWyuLbPfqvw3NYrGQkJDgkrDo0PEmek1I\nPY8qi7JiJhEe5McGN21Fs01TU9+ikembhDbR3sPFUa+99honT57k9ttvB+Dmm2/m008/HXQr+2Wz\nwvGxGCPaitbV1UVOTs6wtqDZTJs2bUxXFh2obGRyoC+RwX0V6ENNQutv1qxZZGRkjHgrmqebW9v4\n+/szaUoURw4Xu6w6MTc3l4CAgAFNw1NTU1VZ5AEKi0REgLITrUyf7Hy/InA+LAJYNnMKu0rrae3s\nHvZzFi5cyJ49e+jqcs92AhEZWzq6e/jtlhIuTpjMgrjJQ56Xk5NDRkYGvr6+A44tSZ5CU3s3+yoc\nH1kdHx/v1sqikpK+KTz9K4vgs4loo802Ce18qizy8jJYmRrBRwXVdHSPfOLVucTGxhIQEKDKohEw\nTZOi401ONVm3eeaZZ0hJSWHZsmUA3HjjjXh5eQ3a6DrY34eLE8LYcOC401MG9+3bR3t7u0NhUUxM\nzJiuLLI1t7YFdocOHQLOHhZBX3XRtm3bnH5tdXV1HDt2bEyERdDXi6nzhNVl1Ym5ubnMmTPHPsTA\nJiUlhePHj2tLq5spLBKRC15zRzf1rV3EjLCyqLy83KFJaP0tmxlOZ08v2YeHP2Fi4cKFtLe3k5/v\nukaDIjJ2vb67nOONHdxzxcCxzTa2kctDTdG5JDEMwKnpRwkJCR6vLILPwqLRng55sKqRCT4WZjj5\nQYLVasXPz49JkwbfHugpq9OiaOns4ZOSOpffy8vLi7S0NFUWjUBtcyf1rV0kRzgXFuXn57N9+3Zu\nv/12e9ARHR3NypUreemllwYNhFanR3GktoWSmman7mlrbj2cSWg2Y7myqKunl8KqpgHNrSdMmHDO\n930j3Ypm25blyUlo/WWlz6LnZKVLqhOHGsYAn01E01Y091JYJCIXvPL6vklA00cwCa2trY36+nqn\nK4sWxk3Gz9uLzQ5sRVOTa5ELV1dPL099VMLc2En2wGcwZWVl1NXVDfmpdNhEP9KnBvNxkeNhUXx8\nPGVlZW6rbiwpKSEqKvmuQU8AACAASURBVIqAgNO/VyclJdHW1kZlZeWo3q/A2lfN4WwvO6vVSnR0\ntNNbh1xlcWIYAb4Wt21F00S0kSk6bmtu7VxY9Nvf/hY/Pz9uueWW0x6/6aabKC0tZdu2bQOesyo1\nEsDpvyPZ2dmEh4fbe5sNR0xMDHV1dbS3tzt1T1cqqWmms6fX3twa+sKi5ORkvLzO/uN0SkoKs2fP\ndnor2liZhGYzc+ZMetqa2JRbMurViYcPH6apqWnQ16qJaJ6hsEhELnjlJ9oARlRZZCsvdjYs8vex\nsCghzKEm1wkJCUyePFlhkcgF6K97Kimvb+OeK5LOGkYM1dy6vyVJU8g55tg2WOj7HtTb28uxY8cc\nep6zzpyEZuOKiWimaVJQ1UhqtPNbf2xh0Vjj72Nh+cxw3j9wnN4RTrwajvT0dCorKzl58qTL73U+\nKjzu/CS01tZWXnzxRa677jrCwk4Pla+55hoCAgIG3YoWFeJPZkwIG0cQFi1atMihoNT2/mksbkXb\nX2Frbn16WHSuLWg2tq1ozgTaubm5xMbGDvj/z1OSkvr64zVUl496deLZgrH4+Hh8fX3Vt8jNFBaJ\nyAWvzFZZNIKeRbbSaWe3oQEsS57C4ZoWe6XTuRiGwYIFCxQWiVxgenpNfvNhMWnRwVw+K+Ks5+bm\n5uLl5XXW8dWXJk2hq8ck+8jwt8FC35t3cN9EtMOHDw/YggauCYuqmzqob+0iJcq5fkUwdsMi6JuK\nVt3UQZ4TvaocpYloI3PoeDMhE3wID/Jz+LmvvfYaDQ0N3PH/2TvzuDbuO/0/IwnEfYpTYARIAgHG\nGIPj+MR2TNLcl+0cdq/NJmm7vbbdtNtNf+3uprvtbrvZNm22znbbtDkc504ap42T2OAjMQYkMOa+\nQSAkbgkkISTN7w95ZEDXjCQOh+/79coriTTSDNdo5vk+n+d57DGX56KionDPPffg1VdfxdzcnMvz\nlQUpUA1MQafn5vSZnp5GW1sbp7wi4Nr101oUi1o0eoSF8JAtcgh2FosFvb29nMQimqb9GkVTKpVr\nxlUEXDvf8vQjfouJnlCpVBAIBCgqKnJ5js/nQy6XE2fRCkPEIgKBsO5RT5oQHsJHYqRr+CtbAnUW\nAcAeeRIA4GwH+3GQ8vJyXLlyBUYjO4GJQCBc/7zfpEHP2KxPVxHguNHIz893Gd1ayNbsBIQKeLjA\ncRRtJcUis9mMoaEht86izMxMCIXCoIpFLRqHkyA/gFDhtSwW7c1LBp9H4VTzyLLvizSiBUan1gC5\nn01ox44dg0KhwM6dO90+f+TIEUxOTuL99993ee5AQSoA4KNWbkHGzAIWV7GIuX5ai7lFLcN65KXG\ngH91JLWnpwc2m421WKRQKFBYWMh5FG1mZgYdHR1rSizKyckBRVFI503jwyC7E1UqFQoKCiAUuhdG\nSSPaykPEIgKBsO4ZnDAiIz48oFyJYIhF0uQopMWG4SzH3CKbzYaGhga/97seaWxsdLbJEQjXE3Y7\njV+f7oI0OQo3F6b63F6pVPoMRg0L4aMsKx7nOYZcZ2RkQCAQrEjIdW9vL2iadisW8Xg85ObmBlUs\ncjah+eksMplMmJqaWrNiUVxEKG7ITgi6M8AdWVlZpBHNT2iaRofWAJkfeUWXL1/GxYsXFwVbL+Wm\nm25CSkoKXnjhBZfn5ClRyEqMwKkWboIiE27N5CqyZa06i2iaRvPwtMsIGuC7CW0hBw8exPnz550t\niWxobGwETdNrJtwaAMLCwpCZmYlI82jQ3YkqlcqrMJafn4+enh63TjjC8kDEIgKBsO5RT5qC0oQW\nExOD6Gj/V6EpisJuWRIudI/BamPX6kNCrv3j448/Rl1dHfbv308EI8J1xUetWrRrDfi7vVKfwcta\nrRbDw8OsVqV3ykRoGzFAZ2A/csLn85GVlbUiziJPTWgMTCNasGgb0SM9NgyxESF+vX5kxHGDvVbF\nIgA4UJCCTt0Mesdml3U/PB4PCoWCOIv8QGeYg95sRZ4fYtFzzz3nNth6IQKBAA8++CBOnjyJiYnF\nY6gUReGAIgWfdI1jZo59nllNTQ3y8vI4twBGR0cjOjp6zTmLhqZM0JutKEhzFYvkcjnr9/FnFG2t\nhVszSKVSGMeGwOdR+JCjmOgJjUYDrVbr9WtVKBSw2+1BXRggeMenWERRVCZFUWcoimqhKKqZoqhv\nutnmYYqiLlMU1URR1CcURW1a8Fzf1ccbKIqqC/YXQCAQCIEyOGkMKK8IcKyEBeIqYtgtT4LBbEWj\nml0QaHp6OtLT04lYxJH29nbExMQgMjKSCEaE6waapvHM6S5kJUbg9mLfIgSXyuWdUhEAcA4szcnJ\nWRFnUXd3NwC4dRYBDrGou7sbdjs7od0XbRoDFGmB5RUBa18sAhC0mz0GmqahNy9uyCONaP7RcTXc\nWsYx3Hp2dhYvvPACDh48iISEBK/bHj16FBaLxe2I1IGCFFhsdtaOZ5qmneHW/pCRkbHmnEXNw+7D\nrVNSUhAbG8v6fQoKClBQUMBpFE2lUkEkEgXl+jKYSKVS9HR3YaskAaeag+NOZCOMkUa0lYeNs8gK\n4Ds0TRcA2AbgaxRFFSzZphfAHpqmNwL4VwDPLXl+L03TJTRNlwV8xAQCgRBEpk3zMJitATuLgiUW\n7ZSKwKOAao65RUQs4kZbWxs2btyIqqoqp2DU2Ni42odFIHilumMUTUPT+GpFLgR835dwTBNaSUmJ\nz20L02MRFxGCc37kFq2UsygyMhLJye4DvaVSKcxmc1BcCXNWG7pHZ5AfYBMasLbFooz4CBSkxQR1\nFG1i1oLP//4Sbvy3jzExa3E+XlhYiKGhIdKIxpEO7QwAQM7RWXTixAno9Xq3wdZL2bx5MxQKhdtW\ntC1Z8UiIDGWdbTUwMACdTue3WCQWi9ecs6hlWA8etXgklUsT2kIOHjyIc+fOsR5FY8aIA4lJWA5k\nMhnGx8exIzMsaO5ERizy9nnFfM+JWLRy+LzSoGlaQ9O08up/GwC0AhAv2eYTmqYnr/7vRQD+1wER\nCATCCjI4cbUJLT4wZ5FarQ6oCY0hNiIEmzLjOOcWdXR0kItwDjAXejk5OU7BaN++fUQwIqxZGFdR\nemwY7tnM7lyjUqmQk5PDahyEz6OwPTcRF7rGQNPsA0tzcnIwNjYGg8HA+jX+0N3d7QxWdUcwG9G6\ndbOw2umAm9CAtS0WAQ7nSF3/JMZmAs8AUQ1M4vZfncP5rjHMWmyo67s21sQ0opFwWm50ag1IiAyF\nKIpbE9pzzz2HgoIC7Nixw+e2FEXh6NGjOH/+vIvwK+DzsC8/GafbdJhnMR7P5BV9lpxFLRo9skWR\nCA/lOx/r6OjwWyyiaRpvvvmmz20tFguam5vX3Aga4BDnAUAS6jjvB8OdqFKpkJubi5gYz+fdiIgI\nZGVlkfPICsIps4iiKAmAzQBqvGz2NwD+suD/aQCnKIqqpyjqUa4HSCAQCMuJetIEAAGNodlsNoyM\njATNJrxbloTL6ilMGS2+N8a13KL6+vqg7P+zzvT0NLRarfNCLycnB2fOnCEOI8Ka5mLPBOr7J/F4\nRS5CBewu39iEWy9kh1QEzbQZ3aPsV4lXqhGtu7vb4wgaEFyxqG3EMXaiCNBZxOfzkZSUFPDxLCeV\nhSmgaeA0x8arhdA0jRc+7cOhY5+Cx6Pw+uM3IlTAQ13/pHMb0ojmH+1aA2TJ3EbQGhsbUVNT4zXY\neikPPfQQAOCll15yee5AQQr0ZitqeydcnltKTU0NhEIhNm7cyOmYGcRiMTQaDWw2m1+vXw5ahvUo\nTL82bjY5OYnR0VFOeUUMhYWFUCgUrEbRmpubMT8/vybFIuZ8a9Cpg+ZO9BVuzaBQKIizaAVhLRZR\nFBUF4A0A36JpWu9hm71wiEXfW/DwTpqmSwF8Do4Rtt0eXvsoRVF1FEXVjY6yX1EnEAiEQFBPOpxF\ngYyhabVa2Gy24IlFchHsNFg3E5WVOSZ8ySgaO9y1mOTm5uLMmTMIDw8nghEhqDz33HO4/fbbA36f\nX5/pRFK0EIfKMlltPzU1hZ6eHk5i0S6pQ9i4wKEVjQmcXs7cIrvdjt7eXo/h1oDjJjMsLCwoYlGr\nRo9QAQ+SxEi/30Oj0SAlJQU83trukilIi4E4Lpxz4xWD0WLFt0804IfvNGOnVIT3vr4TW7ISsCkj\nFpcWiAsSiQTh4eEkt4gDNE2jSzvDeQTt2LFjCAsL8xpsvZSsrCzs2bMHL7zwgouzcLcsCWEhPJxi\nIQjU1NSgtLQUoaGhnI6ZQSwWw2azQatd/pY+NkwZLRiaMqEgwCa0hRw8eBBnz551huB7ghkjXktN\naAzMubirqwsHClJQH6A7cXp6Gj09PazEovz8fLS1tQUtn47gHVafYBRFhcAhFL1E07Rb3xxFUcUA\nfgfgLpqmnemINE0PXf23DsBbALa6ez1N08/RNF1G03TZWl+FIRAInx3UkyZECwWIDfev8QaAc74+\nGGNoALApIw7RYQLWo2gJCQnIzc0lYhFLPF3o5ebmoqqqyikYXb58eTUOj/AZ4/nnn8fJkyfR39/v\n93tUtetwoWscj+7KQVgI3/cLAGdoO5dV6Q2JEchMCOeUW7QSziKNRgOz2ezVWcTj8SCVSoPkLDJA\nnhLFKhfKExqNZs2PoAFXG68KUnCucwxGC/vGKwDoGZ3BPb/5BO80DuPvD8jxf18oR1yEQyQolyTg\nytA0TBaHQ4Q0onFHM22GYc4KOYdw69nZWbz44os4dOgQ4uPjOe3vyJEj6OjoQF3d4j6i8FA+dkqT\n8GGL1uuI6vz8POrr6/0eQQOuXUetldyiFg/h1kBgYhFN03jrrbe8bqdSqRAdHe31vLdahIeHIzMz\nE52dnThQkAJ7gO5ELp9XCoUCRqNxzfyOfNZh04ZGAfg/AK00Tf+Xh202AHgTwFGapjsWPB5JUVQ0\n898AKgFcCcaBEwgEQjAYnDBCHB8eUHggM18fLGeRgM/DTqkIZzvYZ4eUlZURsYgl7e3t4PP5bl0K\nCwWjffv2EcGIEBCzs7POv8vq6mq/3uMvTRo8+qd6yJKj8NANG1i/jlmV5jrCsFOahIs947CyyCcB\nHGJ1TEzMsopFjGvJ102TTCZDV1dXwPtr1RigCCCvCLh+xCIAqCxIwZzVzkkk/OsVDe789QXoDGb8\n8Utb8Y39MvB41z5HyyUJsNppNAxey9IjjWjcYJrQuDiLXnnlFRgMBjz6KPfkj/vvvx9CoRAvvPCC\ny3OVhSkYmjI5m8HcceXKFZjN5oDEIuY6aq3kFrVomJHUxWKRQCBwCuVcKSwsRH5+vs9RNJVKhZKS\nkjXrTpRKpejq6kJhOuNO9N8NxibcmoFpRCO5RSsDm9++HQCOAthHUVTD1X9upSjqcYqiHr+6zf8D\nkAjg2avPM5J0CoDzFEU1ArgE4CRN038N9hdBIBAI/jI4aQworwgIvlgEALvlSRjRm9Gpm2G1fXl5\nOQYHB9eMdXst097eDkl2Nt67ooPN7irGLR1JI4IRwV8++eQTWK0Ot0ZVVRXn179wsR9ffVmJInEM\nXnv8RkQKBaxfq1QqIRaLkZKSwmmfO6UizMxZ0aieZrU9RVHIzs5e1jG07u5uAPA6hgY4bl66u7sD\nyjsZNcxhbGYO+WnrRywqz05ATJiAVQW21WbHv73fisdfVCI3OQrvfWMXdstdJwJKN8SDorAo5Lqw\nsBBqtRrT0+x+t9Y7nX40oR07dgyFhYXYvn075/3FxcXhjjvuwCuvvIL5+flFz+3PTwaPgtdsmkDD\nrYG15yxqHtYjJUa4KGC8o6MDubm5CAnxz5FOURQOHjyI6upq6HTu3Tg2mw0NDQ1rMq+IQSaTobOz\n0+lOPN816nQSckWlUiElJYXVOVOhUAAgjWgrBZs2tPM0TVM0TRfTNF1y9Z/3aZr+LU3Tv726zSM0\nTccveL7s6uM9NE1vuvpPIU3TP1nuL4hAIBDYQtM01JOmgPKKAMdFTUhISFCDTJmLb7ajaEzINXEX\n+aa9vR2miBT8/auNHi98pVIpzpw5A6FQSAQjgt9UV1eDz+ejsrISZ86cYf06mqbxX6fa8cO3r2Bf\nXjJeemSbc7yHLWzDQpeyPTcRFAWc5ziKtpzOou7ubvB4PGRlZXndTiaTwWKxYHBw0O99tY843ByK\nVP/Dra1WK0ZHR68bsSjE2Xil9eoo0xnMeOh3NXjubA+ObsvCq49tgzjO/ednbEQI8lKiUbsg5Jo0\nonGjQ2uAKEqI+Eh2f/sqlQq1tbV47LHH/HZLHz16FKOjozh16tSixxOjhNiSFe9TLEpKSoJEIvFr\n3wAgEokQEhKydpxFS8KtAcc1hD/h1gs5ePAg7Ha7x1a0zs5OGI3GNS0WSaVSjI2NYWpqCgcKUmCe\nt+Nsp3+5w1w+r0QiERISEsh5ZIVYm742AoFAWAEmZi0wWmzIjA/cWZSenh5Uq7A4Lhy5SZE4y/KG\nrbS0FDwezyVrgLAYu92O1vYOzAiTIRTwcKJ2wOO2UqkUVVVVTsGoqalpBY+UG7/4xS/w9NNPr/Zh\nEJZQVVWFLVu24I477kBfXx/6+vp8vsZqs+MHbzXhV6e7cKgsA8eObllU2cwGo9GItrY2v4JR4yND\nUZQeyznkure3l/XYLFd6enqwYcMGn6G5wWhEY5rQ8gIQi7RaR7bL9SIWAUBlYSomjfOLGswWcql3\nArf96jwuq6fw9OFN+Ne7iyAUeP+9LJPEQ9k/6XRwkkY0bnToZjjlFT333HMICwvDkSNH/N7nLbfc\ngsTERLz44osuz1UWpKJFo8fghNHta2tqarB169aAxvp5PB7EYvGacBaZ523oGp1BwQKXoc1mQ2dn\np995RQxFRUWQy+UeR9HWcrg1A3O+7erqwtar7kR/WtHMZjNaWlpYi0UURZFGtBWEiEUEAmHdop40\nAQisCQ1wiEXBHEFj2C1PQk3POMzzvm29UVFRUCgUxFnkg5c+rofVMoftWzbikV3ZqO4Yxci02eP2\nCwWjffv2rUnBiKZp/PSnP8Wzzz672odCWIDRaMSlS5ewZ88eVFRUAPCdW2Set+HxF5U4fmkQf7dX\nip/dV+xXyPLly5dht9v9vtHYIRVBOTCJmTl2gcfZ2dkwmUzLNgbb3d3tcwQNCI5Y1KLRIzlaiMQF\nYydc0Wg0AHBdiUW75UkI5fNcbvZomsbvzvXgwf+9iCihAG9/bQfu2cyuzKFckoCZOatTgJNIJAgL\nCyO5RSyw22l0ag2sR9BmZmbw0ksv4fDhw5yDrRcSGhqKw4cP4+2334Zevzif6ECBY6T1o1bXv/Pp\n6Wm0tbUFNILGIBaL14SzqENrgM1OLwq3HhgYwNzcXMBiETOKVlVV5XYUTaVSQSgUOkeu1iJSqRSA\nQyxi3Ikft3p3J7rjypUrsNlsnFxU+fn5xFm0QhCxiEAgrFsGJx2rY4FmFqnV6qA1oS1ktzwJc1b7\novphb5SXl6O2tnbZVvevd/rHZ/HDPzqs9d85WIFDZZmw08Dr9d5HVhaOpK1FwailpQVjY2Po7u6G\nyWRa7cMhXOXTTz/F/Pw8KioqUFBQAJFI5HUUbdo4j6P/V4OP27T45zsL8d2b8/xeofc33Jphl0wE\nq53Gpd5x3xvjWpbQcuUWdXd3s2oESk9PR0RERGDOIo0hKHlFwPUlFkUJBdghTVzUeGUwz+OrLynx\n1MlW3KRIxjt/twP5HIK/yyQJAIDaq59hfD6fNKKxZGjKBKPFBhlLZ9Hx48dhMBjw2GOPBbzvI0eO\nwGw2u4xISUSRkKdEuXWP1NXVgabpoIhFGRkZa8JZxDShFQSxCW0hzCiau1Y0lUqFoqIiv3ORVgLm\nvM+cbxl3Yr0Hd6InmHBrrmKRTqfDxAS762OC/xCxiEAgrFuC4SyiaXrZnEU3ZCcglM/jlFs0OjqK\ngQHPo1XrFZPF4diYH3esVm4sLEBWYiRuzEnEq3Vq2N0EXS9EJpPhzJkzCA0Nxb59+3Dlytop9mSC\nk2maJitta4jq6mrweDzs3LkTPB4Pe/bs8RhyrZk24eCxT9A4OI1fP1iKL2yXBLRvpVKJxMREZGZm\n+vX6LVnxEAp4rNuxmFag5cgt0uv1GBsbY+UsoijK2dDjD/M2O7p0MwHlFQHXp1gEAAcKUjEwYUS7\n1oAOrQF3/foCTrVo8YNb8/HbI1sQE8btxlUcF4702DCX3CLiLPJNp45bE9pzzz2HoqIibNu2LeB9\nb9u2Dbm5uW5b0Q4UpKCmdwJTRsuix5lw661btwa8f8ZZtNoLX83DekQJBYuiCjo6HKXfwRCLiouL\nIZPJXEbRaJqGUqlc0yNoABAREYGMjAzn+daTO9EXKpUK0dHRrM7xDCTkeuUgYhGBQFi3DE4YERcR\ngmiOF8ALmZ6ehtFoXBaxKCJUgPLseNaBgSTk2j00TePJt6+gbUSP8gQzYmNjkZycDAA4XJ6JgQkj\nLvb4dlDIZDJUVVUhNDQUe/fuXTOCETMmB5AskLVEdXU1SktLERPjWJXeu3cv+vv7XXKLunQG3Pfs\nJxieMuP5L5fjtuLABQYmLNRfZ1JYCB9bsxNY5xYxgbbL4Sxi3pONswi41tDjD71js7DY7Itqsv2B\nEYu4NtGtNjcpHOfFn5xsxV2/vgC92YqXHrkBj+7O9ft3qTw7AXV9E84b/8LCQgwODrqMOBEW08E0\noSX7FouUSiXq6uoCCrZeCEVROHLkCM6cOePi8DlQkAqbncaZ9sWjUzU1NcjLy0NcXFzA+8/IyIDJ\nZMLkJDeHSrBp0ehRkBYDHu/a97S9vR2xsbFBKTRhRtHOnDmD0dFr13kDAwOYnJxc0+HWDAvF+Sih\nANuliTi1wJ3IhoaGBpSUlHDK/czPzwdAxKKVgIhFBAJh3RKsJjQAyzKGBgC7ZUno0M5AM+17vKi4\nuBghISFELFrC8UuDeEOpxtf3yTCjHUBe3rXxnluKUhEdJsCJOnbtSQsFo7XgMKJpGtXV1bjnnnsQ\nGhq66sdDcGAymXDx4kXs2bPH+RiTW7TQXVTfP4H7/udTzNtpnHhsG7bnigLet8ViQVNTU8Cr0juk\nInRoZ6DTe870YggPD0daWtqyOIu4ikVSqRQ9PT2wWtnlLS2kVeMQMPLTAncWiUQin4Hca43kmDBs\n3hCHc51j2CiOxfvf2IltOYkBvWeZJAFa/ZzTyUsa0djRoTUgJUaI2Ajfi1nHjh1DeHh4QMHWS3n4\n4YdB0zRefvnlRY8Xi2OREiPEqeZr7hGapp3h1sGAWXxbzdwiu51Gq0a/aAQNcIhFC68hAsXdKJo/\nY1mrxVJxvvKqO5ERO31hs9nQ2NjI+WuVSCQQCoXkPLICELGIQCCsWwYnjUFpQgOwLM4iwGHrBYBz\nHb5X+IVCITZt2kTEogVcVk/hx+82Y7c8Cd/cL3Ne6DGEhfBxd4kYf7kygmnjPKv3ZEbSQkJCsG/f\nvmWtDPdFa2srRkdHceDAAeTl5RFn0RqhpqYGFovFKRABcMkt+qhFi4d/V4OEyFC8+ZXtLvXM/tLc\n3Iz5+fmAxaKdUodwdZ6lu4hpRAs23d3dzvdng0wmw/z8vF/juG0jBoTwKeSI2DdQuUOj0Vx3I2gM\nP7hVgSdvU+Clv70ByTFhAb9fucQRtlzb58gWIY1o7OjUzrAaQTMYDHj55Zdx+PDhoLh6GGQyGbZt\n2+bSisbjUbhJkYLqjlFn+cbAwAC0Wm1Q8oqAa4tvq5lb1Dc+C6PF5lEsChabNm2CVCpdNIqmVCrB\n4/FQXFwctP0sF1KpFKOjo5iengZwzZ34YcsIq9d3dnbCaDRyFov4fD7kcjlxFq0ARCwiEAjrEpqm\nMRQEZ9Fyi0X5qdFIjhZyGkWrr6+H3c6tjeKzyOSsBV95UYmkaCF+ebgEJuMs1Gq1y4Xe4fJMWKx2\nvNPIfhVTLpfj9OnTGBsbw5/+9KdgHzprGJdKRUUFioqKiLNojVBVVQWKorBz507nYxRFoaKiAlVV\nVThxaQCPvVgPeUo0Xn/8xoBD9hcSrFXpgrQYJESGshaLsrOzl2UMrbu7GwkJCaxvhANpRGvT6JGb\nFIVQQWCXx9ezWFQuScAju3IQ4kcLnzvkydGIDhOgts8xUpSdnU0a0Xxgt9Po0s1AxmIE7fjx45iZ\nmQlKsPVSjhw5gqamJjQ2Ni56/EBBCowWGz7pdpwbmLyiYIlFa8FZ1HLVZViwYCR1dtb9NUQgLBxF\nGxtzfD9VKhXy8/MRERG8z4XlgjnfMqNoyTFhKMmMwymWuUWBfF4pFAriLFoBiFhEIBDWJaOGOcxZ\n7UFpQgMcLTzLAUVR2CVLwvmuMdh8hDADDrFIr9c7QxjXKzY7jW+daMCoYQ7PPlyK+MhQ5/eEmXVn\nKBLHojA9Bidq2Y2iMeTl5aG8vBwffPBB0I6bK1VVVcjMzER2djYKCwvR398Pg8GwasdDcFBdXY2S\nkhIXgaOiogIDAwP4+99/iB1SEY7/7baAKtrdoVQqERUV5aw19hcej8L23ESc7xxjlT+RnZ0NtVoN\ni8Xic1su9PT0sB5BAwITi1o1hoDzioDrWywKNjwehbKseNT1XWtEy8/PJ84iL6gnTTDN2yBn0YR2\n7NgxFBcXB02oWcjhw4chEAhc3EU35iZCFBWK/z3rcBJeunQJQqEwaE6YtLQ0UBS1qmJR87AeAh61\nqI2OOacEUywCHKNoNpvNOYqmUqnWfLg1A/M5s7BUoLIwBZfV0xiZ9j3CrFKpEBoa6hxP5UJ+fj56\ne3thNvveD8F/iFhEIBDWJYNX8xOCMYaWlJTkDBheDnbLRZgyzqNpaNrntiTk2sEzpztR3TGKH91Z\ngE2Zjht2b5W3h8sz0TysxxUW3+OFVFZWoqamBlNTU4EfNEdomkZVVRX27NkDiqJQVFQEAGTFfpUx\nm824ePHiohE0wCFgNtOO8YpCSo3ffb4MkUJB0PevVCqxefNmTmGhntgpFUFnmEOXznf+RE5ODux2\nO6vxrytD0+gdZfY8LQAAIABJREFUm2V1DN3d3ZxaclJTUxEVFcVZLJqctWBEb0Z+gE1odrsdIyMj\nRCxaQJkkAZ26GUzOOoRE0ojmnXatQ/CX+RhDq6+vh1KpxKOPPhq0DJ2FiEQifO5zn8PLL78Mm83m\nfFwo4OOrFVJ82jOOT7rGUFNTg9LS0qBldIWGhiI5OXlVx9BahvWQpURDKOA7H2OuIeRyeVD3VVJS\ngtzcXLz22mvQ6XQYGhq6LvKKgGtZcotzixzB/h+2+nYXqVQqFBUVISSEe9GMQqGA3W73u9CAwA4i\nFhEIhHWJetIIAEEZQ1uuETSGXbIkUBRwtsP3KJpCoUBkZOS6Fouq2nX45ceduK80Aw9t3eB8vL29\n3VmtvZS7NokRKuBxdhdVVlbCbrfj9OnTAR83V5i8IkaUIFkga4NLly7BbDYvCrees9rwjeMqnBzk\nIzI2ASkz3QGPOrnD37BQT+y4mlt0rtP3KFp2djYA+MwterVuEHf95gK+8mK9T8eS1WpFf38/J2cR\n8ze+cKWbDW0jjhv0/ACdRePj47BarUQsWkC5JAEAUNfvGEUrLCzEwMAAcUF6oMMpFnl3Fh07dgwR\nERFBDbZeytGjRzE8POzMWmN46IYNSIsNw3/8pRn19fVBC7dmyMjIWPUxtII017wiiqKc7sVgwYyi\nnT59Gh9++CGA6yPcGgAiIiIgFosXnW9zk6KQI4rEqWbvuUU0TTubO/2BNKKtDEQsIhAI6xKmmSUj\nQGeRWq1etiY0hoTIUGwUx7ISi/h8PkpLS9etWDQ4YcS3TjQgLyUaT91dtGi1tb29HRKJBGFhrqGt\nsREhuLUoFW83DDlDO9mwbds2REVF4dSpU0E5fi5UV1cDuNayxWSBkNyi1aW6utoxPrprFwBAb57H\nl/5Qi5NNGjx5WwFurdyP6uoqTtXCbOno6IDRaAzaCENmQgQkiRG4wCK3iHH/eMotomkavznThSde\nv4zEyFC0jRicuSCeGBgYgM1m4+QsAhyjEVxXm9tGHMeiCEITGgAiFi2gOCMWoXyecxSNNKJ5p1Nr\nQFpsGGLCPLst9Ho9Xn75ZTzwwAOIjQ1OOL47br/9dsTExLiMooWF8PH1fTJcUjbCZDIFfQxOLBav\nmrNIZzBj1DCHQjfh1hs2bEB4eGCLjO5gRtH+5V/+BcD1IxYBro1oFEXhQEEKLvaMQ2/2XByiVqsx\nPj7u99cql8tBURQ5jywzRCwiEAjrksEJI0RRoQgP5fve2Asr4SwCgF0yEVSDU14/eBnKy8vR0NCA\n+Xl27V6fFczzNnz1JSVsdhq/PbLF5Wfrq8XkUHkmDGYr/nqFXYsHAGcj2gcffLAsN//eqKqqQkZG\nhvNGms/no6CggDiLVpmqqioUFxcjIjoWvzvXg73/WYVLvRN4+vAm/O3uHOzduxeDg4PL0hymVCoB\nIKh5FzukIlzsGce8zXtofnp6OkJCQtx+XXY7jX/+cwv+84N23FWSjve+sRMhfApv1Ht3DjBNaFyc\nRYDj5qW3txdWq5X1a9o0BiRGhiIpwAwpIha5EhbCR3FGrEsjGhlFc08Hiya048ePY3Z2Fo8++uiy\nHkt4eDgOHjyIN954A0ajcdFzB8syEDnt+HsvL//sOItahq+GWy9zE9pCNm/ejJycHHR0dCA7Ozuo\nzXbLjTsn54GCFMzbaFS1e17kDLSMISIiAllZWcRZtMwQsYhAIKxLBieNAbuKzGYzxsbGVkQs2i1L\ngs1O4xMWK/zl5eUwm83rzmHyz39uQdPQNH5xcBMkoshFz9E0jY6ODq8XetuyE7EhIQKv1HKr3K6s\nrERfX5/zxnYlYPKKKioqFrmnCgsL193PfS0xNzeHTz/9FCl5m1Hxn1V46mQr8tOi8fpXtuOezQ4H\nIuMEWzrWEQxUKhWEQqFLiHsg7JKJMGuxoWHQey4Xn8+HRCJxcRbNWW34+isqPP9JH/5mZzaePlSC\n5Ogw7M9PwbuNQ15FKOa9/BGLrFYr+vr6WL+mbUSP/LTogLNfiFjknjJJApqGpmGedzjFhEIhEbbd\nYLPT6B6d8RpuTdM0jh07hk2bNgV9/MsdR44cwczMDN55551Fj4fwedhgGwYvPAYdxuC6bcRiMSYm\nJmAymYL6vmxoHmZchtfEIjbXEIHAjKIB15erCHCIRTqdDnr9Nafo5g3xEEWF4kMvrWgqlQoURQUU\njE4a0ZYfIhYRCIR1iXrSFHBe0fDwMAAs+xgaAJRmxSNKKEB1BzuxCFhfIdev1Q3i+KUBfKUiF5WF\nqS7PDw0NYXZ21uuFHo9H4VBZBi72TKB/nF34LuAQiwCs6ChaW1sbdDqdS4hyUVERhoeHVyVwe71j\ntdnxsxfeg8lkgmo+HRnx4Tj+t9vw0iPbUJJ5bZU4Pz8fKSkpqKqqCvoxKJVKFBcX+xUW6okbc0Tg\nUcB5lrlFC51FBmYE77IGP7g1Hz+8vQA8nkOMuW9LBsZmLF7Ha7u7uxEaGsq5bZJrI5rNTqNda0B+\nanCa0AAiFi2lXBKPeRuNxsEpZyMacRa5MjBhxJzV7jXcuq6uDiqVCo899tiyBFsvZffu3cjMzMQL\nL7zg8txI1xXESwrw9EedrBpb2cJcV62Gu6hFo0dmQjhiw6+dR0dGRmAwGIIebr0QRiy6XprQGJjz\n7UJ3EZ9HYX9+CqradJizuh/tV6lUkMvliIry3frnifz8fLS3t8Nu9+58JfgPEYsIBMK6w2anMTxl\nQmZC4E1oAFbEWRTC5+HG3ESc7Rj1Oe6Uk5OD+Pj4dSMWNQ9P48m3r2B7biK+c8D9hZy3JrSF3L8l\nEzzKEcLLFqlUiuzs7BUVixihYWGIMkBCrlcDu53Gu43DqHz6LJ7+k2Pl/X+fOILXHr8RN+YmumxP\nURQqKipQVRXc3CImLDTYNxqxESHYmBGH8yxzixg3kM5gxuFjF3GpdwL/dWgTHt292B20R56EhMhQ\nvKn0fDPY3d2N7Oxs8PncxoW5ikV947Mwz9sDbkIDHGJRTEwMIiIC+3z5rLElKx7AtZBrMjLrHibc\n2tsYGhNs/dBDD63IMfF4PDz88MM4deoUtNprThG9Xo/W1lbcsncXOnUzeLcxeMIOc121GrlFrcPu\nw60B39cQgVBaWooTJ07gK1/5yrLtYzlgSkOWjqLdsjEVhjmrx4WGQMKtGRQKBUwmE6sWToJ/ELGI\nQCCsO7R6M+ZtdFCa0ICVEYsAYLc8CUNTJp+V0xRFoaysbF2IRdOmeXzlRSXiI0Lxqwc3Q8B3/7HG\n9kIvNTYMFXnJeL1eDauPjBYGiqJQWVmJ06dPr1hOVHV1NcRisct4TlFREQD4NYp2pk2HH7/bvOLZ\nS9crNE3jg+YRfO6X5/CN4yqE8HnIsfZj48aNuGubwuuKf0VFBdRqtccwaH/o6+vD1NTUsoww7JQm\nomFwCgYfmWnZ2dmYmJjA5V4N7vufT9A7NovffaEM95a6ui9DBTzcuSkdH7ZoMW10/749PT2cR9AA\nIDk5GdHR0azFojaN4wZdEWATGuAQi4iryJW4iFDIU6IW5Rb19/djZmZmlY9sbdFxtZVPluzebaHX\n63H8+HE8+OCDyxpsvZSjR4/CZrPhlVdecT5WW1sLmqbx8O37oEiLwX9/1Okz24wtq+Usmp2zond8\nFoXpi7+3KyEWURSFQ4cOISEhYdn2sRww5+il59sduSLEhofgvcsal9eMj49jYGAg4M8r0oi2/BCx\niEAgrDsGJxwhjZlBaEIDVmYMDQD2yJIAgFUrWnl5Oa5cueISSPlZwm6n8Z1XGzA8ZcJvHi6FyEsw\nbXt7O6KioliNsxwqy4RWP4eznb6/zwyVlZUwGAyoqalh/Rp/8ZRXBAAbNmxAVFSUXyv2z5zuxPOf\n9KFpaDpYh/qZhKZpVLXrcNdvLuCxF+oxb7PjVw9uxrtf3Ya2xjoXt5c7liO3aDnCrRl2SEWw2Wlc\n7Jnwul12djYA4PDP38HsnA3HH92Girxkj9vfV5oBi82O95qGXZ6jaRrd3d2cm9AAOOutl650e6Jt\nRA8+j4LUww06F4hY5JkySQLq+yZhs9OkEc0DHboZiOPCESkUuH3+pZdegtFoxGOPPbaix1VQUIDN\nmzcvakVjPu+2bbsB362Uo3/ciDfqg+MEWi1nUduIHjQNt86i8PDwFbveu56IjIxEenq6y/k2VMDD\nLYWp+LBF69Iy29DQACDwfCaFQgGAnEeWEyIWEQiEdYd60hGYGAxnUWRkJGJiAl+NZsOGREeN9VkW\n2SHl5eWw2WzOD+TPIv9T3Y2PWnV48jaFc8TBE+3t7c6aVV/sVyRDFBWKVy6xH0Xbt28feDyeX6No\nr9YNOkcP2NDe3g6tVuuSVwQ4bpL9CbkemjJBOeDIOTpRy/7rXkpTUxNuvvlmjI35/h29Hvm0exwH\nf/spvviHWozPWPAf9xfj1Ld3485N6VAq62E0GlmJRXl5eUhNTQ1qbpFKpQKfz8fGjRuD9p4MW7Li\nERbCwwUfo2hT/Kt/h3odXn/8xkVZTe4oEsdAnhLl9gZzfHwcBoPBL2cR4BiNYOssatUYkCOKRFhI\nYO2YABGLvFEuiYdhzor2EQNpRPNAp9bgMdyaCbYuKSlBWVnZCh+Zw11UV1fndHFcunQJcrkc8fHx\n2JefjJLMOPzq406PGTVciIqKQmxs7Io7i5o9NKF1dHRAJpOBxyO3zu6QyWRuz7e3FadhZs7qssgZ\naBMag0gkQmJioldnkd1O4/kLvdAZzAHta71CfuMJBMK6Y3DS4bYRB0EsysjIWJGASYbd8iR82j3u\n82KMCbmuq6tbicNacS50jeEXp9px56Z0fGG7xOf2XCpvQ/g83FuagdNtOowa5li9Ji4uDjfccANn\nsejkZQ2eeP0yfvoX9hZqRmBwJxYBjvEOrs6i96/axMsl8Xi3YRgmi38X+2+88QZOnTqFp556yq/X\nr1WUA5M48rsaPPi/FzE4acS/3l2EM9+twKGyTOfoI/Nz2b17t8/3W47cIqVSiYKCAoSFhQXl/RYi\nFPCxNTvRa27ROw1D+Ldz4wCABxVC5CT5dulQFIV7SzOgHJhyGa9l2gX9cRYBjpuXvr4+VqOhjia0\nwEV/mqaJWOSFsizHeE1d/wRycnIQGhpKcosWYLXZ0TM6C7mH7Kza2lo0NjauWLD1Uh544AHweDy8\n+OKLoGkaNTU1uOGGGwA4/pa/W5mH4WkzjtcEJz9GLBavuLOoZViP+IgQpMUuPo9yuYZYj0ilUrdO\nzhtzExEfEYKTTYtH0VQqFTIyMiASiQLet69GtE97xvHjP7fg6Q/ZLR4QFkPEIgKBsO5QT5qQEiOE\nUBDYKrJarV6xvCKGXbIkmOZtqO+b9LqdWCxGWlpaUHOLOrQGTBktQXs/f9FMm/D14yrkJkXh3+/d\n6POi2WQyob+/n9OF3qGyTFjtNN5Usr9QraysRG1tLSYmvI/qMGimTfjBW03g8yic7RjFxCy7721V\nVRXS09M9Oi6Kioqg0+kwOsp+jO69Jg02imPx9wfyYJiz4i9XXDMG2MD8vj377LNBzeNZLbp0M/ib\n52tx77OfoFWjx5O3KVD9D3txdFsWQgWLL6Gqq6tRUFCA5GTPY1cLqaiowNDQEOtRKV8olcplbdHZ\nJRWhSzcDzbRrlfXvzvXgm680YGt+JmJjY6EbZu9Ou2ezGDwKLn9rjFjkr7NIJpPBZrMtamdzh948\nD/WkKSjh1nq9HiaTiYhFHsiID0dabBhq+yYhEAhII9oS+saNsNjskCe7/1185513wOfzVyzYeilp\naWk4cOAAXnzxRQwMDGBkZMQpFgHADmkituUk4Ndnuv1ecFhIRkbGijuLWjR6FKTHLLqusFgs6O3t\nJWKRF2QyGbRaLQyGxS7pED4PtxSl4aMlo2jBCLdmyM/P9+oseuPqZ8tbKvWauIa93iBiEYFAWHcM\nThgDzisCHM6ilRaLbsxNhIBHoZpFnk55eXnQxKKZOSvu/s0FPHVy9efCf326C0aLFb89usVjrsNC\nurq6QNM0pws9aXIUyrLicaJukLXzo7KyEna7HadPn/a5rd1O47uvNWLeZsczD26G1U67rLy5g6Zp\nVFdXu80rYuDaiDY4YUTj4BRuL07DtpwEZCVG+DWKRtM0amtrUVlZCYFAgCeffJLze6wl7HYaj/yx\nFrV9E/iHm/Nw9om9eGRXjttRpfn5eVy4cMGj28sdzLbBGEXTaDTQarXLEm7NsEPqWAG+0DXufMxu\np/Hv77fiqZOtuHVjKv745RuQnZ3tU6BZSEpMGHZIRXhTOQT7guptRmxkcpC4wrYRrX2ECbcOThMa\nACIWeYCiKJRJElDbOwGapkkj2hI6fTShKZVKFBYWrtjouzuOHDmC/v5+/OIXvwAAbN261fkcRVH4\nTmUexmbm8MdP+wLe10o7i+ZtdrSNGFzCrbu7u2Gz2YhY5AVPjWgAcHtxGmYtNlS16wAARqMR7e3t\nQfu8UigUGB0dxfj4uMtzs3NW/PXKCLZKEmCetwc0Zr9eIWIRgUBYd6gnTQHnFdntdgwPD6942GGU\nUIAtWfE418Eut6i9vR3T04EHFr/fpIHRYsPpNh1s9tVry6JpGh+36lAhT0YuizEXwP8Wk0PlmegZ\nnXVWPfti69atiImJYTWK9vsLvbjQNY7/d3sBPleUCllyFN5t8L2C2tHRgZGREa+iBNdGNEakunVj\nmqONpSwTNb0TPlv3ljIwMIDR0VHceeed+Pa3v43jx487Q5evR2p6J9A3bsSP7yzE1/ZKvQqTSqUS\nMzMzrPKKGORyedByi5Yz3JohPzUaoqhQnL8qVM/b7Pjua404drYHR7dl4ZkHSxEWwkdOTg5nV9n9\nWzIwNGVCTe81V153dzfS0tL8rqBnKxa1aRwZJfmpwWlCA4hY5I1ySTxG9GYMTZlQWFiIvr4+zM5y\nO9d8VunQzoCi4DZonaZp1NfXL+vfOBvuvvtuRERE4Nlnn4VQKMSmTZsWPV8uScAeeRJ+W93tsz3R\nFxkZGRgZGYHVag3ofdjSMzoLi9XuNtwaWN4mtOsd5nzrTiy6ITsBiZGhzla0y5cvw263B9VZBLhv\nRPvrlREYLTb8wy15uDEnEX/6tJ910y3BARGLCATCumLeZodm2oTMhMCcRTqdDlardcWdRYAjt6hF\no/eZp8PkFtXX1we8zzeVavAoYGLWgoZBduLJctA8rMeI3oz9CnajPsC1Cz25XM5pX7dtTENkKJ/1\nSpRAIMD+/ftx6tQpr26kVo0e//HXdhwoSMHh8kxQFIW7StJR2zcJ9aT39jpfeUWA40Y1Li6O9Yr9\nycsabMqMc/5N3L8lAzzKEbzNBSYfq7y8HE888QQSExPxve99j9N7rCVO1A4gOkyAzxX5vvGvrq4G\nAE5iEUVR2Lt3b1ByixixqKSkJKD38QaPR2F7rgjnu8YxO2fFI3+sw5uqIXzngBz/clch+DyH0y07\nOxt9fX2w29lfkFcWpCJKKFg0itbd3e33CBrgCD6NjY31OebXOmJATJjAJaPEH4hY5BtnblHfJGlE\nW0KHzoDM+AiEh7q6F4eGhjA6OootW7aswpFdIyoqCvfeey9sNhs2b96M0NBQl22+W5mHKeM8fn++\nL6B9icVi2O12jIyMBPQ+bGkediysuQu3BrhfQ6wnmHO1O3FewOfhlqJUfNyqg9FiDVq4NYO3RrQ3\nlGpsSIhAWVY8vrhDgqEpEz5q1QZlv+sFIhYRCIR1xci0GXYaAY+hMXP0qyEW7ZEnAQDO+RhFY9pS\nAh1FG5ww4mLPBP5mZzYEPAoft+oCer9AON2mA0XBax33Utra2pCZmYnIyEhO+4oUCnDHpnScvKxh\nvUJaWVmJ/v5+58XlUszzNnzrlQbERoTgZ/cVO0fJ7ipx/B79udH7KBqTV8RYvt1BURSKiopYOYv6\nx2fRNDSN2zdeu7lNiQnD3rxkvFGv5rQCV1tbi5CQEGzatAmxsbH44Q9/iI8++sivhrjVZto0j79c\nGcFdJelub9yWUlVVhfz8fKSkpHDaT0VFBYaHh1m3dnlCpVJBJpMhOjrwUSpv7JSKMDYzhzueOY9z\nnaP46b0b8fX9skUjkTk5OTCbzZxu8MJD+bh1Y+pVB6PDRdDT0xOQWERRlMeGnoW0afRQpMUEJTCY\niEW+yUuNRrRQgNq+CdKItoSOEc9NaMyiz2o7iwDHKBqARXlFC9mYEYubC1Pwu3M9AWXEMM7tlcot\nahnWQyjgIUe0+Fqhvb0dKSkpiI2N9fBKQmRkJNLS0jyK87cXp8M0b8OZtlGoVCrEx8djw4YNQdn3\nhg0bEBYW5uIsGpoy4dOecdxbKgZFUbhJkQJxXDj+cKEvKPtdLxCxiEAgrCsGJxzOjUDH0JiLl5Ue\nQwOAgrQYJEaGulSRLiUxMRE5OTkBi0Vvqxxf6+dvlKBckrCqYtHHrVpsyohDUrSQ9WsCaTE5XJ4J\n07zNaZ/2RWVlJQB4FEj+46/taNca8J/3FyMh8tqKbGZCBEo3xOEdL6NoNE2jqqoKe/bs8XljyzSi\n+XKsMF/XrcWLb24PlWdCZ5hDVTv7kOza2loUFxdDKHT8bB5//HFIJBJ873vf4+QyWQu82zCEOasd\nh8t8X8xarVacP3+ek6uIIVi5Rcsdbs2wQ+bILRqaMuHY0TI8sNX1+8NkDHHJLQKAe0szMGux4VSz\nFiaTCUNDQ343oTFIpVKvYpHdTqN9xABFEJrQAIdYFBYWRm4qvcDnUSjNikdt3wRyc3MREhJCcosA\nWKx29I7NQuYlr4jH47mMfa0G+/fvxze+8Q18+ctf9rjNtw/IMWOx4thZ/4sOmMW4lcotah7WIz81\n2tlwyUCa0NjhTZzfmp0AUZQQJ5uGneHWwWr04/P5yMvLc3EWva0aAk0D9252XKfzeRS+sD0LNb0T\naBnWB2Xf6wEiFhEIhHWFetLR5BPoGBpz8bIaziIej8IumQjnOscWBcK6I9CQa5qm8aZqCNtyEpCZ\nEIH9imS0aw1O0W0l0RnMaFRP4yYOI2g0TQd0oVeSGQd5ShReYTmKlpOTg9zcXLdi0bnOUfz+Qi++\nuF3i1hl1V4kYbSMGtI24v4jp7Oz0mVfEUFRUhMnJSafTwRMnL2tQuiEO4rjF4um+/GSIooSsv267\n3Y66ujrn6CMACIVC/OQnP0FDQwNefvllVu+zVjhRNwhFWgyKxL5FBJVKBYPBwCncmkEmkyEtLS0g\nsWh8fBz9/f0rIhaJ48Lx7/duxInHbsSBAvcuKn/Foq2SBGTEh+MNpRp9fX0A/G9CY5DJZOjv74fF\n4t7doJ40YdZiC0oTGuAQi9LS0lal1vx6olwSjw7tDGYsduTl5RFnEYC+8VlY7TTyPIhF9fX1yM/P\n5+yQXQ4EAgF++ctfori42OM2+akxuKM4Hc9f6PM5Mu+JlXQW0TR9tQnNVeglYhE7pFKpR2cRn0fh\n1o2p+Lh5GE1NTUEvY1jaiEbTNN5QqrFVkoANideu9w+XbUB4CB9//KQvqPv/LEPEIgKBsK4YnDSC\nRwGpAeZTDA0Ngc/ns67JDja75UkYn7WgReN9daS8vBwDAwPQ6fxzAykHptA7Not7Sx0XbfsVjhvE\nM+0r7y6qanO4XPblsx/10Wq10Ov1fl/oMYHPjYNTztYkX1RWVuLMmTOLblAnZy347muNkCZH4fuf\ny3f7utuK08DnUXi3Ydjt82zyihjYNKL1jM6gRaPHbcXpLs+F8Hm4b4sYZ9p10OnNPvfX2dkJvV6/\nSCwCgAceeAClpaV48sknMTfn3w3DSnNlaBpXhvR44GqelC/8yStiCEZuUUNDA4Dg5T/44sGtG1CS\nGefxeYlEAgCcQ655PAr3lmbgfNcY6i47VogDdRbJZDLY7XaPx8JklOQH0VlERtB8UyZx5BbV9086\nXZDrnY6rTWgyD2NoSqVy1fOKuPKtm2Sw2Oz4n6puv16fmJgIoVC4Is6i4Wkzpk3zLnlFExMTGBsb\nI2IRC2QyGUZGRmAwuL9Wur04HQbtAObm5oL+eaVQKNDb2wuTybEg3DA4hZ7RWdy3ZfGCbmxECO4t\nFePthiFMzPo/IrmeIGIRgUBYV6gnTUiLDUcIP7DTn1qtRnp6Ovh833kmy8HOq+Mg1T5G0Zibd3/d\nRW8o1QgL4eHWq5k22aJI5Igi8dEqjKJ91KpFemwYp4rrYLSY3FuagRA+xTrourKyErOzs/j0008B\nOFa4fvBWEyZmLfjlAyVuq9cBQBQlxE6pCO80DLsVDqqqqpCWluZsHfEGIxZ5yy1639mClur2+UNl\nmbDZabyh9L2qy/x+LRWLeDwefvazn6G/vx/PPvusz/dZC7xaN4hQAQ93l7BzDVZXV0Mul/stElRU\nVECj0XjMufIFE269UmKRL8LCwpCens7ZWQQA924Wg6aBd885AlCD4SwC3Ieu2u00jp3tgShKGHRn\nEcE7JZlxCOFTqL0ack0a0RxNaDwKbls+NRoNNBrNmsgr4kJOUhTuKxXjxZp+aKZNnF9PURTS09NX\nxFnUPHQ13DqNhFv7C5Ol2N3tXhwsy4pH2PQAgOB/XuXn54Omaee5/k3lEIQCHj630fV8/MXtEsxZ\n7Th+aSCox/BZhYhFBAJhXTE4YQw4rwhwOItWYwSNITk6DIq0GJ+5RaWlpeDxeH6JReZ5G95rHMYt\nhY6mIoZ9+cm42O1oRFopzPM2nO8awz5FMqcRj2CIRQmRoagsSMVbKjXmrDaf2+/duxd8Pt85ivZ6\nvRp/uTKC71bmodCNxX0hd5WkY2jKBOXA4sY5Jq+ooqKC1defnJyMpKQkryv2713WoFwSj7RY938P\nuUlRKJfE47W6QZ+ul9raWoSHhztbSRZy0003obKyEk899RSmpqZ8HvtqYp634W3VEG4pTEVsRIjP\n7W02G86ePeuXq4gh0NwipVKJDRs2QCQS+X0MwSYnJ4ezswgAJKJIlGXFo+ZyK6KiopCUlBTQcXgT\ni16vV6M9JTOPAAAgAElEQVRhcAr/+Ll8jwIuV4hYxI6wED42imNRdzXkmqZpt7XX64lOrQFZiZFu\nfxcZQfh6cxYBwNf3yUDTNJ457b2V0BMZGRkr4ixq0ehBUXBZjArGNcR6gTnfehpF4/EoJFs0oASh\nSM8KzDW6lIWNaHNWG95tHMbNhamICXP9HJelRGOnVIQXL/ZjnkOJx3qFiEUEAmFdMThpDDivCFh9\nsQgAdstFUA5MYsaLaBMVFQWFQuGXWPRxqw56sxX3bVkc4r1fkQKLzY7zXWOc39NfanonYLTYsJ/D\nCBrguNALDw9HZmZmQPs/VJ6JSeM8Pmrx7aiKjY3Ftm3bcOrUKfSPz+LH7zZjW04CHtnl++KosjAV\nQgEPb6sWj6J1dnZCo9FwysUpLCz06Czq0hnQNmLAbW5W3RZyuHwDesZmUds36XW7uro6lJaWQiAQ\nuH3+pz/9KSYmJvCzn/2M3cGvEh80j0BvtuJwObvfl8bGRuj1+oDEIqlUCrFY7LdYxISFriWys7P9\nchYBDiff2PAA0jOzAs7+SUxMRHx8vMvNy7RxHj/7axvKsuJxb2lwzuMmkwnT09NELGJJuSQBl9XT\nyJU5bsLXe25Rh9YAWbLnJjSKolBSUrLCRxU4mQkReHDrBrxaO4iBce5Zh2KxeGWcRcN6ZIsiERG6\n+DOsvb0dAoHAmcVG8AzjBPVWKjCv60FIkgRVHeNB3bdM5mjlbGtrw5k2HaZN817P7V/aIYFm2oxT\nzdqgHsdnESIWEQiEdcOc1Qatfi4oziK1Wr0qTWgL2SNLwryNxsVu7x+6TMg110yUN5VqpMaEYXvu\nYsdCmSQe0WECfNzK/UP21KlT+OCDDzi/7uNWLcJCeLgxN5HT69rb2yGTycDjBfZxt1MqQnpsGF6p\nZWdbrqysRH19Pb76f1Xg8Sj816ES8Hm+b3yjhALcVJCCk02aRStejJDARZQoKipCS0uL25/7ycsj\noCi4tWgv5NaNDleZt6/barVCpVK5jKAtZPPmzXj44Yfx3//93ytWg+wPJ2oHkZkQjhtz2P2e+fNz\nWQpFUaioqMCZM2c4/40aDAZ0dHSsufGUnJwcqNVqv3KqbitOg216BLxY9+ORXHHXiPZfH7Zj0mjB\nP99VGLQwaiZMnohF7CiTJMBis8MUnrTuG9HmrDb0jRsh99KEJpfLER0dnHHJleZre6Xg8yj898fc\nR20ZZ5G/mW5saRnWu3X+tre3O1v7CN6JiopCWlqaR2cRTdPobruCuEw564ZZtoSHhyM7Oxutra14\nvX4IydGOsX5P7M1LRlZiBP5wwb9FjfUEEYsIBMK6YYhpQosPzFmk1+sxMzOz6s6iLZJ4hIfwcbbT\nd27R6OgoBgbYz2ePGuZQ1TGKuzeLXUSOED4Pe+RJON026rONbSFdXV2455578Pjjj7N+DeC4wPi4\nVYed0iTO4yLBajHh8yjcX5aJ811jUE/6Xh2trKwETdO4dOEsfnLPRqTHsRco79qUjolZyyLnVnV1\nNVJTUznlJhQWFsJgMGBw0DVr6b3LwyiXJCAlxnvQe0SoAHdsSsf7TRrozfNut2lubobJZPIqFgHA\nU089Bbvdjh/96Eesv4aVpH98Fp90j+PQlkzwWAh7gOPnkpubG7BwXFFRAa1W6xx5YEtjYyNoml5z\nYlF2djZomuZ0zmGIFvJhm9ZinBcPizXwEYGldc7Nw9N44WI/jmzL8jkWygUiFnFjS1Y8AECpNkAu\nl69rZ1HP6CxsdtpjuHV9ff2a+xvnQkpMGD5/YxbeVg2hS8euKIJBLBZjbm4OExMTy3R0Dqfh0JTJ\nJa8IIE1oXHEnzjP09vZienoaN5RtwdmOUY/XFP6Sn5+P5pZWVLXrcPdmMQReskl5PAqfv1GCuv5J\nNKmng3ocnzWIWEQgENYN6qtiUaDOIsYZsdpikVDAx425iT5zi5ib+I8++oj1e7/bOAybncZ9Hmy8\nNylSMDYzh6Yhdh+ydrsdX/7yl2E0GtHX18fpJrJDO4OhKRP2K7g1z1ksFvT29gbtQu/g1XG81+t9\n5ycIUqTghUUiWd+OOze5to15oyIvGbHhIc5WNK55RQxFRUUAXEOuO7QGdOpmcEcxu5vaw+WZMM/b\n8edG9y1tnsKtlyKRSPC1r30Nf/jDH9bkjeFrdWrwKOD+MnbCj91ux7lz5ziNBnrC39wilcoRBL3W\nxtCYFjN/couGh4dhm7fAFpWMqiC0LspkMgwMDMBsNoOmafzonWbERYTiOweCewNIxCJuJESGQpoc\n5cwtWs/OIqYJLc9N0LpOp4Narb4u84oW8vieXISH8PH0R55HlNzBCPHLmVvUrLkabr2kCc1ms6Gr\nq4uEW3NAJpN5dBYxzZ3337wTFpsdHwZ5BEyhUKC9vR3zVivuK/X9OX6wLAORoXw8/0lfUI/jswYR\niwgEwrph8KojJNDMIuaiZbXH0ABgt0yEvnGj1yyA0tJSbNmyBU888QTrEaA36tUozoiFzIMtfo88\nCTwKrEfRnnnmGZw7dw7f+ta3AABnz55l9TrA0YIGOIK1udDd3Q2bzRY0sSgzIQI7pSK8VqeGzYuj\nanbOiu++3oR46RZMd9Zzts+HCni4dWMqPmgegcniuFgdHh7mLEowjWhLb8Leu6wBjwJuLmI35rMp\nIxZ5KdF41UMbXG1tLeLi4pxNKN74p3/6J0RFReH73/8+q32vFDY7jdfr1dgtT/IY+L2Uy5cvY3Jy\nMqARNAbGncRVLFIqlUhOTkZ6OjdBcrlh8j38yS1iBKbEtEy8oQz8BlEmcwTs9vT04C3VEOr6J/G9\nW/JYBZhzgYhF3CmXxKOuf9JZe200cs+0WQm++IdL+PG7yydmdWpnwOdRyBZFujzHhFtfz84iAEiM\nEuLLO7Nx8rIGzcPsnRzMotxyji8zuTVLnUUDA46ad+IsYo9UKoVGo8HMzIzLcyqVCnw+H/fftB3i\nuHCcbAruKFp+fj7mLXPICTe5FV6XEhMWgvu3ZODPjcMYm+E+Mr1eIGIRgUBYN6gnTQjhUz5Hb3yx\nVpxFALBb7mgLqvYyisbn8/Hyyy/DbDbj6NGjsNm8N3q1avRo0ehx72bPX198ZCi2ZMXj4zbfK/+d\nnZ34x3/8R9x+++34+c9/jtjYWE5i0ek2HTaKYzn/3JajxeRQWSaGpky44CXc+1/fa0H/hBF/++Dd\nGBpS+9Xyc+cmMYwWGz5s1ToFBK5iUXx8PNLT0xc5i2iaxsnLw7ghOxHJ0ey+nxRF4XB5JhrV02jV\n6F2er62tRVlZGSvXU2JiIr7//e/jz3/+M86dO8f+i1lmznaMYkRvxuEy9kHo1dXVAALLK2Jgcouq\nqqo4iYtMuHWwcneCRXp6OkJDQ/0Si5ja5du2b8LpNh0mZy0BHQvT0HO5uRX/9n4bNmXG4eCWwALv\n3aHRaCAQCNZUK91apywrAQazFfEZOWu2EW1y1oLqjlG8fGkAU8bAfhc90aE1QJIYAaHAcxPaWnMP\n+sMju3IQEybA0x+yzy5abmfRq7WDeP6TPjy4dQOSooWLniNNaNxhFo2Y8/hCVCoV8vPzERERgduK\n03CucxTTxuCNokUkbwAAbIqaZf2az2+XwGKz43gN95Hp9QIRiwgEwrphcMKI9LhwVkHD3mDEorWw\nmp8tioQ4LtznKJpcLsczzzyDM2fO4Oc//7nXbd9UqiHgUbizxLsYtl+RguZhPUamzR63sdls+NKX\nvoSwsDAcO3YMfD4fu3btct5o+2Ji1gLlwCRnVxGwPBd6lYUpiIsIwYk69y6bD5pH8ErtIL6yJxeP\nPXQPAEeoN1duyE5AakwY3m0YQlVVFVJSUvyywi8d72gbMaB7dBa3sRxBY7hnsxihfB5OLHEXmc1m\nNDU1+RxBW8g3v/lNiMViPPHEE8seWsqWV2oHkBgZiv0K9m17VVVVyM7OxoYNG4JyDExuEdsbZrPZ\njObm5jXpOODxeJBIJH6NoXV3d4PP5+OLN2/FvI3Gny+7H39kCyMW/eEvFzE+O4d/vauQdSYVFzQa\nDVJSUgIO019PbM1OAACYIh2fpWtxPLWmdxw0DVisdlYjyP7QqZvxGG5dX1+P3NxcxMXFLcu+V5LY\n8BA8ujsHH7XqoBrw3rDJkJqaCoqilsVZdL5zDD94qwm7ZCL8y12FLs8TsYg7zPnWXW7RwubO2zam\nYd5G41TLSND23Wp0/A0lWtk39eYmRWGPPAkvXOwPSkbeZxHyiUYgENYN6klTwOHWgGOFKzExEeHh\ngbeqBQpFUdgtT8Kn3eOL2rPc8aUvfQn3338/nnzySdTV1bndxmqz4+2GYezNT0ZCZKjX99t/VcD5\nuM3zKNovf/lLXLhwAb/61a+c4tru3bvR0dGBkRHfFwln2nSgaXDOKwIcF3qpqamIiXENrfQXoYCP\nu0vE+LBZ6+J40OnN+P4bl1EkjsG3bpJDIpFALpf/f/bOPDqq+n7/rzuZSSb7vq+TBZIQdgIkQNgk\nLgSpK1apuPy0rUtt69eiXVTkq7a2Wm1rRW3V9gtVXKsC4oKyb9lI2JKQIfu+7/vc3x/hxoTMJLMl\nJHBf53COZ+bOnYshM5/7fJ7neZslFikUAtfPCuC7nGq+27vP5L4iCWkimk7X/29j54UI2rVGRtAk\n3B1tWTXNl/+eKKOr93tn2okTJ+jt7WXevHlGn8vBwYFNmzZx9OhRPvnkE5OuYyyoaeliz9lqbpwT\niK3SuGWRTqdj//79VnEVSZjaW3Tq1Cl6e3snpFgE/VE0c2NoISEhzAz1JMbfhY8yLLtJdHd3x83d\ngyMnTnNbfAgzgsbmpruiokKOoJlIkLs9vi52lPa5oFQqJ2Rv0WFtHQ62NswKdmPbsWKrC9ydPX0U\n1bUZjHxnZGRM+r6iwdy9SIOHoy0vfmWcu0ilUuHn52d1Z1FeVQs/3ZpOhLcTr94xB5WeMuTc3Fzc\n3Nzw9va26ntfzkRERAAM6y2qrq6mvLx8QCyaEeRKsIe91aai9elEvtS2oXZ2o6RAf2eSIe5eFEZ1\nSxdfnLJuLO5yQRaLZGRkrhhKG9otLreGfmfRRIigSSyd4kVrVy+ZxY0jHicIAm+88QZ+fn7cfvvt\nejPlB/JrqWnpMqocMNLHiWAPe749qz+Klpuby29+8xvWrl3LHXfc8f31XrjBNiaK9m1ONT7OdsSZ\nMbVorKaYrIsPprtPxyeZ39/EiqLI/3yYTUdPHy+vmz0gOiQnJ7N3716zRohfPzOAzvpyKsrLzC5R\nnjZtGh0dHRQUFPRH0E5WkBjhhaeT3egvvoh184JpbO8Z6HcABkRHU5xFABs2bCA2NpYnnniCnh7r\nTkQxlU8yS+nViayLNz6adOrUKerr661Sbi0RHh5OcHCw0WLRRC23lggPDzfbWSQVZN80J5Cskkby\nq4d/VhmLKIoo3PwRGyv41dVj5xCQxSLTEQSBeWEeZJa2TtiJaIfya5mv8WBDYigFtf0TE62JtqYV\nnQhT9ExCq6uro7CwcMIKwubgaKfkgWURHMyv5YiR/y8DAwOt6iyqbunk7rdTUdva8Nbd8bio9feX\n5eXlMWXKlAkX853IODs74+fnN0wsuvj7ShAEVk8P4FB+rcVRY4CD+bVUt3QRETWVs2fPmvTapChv\nwr0c5aJrA8hikYyMzBVBR3cfta3dFpdbw8QTixIjvbBRCKNG0aB/l33r1q3k5+fzyCOPDHv+44wy\n3BxULI8efSdNEARWRvtyML+Wju6hPUh9fX3cddddODg4sGXLliGLrdmzZ+Po6DiqWNTdq2N/Xg0r\non3Mio2MlVgU4+/CzCBXtqeWDOwy//tIEfvzavjN6lgifb5f9CcnJ9Pe3s7hw4dNfp9pAS64NPTv\nvporSgyeiHa6vJmCWtMjaBKLI70IdLPn/UERvNTUVHx9fU0ue1cqlfz+978nLy+Pf/7zn2ZdjzUQ\nRZHtqSXMCXEj0mf0QkwJa/YVSZjaW5SRkYGrq+uAsDLR0Gg0NDQ00Ng4soh9MefPnx/Ynb5+VgA2\nCoGPLSi6/jy7gi4HH+zaq3EfxS1pCZWVlbJYZAbxoe6UNXYQPiV6wjmLqpo70da0kRjhybVx/rg7\nqNh2rMiq7yFNQtMXQ5P6ii4nZxHA+oWh+LrY8dLXuUZ91gUFBVnNWdTR3cd9/0qjvq2bf26YR6Cb\n4Q3EsVpDXO5ERkYOi6FJYtGsWbMGHkuZ4U+vzjpRtI8zSnG1V7Fg9nSTu88UCoENiWFkFjdyosS0\n76srAVkskpGRsQp9OpED52omTAfJxZRemIRmDWdRaWnphJiEJuGiVjE72I39I5RcD2bp0qU88cQT\nvPXWW3z44YcDjzd39vDV6Uqunxmgt2hTHytjfOjq1XFYOzQj/tJLL3H06FH+9re/4ec3NPKkUqlY\ntGjRqL1FqYX1tHT1mtVXVFtbS11dHdHR0Sa/1hhujQ8mt6qFrNImzlW18Nyus6yI9mH9gqH9NcuW\nLUOpVJoVRRMEAcf6PBSObjj7mteLExsbC/RPRNt5sgIbhcA100yLoEkoFAK3zAviwLlaSur7f59S\nU1OJj483a+c1JSWFxYsX8/TTT+t1uY0H6UUNaGvauC3etP+/+/btIzQ0lLCwMKtez7Jly6iurjZq\nZzQjI2NClltLSCKWKVG05uZmamtrB8QiH2c1SVFefJJZNuIEQkO0dvXy7M4zBIZoqKsqp6Ojw+Rz\nGENvby81NTWyWGQG88L6e4scfUM5f/78mP2MzEFyviRGeKFW2XDLvGC+Ol1FdbPhnj5TyatqRWUj\nEOZpeBLaRHUPmotaZcNDK6JILWxgrxGbXNZyFul0Ij/fnkl2WROv3DZrxEhqW1sbpaWlslhkBlFR\nUXqdRWFhYbi7uw88Ni3AhVBPB4ujaC2dPXx5upI1M/2JmxZLbW0ttbXG9xYB3DQ3CGc7Je8cMj06\nfbkji0UyMjJW4T/HivjRP4+z66T1yuqsSWlD/wI0yMLOou7ubqqrqyeUswj6p6KdLGui3kg779NP\nP838+fO57777KCnpd4rsyq6gq1fHjUZE0CTmazxwtLUZMhXt7Nmz/O53v+OGG27gtttu03+9SUmc\nOnVqxC/0PWersVUqWBxl+nShsS6mXDMzALVKwdajRTzy3gmc7JT84aYZw27cnZ2dSUxM5MsvvzT5\nPURRpOxMGurg6WYvppydnQkNDeXUqVPszK5gUaSXRe6KW+YFIwjwQXopLS0t5OTkmBxBkxAEgRde\neIGqqir+/Oc/m31NlrA9tQRHWxuT3FaiKLJv3z6ruookjO0t6u3tJTs7e0LfRGo0GsA0sUiaoDPY\nLXXT3CAqmjo5et70+M9fvz1HVXMXG65NGHJ+a1NVVYUoirJYZAbRfs442SnpcQ6ccBPRDmtrcbVX\nEXNhpPrt80Po1YnDiv4t4VxVCxovR719aenp6YSFheHp6Wm195sorJsXTKinAw9ty2DXKCPUg4KC\naGxspK3N+ClX+nj+i7N8ebqK366OJXmUTZO8vH5XrywWmU5kZCTl5eVDfl6Dy60lBEEgZYY/h7V1\n1Fkwuv6Lk5V09vSvXaUNQlM/R5zslNwyL5idJyusKgZfDshikYyMjMXodCJvX8j6vrFfOyHdRSUX\nnEXBFjqLKir6FzUTUSwSRThgpLtIpVKxbds2ent7Wb9+PX19fXyUUUqEtyMzg4zvB7JT2pA0xZtv\nz1YjiiK9vb3cddddODk58dprrxl0PUg32gcPHtT7vCiK7MmpIjHCEwdbpdHXIzHWYpGLWsV10/35\nML2UMxXN/OGmGcPG7kokJyeTmZlJdbX+bidDnD9/nsqKciJnzufTE+ZPhJo2bRrpJ7Iprm8nZbpl\nN7OBbvYsjvTiw7QSjqemIYqi2WIRQEJCAjfeeCMvvPCCyf9/LKW1q5edJytImRGAo53x/8bOnDlD\nbW3tmIhF0nS17777bsTjcnJy6OzsnNBdJpLgY0pvkXSs5CwCuCrGF2e1ko9MnESVX93KPw8UcMvc\nIJIT+qMP+ib0WAPpe0EWi0xHaaNgdogbVYr+TYGJ1Ft0WFtHQrjnwATVMC9HlkR58e7xYrOcbvrI\nq2odsdx6Iv+OW4KtUsF79y9kip8zD2zL4H93nDE4pENab1niLvq/o0W8eaCADQmh3LMobNTjpTWE\nOVNIr3SkiWiSON/S0sK5c+f0bm6snh7QX0592vCglNH4MKOUcC9HZge7ERMTA2BybxHAnQmh9OpE\nth0rNvtaLkdksUhGRsZiDuTXcr6mjYRwT7JKmzhWUH+pL2kYpQ0d2CkVBm/ojT7Phdz8RIqhAUwP\ndMXNQcX+POOtt5GRkfztb39j//79PPHUZlILG7hxTpDJsZYV0T5UNndyuryZP/3pTxw/fpxXX30V\nX1/DY8jj4+NRq9UGo2jamjaK6toHJq6ZSm5uLra2tlaPCQ3mh/P7o0u3LwjhqljDf9fk5GQAvvnm\nG5POL7lLbl1zNWcqmjl3odvCVOLi4tCey8MGHcnTjB8Nb4jb4kMob+rkw93912fKJDR9PPfcc3R0\ndLB582aLr80UdmSV097dx60mFFvD9z8Xa5ZbSxjbWyTFUybyjaSbmxtubm4WO4vUKhtSZgTwxalK\n2rp6jTqPKIo8/dlpHGxt2HhtNJGRkcDwCT3WQhaLLCM+zINS0RWlUjlhxKKS+nZKGzpIjBzq6rlj\nQf/n33c5lovbHd19lDS0M0VPX1pjYyNarfay6ysajL+rPdvvT+CuxDD+cbCAO948ptfVIa23zBWL\nvsut5qlPT7Ei2offpcQatcbJy8tDEIQB4UPGeKTPW0mcz8rKAvTHKWP8nQn3cmTnSfM2xErq2zle\nUM+NcwIRBIGQkBDs7e3NciiGeTmyYqoP244VD5n6eqUji0UyMjIW886hAryd7Xj9zrl4ONry5n7T\nJ+CMNSX17QS621vc7yEtViaas8hGIbAo0svk3qg777yTdevW8eLz/0t3RS43zDb977U82gdBgG27\nD/HUU09x8803c+utt474Gjs7OxYuXGiw5PrbnP5dphUx5okbubm5REZGYmNjXPeSOcSHebDj4cVs\nun7aiMfNmTMHDw8Pk3uL9u7di4+PD/9vzWIUAma7i2JjY+nr7WGGSwduDpYX/F4V64O7g4qv9x0m\nNDTU4rHCU6dO5b777mPLli1jdjOvj+1pJUT6ODEnxLRR6vv27SMoKGggZmVtli1bRm1t7Yg3zZmZ\nmdjb20/4iIRGozHJWaTVavH09MTVdai78aY5gXT09PHFKeNizrtPVXIwv5ZHk6fi5WSHm5sbXl5e\nsrNoghIf5gEKFYGh4ROm5PpQfv/GS2LEULFoZYwvvi52bLVC0XV+dSuigUloUiHwRBaErYGtUsHT\n10/jldtmcbKsiev+cnBY5FRab5lTcn2mvJmHtmUQ4+/CX384G6WNcbe+ubm5A8KDjGlcLM6PNLlT\nEARWz/DniLaOmhbTo2gfZ/SvyW+4UJ+gUCiYOtX0iWgSdy0Ko7a1i50W9ihdTshikYyMjEWcr2nl\nu9wa1i8IxUWt4s6EUPbkVJvtghgrShraCbawrwgmrlgEsDTKm+qWLnIqjf9/LwgCr732GioXT1q+\neAlnG+N27gfj5WTHjAAnXtv0S1xdXfn73/9ulCi3dOlSTpw4QVNT07Dn9pytJtrPecRJJSMxXlNM\n4gJdUY2y+LSxseGqq67iq6++MlrIE0WRvXv3smzZMnxd7FkU6cWnWWVmRTxtvcMACLdpMPm1+rBT\n2nDD7CCK8k4yc7Z1dr2ffPJJbG1t+e1vf2uV841GXlULmcWN3BYfbJKALPUVLVu2bMyKpZcvXw6M\n3FuUkZHBzJkzx1QMtQbh4eEmOYsGT0IbzNxQd0I9HYyaitbe3cvmHWeI9nPmjkGF81FRUWMqFgmC\nMKKbUsYws4LdUCoEXPw1E8ZZdFhbh7ezHRHeQ4UclY2CdfEh7MurGSj6NxdpEpq+GFp6ejpw+U1C\nM8TaWYF8+tAiXOyV3PGPY7y+7/tKA3NjaJVNndzzTirOahX/3BBvUtxYnoRmPs7Ozvj6+g583mZm\nZuLt7U1AQIDe41NmBKATYfdp0zpPRVHk48xSEsI9h6wVo6Ojze4+WxzpRaSPE28fKpyQlRqXAlks\nkpGRsYh/HylCZSNw+4VF+Z0JYahVCt48MLHcRaUNHVabhGZvbz9kosNEYcmU/s4HY3uLJM41irit\nfpT2ugoefvhhs95bd+JTmkpyef7Fl412miQlJaHT6Th06NCQx5vae0gramBljHkRtN7eXrRa7YRa\n6CUnJ1NRUWH0rvn58+cpLS0diDqtnRVISX0HmWaMdc3pcAIEbFssnyYjkRzuQG9jFSq/SKucz9/f\nn0cffZTt27eTmppqlXOOxPbUElQ2gslOupycHKqrq8ekr0giLCyM0NBQg71FOp2OzMzMSeE40Gg0\nFBYWotPp7yK5GK1WOySCJiEIAjfODuLI+TrKGkeelvXqd/mUN3Wy+QdxQ1wEYy0WeXl5oVKpxuT8\nlzv2tjbEBbrS5xKIVquls/PSFsyKoshhbR2JEZ56ReEfzg9GAN49blm3SV51C7Y2CsI8h29kZWRk\nEBwcbLFzczIxxdeZTx9cxNXTfHn+ixx+sjWd5s4eHB0dcXNzM8lZ1NbVyz3vpNLS2cNbd8Xj56o2\n+rWiKMpikYVERkYOcRaNNLlziq8TkT5O7Mw2zT2dXtRAUV07N80dWgsRExNDYWGhWZMVBUHgrsQw\nTpY1kVFs+nrrcmRUsUgQhGBBEL4TBOGMIAinBUF4RM8xgiAIfxEEIV8QhGxBEOYMem6DIAjnLvzZ\nYO2/gIyMzKWjpbOHD9JKWDMjYKALyMPRllvmBvPfzPIJM1GgpbOHxvYegj2s4ywKDAyckOOq/V3t\nmeLrZFJvEcDHGaV4hM/gsY1P8K9//Yv33nvPpNefPHmS3f/3Nxyil+AcvcTo1y1cuBCVSjWst2hv\nXo0K1y4AACAASURBVDV9OpGVZkbQCgoK6OnpmVALvVWrVgEYHUWTXCWSKHH1NF9slQo+MzGKptOJ\nfJ3XiLNPIPm55tmy9dFY0r9rVyj4W2337bHHHsPb25uNGzeO6Y5ed6+OTzLLuCrGF08n0zrMpH+r\nYykWQX8Ubd++fXpFlvPnz9PS0jKhJ6FJhIeH09XVNRDTGomenh6Ki4v1OosAbpwTiCjCfzMNi54F\ntW28ub+AG2YH9kebBhEVFUVZWRnt7Za5QfRRUVEhR9AsJD7MnXo7H3Q63UC58KUiv7qV2tauYRE0\nCX9Xe1bG+PJ+WgndvcYJofrIq2wh3NtRbzQqPT19UgjC1sZZreLV2+fw29UxfHO2mrV/O0ROZTNB\nQUFGO4t6+3Q8/G4mOZXN/O2OOcQGuJh0DRUVFbS2tsrl1hYQFRVFfn4+3d3dnD59esTvK0EQWD3d\nn2MF9SbdN3yUUYa9yoZr4oZOtouOjkYUxYGJdqZy45xAnNVK3rkwuOdKxxhnUS/wqCiKscBC4EFB\nEGIvOuZaIOrCn/uB1wAEQfAAngIWAPOBpwRBmHjb8TIyMmbxYXopbd193HXRZIl7F2vo0ekmzAdt\naUP/7oI1nEWSWDRRSYry5nhhPR3dxpXzdfb0sTO7gmvj/PnfZ54mISGBn/zkJxQVGdfH0NPTw4YN\nG/Bwdyf2pp+zJ8f4iRYODg7Ex8cP6y36NqcaT0dbZgaZ1iUjMdaT0MwhJCSE6Ohoo8Wiffv24e3t\nPTDZw1mt4qoYH3Zkl9NrYGKMPjJLGilv6iQmNtaqXSCpqakIgkC1XSAnzHA76cPZ2Zknn3yS7777\njt27d1vlnPr45mwV9W3dJhdbQ7+IFxAQMNDJMFaM1Fs0GcqtJaReJ2OiaMXFxfT19RkUi4I9HJiv\n8eCj9FK9YqIoimz6/DS2SgVPXBs97HmpqHYserFkschy5oV5ILj3OwQudW/RYW1/Z05ihBdtbW28\n/vrrHDt2bMgx6xeGUtvazZcmRmcGk1fVyhQ9EbTm5mby8vKumAjaxQiCwP9bEs679y2krauXH7x6\nCKWzp1HOIlEUeWbHGb7NqWbT2jiWTzXdoSyJDBNpDTHZiIyMpKysjNTUVHp6ekbd3EiZ4Y8oYnQv\nXWdPHzuyy7k2zg+ni+KFlkxEA3CwVXJbfDBfnKygsmlibHpfSkYVi0RRrBBFMePCf7cAZ4GL75TW\nAv8W+zkKuAmC4A9cDXwtimK9KIoNwNfANVb9G8jIyFwSdDqRfx0uZG6oOzMuuqkP83Lkmml+bD1a\nRKuR02vGEqlXwBqdRaWlpRNuEtpgkqZ4092r42hB3egHA1+dqaKlq5eb5gSiVCrZtm0bOp2O9evX\n09s7+s/u97//PZmZmWzZsoWr50Vx4FytSVMkli5dSlpaGm1tbUD/juDe3BqWTfUZGFdsKhNRLIL+\nKNq+fftGjVgM7isa7GC7fmYgta3dHNIa97MF2Jldga1SQdL82eTl5dHVZXqBpD5SU1OJmjIFRydn\ntqeWWOWcAPfffz8RERFs3LiRvr6xmUbyXmoJ/q5qkqJMi3dIfUVLly4dc2ehFD/UF0XLzMxEpVIx\nbdrIxeoTASlSZkzJtb5JaBdz85wgzte26RUovzlbzd7cGn5+VRQ+LsMjJ5JYNBZRNFksspx5oe6o\nPAJRKGwueW/RYW0t/vZ9/Pu1PxMWFsZPfvITfvaznw05ZkmkFyEeDmw9al7RdVtXL2WNHXrLrU+c\nOAFMDkF4LJmv8WDHzxYzM8iN/DY7crRFo64v3jpUyL+PFHHfEg0/Whhq1vtO1DXEZEL6vP3www8B\n/eXWQ473dWaqr7PRxdLfnK2ipbOXG+cMX49HRUWhUCjM7i2C/koNnSia/ft9OWFSZ5EgCGHAbODY\nRU8FAoNXi6UXHjP0uL5z3y8IQpogCGk1Nab1bcjIyIw/e/OqKaxr567EML3P358UTnNnr1VvJM3F\nWs4iURQpLy+f0M6i+RoP7JQK9ucZ9zn6UXopgW72LAzvt9trNBr+/ve/c/DgQZ5//vkRX3vixAme\neeYZfvjDH3LDDTewMtqX9u4+jp6vN/p6k5KS6O3t5fDhw0B/Br2po4erzOwrgv6FnpeXFx4eHqMf\nPI4kJyfT2dnJwYMHRzyuoKCAkpKSYaPZl031xlmt5NMTxlnxdTqRXScrWDrFmzmzZtLX12e2LXsw\noiiSmprKgvnzWT3Dn8+zyo0eaT4atra2PPvss5w8eZKdO3da5ZyDKWvs4MC5Gm6ZG2SyGJmXl0dl\nZeWwn8tYEBYWRlhYmN6S64yMDKZNm4adnWkRuktBaGgogiAY5SySBCVDziKAa6f7oVYp+OiiouvO\nnj42fX6aKb5ObDDwnXTxhB5rodPpqKyslMUiC/F0siPCzw1n3+BL6iyqqq7hkzdfJPOF9fz2t79l\n/vz5rF+/nuPHj1NV9b1zVqHo72o8VlBPfrXpAz3OVbcC+sutJffgleosGoyPs5pt/28B86dF0NpQ\ny82vHjDYW/bV6Ur+d+cZrp7myxPXxpj9nrm5udjb20/ojcGJjvR5++GHH+Lk5GSUG3f1DH9Si+qN\ncvN8lF6Kv6uaBD1RUbVajUajMdtZBP1O1qtifPnP8WI6e8Zm42qyYLRYJAiCE/AR8HNRFJutfSGi\nKL4hiuI8URTnXUllbjIyk5W3DxXi62I3LCssMTvEnflhHrx1sIAeE2IzY0FJQzsOtjZ4OFo2Nry2\ntpbu7u4JLRapVTYsCPc0Siyqbu7kwLkabpgdiGLQjfP69eu544472LRpE0eOHNH72u7ubu666y48\nPT3561//CkBChCdqlYJvzxofRVu0aBE2NjYDUbRvc6pR2QgsjvIy+hwXM1GLKZctW4ZKpRo1iiYJ\nBBeLEmqVDdfF+fPlqUqjFi/pxQ1UNneSMsN/wIVijZuwsrIyKisrmTdvHrfFB9PW3cfOk9YbM3vD\nDTegVquHdVlZgw/TShFFuGWe6RG08eorktDXWySKIhkZGZPGcWBnZ0dgYKDRziI7OzuDE3OgP455\n9TQ/Ps+qGOIweG2vltKGDjZdH2dwOqGLiws+Pj5WdxbV1dXR29sri0VWID7UA9yCLomzqKKigkcf\nfZSwsDBqDmxnTsISMjIy2LlzJ7/85S8B+OKLL4a85pa5QahsBLYeNb3oWpqEpi+Glp6ejr+/P35+\n+tdXVxpKGwW3LZ8NiOQVlJLylwPD1jjZpY088t4JZgS68vK62UPWNKaSm5vLlClTUCjkOVDmIolD\npaWlzJw506j/l6svRNF2jbKeqG7pZP+5Wn4wO9Dgpo8lE9Ek7loURn1bN59nmdYVeblh1G+BIAgq\n+oWibaIofqznkDJg8Mor6MJjhh6XkZGZxORXt3DgXC0/Whg64tjw+5LCKWvsGPWDf6wpbegg2N3B\n4uiIlJef6LtNSVFeaGvaRp0a9N8TZehEuGHOcPHr1VdfJTg4mDvuuIPm5uH7A8899xxZWVm8/vrr\neHr27+yoVTYsjvRmT0610QXFzs7OzJkzZ+BGfE9ONQs0njirzZ8qNFHFIkdHRxYvXmyUWDS4r2gw\na2cF0Nbdx56z1aO+387sCuyUClbG+DJ16lRsbGw4deqU2dcvIU0ri4+PZ26oO+HejrxvRQehra0t\n8fHxA24za6HTibyfVsKiSE+zyu737duHn5/fuJWeLlu2jLq6uiECX1lZGbW1tZOi3FpCo9EY7SzS\naDSj3lTcOCeIpo4evr3wO1Bc185r+7SsmRmgd5d5MGMxEU2Kz8likeXEazzAPYj8/Pxxm4hWWFjI\nAw88gEaj4ZVXXmHm4lX43/sq//34o4Hfs1mzZhEQEMCOHTuGvNbTyY5r4/z5KKPU6J5AiXNVLdgp\nFYTo+SzKyMiQXUUXIW3SPZvsj4+zmg1vH+cve86h04mUNrRz77/S8HC05R8b4rG3tbHovSSxSMZ8\nJHEeRo+gSUR4OxHj7zLq5tNnJ8rp04ncpGftKhETE0Nubq5FcfaEcE+m+jrz9qHCMR26MdExZhqa\nAPwTOCuK4ksGDvsMuPPCVLSFQJMoihXAl0CyIAjuF4qtky88JiMjM4l553AhtkoFP5wfMuJxK6N9\niPB25I395y/pB21JfbvVyq2BCe0sgv7eImBEd5EoinyUXsbsEDcivId3Jri6urJt2zaKi4t58MEH\nhzyXmZnJs88+y/r161m7du2Q51bG+FDa0EFeVavx15uUxLFjx8gtqyO/upWVFkTQmpqaqKqqmpBi\nEfRH0bKysqis1F/iOFovzoJwT3yc7UaNovVdiKAtn+qDk50SOzs7oqKirOIsSktLQ6lUMmvWLARB\nYN28YNKKGsivNv5nPhqJiYmkp6db9YbxkLaWssYO1sWP/LmlD6lHajz6iiT09RZNpnJrCY1GY7Sz\naKQImsTiSC98nO34KKP/d+CZHWdQKgR+fd3wUuuLGQuxaPPmzbi4uIyb4+xyJj7MHZVXCDqdziqR\n2ZHIy8vj7rvvJioqin/84x/ceeed/RsNt/2a2NjYIb1XgiCwevVqvvrqK7q7u4ecZ/3CUFo6e012\nH+RVtRLh7TTMGdHW1kZOTs6k+h0fDwY26dob+OTBRH4wK5CXvs7jnn+lcu87aXT29PHO3fEDk3nN\npbu7m4KCggm7hphMSL1FpmxupMzwJ72ogfIRNjs/yihjZpArkT7DXXkS0dHRdHV1GT2sRR+CIHD3\nojDOVDSTWthg9nkmO8Y4ixYBPwJWCIJw4sKf6wRB+IkgCD+5cMwu4DyQD7wJPAAgimI9sBlIvfDn\nmQuPycjITFKaOnr4KL2MtTMDRh07rVAI3LcknNPlzQPTRcYbURQpa+gwy0lwMZNFLIryccLPRc2B\nc4bFotPlzeRWtegtB5RITEzkySefZOvWrWzbtg3oX0ht2LABb29vXnnllWGvWRHdL/SYMhVt6dKl\ndHd389bHXw85hzlM9GLK5ORkAL755hu9zxcWFlJcXGywF8dGIbBmZgB7c2toau8x+D6phfVUt3Sx\nesb3boe4uDirOYvi4uKwt+8XYG+cE4RSIfB+mvXcRYmJifT09JCenm61c25PLcHVXkVyrK/Jr9Vq\ntZSXl4+rIBAaGopGoxnSW5SRkYEgCMycOXPcrsNSwsPDKS8vH7FcXRRFtFrtiOXWEjYKgRtmB7I3\nt5oP00v55mwVP1sZhb/r6BsCUVFRA2OxrcHu3bvZtWsXTz75JHKFguWEeDjgE9IfXxmr3qLs7Gxu\nu+02oqOj2b59Ow8++CDnz5/njTfeIDhUQ2phPYl6HGopKSm0tLRw4MCBIY/Hh7kzxdeJbcdMuyk9\nV9XCVL/hN7tZWVnodDrZWXQR0rqrtLQUB1slL906k80/iONQfi3amla2rJ+rt//JVLRaLTqdbsKu\nISYTUhTNFLFo9fT+NYuhRMKZ8mbOVjRz09yRHf6WTkSTWDsrEDcHFe8cHt0de7lizDS0g6IoCqIo\nzhBFcdaFP7tEUdwiiuKWC8eIoig+KIpihCiK00VRTBv0+rdEUYy88OftsfzLyMjIjD0fpJXQ0dNn\nsET0Yn4wOxAvJzte3z/6zvJY0NTRQ0tXr1WcRaWlpSgUignfIyAIAklTvDh4rtbgmPWPMkqxtVGw\nZsbI0Ylf//rXLFq0iJ/+9KecP3+ezZs3c/LkSd544w29BdK+LmqmB7oORESMYfHixQiCwO493xHp\n40Sop6PRr70YSSyKjh7dZXApmDVrFl5eXgajaIb6igazdlYA3X06vjhl2Kq9M7sCtUoxxKU1bdo0\ntFotHR0jxxNHQhRF0tLSiI+PH3jM29mOFdE+fJxRarV+soSEBACrRdEa2rr56nQVN8wORK0yPaJg\nzM9lLLi4tygzM5OpU6fi6Gj+78h4o9FoEEVxxB3e2tpaWltbjXIWQb9A2asT+dWHWYR7O3LPIo1R\nr5N2uq1Rct3T08MvfvELoqKiePjhhy0+n0z/d9fiuXGgUFi9t+j48eOsXbuWmTNnsmvXLjZu3Ehh\nYSEvv/zygGslu7SR9u4+EiOGd+atXLkSOzu7YVE0QRC4Y0EoWaVNnCxtMupamjt7KG/qJErPJDRJ\nIJedRUPx8PBArVYPbNoJgsCPFoby+cOLeff+hSyKNL/ncDATfcNpMrFgwQK8vb2JjY01+jVhXo7E\nBbqww8BUtI8zSlHZCKyZYbjbDr5fA1raW2Rva8Nt8SF8ebpq1GqHyxW5uUtGRsZo+nQi/zpSyPww\nD+ICXY16jVplw12JoezPq+Fsxejd+IWFhUMKXS3l+0lo1nEW+fn5oVQqLT7XWJM0xZvmzl6y9Cxe\ne/p0fHainJUxPrg5jFz6rVQq2bp1K4IgsGbNGp5//nk2bNhASkqKwdesiPYho7iB+rZug8cMxt3d\nnbjp0zmXdcyiCBr0LwyUSqVRDoVLgUKhYNWqVXz11Vd6o5l79+7Fy8trxMXV9EBXwr0c+fSE/thD\nn07ki1MVrIz2xcH2+3+rcXFxiKJo0U6bVquloaFhiFgEcNv8YGpbu43qUjIGb29voqKirCYW/fdE\nGd19Om41o9ga+vuKfHx8xl2EXLZsGfX19QOOsMlUbi0h/S6OFEWTen+MFYum+jkTF+iCToRN10/D\nVmncclYSi6wRRXvttdfIycnhpZdewtbWsuEJMt+zINIPpVsA6SeyrXK+/fv3k5yczIIFCzhw4ACb\nNm2iqKiI559/fqBTReJQfh2CAAvDh2+EODo6snz58mFiEfT3/tmrbIx2F527ENOeoidGk5GRgY+P\nz4R3MI83giAQGBg40B0pEe3nQnyY9SafSmKR3FlkOT/+8Y8pLCw0eXLn6ukBnChppKS+fcjjvX06\n/nuinBXRPriPMrDGw8MDHx8fi51FAD9KCAXg/46YH2mbzMhikYyMjNF8m1NNSX0Hdy8KM+l16xeG\n4mBrw5sHRnYXbd++HY1Gw4YNG6zWcSR92Virs2iyLOAWR3qhEPT3Fu3LraGurZubRoigDSYsLIzX\nX3+dM2fO4Ovry8svvzzi8StjfNCJsDfXeOEgLG4enaU5JIW7G/0afeTm5hIeHo5KZX5B9liTnJxM\nVVUV2dnDb4b27t3LsmXLRuzFEQSB62cFcLSgTu+I2WPn66ht7R4SQQOsMhFtcLn1YJKivPF1sbN6\nFO3w4cMWfxaIosj21BKmB7oSG+Bi1utH6pEaSwb3FtXU1FBaWjrpxCKNpt/1M1LJtSQWmSLy/vq6\nGH5zXQxLooyPf0lilKXOotraWp566imSk5NZvXq1ReeSGUp8mAe2XiFkn7IshrZ//36WL1/O0qVL\nycrK4oUXXqCoqIgnn3wSd3f93zOHtbVMC3AxuImSkpJCfn7+sD4lF7WKtbMC+PREOc2dhuPBEudG\nmYQ2Z86ccf+smQwEBQUNOIvGitzcXHx9fXF1NW5DVMYwCoUCBwfTN2oNRdEOnKultrVrxPqEwVhj\nIhpAoJs9V0/z5b3UYpOL7C8HZLFIRkbGaN4+VECAq5pVJnZ+uDnYcuu8YD47UU5Fk34b55EjR9iw\nYQN+fn5s3bqVp59+2gpX/L2zyBqdRaWlpRN+EpqEm4MtM4Lc2K+nt+jjzFI8HW1ZOtX4m6zbbruN\nf/zjH3z++ee4ubmNeGxcgCs+znbsyTFeLBL9YhF7u9DVaI1+jT4m6iS0waxatQpgWBRN6isyphfn\n+pkBiCJ6S1V3nKzAwdaG5VOH7ppHRkZia2trUW9RamoqarV6QHiSUNoouHluEHtzq/UKWOaQmJhI\ndXW1UeXII5Fd2kROZQvr4s1zFRUUFFBSUnJJCoxDQkIIDw9n7969ZGZmAqb1P0wE/P39sbOzG/Hn\nKD0nCUvGkBjhxX1JpjkInZ2d8fPzs9hZ9NRTT9HS0sKf//xn+abeysT4O2PvE0p5ceGIPVeGOHjw\nICtXrmTp0qXk5OTw8ssvU1hYyGOPPYazs+FOm47uPjKLG/VG0CQkYVCfu+iOBaF09PTxScboYkZe\nVSv2Kpthm1gdHR2cOXNG7isygD5nkbXJy8ub8GuIy50QTwdmBrkOm4r2YUYp7g6qYWsbQ8TExHD2\n7FmrbD7flaihsb1n1OEilyOyWCQjI2MUuZUtHNbW8aOEMJQ2pn903LtYg04UeftQ4bDnCgoKWLt2\nLYGBgWRnZ3PPPffwzDPP8PbblteclTS046xW4mpvudNkMjmLoD+KllXSOKQIubG9m2/OVHP9rABU\nJv4c7733XqNcDQqFwIpoH/bn1tDdO3qksE8nUqjqn1B16OCBUY4e4Tx9fZw7d27CL/QCAwOZNm3a\nMLHIlF6ccG8nZgS58mnW0IVLb5+O3acqWRnjO2x8sEqlYurUqRY7i2bNmqXXuXXrvGB0InyYbh13\nUWJiImB5b9H2tBLUKgXXzxq548AQ+/btA7hk066k3qK0tP46yMkmFikUCsLCwkZ1FgUEBAyUpo8l\nlk5EO3XqFFu2bOGnP/2pSV0cMsahtFEQHROLqOszaSLa4cOHWbVqFUuWLOH06dO89NJLaLVaHnnk\nEaP+XaUXNdDdpyNBT7m1RFhYGNOmTWPnzp3Dnpse5MqMIFe2HSsa9eb0XHULkT5OKC6ahJadnU1f\nX9+kcw+OF5KzaCyn606GDacrgdUz/MkubaK4rj8d0NTRw9dnqrh+ZoDRsePo6Gjq6+upra21+Hri\nw9yZEeRK8UXRuCsBWSySkZExincOF6JWKbjNzN35YA8Hrpvuz3+OFQ+xaTc1NZGSkkJPTw87d+7E\n29ubLVu2sGrVKu6//36DU6OMpaS+nWAr9BW1trbS1NQ0ucSiKC90IhzM//6Lckd2Bd19OqMjaOay\nItqHlq5e0gpHH4B5oqSRFhwICo9i//79Zr9ncXExXV1dk2Khl5yczIEDB2hv/37hYUxf0WDWzgrk\nVFnzkJH1R8/XU9/WPWDjvhhLJqL19fWRkZExLIImEerpSEK4J++nlaLTWb6Yj42NxcXFxSKxqKO7\nj89PlHNdnD8uavMEY1N/LtZm+fLlNDQ08O9//xuNRmMwQjORCQ8PH9VZZGxfkaVYIhaJosjPf/5z\n3Nzc2LRpk5WvTEZi0bz+aX+pmVmjHnv06FGuvvpqFi1aRFZWFn/60584f/48v/jFL0yKwBzW1qJU\nCMwfpf8mJSWF/fv309Q0vA9w/YJQ8qpaRx2znVfVorfcOiMjA0B2FhkgMDCQ7u5uq9z860MSFibD\nGuJy57oLaxjJXbQzu4LuXt2oU9AGY62JaNAf///op4n86pqJOTxlLJHFIhkZmVFpbO/mk8xSbpgd\nOGqp3Ej8OCmC1q5e3jteDPRPk7nlllvIy8vjo48+GiiPValUfPDBB8TExHDTTTdx8uRJs9+ztKHD\nan1FwKSJoQHMCnbDWa0c0lv0UUYpU32dmWZGd4spLI7ywlapMCqK9m1OFTYKgeQVyzl48CC9vb1m\nvedkmmKSnJxMV1fXkDHMe/fuZenSpSgUxn01r5nhjyDAZ4OiaDuyy3G0tWGZgYjhtGnTKCoqoqWl\nxeRrPnv2LO3t7QbFIoB18cEU17dztKDO5PNfjEKhICEhwSKxaNfJClq6ernVTJEb+p1FSUlJRv9c\nrI3kaMrNzZ10riIJjUYzqrNoPMWiqqoqmptHH7hwMZ999hl79uxh06ZNeqdByliHaxfNAUHB3mOZ\nBo85fvw41157LQkJCWRkZPDCCy9QUFDAo48+alZPymFtHbOC3XC0G3mAxerVq+nt7dU70TJlpj/O\nauWIRddN7T1UNXcx1UBfkYeHByEhISZf/5WAtP4aq94iudx64hDk7sCsYDd2ZPevbz7OKCXSx4np\nRg7XAetNRJMw1Y1/uXBl/q1lZGRM4r3UEjp7dGxIDLPoPNODXEkI9+Stg4V09fTx8MMP8/XXX7Nl\nyxZWrFgx5FhXV1d27tyJk5MTq1evprxc/+SnkRBFkdKGDqv0FUmLk8nkLFLaKFgU4cWBczWIosj5\nmlYyixu5cU7gmPdsONgqSYzwZM/ZqlEt43vOVhMf5s5VK5bR0tJCVtbou8n6mExiUVJSEra2tgM3\nHIWFhRQVFZk0mt3HRU1ihCefnei35ff06dh9upKrYn0NjoePi4sDMGsstaFy68FcE+eHs1rJ+6nW\ni6KdPHnSrBt7gO2pJYR5OrBAY96NvTk/F2sTHBw8IKRM1niKRqOhsbGRhobhjouOjg7Ky8vHbYKh\nNBHN1JLrrq4uHn30UWJjY/nJT34yFpcmc4H5Ub6o3P3JzBq+UZSamsrq1atZsGABqamp/P73v6eg\noIDHHnsMR0dHs96vubOH7NJGEkeIoEkkJCTg7u6uN4rmYKvkpjlBfHGykrpW/X1LedWGy60zMjKY\nO3eu3INlAGn9NVa9RZNpDXElkDLDn9PlzezNrSatqIGb5gSZ9LsRHByMg4ODVZxFVzKyWCQjIzMi\nvX06/u9IEQnhnkT7We5GuX9pOJXNnfx44zO8/vrrbNy4kXvvvVfvscHBwezcuZOGhgZSUlJobW3V\ne5wh6tq66ejps6qzaDKJRdDfW1Te1Im2ppWPM8pQCPCD2ePzd1gZ7UNhXTvna9sMHlPa0E5OZQsr\no31JSkoCvu+IMZXc3Fzc3Nzw9ja+uPtS4eDgwJIlSwbEInN7cdbODKSwrp2s0iYOa+tobO8hZYbh\nbh5LJqKlpqbi4uIy4q6rWmXDD2YFsutU5ZCuLHNJTExEFEWOHTtm8mvP17RyvLCeW+ODzb75utR9\nRRKSWDVZxSJJCNLnLpIeG09nEZguFv3lL39Bq9Xy5z//GaVyZPeJjGU42CrxDIqgSPt9Z1F6ejpr\n1qxh/vz5HD16lOeff57CwkI2btyIk9PwSJcpHD9fj06EhBHKrSWUSiXXXnstu3btoq9v+GSkOxaE\n0N2n44N0/YJG3oVJaBfH0Lq6ujh16tSk/R0fD6T111g5i/Ly8lAqlSYV7cuMHVIU7bEPsxEE7tJZ\nQgAAIABJREFU+MFs03oHFQoFU6dOtZqz6EpFFotkZGRG5JuzVZQ1dnDXojCrnG/ZFG/carL418ub\nufHGG3nuuedGPH7WrFm8//77ZGdns27dOpMiSiUXiuis0Vkk7WRNPrGof/G7N7eGTzLLWBzlja+L\nelzee0VM/9S8b88ajqJ9dyGmtiLGh8DAQCIiIszuLZKKKSfLrmxycjKnTp2ivLycvXv34unpOWzK\n2GhcHeeHrY2CT0+UsSOrHGc7JUuiDN/waDQa1Gq1Wb1FqampzJ07d9Q41rr4YLp7dcPKt81h/vz5\nKBQKs6Jo76eVYqMQuNmCfq59+/bh4eEx4Mi6VNx88814eXkxf/78S3od5iLdfOkTi7Ta/gmI4yUW\nSe9jSm9RVVUVmzdvZs2aNSQnJ4/VpckMYkp0NC1VJew/eIi1a9cyb948Dh06xLPPPkthYSGPP/64\nxSKRxGFtHXZKBbNDRp70KZGSkkJNTc2A23IwUb7OLNB48J9jxXq7285VteJoa0Og29BNrFOnTtHT\n0yP3FY2An58fCoViTJ1FERERegc4yIw/AW72zA11p6ali8WRXvi7mr7xK01EkzEfWSySkZEZkbcP\nFRLkbs9VF278LSUzM5Oc//wvtr6R3P/kS0b1gFx77bW8+uqr7Nq1i4cfftjoSRilDR0ABHlYx1nk\n5uZmts39UhHk7kC4tyOv7z9PWWMHN80ZP7Er0M2eaD9nvjlbZfCYb85Wo/FyJMK7f9G/dOlSDhw4\ngE43+hS1i5lsU0ykm86vv/7a5L4iCVd7FSuiffg8q4IvT1eyaoQIGoCNjQ2xsbEmO4u6urrIysoa\nMYImERfoyrQAF7ZbIYrm4uLC9OnTTRaLunt1fJRRyvKp3viYKY6KosiePXvM+rlYm2uuuYaamho8\nPUePyUxEJGeRvpJr6bHxiqE5OjoSEBBgklj0m9/8hs7OTl588cUxvDKZwSTMnQmijqVLFrN//342\nb95MYWEhv/71r3F2Hh7hsoTD2lrmhbmP+Nk5mKuvvhqFQqE3igZwx8JQiuvbOZA/vIg5r6qFSF/n\nYZsa6enpwOR1D44HSqUSPz+/Me0smkxriCuBlBn97qIbzVy7RkdHU1RUNGSYiIxpyGKRjIyMQU6X\nN3GsoJ4NCWHYKCx3a5SVlbFmzRp8vL2I3bCZf6dWGP3aH//4x2zcuJEtW7bwpz/9yajXlDRYz1lU\nVlY26VxFEklR3tS0dOFkpyQ51m9c33tljA9pRQ16I0ltXb0c0daxItpn4LGkpCTq6+tNFjNaW1sp\nKyubVAu9GTNm4OPjw5tvvklhYaHZvThrZwVQ29pFc2cvq2fon4I2mGnTppnsLMrOzqanp4d58+YZ\ndfy6+GBOlzdzqmz4xCBTSUxM5OjRo3ojH4b44lQFNS1d3LEg1Oz3zcnJobi4mGuuucbsc8j04+rq\niru7u0FnkbOzM15eo0eArIUpE9EyMzN56623+NnPfjYQYZMZe+67NQWHwCnM/sH9FBYW8tvf/hYX\nF+sPZqhr7SKnsoVEIyJoEh4eHixatIgdO3boff7qab54Otqy9ejwouu8qlam+OifhObq6jpuoulk\nJSgoaEycRX19feTn58vl1hOMdfHBPL0mltXTTYugSUgl11IflYzpyGKRjIyMQf51uBB7lQ23zjN/\nkpBEa2sra9asobm5mR07dvDja+dxKL/OpJvJ5557jnXr1vGrX/2KDz74YNTjSxs68HC0HXW6iTGU\nlpZOqklog1k6pb/DZ/V0f+xtjds5tRYron3p04nsO1cz7LlD+bV09+lYOUgskrphTO0tysvr77aY\nTGKRQqFg1apVHDp0CMBssWh5tA/Odkqc1UqWRI3e1xQXF0d5ebnesmFDGFNuPZi1MwOxVSp4P81y\nd1FiYiLNzc0mCYhvHypE4+U48G/fHHbv3g30uwhkLCc8PFyvs0ir1RIeHj6u8VFjxSJRFHnkkUfw\n8vLid7/73ThcmYxERFgIf/j3DuqnXk+JaXWFJnH0fD2AUeXWg0lJSeHEiRN6hQs7pQ23xgez52wV\nFU0dA483tHVT29qlt9w6PT2dOXPmTJoY9aUiMDBwTJxFRUVFdHV1Tao1xJWAg62SuxZpsFWaJ1nE\nxMQA1puIdiUii0UyMjJ6qW/r5r8nyrlxTiCuDpblt/v6+rjjjjvIyspi+/btzJgxgx/OD8HR1oY3\nDwy/eTCEQqHgnXfeYdGiRfzoRz8auMk2REl9u1XKrWFyO4sSIjy5aU4Q9yWN/47lrGA3PB1t2aMn\nirbnbDXOdkriB02qCgsLIyQkxGSxaLJOMZGiaB4eHib3FUmoVTZsvDaajddEG7WgMqfkOi0tDS8v\nL0JDjXPquDqouDbOj08yy+jsMd4RpI/ExEQAo6NomcUNnChpZENCKAoLHJG7d+8mOjra6L+zzMho\nNBq9zqLz58+PW1+RRFRUFDU1NTQ1jbxZ8cEHH3DgwAGeffZZXF2NH9ksYx3uTAzDWa3k73tNKyM3\nhUPaWpzslCaN5AZYvXo1ALt27dL7/O3zQxCBd49/L5hL5dZT/IaKRd3d3WRnZ8t9RUYwVs6iybjh\nJDM6UVFRKBQKubfIAmSxSEZGRi/vHi+mu1fHXYlhFp9r48aNfPbZZ7zyyitcd911QH/Xyg/nh7Aj\nu4LSBuOzxGq1mk8//ZSQkBDWrl074u5wWUOHVSJoPT09VFZWTlqxSK2y4cVbZxKpx/o+1tgoBJZN\n9WFvbg29fd/3EOl0It/mVpM01RuVzdCvoqSkJPbv3290NxX0i0WCIBAZGWm1ax8PVq1aBWBxL876\nhaGsX2icqCGVNZsiFqWmphIfH2/Srve6+GBaOnvZfarS6NfoQ6PR4Ovra7RY9K/DhTjZKblprvlO\nwPb2dvbt2ydH0KxIeHg4hYWFQ/rIdDodBQUFl0QsgpFLrjs6OnjssceYOXMm99xzz3hdmswgXNQq\n7k4M44tTlZy7ILRYmyPaOhZoPFDamPb5GxsbS1hYmMEoWrCHA0unePPe8WJ6Lnz35VX3W6SmXDQJ\n7cyZM3R3d8t9RUYQGBhIc3MzLS3W/fcwWTecZEbGzs6O8PBw2VlkAbJYJCMjM4yePh3/d6SIJVFe\nROmxS5vC66+/zosvvsjDDz/MQw89NOS5exZrEIC3DhaadE5PT0927dqFIAhcd9111NYOL5HU6URK\nGzqs4iyqrKxEFMVJG0O71KyM8aGpo4eM4saBx06VN1HT0jUkgiaxdOlSqqurTcqY5+bmEhYWhlo9\nPpPerIW/vz9//OMf+dWvfjVu7xkSEoKTk5PRYlFbWxtnzpwxOoImsVDjSYiHg8VF14IgsGjRIqPE\nourmTnaerOCWeUE4q813RO7bt4+uri5ZLLIiGo2G7u5uysvLBx4rKyujq6tr3HtaJLEoP9+wY+XF\nF1+kuLiYV155BRub8Y3vynzP3Ys02Kts+PterdXPXd7YQUFtGwkmRtCg/3MpJSWFb775ho6ODr3H\n3LEglOqWrgFnbV5lC852SvwuKt2Xyq1lZ9HoSOswa0fRcnNzcXNzw9vb/OiyzMQkOjpadhZZgCwW\nycjIDOPL05VUNnda7Cr6+uuvefDBB7nuuut46aWXhj0f4GbPmpkBvJdarLcAeSQiIyP57LPPKCkp\n4frrrx+2WKtp7aK7T0eQh3XKrYFJ6yy61CyJ8kJlIwyJon1zthqFAMumDheLkpKSANi/f7/R75Gb\nmztQZDjZ+J//+R8WLlw4bu8nCIJJJdcZGRnodDqTxSKFQuDWeUEcOV9HUV2bOZc6QGJiIlqtlqoq\nw5P1ALYeK6ZXJ7IhIcyi99u9ezdqtXrg36KM5Wg0GmDoRDTpv8fbWSSJU4acRWVlZTz//PPcfPPN\nAz1qMpcGd0dbfrQwlE9PlFn8OXIxR7R1ACaVWw9m9erVdHR0sHfvXr3Pr4j2IcBVzbZjxUB/DC3K\n12mYQzMjIwNnZ+dJ54y9FEjrsLEQi6ZMmSJ3Rl2GxMTEkJeXZ9KQDJnvkcUiGRmZYbxzqJBQTweW\n67mRN5YzZ85w8803Exsby3vvvYdSqb9k+r4l4bR397Ht+PCpIaORkJDA1q1bOXr0KBs2bBgSbyip\n74+2WcNZJItFluGsVrFA48menOqBx77NqWJOiDsejrbDjo+KisLPz8/o3iKdTiePvDWRadOmGe0s\nksqtjZ2ENpib5wajELC46FrqLTpy5IjBY7p6+/jPsSKWT/UhzMvRovfbvXs3y5Ytw97eOp1nMt8L\nNIN7i7TafrfIeItFDg4OBAUFGRSLHn/8cfr6+vjjH/84rtclo597l2hQ2Sh4zcruosPaOjwcbYn2\nM89BvWzZMhwcHAxG0WwUArfND+HAuVoKats4V91qsNx69uzZFkWRrxTGylmUl5cnryEuU6Kjo+nu\n7tbbmSczOvKnkoyMzBBOljaRVtTAnQlhZpfDVldXs3r16oFFlLOz4YVYbIALS6K8ePtQIV29pqv+\nN998M3/84x/54IMPePzxxwceL23odxpZo7NIKlOUY2jmsyLah/zqVorq2qhs6uRUWTMrYvSLkYIg\nkJSUxL59+4zqLSorK6O9vV1e6JlAXFwc1dXV1NQMn1J3MampqQQFBeHn52fy+/i5qlk6xZsP00uH\ndFaZypw5c7C1tR0xirYzu4La1m6LHZEFBQXk5eXJETQrExISgiAIw5xFNjY2BAdbPnHTVAxNRDt6\n9Chbt27l0UcfJSwsbNyvS2Y4Ps5qfjg/hI8ySilr1B/5MhVRFDmirSUh3NPstY5arWbVqlXs2LHD\n4HfVuvhgbBQCf/32HPVt3cOi/b29vWRlZckRNCORNu2sWXLd1tZGaWmpvIa4TJEmou3atWvIprKM\ncchikYyMzBDeOVyIo60Nt8wzTxjp6Ohg7dq1VFVV8dlnnxESEjLqa+5PCqempYtPM8tHPVYfv/zl\nL3nggQf44x//yGuvvQZY31lkZ2eHp6fpvQYy/ay8IAztOVvNtxccRlfF+Bo8funSpZSVlRm1EyQX\nU5qOKRPRpHJrc1kXH0JVcxf7z40uTBnCzs6OefPmGRSLRFHk7UOFRPo4sSTKvEiJxJdffgkgi0VW\nxs7OjqCgoGHOotDQUFQqyyZumoM+sUin0/Hzn/8cf39/nnjiiXG/JhnD3H9hmucb+6zjLiqsa6e8\nqdOsvqLBrF69muLiYoOfpb4uapJjffk4o98Jc3G59dmzZ+ns7JTLrY3E3t4eDw8PqzqL5Elolzcz\nZsxAo9HwyCOPoNFoePrppyksLLzUlzVpkMUiGRmZAWpauvg8q5yb5wbhYkY5rE6n4+677x7YmTX2\nBnNxpBcx/i68ceA8Op3xE7AkBEHglVdeISUlhYceeoidO3dS2tCBt7MdapXlxaRlZWUEBATIWXYL\nCPV0JNLHiW9zqvk2p4ogd3uiRpjOJnXFGBNFk8Ui05Emoo3WW9TQ0IBWq7VILFoZ44OXk63FRdeJ\niYmkpaXR1dU17LmM4gZOljWxITHM4t/T3bt3ExYWxpQpUyw6j8xwNBrNMLFovMutJaKioqirq6Oh\noWHgsW3btnHs2DF+//vf4+Q0/tMjZQwT4GbPzXODeDe1hOrmTovPd1jbPxgj0UKxSJrwaiiKBv1F\n1xJTL3IWZWRkAHK5tSkEBgZa1VkkryEubxwdHTlz5gzvvfce0dHRPPPMM2g0Gq666ireffddOjst\n/zy5nJHFIhkZmQHePV5Md5+OO82McTz99NNs376dP/zhD9x4441Gv04QBO5P0pBf3crevOrRX6AH\npVLJu+++y6xZs1i3bh1ZJzKt4iqCfruzHEGznJXRPhwrqONgfi0ro31GvKmPjY3F09PTqJLr3Nxc\nnJyc8Pf3t+blXtb4+/vj5uY2qrMoLS0NwCKxSGWj4MY5Qew5W01Ny3Chx1gSExPp6uoiMzNz2HNv\nHyrEWa3kxtmW9Yp1d3ezZ88errnmGlkcHgPCw8OHxdDGu69IQpqIJrmLWltbefzxx5k/fz7r16+/\nJNckMzI/XRpJn07kzQPnRz94FA5r6/BzUaOxsN8sMDCQOXPmjCgWJUZ4ovFyxNVehbez3ZDn0tPT\ncXR0lMVpEwgKCrKqs+iTTz5BrVbLBeOXMWq1mnXr1vHll19SWFjIpk2b0Gq13H777fj7+/PQQw+R\nkZFhVPXBlYYsFsnIyADQ3atj69Eilk7xJsLb9B3VvXv3snnzZu69914ee+wxk1+fMiOAAFc1r+8z\nfxHo5OTEjh07cHd3Z/8bTxLgpL9U21TKysrkcmsrsDLGl54+kc4eHStHiKABKBSKgd6i0ZDKreWb\ne+MRBIG4uLhRnUWWlFsP5tZ5wfTqRD7OMH83OCEhAWBYFK2iqYMvTlWybl4wjnaW/c4fPnyY1tZW\nOYI2Rmg0GsrLy+ns7KSpqYm6urpLJhZJN4b5+fkA/OEPf6C8vJyXX35ZLhqeoIR4OrB2ZgBbjxZT\n39Zt9nl0OpGj2joSIzyt8r2xevVqjhw5Ql1dnd7nFQqB526YztPXx+qdhDZr1ixsbCx3QV8pWNNZ\ntGfPHt5//30ef/xxeaDBFUJISAhPPvkkWq2Wb775huuuu45//OMfzJ07l9mzZ/PXv/7V4O/ylYj8\nbSgjIwPAF6cqqG7p4u5FYWa9/vXXX8fDw4O//e1vZi2+VDYK7lms4VhBPe8cKqC1q9es6/D392fL\nltfpqCkm98t/m3WOwYiiKItFVmJOiBuu9iocbG1YEO4x6vFJSUkUFBRQUjJyfEmehGYe0kS0kXbS\nUlNTiYqKws3NzaL3ivRxYl6oO9vTSszeufPz8yM8PHyYWLTtaDE6UWSDhcXW0B9BUyqVLF++3OJz\nyQxHipwVFhYOTEK7VDG0iIgIBEHg3LlzFBYW8qc//Ynbb799QJSUmZg8sDyCzt4+3jpo/mSjvOoW\n6tq6Le4rkkhJSUGn07F7926DxyREeHLD7KEO5b6+PjIzM+W+IhMJCgqiurqa7m7zBUOArq4uHnzw\nQSIiIti4caOVrk5msqBQKFi5ciXbtm2joqKCV199FaVSyc9+9jMCAgJYt24dX331FX19pg/fuZyQ\nxSIZGRmgP8YR7uVIUpS3ya9tbGzkk08+4fbbb0etVpt9DbfND2F6oCtPf36G+c9+w2MfZJFWWG/y\nzeXMxGU4xi5j7/tvGj0e3BD19fV0dnbKMTQroLRR8NNlEfw4KQI75ei7qEuXLgUYMYrW0dFBcXGx\nLBaZQVxcHA0NDVRUVBg8xtJy68HcGh/M+Zo20osaRj/YAImJiRw6dGjgM6Gzp4//HC/mqhhfgj0s\nn3y4e/duFi1ahIuLi8XnkhmORqMB+ifOSXG0S+UsUqvVBAcHc+7cOX71q1+hUCj4wx/+cEmuRcZ4\nIn2cuS7On38dLqSpo8escxzO73cNJEZaVoYvMW/ePHx8fEaMoukjLy+P9vZ2ua/IRAIDAxFFccTv\nLmN46aWXyM3N5a9//atFa1eZyY+7uzsPPPAAaWlpnPj/7N15XJVl3sfx733YQRBZ3AAX3DdMRcXj\nVi6ZSzWttj2aTVlPy1MzNTOVVtM4Tdk247ROVi7t2lRjNVFplpqKgAuW4IIbBxUEBAXZz/38oTg5\nosA5Bw7L5/16+Urv5bp/lMQ533Ndv2vrVt11111auXKlJk2apK5du+qJJ56o1YYrzRFhEQBtOXhM\nWzPyNdPaxaEtZD/88EOVlpbq1ltvdaqOVj6eWnHvSP3zf626PKajvtx+WNe+vkETXvxBb6xJV05h\n7fqd2I4Vq834O9SqVaDuuOMOp7bKrFoXz8wi17hrbDfdP6FHra6NiYlR69atLxgW7d69W6ZpEhY5\noKYd0Q4fPqzMzEyXhUVTB3RQgLeHU42urVarjhw5ogMHDkiSVmw7pLyiMs1ywayiQ4cOadu2bSxB\nq0dVs4j27t3r9plF0qm+RV999ZWWL1+uP/zhD3wo0ETcc0l3nSit0NL1+x26f316jrqE+isi2DXL\njiwWi6ZMmaL4+HhVVNR+VnRycrIkMbOojqq+T53pW3TgwAHNmzdPV111lSZPnuyq0tAMDBw4UAsW\nLNChQ4e0bNky9e3bV/PmzVN0dLR+85vfuLu8BkdYBEDvJRxUgLeHrhni2AvlRYsWacCAAS55wWMY\nhoZ0bqP518Zo05wJmn/NALX289Jf/p2muL+s0p3vJOm7tCxVVJ4/AMrIOykP/9Z6/Kn52rBhg157\n7TWH66laF09Y1PA8PDw0atSoC/YtYhcTx1WFRefrW+SqfkVVAnw8dfnAjvoi5bBOlDg2I8BqtUo6\n1VvINE0t/nG/erULdMlykm+++UaSCIvqUfv27eXr63tmZlFYWJhbZ3H16NFDeXl5ioqK0kMPPeS2\nOlA3fTsGaUKftnrrx30qquOS9YpKuxL25mlEN9fMKqoybdo05efnn7NM9kI2b94sX19f9enTx6W1\nNHdVr8ec6Vv0wAMPSJL+9re/uaQmND8+Pj667rrrFB8ffyZcHDVqlLvLanCERUALd6KkXF+mHNYV\nF3VUKweaw+7YsUObNm3SrFmzXN5guJWPp6YP7aRP7h6plb8do1kjuyhp/zHdtjhJI+d/p+e+TtOB\n3KJz7rMdK5ZhSPfcMUsTJ07UI488UmPfm/Op+uSKT5zdY8yYMdq5c6eysrKqPV8VFlXtbITaa9u2\nrcLDw887sygpKUkWi0WDBg1y2TOvHxql4vJKfZHi2PKB/v37q1WrVlq/fr0S9x/TjsPHdevILi75\nf098fLzat2+vgQMHOj0WqmcYhrp06XJmZpG7lqBVqQqZn3vuOfn7O7+MEQ3nnku6K/9kud5LOFCn\n+346dFwnSitkdVG/oioTJ06Ul5eXvvzyy1rfk5ycrIEDB8rT0zWbcbQUzs4s+ve//63PPvtMjz32\nmDp16uTK0tBMRUVFae7cubrmmmvcXUqDIywCWrjPtx1WcXmlpg917AfmokWL5OnpqZtvvtnFlZ2t\ne9tAzZnaVxseGa/Xbxmsvh2C9Nr36Rr73Pe64Y0N+nSLTSXlp5rQZRw7qfZBvvLx8tDrr7+uiooK\n3XPPPQ411s3MzJRhGGzL7iY19S3auXOnoqKiFBDg3PbHLVW/fv0uOLOoX79+Lv13OygqWD3btXJ4\nKZqHh4fi4uK0fv16Lfpxn1r7eelXFzk/66+yslLffvutJk2axK569Sw6Olr79u1Tenq6W5egSdLM\nmTP1wQcf6Prrr3drHai7QZ3aaHSPML2xZt+Zn/21sT49R5IUF+3asCgoKEhjxoypdd8iu92uLVu2\n0K/IAcHBwfLz83NoZlFxcbHuu+8+9erVSw8++GA9VAc0L4RFQAv3UVKGerUL1MDI1nW+t6KiQu+8\n846mTp2qtm3b1kN15/L2tOiy/h20aNYw/fjwOD10aU8dyi/Rbz7apqFPrdTcz7brp8wCRbU59Slx\ndHS05s2bp88//1wff/xxnZ9ns9nUtm1beXl5ufpLQS0MHjxYAQEB512Kxk5ozunfv3+1O6KZpunS\n5tZVDMPQ9bFR2pqRr11ZJxwaw2q1atu2bfpq817dMCxKft7ObzmdlJSkvLw8lqA1gK5du2rPnj06\nePCg22cWtWnTRjfccAMBYRN17yXdlVNYWqfweUN6rnq1C1R4oI/L65k2bZp27NhRq0a4e/bs0YkT\nJ+hX5ADDMBQZGenQzKL58+dr7969euWVV+Tt7V0P1QHNC2ER0ILtPHJC2zLydf3QKIdeLMfHxysr\nK0uzZs2qh+pq1qG1n+4d10PfP3Sx3r9juMb1bqtlSTbtyipUZMh/Glfef//9GjJkiO677z4dO1a3\nnZgyMzNZguZGXl5eslqt1c4sMk2TsMhJ/fr1U2FhoQ4ePHjW8f379ys3N9flYZEkXT04Ul4ehsOz\ni6xWq+x2u0oP79KMEV1cUlN8fLwMw9DEiRNdMh7OLzo6WoWFhbLb7W4Pi9C0DY8O1bAuIXr9h3SV\nVdS8kUVpRaUS9+e5pMdZdaZNmyZJtVqKtnnzZkliZpGDIiIi6jyzKD09Xc8884ymT5+u8ePH11Nl\nQPNCWAS0YB8lZsjLw9BVgxxbxrFo0SK1bdtWU6ZMcXFldWOxGLJ2C9OCGwYp8dEJeu7aGP3fuP/0\nsPH09NTChQuVk5Oj3/3ud3UaOzMzk+bWbjZ27Fht375dubm5Zx3PysrS8ePHCYuc0L9/f0nn7ohW\n1dy6PsKikABvTezbTp9stqm0ovbLR6rEDIqVDENR5TaX7WYUHx+vYcOGKTS0ft5E4j+6du165vfu\nXoaGpu/ecd11uKBEn2yuOTjYcjBfJeV2jezu2ubWVbp3765evXrVailacnKyvL291bdv33qppbmr\n68wi0zR13333ycvLSy+88EI9VgY0L4RFQAtVWlGpT7fYdGm/9goJqPtU3JycHH3++ee65ZZbGtUS\nrdb+XrouNkpdws7uszJo0CA9+OCDeuutt7R69epaj2ez2QiL3GzMmDGSpHXr1p11vKq5de/evRu8\npubifDuiJSYmytvbWwMGDKiX504f2knHTpZr5Y7sOt/7/f4ieYV2ksfR3S6pJTc3V5s2bWIJWgP5\nZUDEzCI4a3SPMA2MbK1Xv0+/4C6pkrQ+PVcWQxrWNaTe6pk6dapWr16twsLCC163efNmxcTEsBTK\nQREREcrMzJTdXvOMMkn617/+pa+++kpPPvkkr+mAOiAsAlqob3dk6djJck2PjXLo/vfff1/l5eW6\n9dZbXVtYPXriiSfUrVs3zZ49W8XFxTVeX1xcrGPHjrEMzc2GDRsmHx+fc/oWpaWlSRIzi5zQpk0b\ndezYsdqZRQMHDqy3NzKjuoepY2tffZRUt6Vopmlq8Y/71a5HjFK3JdX6jcKFrFy5Una7XZMmTXJ6\nLNSsamaRr68vGwfAaYZh6N5xPXQw76Q+Tzl0wWs3pOdoQERrtfarvw+4pk2bprKyMq0/QG8UAAAg\nAElEQVRateq815imqc2bN9OvyAmRkZEqLy9XTk5OjdcWFRXp/vvvV//+/XXfffc1QHVA80FYBLRQ\nHyVmKCLYT6McnI69aNEiDRkypN5mHtQHf39//eMf/9CePXs0b968Gq+vmuLMp1Du5ePjo7i4uHP6\nFu3cuVN+fn6EeU7q16/fWWFRZWWlkpOT62UJWhUPi6FrY6O0dvdRZebXHNxW2bA3VzuzTuiKSy9W\nQUGBUlNTna4lPj5ebdq0qdevF/8RFBSk0NBQde3aVRYLL0PhvPG926p3+0C9/N0e2e3V73p6sqxC\nWw7ma0S3+lmCVmXUqFEKCgq64FK0ffv2KT8/n35FTqh6XVabvkVPPfWUDh48qFdffbVRzYQHmgJ+\nSgMtkO3YSa3bk6Nrh0TKYql7Y+utW7dq69atbmts7Yzx48fr1ltv1bPPPqtt27Zd8NqqFyGERe43\nduxYbdmyRQUFBWeO7dy5Uz179uQNp5P69++vHTt2nJmls2vXLhUWFtZ7eHLdkFMh3/I6zC5a/ON+\nhQR463+vP9Unbf369U7VYJqm4uPjNXHiRHl6ejo1FmpvyJAhio2NdXcZaCYsFkP3juuu9KNFiv/5\nSLXXJO4/pgq7KWs9Nbeu4uXlpUmTJunLL788Z5fJKsnJyZLEzCInVH1IVFPforS0ND3//POaMWOG\nRo8e3RClAc0Kr7CBFujj5FMhyHWxjs3IWLRokby9vXXjjTe6sqwG8/zzzys0NFR33HGHKivP32C3\n6kUIM1fcb8yYMbLb7WeFA+yE5hr9+vVTcXHxme2e67O59S9FhfhrZLcwLU+ynXc2wC9l5J3Ut6lZ\nunFYlPr16aXw8HCnw6KUlBQdOXKEfkUN7F//+pcWLlzo7jLQjEzu30HR4QF66bs91YY069Nz5OVh\nKLZLm3qvZdq0aTp8+LC2bNlS7fnNmzfL09OzSc3MbmxqM7PINE3de++98vf317PPPttQpQHNCmER\n0MJU2k0tT7JpVPcwRbbxr/P9ZWVleu+99/SrX/1KISH11ySyPoWGhmrBggVKTEzUSy+9dN7rWIbW\neIwYMUJeXl5n+haVlpZq3759hEUuULUjWlWT68TERAUEBDRI4/DpQ6OUmV+sH9Nr7juxdMN+WQxD\nt8R1lmEYslqtTodFX3/9tSTRr6iB+fr6ysfHx91loBnxsBi65+LuSj18XN+lnds4f/2eXA3q1Eb+\n3vU/g3Dy5MkyDOO8S9GSk5PVv39/vgec0K5dO3l4eFxwZtGyZcu0atUqPfXUU2rXrl0DVgc0H4RF\nQAvz454cZeYXa/pQxxpbf/HFF8rNzW1Sja2rM336dE2dOlVz5szR/v37q73GZrMpMDBQgYGBDVsc\nzuHv76+hQ4eeCYvS09Nlt9sJi1ygauvmqr5FiYmJGjJkiDw8POr92Zf2a6dgfy99lHjhpWhFpRX6\nMDFDk/u3V4fWfpIkq9WqXbt21arB6fnEx8crJiZGHTt2dHgMAI3DFRd1VFSI3zmziwpOluunQwX1\nvgStSnh4uIYPH15tWFTV3Jp+Rc7x8PBQhw4dzjuz6MSJE/rtb3+rwYMH66677mrg6oDmg7AIaGE+\nSspQG38vTezr2KcsixYtUseOHXXppZe6uLKGZRiGXn31VVksFt11113VTlvPzMxkCVojMmbMGCUl\nJamoqEg7d+6UxE5orhAYGKjOnTvrp59+UllZmbZu3dpgzZ59PD30q4si9M3PWTpWVHbe6z7dkqkT\nJRWaNbLLmWNWq1WStGHDBoeefeLECa1bt44laEAz4eVh0f+O7a6tGfn6cU/umeMb9+XKNCVrPTe3\n/qVp06YpMTFRWVlZZx0/ePCgcnNz6VfkApGRkeedWfTHP/5Rhw8f1quvvtogH3wAzRVhEdCCHCsq\n07c/Z+lXgyLk41n3H55HjhzRV199pRkzZjSLH76dOnXSU089pa+//lrvv//+OeczMzNZgtaIjB07\nVhUVFdqwYcOZsKhnz55urqp5qNoR7aefflJpaWmDNh+ePjRKZZV2fbql+hf9pmlq8fr9GhDRWoM7\n/affyJAhQ+Tl5eXwUrTVq1ervLycsAhoRq4ZEqH2Qb566bvdZ45tSM+Vr5dFF0UFN1gd06ZNkyT9\n+9//Put4VXNrZhY5LyIiotqZRdu3b9eCBQt0++23a/jw4W6oDGg+CIsAN7rn/c169fs9Dfa8T7dk\nqqzS7vAStHfeeUeVlZVNfgnaL91zzz0aPny4HnjggXOWs9hsNsKiRsRqtcpisWjNmjXauXOnOnTo\noKCgIHeX1Sz0799faWlpZ2bpNOQ28n06BCkmsrWWJWVUO8Nv3Z4c7cku1K3WLjKM/+ze6Ofnp8GD\nBzscFsXHxysgIEAjR450uHYAjYuPp4fuHButhH152rQvT9Kp5tZDu4TI27Ph3vbExMQoMjLynKVo\nmzdvloeHh2JiYhqsluaquplFpmnqnnvuUXBwsJ5++mk3VQY0H4RFgJvYjp3UlymH9eI3u7Qn+0S9\nP880TX2UmKGBUcHq3b7ub7BN09TixYs1YsSIZrX0x8PDQwsXLlR+fr4efPDBM8crKyt15MgRlqE1\nIkFBQRo8eLB++OEHdkJzsX79+qmsrEwffvihQkJCFB0d3aDPnz40SmlHTijFVnDOucU/7ldYK29N\nG9jhnHNWq1WbNm1SeXl5nZ5nmqa++uorjR8/Xt7e3g7XDaDxuWFoJ4W18tbLq/fo6IlS7coqbNAl\naNKppe5Tp07VN998o7Ky/yyxTU5OVt++feXn59eg9TRHEREROnHihI4fP37m2DvvvKO1a9fqmWee\nUWhow/SoApozwiLATVaf3q3Dy8OiP67YUe0n6q60zVagnVknND3WsVlFiYmJ2rFjh2bNmuXiytxv\nwIABevjhh7V06VJ98803kqSsrCxVVlYys6iRGTNmjBISErRjxw7CIheq2hFt3bp1io2NPWsGT0O4\nfGBH+XpZ9FHS2Y2u9+cU6bud2bppeOdql85arVaVlJRo69atdXre7t27tX//fnZBA5ohP28P3T46\nWmt2HdXrP6RLkkZ2b/jgYNq0aSosLNSaNWsknQqpk5OTWYLmIlWvz6pmF+Xn5+t3v/ud4uLidNtt\nt7mzNKDZICwC3GRVWra6hPrr4cm9tW5Pjr766Ui9Pu+jxAz5eXno8mo+na+NRYsWyc/PT9OnT3dx\nZY3DnDlz1KtXL911110qKio6sw6emUWNy9ixY1VaWqqCggLCIhfq3bv3mYCoIZegVQny9dKUAR20\nYushnSyrOHN8yYb98rQYumV4p2rvq2pyXdelaPHx8ZJEvyKgmbolrrNa+3nprXX7FOjrqX4dWzd4\nDePGjZOvr++ZpWiZmZk6evQoza1dpOr1WdXrtblz5yonJ+fM5iUAnMd3EuAGJ8sqtD49V+P7tNPN\nwzupT4cg/fmLHWe9SXL18z7fdkhTYzoo0NerzvcXFxfrgw8+0DXXXNNse8T4+vrqjTfe0L59+/TE\nE0+c+aSKmUWNy6hRo86EGoRFruPv739m6Zk7wiJJmh4bpcLSCv17+6ngvLC0QsuTbJo6oIPaBvlW\ne0/Hjh3VuXNnh8KiHj16NPhyOwANo5WPp24b2VWSFBcdKg9Lw86WlE79f3XcuHH64osvZJqmNm/e\nLInm1q7yy5lFmzdv1muvvaa7775bgwYNcnNlQPNBWAS4wbrdOSqrsGt877by9LBo3pX9dKigRK+s\nrp9m11+mHFZhaYXDja0/++wzFRQUNKvG1tUZM2aMZs+erb/+9a9asWKFJMKixiYkJEQDBgyQRFjk\nalVL0dwVFg3rGqKuYQFalnhqKdo/k20qLK3Qraff8J2P1WqtU1hUUlKi77//nllFQDN3q7WLItv4\naeoAx2ZUu8K0adOUnp6uXbt2KTk5WRaLRQMHDnRbPc1J1euzgwcP6u6771Z4eLjmzZvn5qqA5qXG\nsMgwjLcNw8g2DOOn85z/nWEYW0//+skwjErDMEJOn9tvGMb20+eSXF080FR9l5atQB9PxXYJkSTF\ndgnR1YMitHDNPu3LKXL585YlZSg6PECxndvUfHE1Fi9erM6dO+uSSy5xcWWNz/z589WuXTstXrxY\nXl5eCg8Pd3dJ+C8TJkxQUFCQunTp4u5SmpWrrrpKU6ZMUceOHd3yfMMwdH1slDbtz1P60UItWb9f\nF0UF17jdtdVqlc1m08GDB2v1nLVr16q4uJiwCGjmWvt7ad0fxulXg9z3oc/UqVMlSV9++aU2b96s\n3r17KyAgwG31NCe+vr4KDQ3Va6+9poSEBD333HMKDr7wzwsAdVObmUWLJZ33FZVpms+ZpnmRaZoX\nSXpE0g+maeb94pJLTp+Pda5UoHmw202tSsvWmF7hZ23j+vCU3vLxtOiPK352abPr9KOFStx/TNfH\nRjnUtDYjI0PffvutZs6c2SLWgAcHB+vll1+WdGqJS0v4mpuaJ598UomJifLwOLfhMRw3c+ZMffnl\nl26t4ZohEfKwGPrtsm3am1OkWSO71HhPXfsWxcfHy8fHR2PHjnWmVACoUadOnTRgwAB98cUXSk5O\npl+Ri0VGRurIkSMaM2aMbrnlFneXAzQ7Nb4LMk1zjaS8mq477UZJHzhVEdDM/XSoQEdPlGp877Zn\nHW8b6KsHJvbUD7uO6tsdWS573rKkDHlYDF092LFP1pYuXSrTNDVz5kyX1dTYXX311Zo5c6bGjRvn\n7lJQjVatWqlnz57uLgP1oG2gry7p1VbbMvLVNtBHk/vXvHwkJiZG/v7+dQqLxowZw6f7ABrEtGnT\n9MMPP+jw4cP0K3KxyMhIeXh46JVXXmnwXTyBlsBlH5kbhuGvUzOQ/vmLw6akbwzDSDYMY7arngU0\nZatSs2UxpIt7tT3n3IwRndWzXSv96YsdKimvdPpZ5ZV2/TM5U+N7t1XbwOobxF6IaZpavHixxo4d\n2+IawS5evFhvv/22u8sAWpyq3mq3xHU+a/bl+Xh6emr48OG1CosOHjyoHTt2sAQNQIOZOnWq7Ha7\nJDGzyMXmzp2rjz766EzPPQCu5cr1FZdL+vG/lqCNMk1zsKTJku4xDGPM+W42DGO2YRhJhmEkHT16\n1IVlAY3LqrQsDe7URiEB3uec8/Kw6E9X9pftWLFe/T7d6Wd9l5atnMJShxtb//jjj9qzZ49mzZrl\ndC0AUBvje7fVghsu0h2jax9QW61Wbd26VUVFF+759vXXX0sSYRGABhMXF6eQkFM9Ktmpy7Xi4uJ0\nzTXXuLsMoNlyZVh0g/5rCZppmpmn/5kt6VNJw853s2mab5imGWuaZiwNZdFcHSko0U+ZxzWuz7mz\niqrERYfqioEd9foP6TqYe7LGMXfu3HneT9SXJWaobaCPxvZ07Htq0aJFatWqla699lqH7geAurJY\nDF15UYT8vGvfk8pqtaqyslKJiYkXvC4+Pl5RUVHq06ePs2UCQK14eHho+vTpGjZsmAIDA91dDgDU\nmkvCIsMwWksaK+lfvzgWYBhGYNXvJV0qqdod1YCWYvXObEnS+N7tLnjdo1P6yMti6E9f/FzjmNOn\nT9eoUaP0wgsvnNUYO+t4iVbvzNa1QyLl6VH3b/WioiItW7ZM119/Pb09ADRqcXFxki7c5Lq8vFwr\nV67UpEmT6G0BoEH9/e9/19q1a91dBgDUSY3vIA3D+EDSBkm9DMOwGYbxa8Mw7jIM465fXHaVpG9M\n0/zl/O92ktYZhrFN0iZJX5qmGe/K4oGmZlVqliLb+Klnu1YXvK59a1/93/geWpmare/Szt/setu2\nbdq2bZu6du2qhx56SPfee68qKiokSR8n22Q3petjHVuC9vHHH6uwsJAlaAAavZCQEPXp0+eCYdHG\njRt1/PhxlqABaHCenp7y9j63/QAANGaeNV1gmuaNtbhmsaTF/3Vsr6SBjhYGNDcl5ZVatydH02u5\nhf2skV21LClDT36+Q9ZuYfL1OndJxpIlS+Tl5aWEhAQ999xzevbZZ3XgwAG9//4HWpaUobjoEHUJ\nc2xW0KJFi9S9e3eNHDnSofsBoCFZrVZ9+umnstvtsljO/Szs66+/loeHh8aPH++G6gAAAJoWV/Ys\nAnABG9JzVVJu17g+F16CVsXb06Inr+ivA7kntXDN3nPOl5eX67333tPll1+usLAwzZ8/X6+//rri\n4+M1dMRIpe/PcLix9d69e/XDDz/o1ltvZbkGgCZh5MiRysvL065du6o9Hx8frxEjRig4OLiBKwMA\nAGh6CIuABrIyNUv+3h6Kiw6p9T2jeoRpyoD2euX7PbIdO7vZ9TfffKPs7GzNmDHjzLE777xTn3/+\nufbtTVf2uw8pysxxqNYlS5bIMIyzxgaAxsxqtUqqvm9Rdna2kpOTWYIGAABQS4RFQAMwTVPfpWVr\ndI8w+XjWfocfSZozta8MGZr3xY6zji9ZskRhYWGaPHnyWcetF09Qh5vny9fT0LiLx+ibb76p0/Ps\ndruWLFmiiRMnKirKsZlJANDQevbsqZCQkGrDoqr/DxIWAQAA1A5hEdAAUg+f0OGCkhp3QatORLCf\n7h3XXV//nKUfdh2VJB07dkz/+te/dNNNN53TMHHFtkMywrrqk/jV6tq1q6ZMmaK33nqr1s9bvXq1\nDhw4oFtvvbXOtQKAuxiGIavVWm1YFB8fr/DwcA0aNMgNlQEAADQ9hEVAA1iVempHs0t6t3Xo/ttH\nd1XXsAA9ueJnlVZUatmyZSorK6t2mdhHiQfVt0OQJgztq7Vr12rChAm6/fbbNWfOHNnt9hqftXjx\nYrVu3Vq/+tWvHKoVANzFarUqNTVVeXl5Z47Z7XZ9/fXXmjRpUrWNrwEAAHAuXjUBDWBVWrYGRgUr\nPNDHoft9PD30xOV9tTenSG+t26clS5aoX79+Gjx48FnX/XyoQD9lHj/T2DooKEiff/65Zs+erb/8\n5S+6+eabVVJSct7nFBQU6J///KduvPFG+fn5OVQrALhLVd+ijRs3njm2efNm5eTksAQNAACgDgiL\ngHp29ESpttnyNd7BWUVVLu7VVhP7ttMLy77Xhg0bNHPmzHN2KluWmCFvT4t+dVHEmWNeXl56/fXX\nNX/+fH344YeaOHGicnNzq33GsmXLVFxcrFmzZjlVKwC4w9ChQ+Xh4XHWUrT4+HgZhqFLL73UjZUB\nAAA0LYRFQD1bvTNbpimN7+NcWCRJj0/rq/yUlTIMi26++eazzpWUV+rTLZma3L+9Wvt7nXXOMAz9\n/ve/14cffqjExESNGDFCe/bsOWf8RYsWqU+fPho6dKjTtQJAQ/P399egQYPOCYsGDx6s8PBwN1YG\nAADQtBAWAfXsu9RstQ/yVd8OQU6PFRHsK3P3Wvl0uUj7Tp7d2Prrn4/oeEmFpseefwez6dOna9Wq\nVcrLy9OIESO0YcOGM+fS0tK0YcMGzZo165wZSwDQVFitViUkJKi8vFz5+fnauHEjS9AAAADqiLAI\nqEelFZVau/uoxvVp65IA5ocfftCx7EPqHDdZT6z4WeWV/2lY/VFihqJC/BQXHXrBMUaOHKmNGzcq\nODhYl1xyiZYvXy5JWrJkiTw8PPQ///M/TtcJAO5itVp18uRJpaSkaNWqVaqsrCQsAgAAqCPCIqAe\nJezNU1FZpSa4YAmadCrQCQoK0gsP3a492YVa/ON+SdLB3JNan56r64dEyWKpOZTq3r27NmzYoNjY\nWF1//fWaP3++li5dqsmTJ6t9+/YuqRUA3KGqyfX69esVHx+v1q1bKy4uzs1VAQAANC2ERUA9+i4t\nW75eFlm7hTk9VlFRkT7++GNdd911mjKosy7pFa6/rdylrOMlWp6cIYshXRsbWevxwsLCtHLlSk2f\nPl0PP/ywDh06RGNrAE1eVFSUIiMj9eOPPyo+Pl4TJkyQp6enu8sCAABoUgiLgHpimqZWpWVpZLcw\n+Xp5OD3eJ598oqKiojO7oD1xeT+VV5r685ep+jjZprE9w9Whdd22u/f19dX777+vuXPnavTo0Zo2\nbZrTdQKAu1mtVq1YsUI2m40laAAAAA4gLALqye7sQmXkFWt8n3YuGW/JkiWKjo7WqFGjJEldwgJ0\n59hofb7tkA4XlGj60PM3tr4Qi8WiefPmac2aNfL29q75BgBo5KxWq4qLiyVJkyZNcnM1AAAATQ9h\nEVBPVqVmS5LG9Xa+X1FGRoa+++47zZgx46xG2Xdf3F0RwX4KDfDWuN6uCaUAoKmr6lvUr18/RUU5\nFqQDAAC0ZCziB+rJd2lZ6tcxSO1b+zo91rvvvivTNM/ZqczP20NLbhum4rJKeXuS/QKAJF100UUK\nDQ3VlVde6e5SAAAAmiTCIqAeHCsqU/KBY7p3XA+nxzJNU0uWLNHo0aMVHR19zvnubVs5/QwAaE68\nvLyUmpqq1q1bu7sUAACAJompCEA9+H5XtuymNN4FS9A2bdqknTt3aubMmS6oDABahvDwcPqwAQAA\nOIiwCKgHq1KzFdbKRwMinP9Ue+nSpfL19dW1117rgsoAAAAAALgwwiLAxcor7fph11GN6x0ui8Wo\n+YYLKC0t1QcffKCrrrqK5RQAAAAAgAZBWAS4WOL+PJ0oqdD4Ps7vTvbFF1/o2LFjLEEDAAAAADQY\nwiLAxb5LzZa3h0Wjuoc5PdbSpUvVoUMHTZgwwQWVAQAAAABQM8IiwMW+S8tWXLdQBfg4t9ng0aNH\n9e9//1u33HKLPDw8XFQdAAAAAAAXRlgEuNDeo4Xam1OkCX2c3wXt/fffV0VFBUvQAAAAAAANirAI\ncKHv0rIlSZf0cj4sWrJkiYYMGaJ+/fo5PRYAAAAAALVFWAS40KrUbPVqF6ioEH+nxtm+fbu2bNnC\nrCIAAAAAQIMjLAJcpKC4XIn78zTeBUvQli5dKk9PT91www0uqAwAAAAAgNojLAJcZM2uo6qwm06H\nRRUVFXr33Xc1depUhYeHu6g6AAAAAABqh7AIcJHv0rIVEuCti6LaODXOypUrdeTIEZagAQAAAADc\ngrAIcIGKSrtW78zWxb3C5WExnBpryZIlCgkJ0ZQpU1xUHQAAAAAAtUdYBLjAlox85Z8s1/je7Zwa\np6CgQJ999pluvPFG+fj4uKg6AAAAAABqj7AIcIFVqdnytBga3TPMqXGWLVumkpISlqABAAAAANyG\nsAhwgVWpWRoeHaIgXy+nxlm6dKn69Omj2NhYF1UGAAAAAEDdEBYBTjqYe1K7sws1zsklaOnp6Vq3\nbp1mzJghw3Cu7xEAAAAAAI4iLAKc9F1aliRpfO+2To2zdOlSGYahW265xRVlAQAAAADgEMIiwEmr\n0rLVLTxAXcICHB7Dbrdr6dKlmjBhgiIjI11YHQAAAAAAdUNYBDihsLRCG/fmanwf55agrVu3Tvv3\n79eMGTNcVBkAAAAAAI4hLAKcsG73UZVXmhrn5BK0JUuWqFWrVrrqqqtcVBkAAAAAAI4hLAKcsDI1\nW0G+nort3MbhMU6ePKnly5fruuuuU0CA40vZAAAAAABwBcIiwEF2u6nVadm6uFdbeXo4/q302Wef\n6cSJE5o5c6YLqwMAAAAAwDGERYCDttnylVtUpvF9nF+C1rlzZ40ePdpFlQEAAAAA4DjCIsBBq1Kz\n5WExNLZnuMNjZGZmauXKlZoxY4YsFr4dAQAAAADu5+nuAoC6OFZUpt3ZhTJN092l6Oufj2hI5zYK\n9vd2eIz33ntPdrudXdAAAAAAAI0GYREatRMl5Urcn6f1e3K1Pj1XOw4fd3dJZ5k7tY9D95WVlemd\nd97RCy+8IKvVqu7du7u4MgAAAAAAHENYhEalpLxSyQeOaX16jtan5yrFVqBKuylvT4tiO7fRQ5f2\n1IDIYHlZDHeXKg+LoUGd6rYLWllZmRYvXqy//OUvOnDggGJjY/Xyyy/XU4UAAAAAANQdYRHcqrzS\nrm0Z+Vqfnqv16TnafCBfZZV2eVgMXRQVrLsv7qYR3UI1uFMbGfYKPfroo3rpiy/0+9//XjNnzpSn\nZ9P4K1xaWqq3335bTz/9tDIyMjR8+HC99tpruuyyy2QY7g++AAAAAACoUuM7bcMw3pY0TVK2aZr9\nqzl/saR/Sdp3+tAnpmn+6fS5yyQtkOQh6U3TNJ9xUd1ooirtplIPHz8zc2jTvjydLKuUYUh9OwRp\nprWzrN3CNLRriFr5/OevZ2pqqm688UZt27ZNPXr00O23364XX3xRTz/9tC6//PJGG7iUlJTorbfe\n0jPPPCObzSar1ao333xTEydObLQ1AwAAAABattpMy1gs6WVJSy9wzVrTNKf98oBhGB6SXpE0UZJN\nUqJhGCtM09zhYK1ookzT1Ma9eVqelKFVadkqKC6XJHVv20rXDomUtVuohncNVZuAcxtFm6apN998\nU/fff7/8/f21YsUKTZs2TZ999pkeeeQRXXnllRo5cqTmz5+vkSNHNvSXdl7FxcVauHCh5s+fr0OH\nDmnUqFFatGiRxo8fT0gEAAAAAGjUagyLTNNcYxhGFwfGHiZpj2maeyXJMIwPJV0pibCohcg6XqKP\nk21alpShA7knFejjqUn922t0jzCNiA5V2yDfC95/7Ngx3XHHHfrnP/+pCRMmaMmSJerYsaMk6aqr\nrtLll1+ut99+W0888YRGjRqlK6+8Uk8//bT69HGs6bQrnDx5Uv/4xz/07LPP6siRIxo7dqzeffdd\nXXzxxYREAAAAAIAmwVUNX0YYhrFN0iFJD5mm+bOkCEkZv7jGJmm4i56HRqq80q5VqdlalpSh73dm\ny25Kw7uG6P7xPTS5fwf5eXvUapy1a9fq5ptv1uHDh/Xss8/qwQcflMViOesaT09PzZ49WzfffLP+\n9re/af78+erfv79uu+02/fGPf1RERER9fInVKioq0uuvv67nnntOWVlZuuSSS/Thhx9q7NixDVYD\nAAAAAACu4IqwaLOkzqZpFhqGMUXSZ5J61HUQwzBmS5otSZ06dXJBWWhIe7ILtVX8GjAAABy0SURB\nVDwpQ//cbFNOYZnaBvrorrHddH1slLqEBdR6nIqKCv3pT3/SU089pejoaG3YsEGxsbEXvCcgIEBz\n5szRnXfeqaeeekqvvPKK3n33XT3wwAP6wx/+oODgYGe/vPMqLCzUq6++queff15Hjx7VhAkTtHz5\nco0ePbrengkAAAAAQH0yTNOs+aJTy9C+qK7BdTXX7pcUq1OB0R9N05x0+vgjkmSa5tM1jREbG2sm\nJSXVWBfcq6i0Ql9uP6xliRlKOnBMnhZD43q31fShURrbM1yeHpaaB/mF/fv366abbtKGDRt06623\n6u9//7sCAwPrXNe+ffv02GOP6b333lNISIjmzJmju+++W76+F172Vht2u10ZGRnasWOHNm7cqFde\neUW5ubmaNGmSHn/8cVmtVqefAQAAAABAfTAMI9k0zQvPyJALwiLDMNpLyjJN0zQMY5ikjyV11qkd\n0HZJGi8pU1KipJtOL1G7IMKixss0TW3JyNeyxAx9vu2QisoqFR0eoOmxUbp6cKTCA30cGvfDDz/U\nnXfeKUn6xz/+oRtuuMHpWrds2aJHHnlEX3/9tTp16qR58+bp5ptvlodHzUvhKisrtW/fPu3YseOs\nX2lpaSoqKjpz3eTJk/X4448rLi7O6XoBAAAAAKhPLguLDMP4QNLFksIkZUl6QpKXJJmm+bphGPdK\n+l9JFZKKJf3WNM31p++dIulvOhUcvW2a5lO1KZ6wqPHJP1mmj5Nt+igxQ7uzC+Xn5aGpMR00fWiU\nYju3cbh584kTJ/R///d/Wrx4sUaMGKH33ntPXbt2dWntq1at0h/+8AclJycrJiZGzzzzjC677DIZ\nhqHy8nLt2bNHO3bsUGpq6lmhUGlp6ZkxIiMj1bdvX/Xp00d9+/Y98/vQ0FCX1goAAAAAQH1x6cyi\nhkZY1Phc8fI6pdgKdFFUsKYPjdK0mA4K9PVyasykpCTdeOON2rt3r+bMmaPHH39cnp6u6rl+Nrvd\nruXLl+vRRx/V3r17NWTIEBUXF2vXrl2qqKg4c12XLl3OhEFVv3r37q3WrVvXS10AAAAAADSU2oZF\n9fPOHM1KwclypdgKdP/4HvrNxJ5Oj2e32/X8889rzpw5at++vVavXq0xY8a4oNLzs1gsmj59uq66\n6iq98cYbWrx4sbp3764rrrjirFAoIKD2zbgBAAAAAGiOCItQo+2ZBZKkoV1CnB7r8OHDmjFjhlau\nXKmrr75aCxcuVEiI8+PWlre3t+69917de++9DfZMAAAAAACaEsIi1CglM1+SNCDCuaVYa9eu1dVX\nX62ioiK98cYbuv322x3udQQAAAAAAOoHYRFqtN1WoM6h/mrt71yPoscff1x+fn5as2aN+vTp46Lq\nAAAAAACAK1ncXQAavxRbgdOziiorK5WYmKgrr7ySoAgAAAAAgEaMsAgXlFtYqsz8Yg2MDHZqnJ9/\n/llFRUUaPny4iyoDAAAAAAD1gbAIF5Ryurn1gEjnZhYlJCRIkuLi4pyuCQAAAAAA1B/CIlzQdluB\nDEPq1zHIqXE2btyo0NBQdevWzUWVAQAAAACA+kBYhAtKsRUoOixAgb7ONbdOSEjQsGHD2P0MAAAA\nAIBGjrAIF5Riy3e6X9Hx48e1Y8cO+hUBAAAAANAEEBbhvLKOlyj7RKnT/YqSkpJkmib9igAAAAAA\naAIIi3BeKbZTza1jnAyLNm7cKEkaNmyY0zUBAAAAAID6RViE89puy5fFkPp2cH4ntJ49e6pNmzYu\nqgwAAAAAANQXwiKcV0pmgXq2C5Sft4fDY5imqYSEBPoVAQAAAADQRBAWoVqmaSrFVuD0ErSDBw8q\nKyuLfkUAAAAAADQRhEWoVmZ+sfKKyjTAyZ3QqvoVMbMIAAAAAICmgbAI1dpe1dw6wvl+Rb6+voqJ\niXFFWQAAAAAAoJ4RFqFaKZkF8vIw1LtDoFPjJCQkaMiQIfLy8nJRZQAAAAAAoD4RFqFaKbZ89W4f\nJB9Px5tbl5WVafPmzSxBAwAAAACgCSEswjmqmlsPcLK5dUpKikpKSgiLAAAAAABoQgiLcI4DuSd1\noqTCJf2KJJpbAwAAAADQlBAW4RwpmaeaWzs7syghIUHt27dXp06dXFEWAAAAAABoAIRFOMd2W758\nPC3q2c655tYbN27U8OHDZRiGiyoDAAAAAAD1jbAI59hmK1DfjkHy8nD8r0deXp52797NEjQAAAAA\nAJoYwiKcpdJu6ufMAqf7FW3atEkS/YoAAAAAAGhqCItwln05hSoqq9SAyGCnxklISJBhGBo6dKiL\nKgMAAAAAAA2BsAhnSbGdam4d42Rz640bN6pfv34KDHSu7xEAAAAAAGhYhEU4S4qtQP7eHuoW3srh\nMUzT1KZNm1iCBgAAAABAE0RYhLOk2PLVv2NreVgc38Fsz549ysvLU1xcnAsrAwAAAAAADYGwCGdU\nVNr186HjGuDkErSEhARJNLcGAAAAAKApIizCGbuzC1VaYXdJv6JWrVqpb9++LqoMAAAAAAA0FMIi\nnJFiy5ckDYhwfmZRbGysPDw8XFEWAAAAAABoQIRFOCPFVqBAX091CQ1weIzi4mJt3bqVfkUAAAAA\nADRRhEU4Y3tmgQZEtJbFiebWW7ZsUUVFBf2KAAAAAABoogiLIEkqrahU6mGaWwMAAAAA0NIRFkGS\ntOtIocorTcVEBDs1TkJCgjp16qQOHTq4qDIAAAAAANCQCIsgSdp2urm1szuhJSQkMKsIAAAAAIAm\njLAIkqTttgK18fdSZBs/h8fIysrS/v37CYsAAAAAAGjCCIsgSUrJLNCAyGAZhuPNrelXBAAAAABA\n00dYBJWUV2pX1gnFRDi/BM3T01ODBw92UWUAAAAAAKChERZBPx86rkq76ZKd0GJiYuTv7++iygAA\nAAAAQEMjLIK2n25uPTDS8Z3QKisrtWnTJpagAQAAAADQxBEWQSmZBQoP9FG7IB+Hx0hLS9OJEycI\niwAAAAAAaOIIi6DttgLFRLR2SXPruLg4V5UFAAAAAADcgLCohSsqrdCeo4Uu6VcUHBysHj16uKgy\nAAAAAADgDoRFLdxPmQUyTef6FUnSxo0bNWzYMFks/JUCAAAAAKAp4519C7c9s0CS1D/C8ZlFhYWF\n+umnn1iCBgAAAABAM1BjWGQYxtuGYWQbhvHTec7fbBhGimEY2w3DWG8YxsBfnNt/+vhWwzCSXFk4\nXCPFVqCOrX0VHuh4c+vk5GTZ7XaaWwMAAAAA0AzUZmbRYkmXXeD8PkljTdMcIGmepDf+6/wlpmle\nZJpmrGMloj5tzyxwul/Rxo0bJUnDhg1zRUkAAAAAAMCNagyLTNNcIynvAufXm6Z57PQfN0qKdFFt\nqGcFxeXal1OkGCf7FSUkJKhbt24KCwtzUWUAAAAAAMBdXN2z6NeSvvrFn01J3xiGkWwYxmwXPwtO\n+ul0v6IYF+yERr8iAAAAAACaB09XDWQYxiU6FRaN+sXhUaZpZhqG0VbSt4ZhpJ2eqVTd/bMlzZak\nTp06uaosXECK7VRYNMCJ5tY2m02HDh2iXxEAAAAAAM2ES2YWGYYRI+lNSVeapplbddw0zczT/8yW\n9Kmk8za1MU3zDdM0Y03TjA0PD3dFWajB9sx8dQrxV7C/t8NjVPUrIiwCAAAAAKB5cDosMgyjk6RP\nJP2PaZq7fnE8wDCMwKrfS7pUUrU7qsE9tmU439w6ISFB3t7eGjhwYM0XAwAAAACARq/GZWiGYXwg\n6WJJYYZh2CQ9IclLkkzTfF3S45JCJb1qGIYkVZze+aydpE9PH/OU9L5pmvH18DXAAbmFpcrML9ZM\na2enxklISNDgwYPl4+PjosoAAAAAAIA71RgWmaZ5Yw3nb5d0ezXH90piukkjtT2zql+R4zuhVVRU\nKCkpSbNn07scAAAAAIDmwtW7oaGJ2H66uXX/iCDHx9i+XcXFxfQrAgAAAACgGSEsaqFSMgsUHR6g\nQF8vh8dISEiQJMXFxbmqLAAAAAAA4GaERS1Uii1fMRHON7cODw9Xly5dXFMUAAAAAABwO8KiFijr\neImyjpcqJtLxfkXSqbBo+PDhOt3EHAAAAAAANAOERS1QVb+imEjHZxbl5+crNTWVfkUAAAAAADQz\nhEUtUEpmgSyG1Lej482tExMTJdGvCAAAAACA5oawqAVKseWrR9tA+Xt7OjxGQkKCDMPQ0KFDXVgZ\nAAAAAABwN8KiFsY0TW23FTi1BE2SNm7cqN69e6t1a+fGAQAAAAAAjQthUQtzqKBEuUVlToVFpmme\naW4NAAAAAACaF8KiFma7LV+SNMCJndD27dunnJwc+hUBAAAAANAMERa1MCm2AnlaDPVuH+jwGAkJ\nCZLEzCIAAAAAAJohwqIWJsVWoF7tA+Xr5eHwGBs3bpS/v7/69+/vwsoAAAAAAEBjQFjUgpimqRRb\nvmKcWIImnZpZFBsbK09Px3dTAwAAAAAAjRNhUQtyMO+kjpdUONXcurS0VFu2bGEJGgAAAAAAzRRh\nUQuSYiuQJA2IcDws2rZtm8rKygiLAAAAAABopgiLWpAUW768PS3q5URz640bN0qiuTUAAAAAAM0V\nYVELkmIrUN8OQfLycPw/e0JCgiIiIhQZGenCygAAAAAAQGNBWNRC2O2mfsoscKpfkXQqLGJWEQAA\nAAAAzRdhUQuxN6dIRWWVTvUrysnJUXp6OmERAAAAAADNGGFRC5Fiy5ckxUQGOzxGQkKCJPoVAQAA\nAADQnBEWtRAptgL5eXmoW3iAw2MkJCTIYrEoNjbWhZUBAAAAAIDGhLCohdieWaD+EUHydLK59YAB\nAxQQ4HjgBAAAAAAAGjfCohagotKunw8VaECE40vQ7HY7za0BAAAAAGgBCItagD1HC1VSbndqJ7Rd\nu3apoKBAcXFxLqwMAAAAAAA0NoRFLUBKRoEkaYATYRHNrQEAAAAAaBkIi1qAlMx8Bfp4qmuoc82t\ng4KC1Lt3bxdWBgAAAAAAGhtPdxeA+rfdVqD+Ea1lsRh1vtc0Ta1atUorVqzQ0KFDZbGQLwIAAAAA\n0Jzxzr8Zs9tNfb7tkFIPn3CoX9H69es1btw4TZw4URaLRY899lg9VAkAAAAAABoTZhY1Q6ZpamVq\ntl74ZqfSjpxQz3atdOOwTrW+f+vWrZo7d66+/PJLtW3bVgsWLNCdd94pHx+feqwaAAAAAAA0BoRF\nzYhpmlq7O0cvfLNT22wF6hLqrwU3XKRpMR3lUYslaGlpaXr88ce1fPlytWnTRk8//bTuu+8+BQQ4\n3usIAAAAAAA0LYRFzUTC3ly98M0ubdqfp4hgPz17TYyuHhwhT4+aVxru27dPTz75pN555x35+flp\n7ty5evDBBxUcHNwAlQMAAAAAgMaEsKiJ23LwmF78dpfW7s5R20Afzbuyn64fGiUfT48a7z18+LD+\n/Oc/a+HChbJYLHrggQf08MMPKzw8vAEqBwAAAAAAjRFhURP186EC/fXbXVqZmq2QAG/NmdJHt8R1\nlp93zSFRbm6u5s+fr5dfflnl5eX69a9/rblz5yoyMrIBKgcAAAAAAI0ZYVETsyf7hP767W59uf2w\nAn099dClPXXryK5q5VPzf8rjx4/rxRdf1IsvvqjCwkLdcssteuKJJ9StW7cGqBwAAAAAADQFhEVN\nxIHcIi1YuVufbc2Un5eH7hvXXbePilZrf68a7z158qReeeUVPfPMM8rLy9PVV1+tP/3pT+rXr18D\nVA4AAAAAAJoSwqJG7lB+sV76bo+WJ2XIw2Lo9tHRunNMtEJb1W4b+02bNumaa66RzWbTZZddpj//\n+c8aMmRIPVcNAAAAAACaKsKiRqaswq6tGflan56j9em52nLwmCTppuGddM8l3dUuyLfWY73//vu6\n7bbb1KFDB/3www8aM2ZMfZUNAAAAAACaCcIiN6u0m/ops0Dr03O1Pj1HSfuPqbi8UoYh9e/YWreN\n6qr/ieusyDb+tR7Tbrdrzpw5euaZZzR27Fh9/PHHCgsLq8evAgAAAAAANBeERQ3MNE3tyirUj3tO\nzRxK2JerEyUVkqSe7Vpp+tAojegWqriuobXqR/TfTpw4oVtuuUUrVqzQ7Nmz9dJLL8nb29vVXwYA\nAAAAAGimCIvqmWmaOpB78szMoQ3pucotKpMkdQ7117SYDhrRLUxx0SFqG1j7JWbV2bdvn6644gql\npqbqpZde0j333CPDMFzxZQAAAAAAgBaCsKieJOzN1bIkmzak5+hQQYkkqV2Qj8b2DNeIbqEa0S20\nTkvLarJmzRpdc801qqio0FdffaWJEye6bGwAAAAAANByEBbVk/SjRfouLUsjuoXqf7uFydotVNFh\nAfUy0+fNN9/U3XffrejoaK1YsUI9e/Z0+TMAAAAAAEDLQFhUT64dEqkbhkbJYqm/ZWAVFRV66KGH\ntGDBAk2aNEkffvihgoOD6+15AAAAAACg+bO4u4DmatuWZM2b9yelpqbWy/j5+fmaOnWqFixYoAce\neEBffPEFQREAAAAAAHAaYVE9Wbt2rZ588kn17dtXMTEx+vOf/6xdu3a5ZOxdu3Zp+PDhWr16td58\n80399a9/lacnk8QAAAAAAIDzCIvqyW9/+1vZbDb9/e9/V1BQkB577DH16tVLgwYN0tNPP6309HSH\nxv322281fPhw5eXladWqVfr1r3/t4soBAAAAAEBLVquwyDCMtw3DyDYM46fznDcMw/i7YRh7DMNI\nMQxj8C/OzTQMY/fpXzNdVXhT0LFjR913331at26dMjIy9Ne//lW+vr569NFH1b17d8XGxurZZ5/V\n/v37axzLNE299NJLmjx5sqKiopSYmKjRo0fX/xcBAAAAAABaFMM0zZovMowxkgolLTVNs38156dI\nuk/SFEnDJS0wTXO4YRghkpIkxUoyJSVLGmKa5rELPS82NtZMSkqq69fSZBw4cEAff/yxPvroIyUm\nJkqShg0bpuuvv17XXXedOnXqdNb1ZWVluvfee7Vw4UJdeeWVeueddxQYGOiO0gEAAAAAQBNlGEay\naZqxNV1Xq5lFpmmukZR3gUuu1KkgyTRNc6OkYMMwOkiaJOlb0zTzTgdE30q6rDbPbM46d+6sBx98\nUJs2bdLevXs1f/78Mzubde7cWVarVX/729+UmZmpnJwcTZw4UQsXLtSjjz6qTz75hKAIAAAAAADU\nG1f1LIqQlPGLP9tOHzvfcZzWtWtX/f73v1dycrJ2796tv/zlLzp58qR+85vfKDIyUt27d1dCQoLe\ne+89PfXUU7JYaDMFAAAAAADqT6NJHgzDmG0YRpJhGElHjx51dzlu0b17dz3yyCPaunWr0tLSNG/e\nPI0bN05r1qzRTTfd5O7yAAAAAABAC+Cq/dYzJUX94s+Rp49lSrr4v45/X90Apmm+IekN6VTPIhfV\n1WT16tVLc+fOdXcZAAAAAACghXHVzKIVkmac3hUtTlKBaZqHJX0t6VLDMNoYhtFG0qWnjwHA/7d3\n/6F6lnUcx9+f3Fr+4wS3SFpkpGFkOWIMMSKaRWqRQoM2zMxaQRSG/ZEEgbQKkqBVf7TRj8WqpYaZ\nxVqBtECN5bJmUqxkfyipwSp/lIhF7tsf93XuPZ2d52xy9NzP03m/4IH7vp7rHteBD9/z7Hvu+3ok\nSZIkSRPopO4sSnIj3R1Cq5I8BFwPLAeoqh3AXrpvQjsMPAVc3d57NMlngF+3f2prVc23UbYkSZIk\nSZIGdFLNoqrafIL3C/jImPd2Ajuf/dIkSZIkSZK02CZmg2tJkiRJkiQNz2aRJEmSJEmSejaLJEmS\nJEmS1LNZJEmSJEmSpJ7NIkmSJEmSJPVsFkmSJEmSJKlns0iSJEmSJEk9m0WSJEmSJEnq2SySJEmS\nJElSz2aRJEmSJEmSejaLJEmSJEmS1LNZJEmSJEmSpJ7NIkmSJEmSJPVsFkmSJEmSJKlns0iSJEmS\nJEm9VNXQazhOkr8CDw69jufAKuBvQy9COknmVdPEvGqamFdNE/OqaWJeNU0mJa8vr6rVJ5o0kc2i\n/xdJ7qmqdUOvQzoZ5lXTxLxqmphXTRPzqmliXjVNpi2vPoYmSZIkSZKkns0iSZIkSZIk9WwWPb++\nNvQCpGfBvGqamFdNE/OqaWJeNU3Mq6bJVOXVPYskSZIkSZLU884iSZIkSZIk9WwWLUCSFyU5kOR3\nSf6Q5NNtPEk+l+T+JIeSXDMy/pUkh5Pcl+T1w/4EWkrmyeudSe5tr0eS3NbGzasGM09eL0ry25bX\nu5Kc3cZXJLm55fXuJGcNuX4tHfNkdUPL6u+T7EqyrI1bWzW4JKckOZhkTzt/Raudh1stfWEbt7Zq\ncHPk9aMtk5Vk1cg866sGN0dedyf5U/s8sDPJ8jY+8Xm1WbQw/wI2VNX5wFrg4iQXAO8DXgacW1Wv\nBm5q8y8BzmmvDwHbF33FWsrmzGtVvbGq1lbVWmA/cGubb141pHH1dTtwRcvr94BPtfkfAB6rqrOB\nbcANA6xZS9NcWb0Q2AVsqqrzgAeBq9p8a6smwceAQyPnNwDbWg19jK6mgrVVk2F2Xn8JvIWuto6y\nvmoSzM7rbuBc4LXAqcCWNj7xebVZtADVebKdLm+vAj4MbK2qo23ekTbnMuDb7bpfAacnOXOx162l\naZ68ApDkNGADcFsbMq8azDx5LeC0Nr4SeKQdX0b3n3OAW4CLkmSRlqslbExWnwH+XVX3t/HbgXe1\nY2urBpVkDfB24BvtPHS//29pU3YBl7dja6sGNTuvAFV1sKoemGO69VWDGpPXvS2TBRwA1rS3Jj6v\nNosWqN1mdi9wBLi9qu4GXgm8O8k9SX6a5Jw2/aXAn0cuf6iNSYtiTF5nXA78vKr+0c7NqwY1Jq9b\ngL1JHgKuBD7fpvd5rar/AE8AZyz+qrUUzc4q3YfBZUnWtSkb6e44Bmurhvcl4BPA0XZ+BvB4q53w\nv5m0tmpos/M6H+urhjY2r+3xsyuBn7Whic+rzaIFqqpn2uMQa4D1Sc4DVgBPV9U64OvAziHXKM0Y\nk9cZm4Ebh1mZdLwxeb0WuLSq1gDfAr445BolOD6rwGuATcC2JAeAf9LdbSQNKsk7gCNV9Zuh1yKd\niHnVNDmJvH4VuKOq7lzEZS2IzaLnSFU9DvwCuJiuKziz78sPgde144c59pdF6D5UPrxYa5RmzMor\nbXPA9cBPRqaZV02EkbxeApw/ckfczcCF7bjPa9tIeCXw90Veqpa40dpaVfvbnnDrgTuAmUfSrK0a\n0huAdyZ5gG5PzQ3Al+kef1jW5oxm0tqqIR2X1yTfnWe+9VVDGpvXJNcDq4GPj8yf+LzaLFqAJKuT\nnN6OTwXeCvyRbs+XN7dpb+LYB8QfA+9tO59fADxRVX9Z5GVriZonr9A9IrGnqp4eucS8ajBj8noI\nWJnkVW3azBh0eZ3ZQHgjsK89Gy49r8bV1iQvbmMrgOuAHe0Sa6sGU1WfrKo1VXUW3d1v+6rqCrom\n58Y27SrgR+3Y2qrBjMnre+a5xPqqwYzLa5ItwNuAzTN7GjcTn9dlJ56ieZwJ7EpyCl3j7ftVtSfJ\nXcDuJNcCT3Jsx/O9wKXAYeAp4OoB1qyla868tvc2cWzvlxnmVUMaV18/CPwgyVG6b+x5f5v/TeA7\nSQ4Dj9JlWloM47L6hXZL+guA7VW1r823tmoSXQfclOSzwEG6mgrWVk2gJNfQ7QvzEuC+JHuragvW\nV02mHXTf3Le/fT/ArVW1lSnIa/zjgCRJkiRJkmb4GJokSZIkSZJ6NoskSZIkSZLUs1kkSZIkSZKk\nns0iSZIkSZIk9WwWSZIkSZIkqWezSJIkSZIkST2bRZIkSZIkSerZLJIkSZIkSVLvvzlLHq+1U1HB\nAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "model_a.plot_predict_is(h=60, figsize=(20,8))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Acceptance rate of Metropolis-Hastings is 0.0\n",
- "Acceptance rate of Metropolis-Hastings is 0.01015\n",
- "Acceptance rate of Metropolis-Hastings is 0.12605\n",
- "Acceptance rate of Metropolis-Hastings is 0.1772\n",
- "Acceptance rate of Metropolis-Hastings is 0.31005\n",
- "\n",
- "Tuning complete! Now sampling.\n",
- "Acceptance rate of Metropolis-Hastings is 0.28415\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAAHwCAYAAAAW3v7qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmcnNdZ5v3rVLdWa7Ms2ZJsyZL3\nOLZjx2tMHGfHSQwEhpCNvBAImUzyMjAwwAzDDMMww7yfeYEZyLAMhCGBLCQkwGQhixNHTpzEi2zi\n3ZJt2ZZsSVZLVi+1PMs5554/nqe6q9W7urqruvv3jSvdXfUsp6q6W11X3ec+zswEAAAAAAAATKbS\n6QEAAAAAAACg+xEiAQAAAAAAYEqESAAAAAAAAJgSIRIAAAAAAACmRIgEAAAAAACAKREiAQAAAAAA\nYEqESAAAAPPMFf7SOXfCOXdPp8cDAAAwHb2dHgAAAMB4nHPPSDpLUmi5+iIzO9SZEU2Pc26npKcl\nLTMzP8Fmr5T0BknnmFltnoYGAAAwK1QiAQCAbvZDZram5TKjAMk5161vmJ0r6ZlTCZC6+D4BAIBF\njhAJAAAsOM65H3bOPeKc63fO7XbOvaTltmecc7/mnHtQUs051+uc2+ac+5xzrs8597Rz7l+2bN/j\nnPt159xTzrkh59x9zrnt5W1/4Jw76JwbLK+/qWW/65xze8rbXnDO/X5507fKj/3Ouapz7hUnjf1n\nJX1E0ivK23+rvP7nnHNPOudedM593jm3rWUfc859yDn3hKQnJnhMXumc+275mBx0zv10ef1HnXN/\n6py7rbx/dzjnzi1v21keu7flOLudc++b8ZMCAAAWPUIkAACwoDjnLpL0KUm/KGmzpH+U9AXn3PKW\nzd4p6S2SNkiKkr4g6QFJZ0t6naRfdM79YLntL5Xbv1nSOkk/I6le3navpCslbZT0SUl/65xbWd72\nB5L+wMzWSTpf0mfK619VftxQVk99r3X8ZvYXkj4g6Xvl7b/pnHutpP8q6SckbZX0rKS/Oemuv1XS\n9ZIuHecxOVfSlyV9uHxMrpT0/ZZN3i3ptyVtKq//xMnHAAAAmAohEgAA6Gb/UFbW9Dvn/qG87u2S\nvmRmt5lZLul3Ja2SdGPLfn9oZgfNrCHpWkmbzew/mVlmZvsl/bmkd5Tbvk/Sb5jZXis8YGbHJcnM\nPm5mx83Mm9nvSVoh6eJyv1zSBc65TWZWNbO7ZnE/3y3pf5vZ/WaWSvq3KiqVdrZs81/N7MXyPp3s\nXZK+bmafMrO8HHNriPQlM/tWeex/Vx57+yzGCwAAliBCJAAA0M3eamYbystby+u2qajUkSSZWZR0\nUEWVUdPBls/PlbStJYzql/TrKpp2S9J2SU+Nd3Ln3L92zj3mnBso91uvoppHkn5W0kWSHnfO3euc\nu3UW9/Pk+1SVdHyS+3SyCe/DyfuWx36xPCcAAMC00ZgRAAAsNIckXd78wjnnVIQoz7dsYy2fH5T0\ntJldOMHxDqqYjvZw65Vl/6NfVTH97REzi865E5KcJJnZE5Le6ZyrSPoxSZ91zp1x0rlncp/ObTn3\naZLOmOQ+jXcfrpvk9uGqI+fcGhXT8w5JSsqrV0saLD/fMu1RAwCAJYVKJAAAsNB8RtJbnHOvc84t\nk/TLklJJ351g+3skDZXNtleVjbQvc85dW97+EUm/7Zy70BWuKMOgtZK8pD5Jvc65/6CiZ5IkyTn3\nk865zWUlVH95dSy3j5LOm8F9+pSk9zrnrnTOrZD0O5LuNrNnprn/JyS93jn3E2Uj8TOcc1e23P7m\nsvH2chW9ke4qp/v1qQiqfrJ8XH5GRaAGAAAwBiESAABYUMxsr6SfVNFE+pikH5L0Q2aWTbB9kHSr\nimbTT5f7fETF1DRJ+n0VwdTXVFTj/IWKHktflfQVSftUTDVLNHpK2S2SHnHOVVU02X6HmTXMrC7p\nv0j6Tjl97oZp3KevS/r3kj4n6bCKIOcdk+40ev8DKhqD/7KKqWrfl/Sylk0+Kek3y9uuVvH4Nf2c\npF9RMX3upZo4jAMAAEucMzuVimsAAAAsBM65j0p6zsx+o9NjAQAACxuVSAAAAAAAAJgSIRIAAAAA\nAACmxHQ2AAAAAAAATIlKJAAAAAAAAEyJEAkAAAAAAABT6u30AGZi06ZNtnPnzk4PAwAAAAAAYNG4\n7777jpnZ5qm2W1Ah0s6dO7Vnz55ODwMAAAAAAGDRcM49O53tmM4GAAAAAACAKREiAQAAAAAAYEqE\nSAAAAAAAAJgSIRIAAAAAAACmRIgEAAAAAACAKREiAQAAAAAAYEqESAAAAAAAAJgSIRIAAAAAAACm\nRIgEAAAAAACAKREiAQAAAAAAYEqESAAAAAAAAJgSIRIAAAAAAACmRIgEAAAAAACAKREiAQAAAAAA\nYEqESAAAAAAAAJgSIRIAAAAAAACmRIgEAAAAAACAKfV2egAAAAAAAAALgZkpRFM007KeipxznR7S\nvCJEAgAAAAAAs2Zm8iEqWFTFVaYMWcxMmY/y0SsPURUn9VQq6qlU1FvpUW/P/E+eCiEqmCnEWARG\nZooWZVGKMY7adu2qlVrW2zPvY+wkQiQAAAAAAJYIM5tR9UwIUdGs2Hf4GMVXJlOMNhy6xBDH7N/T\nW1FvGQwtq/SoUnFKfREaee/LYxWiJK+RYzgnVXoqci3nHjl/yzbOyckVH52Tc5JT+fnwdsXtZkUV\nUbAoMylacf9CNFmMo46NsQiRAAAAAADoUrkPChaHQxFJctKYz5u5UPP61oqaEKN8S8jjnNTTUwQ7\nFVeEPL09FYVo8jEolh9DmH2oEnxU0NhwaTrMiv2nPMcpHR2nghAJAAAAAIAu0JzeFWJoW4gz/nkk\n7+Ooqh9gOgiRAAAAAABoo2bzZUmjplM5V1bXxGIKVSz77RRfa9zpYEA3IUQCAAAAAGCWfIjKQ1Ae\nvPw0pmABCxEhEgAAAAAAM1RMPSumneU+jlm5C1iMCJEAAAAAAJiG1mqjuepXBHQzQiQAAAAAAMbh\nQywaXMdItREgQiQAAAAAAMpl7Ysm1z4GeR9llBoBoxAiAQAAAACWhBhNeYiK1rwUK6VZZGoaMB2E\nSAAAAACARcesCIyKyqKoEJiOBswWIRIAAAAAYFFoNr7OglfwBEZAuxEiAQAAAAAWrMwXq6XR+BqY\ne4RIAAAAAIAFJfNBmffKvaeXETCPCJEAAAAAAF2vWXGU5QRHQKcQIgEAAAAAupIPUanPleVBRnIE\ndBwhEgAAAACga5iZktzTHBvoQoRIAAAAAICOo88R0P0IkQAAAAAAHdGsOkq9VwxUHQHdjhAJAAAA\nADCvRnodUXUELCSESAAAAACAOWdmSr1X5r08vY6ABYkQCQAAAAAwJ8ys6HUUgjy9joAFjxAJAAAA\nANBWNMkGFidCJAAAAADArGU+KA+ePkfAIkaIBAAAAACYMTNTHmIZHAUZyRGw6BEiAQAAAAAmFUKU\nj1EhRgWLCsEUI82xgaWGEAkAAAAAMK7MB6U+V56HTg8FQBcgRAIAAAAAjJLkuVLvFTzVRgBGECIB\nAAAAAORDVB6C0twzVQ3AuAiRAAAAAGAJMTP5ssdRtPJjiKyoBmBKhEgAAAAAsASYmZLcK8kyAiMA\np4QQCQAAAAAWuUaWM00NwKx1LERyzq2U9C1JK8pxfNbMfrNT4wEAAACAxSbNvRp5rhgIjwDMXicr\nkVJJrzWzqnNumaQ7nXNfNrO7OjgmAAAAAFjwfIiqZSmrqwFoq46FSGZmkqrll8vKCzNzAQAAAGAW\nGllO3yMAc6LSyZM753qcc9+XdFTSbWZ2dyfHAwAAAAALVQhRg42GGikBEoC50dEQycyCmV0p6RxJ\n1znnLjt5G+fc+51ze5xze/r6+uZ/kAAAAADQ5ZI812CjIc/0NQBzqKMhUpOZ9Uv6pqRbxrntz8zs\nGjO7ZvPmzfM/OAAAAADoUmamoSRVPaH6CMDc61iI5Jzb7JzbUH6+StIbJD3eqfEAAAAAwELSyHL1\n1+rKc9/poQBYIjq5OttWSR9zzvWoCLM+Y2Zf7OB4AAAAAKDrpblXI88VA1PXAMyvTq7O9qCkqzp1\nfgAAAABYSHyIqmcpfY8AdEwnK5EAAAAAAFMwM9WzTGnGtDUAnUWIBAAAAABdKslzNVKaZgPoDoRI\nAAAAANBlch9UzzMFpq4B6CKESAAAAADQJZi6ho4xk5zr9CjQ5QiRAAAAAKDDzExJ7pVkTF3DHDOT\nRS9ZkMUgWZSCLz46J3MVuUqP1PJRcuX2cfijs1AGT5WRfSrlR/XI9cwubrDgJfPlGJsBlyv+c5WR\nr9UMvtxwCOZcpbyrUSM/UC0/WM3xTnjuXBZzKYbisZFkzpX7lOdxTrZimaSJj7MYESIBAAAAQIeE\nEJV6rzTPCY8wPrMiSFGULJ4U5ERZGaa4SqXcobWayIrtZXJmRVA0xbmchSI80ajYZZRR9UpWjEPR\nj9rHJFmlpwyieuR6ynCp0tMS7hRjk1lxXYyyGOTi5JV4U/2oTOdHyaQiIOvpVTMYGj73OD+MzjT8\nuIwcZO00zrS4ECIBAAAAwDzzISrJc+XeEx4tds2AxKKKIKj5tdQMUMoNi/8vw6HRt401XH/T3GSC\nfKiTE9RcbAmk8uK6qb7d53W8FiWfdebcCxQhEgAAAADMk9wHJd4rz+l5tBhY8BquEGpW1zSrhWRF\nGDTDlJAgA92MEAkAAAAA5ljmg5I8k2e1tQWp6MsTil5CMcqiL6psJkAQhMWKEAkAAAAA5kiaeyU+\nVyA8WhDGhkVhpIF0C0IiLFWESAAAAADQZkmeK8m9YiA86gZFOORloQiJiutaGk5P0H+IsAgYjRAJ\nAAAAANqE8Gh+DC9Nr9E9h6x19bHmamQhJyAC2oQQCQAAAABmwcyU5F5p7hUj4VFbmcliJvPZyKpl\nUy1TD2DOECIBAAAAwClKc696mslmuAIXJmchlflsVBURlUNA5xEiAQAAAMAMmZnqWaY0850eysJm\nVkxNU1FhZMFLIRt3+hmAziNEAgAAAIAZ8CGqlqWsuHYKmhVGxapnkbAIWGAIkQAAAABgmpI8VyPN\nyD5mwIKXhVTy2XA/I6amAQsTIRIAAAAATMHMVEszZTnT16albIgds0Qu8pgBiwUhEgAAAABMIoSo\noTRVDExfm1BzFbXgZSGXi0ESFUfAYkOIBAAAAAATyHxQLUlZfe0kFoNkfkxoJBEcAYsZIRIAAAAA\njCPJc9WTrNPD6AoWclnMpRik4Id7G0mERsBSQogEAAAAACeppanSbOn28hkdGuWsogZAEiESAAAA\nAAwzMw0libxfev2PLKQynxEaAZgQIRIAAAAAaOk20DafKObJqL5GADAeQiQAAAAAS54PUdUkVYxL\nJEAyU/QNKU8li/Q1AjAthEgAAAAAljQfooYayeJfgc1MFnNZyCWfMmUNwIwRIgEAAABYsnIfVE2S\nRZmnWAySeZnPZdEzXQ3ArBEiAQAAAFiSMh9UW4wBkpliViuqjUpMVwPQDoRIAAAAAJacxRogWUhl\naV2yJdLbCcC8IkQCAAAAsKQkea56knV6GG1lwct8Q/KL634B6C6ESAAAAACWBDNTLc2U5b7TQ2kb\ni1HmEylvdHooAJYAQiQAAAAAi54PUbUsVfALdJqXmSx6yULZMDtKwTNtDcC8IkQCAAAAsKiluVc9\nTRdm/yMzxbwh+UQL8w4AWEwIkQAAAAAsWrU0VZotzOlr5hNZ1qDaCEDXIEQCAAAAsOhkPqiRZwty\n+pqFTDGry8XQ6aFgATEzxTJwNJmcnHoqPdPeP5TfbxVXkXNuTsaIhY8QCQAAAMCi4UNUI8+U5wsr\ngCn6HHmZzySfiZfwC1OIQSaTDU89dKo4JyenSqUy4bYxRhV7jOx3MlOUmY1cZEWvrEmmOTrnykuP\nKhUnp4oqzilaVLQ4HDxZHBu2Ouck5+QkOVdRpVJRT6VHFVdRb2VhRQkhhuI+x1g85i3P0cjD1/pY\njjympuaz4cpwzal4aJxOW4JB78J65gEAAABgHCFENfJ8way8ZsHLYibFQIPsLmVmChbKkKEMe8wk\nlcHL8PVlMBGn7lnVDGbGC23mgg2HTFFhhnmHWRlSScP75+VtRTBVBEuuDMlU/r8kucrIdcX2xa1O\nbjjYmuy8PoYy+AmK5WNVqVTU43pUqfSot9Iz5hitQVFUVIwms9DyGJy6ifaO8/Q8dhNCJAAAAAAL\nlpmpkeVK87zr+05b8LKQSj4jNOoSI4GFLyqDLLYldJjsfF3/jToNxWMUFGdRidNa6dSs8pmoKkqS\nYgzywzGWygCrIiuDI8wPQiQAAAAAC5IPUdU0VQxd/ALSTNE3ZD6XiwujSmoh8dEPT+2yaGOmKp1c\nJeMqRWQRYlAIswtBMDujK51mrgiOuvhnf5EiRAIAAACw4KS5Vz1Nu7aow0Iu80lRdaTxOtzgVOSh\nqBgqpi75aU0hA9A+hEgAAAAAFpR6minJ8qk37AALqWKWUHXUJkVoVARHMYY5m2YGYHoIkQAAAAAs\nCGamoSSR9102haWcsqY8lSxSdXSKWhsqh+gJjYAuRIgEAAAAoOtlPqieZt3VQNdMMW9IPlkUzZLn\nQ4hBefCy4dWzopornxEYAd2PEAkAAABAVzIzpd4r9V6hi6qPLIay31FKeDRNeciV+VwhdOc0RADT\nQ4gEAAAAoKuEEIvwKPddVZ1iwY+ER5hSUXWUKw/5hMu2A1hYCJEAAAAAdI1qkirLu6spdREeNYZX\nWlvKir5FLSuk0bcIWFIIkQAAAAB0hW4LkCzkZeXR0gyPmo2uYwwKVnzsqp5UAOYdIRIAAACAjqun\nWdcESEstPGqGRWZR0WJRYWSRKWgAxiBEAgAAANBRjSxXknW+4bLFIMvrizo8MjNlPlNUVIyRsAjA\njBAiAQAAAOiYNPdqpJ0PbSx4WTok2eIMVJoNrkPormblABYWQiQAAAAAHZH7oHra+ZXOLORlgLS4\nwhVWRwPQboRIAAAAAOadD1HVJOl4bmMhlaW1RRUgZSFT7ouqIwBoJ0IkAAAAAPMqhKhqknY8t4l5\nXcoanR1Em1B1BGA+ECIBAAAAmDdmpmqWdnyp+JjVpDzp6BhmK8SgYEG59wqh843JASx+hEgAAAAA\n5k01TRV85wIkC6li1pCLoWNjOBVmJh99ERzFqGiBiiMA844QCQAAAMC8qKWp8rwz4Y35RDFP5GKQ\n68gIZqZZZeSDV4yh45VbACARIgEAACwYmY86Xku1df2qTg8FmLFGlivN5rnRs5mib0h5Klns6vAo\nxCIw8jFQZQSga1U6PQAAAABMz8fvelY3//+7dWRgYfdxwdKT5l6NNJuXc1nIFfO6Yjqk2DhRNM62\n7gxk8pCrkTdUTYZUS6pK80SBxthA14oWFb1XzDKFJFFcYNNi24FKJADAhL731HFdt2ujeird/N4t\nsHQ8fGhAmY/6zJ6D+pevu7DTwwGmJfdB9TSds+NbDDKfShakkKvjS76V8uCVh0wmScNDKj4xM5lF\nWZeMFQuPyYqwMZpUcapUema+nxUXi7H8fIqdW/8cdK78UJEqrhhDT/vjhWhRirEYm9mocdpwOOzk\nKm54THKuGKub4O/X5n2PJouh/DqM+tVx8q5mkmIY+xgFQiQAACRJjx8Z1Dv//C79/k+8TD/28nM6\nPRwAkvb31SRJf3PPAX3oNRcQ8KLrhRBVS7M5y3UspLK01jXBkSRlIVOWZ0uyQgFTM1kRHtpwEjIS\nTLSEJGYtwY5ZWU1nslh+ftK3fHSSKj1ylYpUqciVodKokCRaEci09f60jEEqz+2kSkvUMHxfTzq3\nKydGtSY21jLWce7ndMbRDt3zG6X7ECIBAMZ14HhdkvTdp44TIgFdwMy0v6+qbetX6tBAojv2HdVr\nLzmr08MCJpT7oFqazU1DaDPFrCr5+ZkiNx1pnioPc3R/MW3WUu018UY2thJn+OuTnz8b9ak19x++\novx8OAg5OdwfXT0zZ0xSCLKyMqZjIUiM5UNIiLpYESIBAMZ1uOy5cs/TL3Z4JAAk6cVapsHE60Ov\nuUB//u2n9cm7DxAioWvV00xJls/JsS1kZfVR58OaGKOykCmnj9G8id5LIRZhSfTFx24oG2kNloBF\njBAJADCuQwMNSdKBF+s6PNBgNSigw/YfK6ayXbRlrX7imnP0p3c8pUP9DW3bwM8mukcIUdUsVfBz\nVX1Uk/zc9VearhCDspDJ+5y+Rm00ql9PjC2fh+JxXoL9Z4Buw+psAIBxHRlIhvutUI0EdN7+vqok\n6fxNa/TO63bIJH363oOdHRTQIs29BhuN9gVIZrKQKWY1hcaAYv3FjgdIefCqpXXVkqryPCNAmqHo\nvUKSKNRqCtUh+aEh+cFB+YF++f5+hf4BxcEhxWpVsV6XJYksS2XeEyABXYIQCQAwrsP9ia7avkFr\nV/Tqrv2ESECn7e+raXlvRWefvkrbN67WTRdu1qfvPSgfmEKDzqulqWpJOvv+1maKWX04NLJkSMoT\nuejbMs5TlYVM1aSqRlpTCHMzTW+xiTGMhEbVqvxAv2K1WgRDeS7zoQiG4vSbJwPoPKazAQDGdWig\noWvOPV1rV/bqnqePd3o4wJL3VF9NO89YPVwh+K7rdugDH79Pu/f26fWX0hsJnVNPM6XZ7EOe1l5H\n3bDuoI9eecjlQ16sFLWExRgkH0ZWDZNaVtzSyIpapqJX1RJ/vIDFjBAJADBGjKYXBhNtWb9KF29Z\np2/u7VPfUKrNa1d0emjAkrX/WFUXnrlm+OvXveRMnbl2hT55zwFCJHRMkuezb6BtppjXpTxpz6Bm\nKQuZcp8rhM5WP3VSMzQyH2Q+b/uy8AAWLqazAQDGOFZLlQfTtg0rdf15GyVJ9z7DlDagU/IQdeB4\nXedtHgmRlvVU9PZrt2v33qN6vr/RwdFhqcp9UCPNZnUMC7lCMtAVAVIevKpJVUnaWNQBUoxBMc8V\n06yYatZoKNQbCrW6Qq0mPzRU9CWq12VZSoAEYBRCJADAGIf7iz/mt65fpcvPXq9Vy3porg100MEX\n6/LRdN6m00Zd//ZrtxcNtu850JmBYcmK0VRLs1n1QIpZXZYMysXONkwOMaiW1tVIa0UFziISvVfM\nsiIkqg7JD5aNq2s1xUbZuDpNi+bVeSbLcxpYA5gUIRIAYIzDA80QaaWW9VR09bmn66799EUCOmV/\nX02SRlUiSdI5p6/WzRdt1qf30GAb86uaJoqzqFCJaVXKO1tBZ2Zq5A3VkuqiaZYdYygqjGr1IjBq\nrnKWpUUja3oVAZglQiQAwBiHB4o/7LeuXylJum7XRu19YUj99dlNWwBwap4+VoRI528+bcxt77pu\nh14YTPWNx4/O97CwRNXSVN7PIkDK6pJP2ziimTEzJXmqalpVni/cf9dMNqrSyA8OFlVGjboszwiM\nAMwJQiQAwBiHBxKt6K1o42nLJUnX79ooM+neZ050eGTA0rT/WFUbT1uuDauXj7nttZecqS3rVuqT\ndzOlDXOvkeWzWonNfNKxCqQQgxp5Q9VkSFmeyBZQr59osQiLGg2FalV+cFChf3SlEb2LAMwHQiQA\nwBiH+hvaun6lnCsWWX7Z9g1a3lvRPU8zpQ3ohKf6amP6ITX19lT0E9du17ee6NPBF+vzPDIsJdks\nG2lbyGRprY0jmh4fvepZXbWkqDyy2TRymkfR+yI0GhpSHBgswqI0lXlPYASgYwiRAGCe3H/ghA4c\nXxgv8I4MJNpSTmWTpJXLenTl9g26m+baQEfs76vpvHGmsjW949rtMpM+/8CheRwVlpIkz1VtnPoK\nahZyWVpt44hGizHKR6885ErzVEmeqJ7VVU2qqic1ed99PY9MVvQw8n5ktbRGY1Q/I0tTGY2uAXQR\nQiQAS95Qkuszew7O6TuTX3zwkH78T76r9/3VvYoLoEfB4YFE29avGnXd9bs26uHnB1RNF++yx0A3\nGkxyHaumY5pqt9q2YZUu3bpOdz5xbB5HhqWikeWqJ7OoQIqhCJDm4N/ZPOSqJlVVkyHVk5oaaV1p\nnijLU3mfd2y1teEG19WqQnVIYWhIfmhIfnBQfnBAfqC/mI42OFRMSWuulpam9DMC0NUIkQAseX/5\nnWf0q599UHftn5sqm688fES/8Dff11nrVmrfC1V97dEjc3KedgnRdGQw0dYNK0ddf/2uMxRN2vMM\n1UjAfGquzLZrgulsTTddtEl7nn1R9Vn0qwFOVkvTWU1hk5liOiRZe6dfpXmqajKkRlrvWFB0shi8\nQpIU08+aDa69l/lQVBOFUExDiyaREQFYoAiRACx5X364CHVue/SFth/764++oJ//1P264pz1+sov\nvkq7Np2mD9/+ZFf3YzhWTRWiactJlUgvP3eDeitO9zClDZhX+/uKKUDjrczW6lUXblYeTHfPUSCO\npcXMNJSks2uiHXKFZECuTSFPc1W1oWRIaZ4odkFfoGbfIj80pDhUlSUJ088ALGqESACWtGeO1fTY\n4UEt63G67bEjbQ13du89qg9+4n69ZOs6ffS912n9qmX64KvP1yOHBnV7Fy/Ffai/WDVn2/rRlUir\nl/fq8nPW0xcJmGf7+2rqqTjt2Dh5iHT1uadr5bKKvvVE3zyNDItVESAlyvNTD5BiVpclg6cUIOXB\nK/PZqL5GQ8mQhhqDHV9VzWTFKmkn9S0SwREWsRjjhJf5PP9smNmk92O6lxCjgo/yeVSeR8XQ+TB7\nvvV2egAA0EnNKqQP3Hy+Pnz7k3r8yJBesnXdrI/7nSeP6f1/fZ8uOHON/upnigBJkt561dn6g288\noT+8/Um99pIzh1c/6yaHB4rGqVtPqkSSpOt2bdT/vvNpNbKgVct75ntowJK0/1hV209fpeW9k7/3\nt3JZj67fdYa+TV8kzICZyYeoYFExmoKZQjj1F2wWg2JalYszD6CK8ChVCN01JTNalDIvy7NiZTQs\nWWY2/IajmSRraV9Vfj38duQ470u2vlfpXHFRRaqUH0/+q9BajlvsVFzc8DGcnHOjxjW833R+hCsj\nh23d10IxA9WsXAhw0jdZg+TcyP1pju9Uy1Vs5LE1k2xUf7AgVynPVSnOVXEtz0FseczKYRfHmrsZ\nAG2eqbsgECIBWNK+8vBhvez/oz4NAAAgAElEQVSc9XrPK87V//zmk7rt0RdmHSLdtf+4fvZj9+q8\nTafp4++7XhtWLx++bVlPRR989QX69b9/SN9+4pheddHm2d6FthsJkVaOue2GXWfof92xX/904IRu\nvGDTfA8NWJKKldkmbqrd6qYLN+k/f+kxHepvaNuGsUEw0NTIciVZ3tYKXAupLK3JzfCYIQYleaoQ\numcFNYKj7tAMR04ORZrfYq3faU5liKGTrxwdklQqlXGPbTY6tJnrMGJ0NNKOo3SQ2cjjN9eniuVz\nVj5o1ADOP6azAViynjtR1wPPDeiWy7bqzLUrddX2DbNuev2PDx3Wz3z0Xp1z+mp9/H3Xa+Npy8ds\n88+uPltb16/Uh29/oit7Ix3ub2jlsoo2rF425rard56uihNT2oB5EqPpmeM1nTdFU+2mZjDNKm2Y\niA9RA42GGmnWvn+DyubZlsxsBbYYoxp5Q7Wk2jUBUvReoVpVHBgcboyNuRdjVAjF9KAsjcqSqLQR\nldajsoYpb5jydOTis+ISWi4+G71NnprypNg3a7kktaCkFsYce/h4uSl4U/SmGIqLRZvTahZgISFE\nArBkfaWcyvamy7ZIkt740i16+PlBPV/2BJqJRhb0b//uIX3wE/frwrPW6pPvu16b1qwYd9sVvT36\nwM3n695nTszZinCzcXgg0bb1q8adardu5TJdum2d7n76eAdGBiw9hwYaSvI47UqkC89co7PWraAv\nEsbVyHINNRoKvn3zLywGhWRQ8jNbwS0LmWppVXk+i5Xf2qgIj4aKHkcER3Oq2VemGRiljTLMSYoQ\npxnejJ7GBKBbECIBWFT6hlJd859v01cePjzltl95+IhesnWddpbv8L/h0rMkFSuqzcTeI0P6kT+6\nU5+654A+cPP5+uwHXqEz142dCtbq7ddu1+a1K/Th25+Y0bnmw+GBhraMM5Wt6bqdZ+ifDvQr9RQQ\nA3Ntf19NknTeFCuzNTnndNOFm3Xnk8cUeAGGkg9Rg8PVR+07rgVfNs+eWeiS5KmStNEV1bjDlUfV\nqox/18YVy0bCedlIOM+i8rS4ZC2X5nXD2zUvLZVFSS0MV/80AyPCImBhIUQCsKh88/GjOlbN9Dv/\n+LiySd5pfWEw0Z5nTwxXIUnS+ZvX6PzNp017SpuZ6RN3P6sf/p936sVarr/+2ev0b950iZb1TP2r\ndeWyHv3zV52n7z51XPc9213VSIcHknGbajddf95GpT7qoecG5nFUwNK0v68qafohklT0Reqv53rk\nED+jkJK8qD7ybaw+kiQLmSwdnHFX2XpWV5YnbR3LqRgdHi2dyqPhQKg19MnGBj/NCqHh0CdtmTpW\nTvcanvJVXprXhZOmmQUqi4BFhRAJwKKye99RLe+p6MCLdX1mz8EJt/vqI6OnsjW94dItunv/ixqo\nT96bYaCR64OfuF//7u8f1nW7NurLv3CTbrpwZk2y33X9Dm08bbn+8BtPzmi/ueRD1AuDibZtmLgS\n6dqdGyXRFwmYD/uP1bRmRa82TzA9djyvLJves0rb0mZmqiap6kl7q48kyXwiS4Zm1CPGzFRLa/K+\nc72PovcK9Yb84OCSCo+Gp44lcSQQag198rHBDxVCACbSsRDJObfdOfdN59yjzrlHnHO/0KmxAFgc\nfIj69hPH9Nartumac0/XH37jCTWy8UvTv/zQEV1w5hpdeNbaUde/8aVnyUfTN/cenfA8Zqb/95P3\n67ZHX9C/fdMl+th7r9PmtdN/gde0enmv3nfTLt2xr08PHOyf8f5zoa+aKpomnc628bTlumTLWt3+\n+MSPEYD2KFZmO23cHmUTOWPNCl129jp9ax99kZaqEKIGk0RZ3v6QJGY1WVqb2XhiUC2tKoQ5GE8M\nCo2GQnVIoVZXqDcUkkQxyxTzvAiOGi3BUZaWa5YvTsOVRlkRGiX1ODJ1LBAKAZi9TlYieUm/bGaX\nSrpB0oecc5d2cDwAFrj7D/RrKPF69cVn6ldvuURHh1L91feeGbPd8Wqqu58+PqYKSZKuPGeDNq9d\nodsm6Yv0+QcO6dtPHNO/v/VS/fObz1elMv0Xdyf7f16xU+tXLdOHb++OaqRD/cUUg22TTGeTpB+/\n+hzd9+wJPfz84p0uk/mou/fTQBydtb+vOu2V2VrddOFm3X/ghKrp0qi0wIjMBw02krY2z5aK6Wuh\nMSDNcCqaj171rK7Y5uAm5nkxHW1wSJamMh9keSbLUlmSKNbrirVaERylCyc4MrPhIMif1FNowkt5\n+6ipZ3kZGnVB3ykAi0vHQiQzO2xm95efD0l6TNLZnRoPgIXvjn1H1VNx+oELNum6XRt180Wb9Sd3\nPKXBZHTp/NcefUHRpFvGCZEqFafXv+Qs7d57dNzG0QONXL/9xcd0xTnr9ZM3nDvrMa9Z0av3/sBO\nff2xF/TMsZm9szsXDg8UK9NtnWQ6myS97ZrtWrWsRx/77jPzMKrO+NQ9B/T2P7tL9z7DtD10Rj3z\nOjSQTHtltlY3XbBJeTCC0CWmkeWqNpK2Nqy2kCs0BmTJ0IwaaMcY1cgbqic12SkGONbyv2hRMQbF\nNJMfGlKs1bpyOlprz6FmT6G0UTaezovbmoFa6yplze2Hl51vXXK+Zan5cS+eKiMA86creiI553ZK\nukrS3ePc9n7n3B7n3J6+PsqyAUxs994+Xb3jdK1ftUyS9Cs/eLH667k+8q39o7b78sNHtGPjal26\ndd24x3njS89SLQv67lNjX3z9t688rhdrqX7nRy9XzywqkFq949odqjjps/c915bjzcaRgeId5ska\na0vS+lXL9GMvP1v/54FDerHWHcszt9s3yul6n7z7QIdHgqXq6WMzW5mt1dU7T9fKZRX6Ii0RZqah\nJFUjbd/vYwteMR065dXXamlVeT6z8UTvFWp1+f5++f5+hf6B4UscGFQcHFJs1KXQPauoNUOjUUvV\nlz2Hmj2FLJaNp7PitqxhSpphUWMkKKIHEYCFoOMhknNujaTPSfpFMxs8+XYz+zMzu8bMrtm8eWZN\nawEsHUeHEj1yaFA3Xzzye+Kys9frLZdv1UfufFrHqqkkaaCe67tPHtObLt8yYY+RG88/Q6ct79HX\nHhk9pe3+Ayf0yXsO6Kdv3KXLzl7ftrFvWb9SN124WZ+7/7mOL8l9qD/R6uU9Wreyd8ptf+rGncp8\n1N/cu/hClkYWdNf+41reU9GXHjqsE4s0KEN3Gw6RNs28EmlFb49uOO8MfesJ3oBb7JI8V3+trnyG\n/Y8sRllIZT5RzBuKeV0xqytmtTI8GpD8zH73ZSFTNRlSls+sGqqYmjZUTD2bYfDUCTEWU81aG1XP\nuBE108wALFAdDZGcc8tUBEifMLO/6+RYACxsd+wtXii9+uLRYfMvvfEipT7qj7/5lCTptsdekI+m\nN122dcJjrejt0asvPlNff+wFxfIPwjxE/frfPaQt61bql954UdvH/7ZrztHhgUTfebKzVQOHBxra\nun7ltJr4XnTWWt14/hn6+PeelQ8Lo9fEdN21/7gyH/XLb7xImY/63P2drxLD0rO/rwiRdp1CTySp\n6Iu0v6+m507U2zksdAkfogYbjRmvvlZUGFVlSb8sqRZNsrO6lDWkvFH0PJpheFQ0zq4pSRsz6n00\nempa91QXjefkFc48jaoBLFGdXJ3NSfoLSY+Z2e93ahwAFofd+/p05toVY6aonb95jX785efo43c9\nq+f7G/rKw4e1bf1KveycySuJ3nDpWeobSvX954pV0/7yO0/r8SND+o8//FKtWTF1lc5MveHSs7Rh\n9TL9bYentB0eSLRtw+RT2Vr99I07dWggmbQR+UK0e+9RrVxW0U/duFNX7digT95zoK09RoDp2N9X\n1dkbVmnV8p5T2v9VF26SJN3JlLZFp5HlGmo05GfQPNtC3lJhlLatEibNU9XT2oxWXosxFJVHXTY1\nrcnMRoVGrHAGACM6WYn0A5LeI+m1zrnvl5c3d3A8ABYoH6K+va9PN1+0edwKmn/5+gslSb/zpcf0\nrX3H9IOXTTyVrek1F5+p3orTbY++oOdO1PXfb3tCr3/JWfrBl45txt0OK3p79CMv26avPnJEA/V8\n6h3myOGBhrasm7ypdqvXveQsnXP6Kn10kTXYvmNfn15x3hlauaxH77puh/b31XT30zTYxvzaf6x2\nSv2Qmi44c422rFtJX6RFJISo/npDjXT61UfNVdUsGZxxhdGkYymrj9KZTl3zXrHanZVHMZYNrk8O\njXgTAQCGdXJ1tjvNzJnZFWZ2ZXn5x06NB8DC9f2D/RpMvF598Znj3n72hlX6yRvO1ZceOqwsRL35\n8omnsjWtX71M15+3UV995Ij+4+cfkXPSb/3IS9s99FHeds12ZT7q8w88P6fnmUgeoo4Opdo6g0qk\nnorTe244V3c//aIeOzymrd2C9Myxmp45Xh/+frr1im1au7KXBtuYV2am/X21U57KJknOOd104Sbd\n+eSxjvdbQ3vU81xxutOHzcrKo5mtqjYdWchmXH0kSTHLFKtV6RRXa5srzfAoaxQNrgEAE+t4Y20A\nmK3de/tUcdIrL9g04TYffM35Wr28R5vXrtDVO06f1nHfeOkW7e+r6euPHdW/ev1FOnsG4cqpeOm2\ndbpky9qOTWl7YTCRmbRt/fQrkSTp7ddu18plFX1skVQj7d5brMrW7K+1anmP/tnLz9FXHj6yaFei\nQ/fpG0pVTb3Om0WIJEk3XbRZA41cDz0/0KaRoVMyH6bdPNtCqtjob2vlkVSELbW0riRtzHiKb6g3\nFOvd1Z+L8AidZNGKBvc+yHxQ9EExLy/ldeZDsQ1vBMyZYvXEoJh7hSxXzPPi8Y9ROvlhNxXPVR4U\nslw+TRV9e0P6haD9jT0AYJ7t3ndUL99xutavXjbhNpvWrND/ePuVcs6pUpm6abRU9Cn6zc8/opds\nXaf3/sDONo12Ys45ve2a7frtLz6qvUeGdPGWtXN+zlZHBhJJxWpxM7Fh9XL96FVn6+/uf16/dssl\nOv205XMxvHmze1+fdm06TeeeMfLi/V3X79BHv/uMPnvfQb3/Ved3cHRYKp4qm2qft3nmK7O1euUF\nm+Sc9O19fbpy+4Z2DA0dUs+mEQiZKWbVtoZHZqbMZ/LRz7jySJKiRdkcN86OMQ6/1jv5X3jnnMxM\nZpKVrwktSjLR32iBaoYqxYv8WASazhXPvavIuYqck1SpyE3zb75TG4dJMRbfWxbLb6wyd7AoxeZX\n5fdZO77dXEXqqchJcpVeOSe53lPrmzeV1sfZbKR6cORxlqTK2B+6k++nG/VBqjhJ7tSeG5MshFGP\n+Zif/eGxOUk2Mhu15T6MPEdjg6IxT5NzxZjj6GNMuP0SQIgEYEE7OpTo4ecH9a+nsWLaG2fYz2jb\nhlX63be9TC/fsUG9PfNTuPnWK7fp//vyY/rbPQf1G7deOi/nbDpUhkgzaazd9FM37tSn7jmoT+85\nqA/cvHBDliQP+t5Tx/XO63aMuv6is9bqmnNP16fuOaifu+m8aa1eB8zG/mNVSZpVTyRJ2njacl22\nbb127+vTz7/uwnYMDR3QyKaexmYhlaX1cV/kjCfEoGhRzZdezklOThVX/Hs3m+BIKnofWZbL8nRG\nr7KagZBTEQBN9Ps2xKjopRg0RZXGUnyJ16VMZQVb+ZxEK1/MjxPCDO9jIztP8CK+5fBj9y/DJLlm\n8NJTBE4VV3zfWCxCEkkKI2MoUogyPGgGVJo8fJgXFiUfy2iq/NlMNX641NMjuSIMGnmsrXgOJnsc\nzcr7N/4dHPdxPhXOFUGfc3LN56jiirGaJLU8N2ZSnGLcE3w+a2YSgfMohEgAulo981rZ2zNh9dC3\n9hUNYyfqhzRbP371OXNy3ImcsWaFXnfJWfr7f3pev/amS7RsnsIrSTrc35AkbZ1hJZIkXbJlna7f\ntVF//b1n9b5X7pq30K3d7tp/XKmPw1PZWr3r+h36pc88oO89dVw3TjJ1EmiH/X01rVxW0bb1s59G\n+8ZLz9Lv3bZPhwca2tqG42F+xWhKJqlCspAqZsm0+h6ZmfKYK/f5KYdDkx5fJktzWZbKZrjqWvBR\nIRShUGtw4CqueEHsJFXK1++jtsFMWIyyYDKLLdUarvlfEZqUlVtqvpAfLt+a4tiShndsVuF0+nky\nFeGQTgpeptyvvB9h5DBdbbxwqduZSSG01mphgViYf+UDWBKSPOiN//1betv/+p6q6fj/IO7ee1Sb\n1qzQpVvXzfPo5s7brjlHx2uZbn/86Lye9/BAojUrerV25cTTAifz3h/Yqef7G/r6Y/M77nbavbdP\nK3oruuG8M8bc9ubLt2r9qmX6xD002Mbc299X1c4zTpv29NvJ3PqybZKkLz14eNbHwvyrZ+OvxGYh\nVWj0y5LqlAFSHrzqWV3VZEhJ2mh7gBRjUKg3FAYGFBv1aQdIobkaWiMqT03Rjw0dLBYrpAVfrpY2\nzjZocVLPlpCm8kkiX2/I12oKjYZilsjyrGh0nhUhZEwThTRRaDQUkuLrmCWKWSbLM5n3U17kvRTC\nSEUPzxOwKBEiAehan773oJ470dD9B07oZ/7yXtWz0X/0hmj69hPHdPNFm9vyQqtb3HzRZm1eu0J/\nu2d+G2wXVQozr0Jqev1LztK29SsXdIPtO/b16RXnn6GVy8b2F1i5rEc/9vKz9bVHjuhYNe3A6LBU\nmJkePzKk88+cXT+kpl2bTtNlZ6/TFwiRFpzcB2UnNdMeHR5NHtbkIVc1qaqR1uR9PuNm2FOJFouG\n2YNDsmz609ZijMqSqLxsaL2YmgZbs0FvmsonDfl6XT5JFNJUMS+b9U62f7SxIVCaFiFQvVZe6sXX\nSfOSjJyrXlMoA6Bm+KMQpj3NEQCmQogEoCulPuhP73hK15x7uj78zqu059kX9bMf3aNGNvIH8/cP\n9mugkY879Wgh6+2p6MeuOlvf3HtUfUPzF1YcHki0dRYr0PX2VPSeV+zU9/Yf1/cP9rdxZPPj2eM1\nPX2sppsvmvj76d3X71AebN4DPiwt+16o6vBAMumKkzN16xXb9MDBfh18sbtWx8Lk6vnoaWwxr08z\nPPKqpTU10rriFNueCpMV1SqDg0V4NAMhROXpAm5qbcWUsNbVnEaqfZoBTlqGN3Fkyo73illR6ePr\ntZPCn/K6Wk2hUR8bAnnf0hVcGu4SHpqXMHIuAJhjhEgAutLn7ntehwcS/fzrLtStV2zT7//Elbrr\n6eN6/1/vUZIXfxDfsfeoKk666cLF15/mbdecoxBN//BPz8/bOQ8PJNq67tQrkSTpPa84VxtPW67f\n/ereNo1q/tyxr0/S5P21Ljhzra7buVGfuueA4iJ65xzd5RuPvyBJeu0l7ev19pbLt0qSvvDgobYd\nE3MryXMF37KaUPBS1ph0nxCDamldjbQ2Jz2PJCmmmcLgkCxJZtTIxMyUZ1F5srAqj8yPLOU9XOnT\naJTTvdKTqn2me1CdFP50qEkzAJwCQiQAXScPUX+8+0m97Jz1elUZEL31qrP13/7ZFfr2E8f0Lz5+\nn1IftHtfn67acbo2rF7YS8qP54Iz1+qqHRv0mT0H2z79YDyZjzpWTbV1w+xCpDUrevXBV5+vO588\npu8+eaxNo5sfu/f26dwzVmvXpslXw3rX9Tt04MW67lxg9w8Lx+2PHdXlZ6/XWbMMdVtt37haV+3Y\noC8+wJS2hcDM1EjzUdfFrDbh9j4WPY9qSVUh5BNuJxVVRDHLFGp1hWq1qCjKc9kEKUYMvgiOajX5\nwaLnkaaYkjXmGLHoeRTy7k9KLMaW0KioLLI8K6uBun/8ADDXCJEAdJ3/8/1Deu5EQz//2gtHLe37\ntmu263d+9HJ9c2+f3vexPXrwuQG9epKpRwvd267erieOVrXn2RNzfq4XBhOZqS0rQf3kDedq6/qV\n+m9f3TsvAVg7JHnQd586Nq3vp1su26Kz1q3Qr//9Q/M63RBLw4u1TPcfONHWKqSmH7pimx49PKin\n+qptPzbaJ0ZTNc1G/f6MWX1M82wzU5qnqiZV1ZOi59GEx7RYBEfVqkL/gGK9PtIsOUkUazWF/gGF\noaGix1FahEx+cFBxqFo0y87zYontGd2XqDyPyhrW9dPXYh7k01Sh0WgJjTo9KgDoPoRIALpKiKY/\n/uaTunTrOr3uJWNfRL3r+h36rR9+qb79RFEFcvMi64fU6taXbdXmtSv0c3+1R/c+8+KcnuvwQCJJ\n2jKLxtpNK5f16Bded6G+f7Bftz36wqyPNx/uefpFJXmcdCpb08plPfqz91yjY9VUP/dXI9MrgXbY\nvfeoomnc33+z9ZYrtso5UY3UxRpZroF6XXlLM20LXspHprE1q46qyZDSPJm051HMc4VqVXFgsAiO\n/ORT3CwEWZaWoVE244ojqVxxLS9WXMsaxYpqM9FsLD0fU94sxqKfUb2umCVFcAQAmBQhEoCu8sUH\nD2n/sZp+/rUXjKpCavVTN+7Ub7/1Mr358i26bNv6eR7h/Fm3cpk+94EbtXH1cr37I3fP6fLchweK\nFyjbZjmdrenHrz5Huzadpt/92l6FBdD7YvfePi3vreiG886Y1vYv275B/+PtV+qB5/r1y595gP5I\naJtvPH5Um9eumJPfbWetW6nrdm7UFx48tGCqBBeDzAc1slw+TBzIZD6ov95QI83GzJhqncaW5Olw\n1dFEz2GMoWjePDioWKtNGRy1Q4hReVoER3kZHE0rBDIpjuo51BhuLB0a9VErm4UsL5tZn7Rq2fCq\nZPXi8zQd2T4PwyudxbzYp3XJ+9BoFI8PPw8AMG2ESAC6RoymP/rmk7rorDX6wZdumXTb99xwrv74\n3VerUhk/aFosdpyxWp/7FzfqirPX60OfvF8f+fb+OXnxd6i/qETa2obpbFKxUtsvveEi7Xuhqs8/\nMH/NwU/V7n1HdcN5Z2jV8p5p73PLZVv1b265RF966LB+77aF10gc3ScPUd/a26fXXnzmnP1uu/Vl\n2/Tk0ar2vjA0J8fHWI08UyPNNFhv6ES1rmqSKsmLEMiHqKEkVbWRKI4TMrVOY8uDV5Yn455juM9R\ntao4OCRL01OqIpoJM5PPo7KkDI78DBpmm8oKoJriqJ5DJ425ZWUzy7OymfVJq5Y1VyUzKz73fmT7\nLBle6Sxm5fQ9lrwHgFkhRALQNb76yBHte6GqD73mgkUfDs3E6act18ffd73efPkW/ecvPabf+sKj\nba/uOTLQ0LqVvTptRW/bjvmWy7fq0q3r9Pu37VPmu/eP9YMv1rW/r3ZK/bXe/6rz9I5rt+uPvvmU\nPrPn4ByMDkvJvc+8qKHU67VzMJWt6U2XbVHFSV94gFXa5kPmw+gV1syU5V71JNOJal2D9caoqWut\nWqexFf2PRq/MNqpB9sDAtKarDfcoKquG0kbxdZhB4BRjVJ5FpQ2Tz2be68h8kG9WAAEAFpz2vVoA\ngFkwM3349id13qbTdOsV2zo9nK6zclmP/uc7X67/sv4x/cWdT+vwQEN/8I6rtHLZ9CtnJnNoIGlb\nFVJTpeL0K7dcrPf+5b369J6Des8N57b1+O2ye+9RSdKrT6G/lnNOv/3Wy/TciYZ+/e8e0jmnr9KN\n529q9xCxRNz+2FEt76nolRfM3ffQpjUr9AMXbNIXHzysf/3GiyecNryUDSa53v3nd2tZj9OuTWu0\na9Nq7dq0Rjs3Fas3rl4+/T+f00maXU8lZlU1n5161lAsg56YZbLcy3w2ZePnGGNRdBPKwqRxKllD\nJgVJvhJVqUiV3uL3t5kVBT7l6vMWVUw/m0WD7JBmslk8JgCAzqMSCUBX+MZjR/Xo4UF98DUXqIcq\npHFVKk7//tZL9R9uvVRfe/QFvfcv7520x8ZMHB5oaGub+iG1evVFm3XtztP14W88oUbWnQ2od+/t\n046NxYvDU7Gsp6I/evfLtWvTafrAX9/Hylc4Zbc/flQ3nH9GWysCx3PrFVv17PG6Hnp+YE7Ps1Dd\n98wJPfT8gLIQ9Z0nj+l3v7ZPH/rk/XrLH96pS//DV/WvPv39aU0r9iEqz4MspDKfTLvvjgWvmA7J\nlQ2z0zxVCEXwEuqN4ZXVJgqQ4jiNrWOwKc9vsZiSliemtF7smydFtVHITNGf+gprFqN80iBAQttZ\nNMUY56URO4AClUgAOq6oQnpC2zeu0o9cSRXSVH7mlbu0dmWvfuWzD+r3btunX7vlklkf88hAosvP\n3tCG0Y3mnNOv3nKJ3van39PHvveMPnDz+W0/x2ykPui7Tx3Xj199zqwqMtavWqb//dPX6q1/9B39\n87++T1/5hZvU28P7NJi+/X1V7T9W00/duHPOz/WDL92i3/iHh/XFBw/rinPa/3O/0D3wXL+ck/7m\n/a/QmhW9qmdezxyr6+ljNd35ZJ8+dc9B3XDeRr392h2THifJc1kMsrQmmclcXepdIde7Uq4ytoq0\nCJsyyWfD1/nolflUkhTTTJal454rxKgYpOjVVS+mzYfiBf40qqYWqhjLUi1ZmdPZcBVXM7irVCpy\nlYqcc3KzeKPMohX/Vk1wCIsmk40Zj8oP1vIkTLe94nj/NI7999K1bOvK/8a5r6ZRAay1jG3MhuMp\n74OZlRVyY7crzis5VxkZT8uH5jZTme7zNPoxLwZpLZ+3nlVqfTwneZzQdiPPk7V8D570fdv8MOrb\nqvjCrNzOOZ4zESIB6AJ7nj2hB54b0H/9scu1jBfe0/K2a7br/gP9+pPdT+mac0/X615y1ikfK/VB\nx6qZtq5vfyWSJF27c6Nec/Fm/cnup/TO63Zo/aplc3KeU3Hv0yfUyMMpTWU72faNq/VffvQyfeDj\n9+uLDx7WW686uw0jxFJx++PFtMrXXjJ3/ZCaNqxerpsu3KwvPnBI/+aWS+hBd5IHnxvQBZvXaE1Z\nEbZ6ea8u3bZOl25bpzddtkXPHKvrP33hUd14/iZt37h63GOEEJXlXpbXR16tm0l5IssTWe9yud4V\nkiqykEo+HfOq3syUZI3z46kAACAASURBVI3/y955x8lV1f3/fe+dti27aZseNr0Q0kggEEpClyIi\nIoiKggKC2JWfBcUHrA/i4wOIglJUivJgBRFRQhASIJAQAiFt05eUzWb7ztx2zvn9cWdmZ/ts303O\ne143M7lz7zlnZu7M3vO53+/ni1IK6fvIRDz9nEyJRhKkIPsoJylRQqGUTBtLm+Ewhtn9v73ptqUf\ntN9DkbL9jZKpSWcyvU/JtECUrS4mpEwbnZumEQgcZjAZbU30SU1yM4Wo/tLgWj+0sh9Nizl5L6NQ\nyUO7+9HPgbbQXPyh059/tn0ZppEW6JocAxC8iUbjOILtjBYiX8cCVqNYkhLTWhNEUsd9sDRGehmp\n49cwME2zTUGzPTLb6kmaf1fTgq7s2c8Kmn5espeLGAxE9GxNoxng1Nke1XG34w0HMS9uOYRlGlw4\nd0x/D2VQcetFs5k9ZghffuItyqriHe/QBgdqUpXZekdEAvjquTOoSXj88sXtvdZHV1i5JfCgOWnK\n8B5p75zZo5kxqoB7XihFDqBoAM3AZ8XmcmaMKmhTlOhpLpo3hn01Nm/ureqT/gYLSik2lFW3GaFl\nmgZ3XDYXwzD46v+91eb33Pa9pDjk0uDEibtxhMyY1Pouyq5D2TXgtZ7qlvACHyQpBTIe/MYL0Zim\n5idTzNoSkJSUSM/Ddxx8O4Hf0IBIJJpUN1O+j0gk8G0b6XV+0i19kayylmhsO1UxrZOk0pKkkEgh\ngvt0lE/foKRCCoHveXiuh+u4eJ6H7/v4vkAIgUxNrrvYh5QKIQS+5wdte36T9oWQSKma9DOY/5oM\n9rGnhJTUZ9Ldz7+9voJjQ7Y8BpRKR2Cl1gfbCXy/6RIcQyLdTmq7xm2Tx1vy+PO85HHuuHhOcNx7\nGcd9+phvMsagHdd18VwP4fkIv+0l9X3yHDf9nfK8ZD+uh/D99He++e+A8EWT/dtaWvuupt7H3jgG\nMz+v3qiaPNDRIpJGM8D58hNvcdE9L2N34eRusPByaQXzxhdSEBs4ESqDgVjY4t6PLkRKxWcfe7PD\nCmil5fWtik37qgMRaWxRzxprZ3Ls2EI+uGAcD7y8k72VXRe8epqVWw9x4uRhnTLKbQ/TNLjpjKmU\nltfzj3cO9EibmiOfWttjzc7KXq3K1pyzZo0iEjJ56q39fdbnYGBfjU1Fvcu8CYVtbjN+aC7fuXA2\nr+2s5KHVu1o8r5TCdT1USjwSHr7vEXcasD27wwmHUgrbc/CT/kEqHgcZCCqe03a6WhPRKC3quJCN\nqCME0rXx43GE46B80eYiPT/ZRwPSSYpGqvOiUaZYk560ZggqqYmu67rpyabvtb2kJ6KdjApoIhx5\nHr7fKBRpNEcLyfidTgtkSimElM1Eq6ZLW8JbSqQTQqa/860Jq80F1dYWTd+iRSSNZgDj+pKXt1Ww\ntzLBAy/v7O/h9Aq1tseGsuperUZ0JFMyIo87LpvLW3ur+cEzm1rd5kCNzRd+/yZn/fRFTvnxC5zz\nPy/yw39s4rUdh/GF5EBtUDZ6dC9GIgF87bwZWIbBj/6xuVf7yZayqjil5fWcPr37qWyZnH/cGCaP\nzOPuFdt0NJImK17aWoEvFWf2QSpbioJYmDNmFPP3t/cj9HGaZsPeaoAOvaIuWzSeM2cW89/Pbqa0\nvKmZvu35CKcB243j+x7CtpG+H4hLnkO9U4/jNfU28qWP7Tk0OA3UJWpxvUDcF/FE2lfIc2hMbZIS\n6SWjgOyk+JMpGnVB1AkaVkF0kmO3uUjXSfbRtS6klIEg5Gcf1ZOabGZGgzRf0hNRz8dz3KSwlIxo\nSkc3iSB6ys+IcMgQjjQajUbTMVpE0mgGMG/uCfxaigui3PtCKeV1dn8Pqcd5bUclUsHJWkTqMufN\nGcM1Syfx8Opd/H1DY1SB7Ql+/kIpZ9y5kn+8c4DPLp/CLRfMYkR+lAde2snl97/Kwtv/xd0rSgEY\nW9h7kUgAYwpz+MzpU/j72/tZs7OyV/vKhpVbDgGwbEbPTtwt0+Cm5VPZfKCOf2862KNta45Mnt90\nkKLcMAsmDu3Tfi+eP5ZDdQ5Pb9jXp/0OZN4qqyFsGcwaU9DudoZh8MNLjyM3YvGVJ9anK2UqpbDj\nDTiJWmw3gaivR9k2sr4e0RBHSoGSEsezqbfriLtx6uw64nYDrmcjhJ/uI2WkrZTCd5MRM56HH29o\nljom2vVEai09JJViInzRd0bciqRw4/d6lE/ztJvG6CaBLxpTfrRwpNFoNJ1Hi0gazQBmVWkFpgG/\n/sQiXCG5859b+3tIPc6q0gpiYZMFE3WFoO7w9ffNZMHEIv7fHzews6KBf797kHN/9h/u+OcWTpk6\ngn9/6XS+du5MPn3qZB67dglvfudsfvmxhZw3ZzR1ts/U4nxyIi2rBfU01502mTGFMW57emO/n7yv\n3HKI8UNzmDIyr8fbfv+8sRwzPJe7V5TqlAhNuwipeGFLOctnFGP1scH1uceO5tixQ/jxPzaTcI/c\nlOnOsKGsmpmjhxANdfx7WFwQ43sfOI63ymq4d2Xg92a7Hna8mkSiHllXj2+7uLbE9yTKc5F1dUgn\n8DmUUuL7HqqV9KtMI23PUUihkJ4IIo3a+UkJUrNkY5RNK2limV4hIpnG1dtikhQSz3URQh9nGo1G\nM9jRIpJGM4BZtf0wx40vYu74Ij55cglPrN3LO+/V9PewepRVpRUsLhmW1Qm7pm0iIZN7rlxIyDK4\n6O6X+fRv3yBkGvz2mhO4/6pFTBze1Ky3IBbmvDlj+O8PzeO1b5zJc188rU/GmROx+H/nzeSd92r5\n47qyPumzNRxfsHp7BctmjGylVHH3CVkmNy6bwtvv1bBy66Eeb18zuHjnvRoeXrWz1SIJ6/dWURX3\n+qQqW3NM0+DbF85mX43Nr1/a0ef9DzSkVLxdVsPc8W37ITXngrljeP+8sdz1/Dbeea+G2roKGmoq\n8KprceM+nqMQjo/vKlw7GQ2UiCPq6pC+n+xXID0PkQgil/zaGmR9kCLnOTIQkPzAsyhFSiwKIov8\npoJRMzPcjlDQbTGpaZSTaGGo6/u+9i3RaDSaIwQtImk0A5Q622P93mqWJqtG3XTGNIbmRrj96XeP\nmMiG8lqbbeX12g+phxhXlMP/XrGAEfkRbrlgFs9+8TROy8LvxzSNPi3x/f55Y5k/oYg7/rmFBsfv\neIde4I1dVcRdwbLpvTdxv2TBeMYV5XD389uOmO+spmvc/vS7fPepd1nyw+f51p/fbuKh8/ymcizT\nyOq72hssmTyc980Zzb0rt3Ow9shLme4MOw83UOf4zOvAD6k5t118LMPyInz+8bWUbt5Gw8Ea7Fob\ntyEeVERzbHzHQXgS1wbhS5QQyPp6/NpaZG0dsqEB5ThBelpSxPE8ifBV4ImUFJCEL1qpQtQzFYia\ni0mZFdIyhaXMaKdUBbOmUU6ihaGuRqPRaI4ctIik0QxQ1uysREiVFlgKc8J86ezpvLazkn9uPDKq\nPq3efhiApVpE6jFOnz6SlV9bzqdPnUzYGpg/8aZp8J2LZlNe5/DLF7f3yxhe3HqIiGVyUlKk7Q0i\nIZPPLJvCuj3V6WNdc/RxqM5hza5KPnT8eC6eN47/W1vGWT99kU8+tIb/bD3E85vKWVwylMKc/qtO\n+Y33zUJIxX8/u6XfxjAQ2FCWNNVupzJbaxTlRrjzw/PYW5nghmdreXlHNU59A17CSVcUk64bGGx7\nQXSS6yTL1zdLZZOpKmyeRLgKJSXCddJ+QtmkgykpUVKghIcULsp3kL6D9OyMJYFwEyjfaZFOlxaT\nMiqkpcqAu82inXpCIEqPV/rpMUvhoqROfdNoNJqByMCcYWg0g4DquMuXn1jP22W9k162qvQw0ZDJ\nwmMajVY/sngC00fl84NnNuP4g//k6uXSCopyw8weM6S/h6LpYxZOHMrF88dy/392UFYV7/P+V24p\nZ/GkoeRFQ73az2XHj2fUkCh3Pb+tV/vRDFyee/cASsGnTpnEjz80l9VfP4Mvnz2dd96r5aoH17Dl\nYB1nzhzVr2OcODyXa06ZxB/XlaWFlKORt/bWkBO2mDoyv9P7njptJE9et5iiCNyxNcb9pZL6eAPC\nsxGei+/5gc+RYyNcD+krPCdIV3NtiZOQ2A0CN6FwEyopICmE7YBSTQSkQHBJCkSiUSASbgLhxpG+\nHawTHkr4STNvgVIyYwkKY0spkL6DEl4Pv5vto6RIjjljvL6bHrMSPtJ3EG4iEL0GgagUiGEZgpj0\nUCK5tOJ7pdFoNIMVLSJpNF3kj+ve40/r3uPD973CC5vLe7z91dsrWFQylFi40SsoZJl8+8LZ7KmM\n8/CqXT3eZ1+ilGJ1aQUnTR7ep6lUmoHDzefNBODHfRz9sK86wdaD9b2aypYiFra4/rQpvLazckBU\npNP0Pc++c4BJI/KYOTqo9jUiP8rnz5zGqq8v587L5nHh3DF8YMG4fh4lfHb5FEbkH1kp051lQ1k1\nc8YNIdTFKM55JcX8/MJiLhjl8EJFjG9tymdrrY/wXKTvBNE7vkB5Lr7jIP0gXU0K1cKHSEmFcG1Q\nMi0gKSkDQcV3kH5SIBKNAlG7jtvtopDCQ3qJXhdqVFK0kr6THHPHY1NKNhGV2loaxabuCTaNQlBb\nQl3mEk8vgRiWIYj5XvC+Ci9YP4DEsMbXKLTApdFoOo0WkTSaLvLUW/uYMjKPKcV5fPq3b/DYa3t6\nrO1DdQ6bD9S1muZ16rSRnDmzmLtXlHKozumxPvuaXYfj7KuxdSrbUcy4ohyuP20yT721j7W7+05g\nWbklMLpeNqNvPGg+csJERuRHuHuFjkY62qhqcFm9/TDnzRndwsA9GrK49Pjx3HPlQkYWRPtphI0U\nxMJ85ZwZvL6rimfePjJSpjuDJyQb99Uyt5N+SM0ZNWECnz4ul69Pa8CRBrdvKeLPB0K4XiDS+F6Q\n3qZcD2HbCMdJL77j4Ns2vp1A2DaIpgKSEtkKL0nfomRqnJAiucj0uuY+RxBc3JG+02qKW3dRUjaK\nR90SUVSbS6PYFKTrKdFxX4GYkkyhS0U++R0JdZlLJ0beTAwLIsCcZPpeKmKp2ZKZ3ieCzyZ47CWj\nnVp+Tk0FolQ0VEoISzR7jQ7St5NCWIYY52U+nzwmkuNtr2+NRnN0oEUkjaYL7K2Ms35vNZceP54/\nXHcSp04bwTf//DZ3/HNzj1zBXb29AoClU1oXWL55wSxsT/DTf23tdl/9xculydeoRaSjmutPn8Ko\nIVFu+ctG4m7fmGyv3FLOuKIcphZ3PmWlK+RELK49dTIvbavg2XeOvsn50cy/Nh1ESMX75ozu76Fk\nxYcXTWDm6AJ+8MwmbK//oyX6kq0H63B82anKbK2RXzCMnOFFLByTx49m1bOwyOGP+wv42Y5c4l5S\nQEhWLZPCR/mNC74PQoCQLSOQfAelAo8kX/p40ksuLq50cKSDI21skcAWCRxl4yoHVzl4yk0uTnqd\nq5xgG9lSMApS3JJCTCotrhUxJlOAURmCQ+uL3acROEqpwBjcd5oIJC2il3w7LRYF4+urKDwVRGUJ\nkUzfS0UsNVsy0/uECFIThZ/c1m0hADVND3QyoqFSQlh74leGGKcyhaigXylTZust+5aenRa4mopc\nIp3m1+l3KCMiLNPfKxCyGvtqIsK1tkidTqjR9DRaRNJousDf394PwEVzx5IXDfHrqxZxxeIJ/PyF\n7Xz5ibdw/e79sVpdepghsRBzxrV+MjtlZD5XnVTCH17f0yupdH3B6tIKxhbGKGlWel5zdJEXDfHD\nDx7H5gO1fOkP65FdKC3dGVxfsqq0gtNnjGwRGdKbXHVSCfMmFPG5x9cN2u+spvM8+84BxhXlcFwb\nv+UDDStpev9edYIHXt7Z38PpUzYk/Q07W5mtOdFwhNxhw4jm5VCUF+Pzk2w+Or6O9bUxfrI9n3rP\nDybg0sP3fITffBHJJWlcnUz/AoWQEhcXX3kI5ScXgWzic9Q5pAraFLKliK+USooWXlqMSUWyNIoV\nzXyX2lj6n7YimI4U+vP1BMJTSuBqKnI56TS/zNS/9tISW4phjWJao5DV2FcTEa61xffS/UsvkfQL\nczP2yYjyShnQp7bRApRG0yq96yiq0RyhPPXWPuZNKGLCsEAACVkmP/zgcUwYlssd/9zCwVqbX378\neIbEOl9tRynFy6UVLJk8HKsdr6AvnT2NNbsOc/0ja3ngE4s4dVr/lIfuClIqXtlxmLNmjerTibxm\nYHLGzFHccsFsbn/6XX787Ga+cf6sXuvrjd2VNLiCZX1cTj0nYvHbq0/gow+8Oii/s5rOU2t7vLTt\nEJ84qWRQ/c6dPGUE58wexb0vlHLZovEUF8S63Wat7RGxzCYefwONDWXVFOaEOaabFzYsyySnoIj4\nkHJ8JwclJeePcsm1anhg9xB+VFrAV6fUUYTCtEDQ9nlCICC5BAKSjy09/nUojz3xMJ4CoQx8ZeAn\nH3uy7XU5lqIgJCkICfJDMvlYMj3PZVq+h4eHkJIwYYx2zj2OVr8sTU/TP8eRUgqUaDGCFqNRmXeB\n6XzwO26kN2j8KjTfu/H70/jT38p3yjCCtQYoDIzUNgYEcR4GhqnjPfqSQDBU6Pe+Y7SIpNF0kh2H\n6tm4r5ZbLmg60TUMg88un8rYohg3P7mBqx5Yw++vW9Lpk+Y9lXHeq05w/emT292uIBbmd9ecyEd+\n9Sqf/s0bPHT1Yk5uI/1toPHu/lqq4x6n6FQ2TZJrlpawq6KB+/6zg5IReXzkhIm90s+LWw4RtgxO\n7odjrzB38H5nNZ1nxaZyPKF433GDI5Utk2+eP4uz/+dFfvSPzfz0w/M7vb9Sis0H6nhhSzkvbC5n\n7e4qZo0ZwhPXn9TrFRG7ylt7a5g7vrBHBL+cnHxi+QW4DR7S91Eolo1wiZk1/GJXIT/YNoSbp9Yy\nIgqG9AEjPaFURuNkUiYrpnnSo9KV3L97GJvro4yM+ERMRcgAy1CEDEXEUOSGm65LPbYMSAiDOmFS\n75sccELU+SaONDFQXDSqnotG1wMC15CEZBjL7F3BT0mFQKBSKVTB2ibTcSt5a0/U0mj6ivZTAZts\nmbFPy3WZm7UrZKUxgt+l1G9Ey4ElN2v2G5JSqDI6S33PjIxHwW+eidHKdz4QVURyR9nYeVL4yhhh\nh+JXo0Aj02NpHKLZ2FIH4k3LdpKvp4nw1/J9aSLWGaT3RSlQMrl5S0Ew0A7N9Hvb9piOLgbmX3KN\nZgDz9IYgle2CuWNaff6SBePJjYT4zCNr+fIT67nnIws7VX1sVelhgKwml0PzIjz66RO54v5X+dTD\nb/Cba07ghEnDsu6rv0j5IZ08ZXg/j0QzUDAMg1svCioP3vKXd5gwNJdTpvW8wLJyyyEWlwwjv58m\nsj31nX13Xy2TRuSRExm4kR1HO8+8vZ9RQ6IsmDC0v4fSaUpG5HHdaZP5+Qvbuez4CZyUxW+1Uirw\n/dp4gJWby9lXYwMwZ9wQPrbkGB55dTdf+P2b3PfxRe1G2fYHtifYcrCOz8xs/+JNtoRDUcL5hYTr\n6hBOLPAxQrFkmEfMquauHYV8b2shN0+tYWyORdMJXsa9VHh4bKkz+eXuETT4JtdMrGbpsESPjDMh\nDB4rG8LfDhawPR7h2mOqKAgpPFyktDAxMXtYxJFSIhAI1bH/kI/Ex8OUSTmpl4UtjWZgopIRVB18\nY1r5DWln01Yfp0ST1gWV7NrLbKujLbLvIUMM62w7WYt1re8caIei3f2yLXhwJKHjtDSaTvL0hn2c\nUDKMMYU5bW5z7rGj+eb7ZvHM2we447nOlS9ftb2CUUOiTBmZl9X2w/OjPHrtiYwpinH1Q2tYu7uq\nU/31B6tKK5hWnE/xkO6nSWiOHEKWyT1XLmBacT43PLqWbQfrerT9/TUJthys67OqbG3Rne+sUoo7\nn9vC+Xe9xJl3ruTvG/br9JJeYldFA39d/16ry+rSinbf9wbH58Wthzjv2NGduogwkPjcGdOYOCyX\nb/35bRy/Y0+bR1/bw1UPruGvb77HceML+fGlx/HaN8/k6c+dym0Xz+G77z+Wf28q53t/f7cPRt85\nNu6rRUjV7cpsKSIhk1gsj0heHuHcCFY4ghWKYIbCzC80+NrUahqEyfe3FbG9wceVTtooW0g/XUXN\nUS7/PBjljtLhRAzFt6ZXsHSYjWGYzRYjvXSGHEtxzcQarhpfzZb6CLdtGcmOhiC9TiiBpzwcZeMk\nxye6eLVdSYUvfRwZGHoL5dOZqZxUAk+5ONLGkx6+9JPvk9+k6lzzanMajaazqE5EXHXcVs95dR1p\nHmaDHx2JpNF0gi0H6th6sJ7bLj62w20/feokdlQ08IuV25k0PI8PL57Q4T5SKlaXVrB8ZnGnTgaL\nC2I8fu0SLr/vFT754BoevfbEHjsZ7mkcX/D6rkquWNw76UqawU1BLMwDn1zMxfes4uqHX+fPNy7t\nsfLnL245BMDp04t7pL3u0Pw7+9DVi1lU0n5EkutLvv7HDfzpzfe4aN5YSsvr+exj61gyeRjfff+x\nzBw9pNPjqGxweWnbIWoSXhvjjHLGzFFEQkffNacbHl3Hpv21bT7/g0uO48oTW/8dW7nlEI4vOW9O\n6xGrg4FY2OL2D8zhEw+u4Zcrd/CFs6a1ue0779Vw21Pvcvr0kdx/1fFEQy0jRq46qYSdFQ08tGoX\nk0bkcdVJJb04+s6xoawa6L6pdgrDMAhFcojk5uLV1yMiEZQQ6eyKWQUe35hWxU9Ki/jO5hEUR3ym\n5LlMzfOYkucyLubgSIOH9xbyRnUOCwptrplQTV7YIEwEM0uvjkZRRRHIPxKJarwpiWHA6SMSHJPr\nc+/OIn5UOpwrxtWyfHg87eeilEQgEfh4gvT5SWejFbqLUgpB+1U8LWlh6qgljUaj6VW0iKTRdIKn\nN+zDNOB9WUwMDMPgtouPpawqzjf//Dbjh+Z06MOy6UAtVXGPpV3wSRk1JMZj1y7h8vtf4WO/fo3f\nfepE5k0YeELSut3V2J5kqfZD0rTBuKIcHvjEIi6//xWu+90bPH5t573FWmPllkOMKYwxfVR+D4yy\n+2R+Zy+77xUuXzSBr547gxH5LUWzWtvjhkfWsqr0MF85ezo3nTEVqeDxNXv4yXNbOP9/X+JjS47h\ny2dPpyg30mafSik27qvlhc3lrNhSzvq91XQUyDRqSJSrTirhyhMmMjSv7baPJMqq4mzaX8tnl0/h\n0oXjWzx/69828t2nNjJ3fGGrVTSfeWc/w/MigyK9uD1Onz6SC+eO4ecrS3n//LFMGtEyQrYm4XHj\no+sYnh/hfy6f36qAlOKWC2az53Cc7/5tIxOG5bJ8Rv8LuhBUZisuiDK6sOeiYyPhKJFoPnZOLSFX\nolQO2IlAAlEwOQ++M6OKV6silDZE2FgX5ZWqwNQ7ZkqipqLWN7lsbC3njmwgZIYJm507bW9MQzMI\nPhWTJp+OUnjJKm8luR7fmVHBr/cU8WhZIdvqI5xbXM8xOT7Nr2kN5OhHoQQCgScMLCNIyeusoKSk\nTIpuzV+narI208FJtSOmGRhdGodGo9EMVIyB/IegOYsWLVJvvPFGfw9Dc5SilGL5T1YybmgOj356\nSdb71doel967moO1Nn+6cSlTi9uewP7qPzv4/jObePUbZ3b5ZHZvZZwr7n+VQ3UOX3/fTK5eOrAq\nA9353BZ+/kIp6289p0vV6zRHD8++s58bHl3H+ceN4e4rFnQrLcj2BIu/928unDeGH35wbg+OsvvU\n2h53/XsbD6/eRU7E4otnTeeqk44hbAXRBvuqE1z90OtsP1TPjy+dy6XHNxU1quMuP/3XVh55dTeF\nOWEunj+OUCvvVXUiqBZ2sNYBYN74QpbPLGb5jGLGD209PXdDWQ0PrtrJS9sqiIZMPrhwPNcsLWHa\nqIIefhcGFr97ZRff/utG/v3l01v9zT5c73DBXS8TDZs89blTmvyW2Z5g4e3/4uL54/jhB4/rw1H3\nDuW1Nmfe+SJzJxTyyKdObPL3RCnF9b9by4rN5fzh+pM4/piO/Z8aHJ/LfvkKuw838OQNJzNrTNMI\nOiEVb+6pYu3uKs6cNardv5k9xRl3rmTyiHx+/YlFPdamLyQ1tVXUVR/ArqzAs8G3XaTj4HuN5cc9\n6SEJ0rEqXIvShgilDWEqXIv3FTcwa4hPmHA6+sgwLTBM0ua4mX4fSmUIPNmf3wsZpIsBSAXPHMzn\nbwfyERgMC/ssLHRYWGQzLc+lJ7IzPQnv1kVZVxOj0rVaJKooIMdULC5KsKDIJtoDgZCGYSYtdZve\ngr5T8VnJ+16aGxmGEURJYWUdTabRaAY+U05YyuhjSvp7GD2CYRhrlVId/jHUIpJGkyXvvFfDhXe/\nzI8+eBxXdLJy1N7KOJfcu4rcSIg/33gyw1uJNAD45ENr2FsZ5/mvLOvWWKsaXL725Fv8e1M5Z84s\n5o7L5jFsgEQQfPDeVUgFf/ns0v4eimYQcN+L2/nhPzbz2eVT+Nq5M7vUhutLbnhkLc9vLuexa08c\nsBXRSsvr+K+n3uWlbRVMLc7nuxcdy/D8CFc/9Dr1js8vP3Z8u2bjm/bX8v2/b+LNPa17LEXDFksm\nD2P5jGKWzSjuVJrglgN1PLx6J39a9x6OLzlt+ki+es70AZs2210++dAadlY0sPKry9oU4dfuruTy\n+17lrFmj+MXHFqa3e27jAa773Vp+e80JnDa9f/23eoqUqPazy+fzgQXj0ut//dIOvvf3TdxywSw+\nfWr2ptT7axJ84OersAyDv3x2KWHL5D/bDrFiczkvbj1EdTxIryyIhbjv48d36zurlOKhVbuYMbqg\n1QjYWttj7nef4ytnT+dzZ7adstcVquvjxGv20VBViW8n8GwQto10vSZCEjRWK5NIZLIEuWWECBFK\nRhQZmKEQhpndxZfmFYyC6kNt+51IKfFw0wJKvW+wvibGupoYG+ui+MqgICSYP8ShJNdjSEhQGJYU\nhiSFYUG4A03EoZurDgAAIABJREFUkbCxNsobNTlsqImSkCY5pmRsrDHSKZkkhwEcdi0OeyFyTMkJ\nQxOcMizBpFyvRVTUYMUwAjnJJCluDVLvNI1Go0WkAY8WkTT9yQ+f2cQDL+/kjVvOajddpC3W7ani\nI/e/yswxQ7j7igVMHJ7b5HnXl8z7r+e4bNF4brt4TrfHq5Ti4dW7+OEzmxmaF+Znly/IqsJOb1Jn\ne8y/7V/ccPoUvnrujH4di2ZwoJTim39+m8fX7OWOD83lskUde4tl4gnJTY+t458bD7brYTNQUErx\n703l3P70u+ypjBOxTIblRXjo6sUtIjb6g8P1Do+v2cPDq3dxuMHlw8dP4GvntZ6CN1iJuz7zb/sX\nHz1xIrde1L7/XSp69DsXzuaaUyYB8KU/rGfF5nLeuOWsdDTZYEdIxQd/sZqyyjjPf+V0inIjaRHt\njJnF3Pfx4zsd8frOezVc9stXiIVNahIeUsHwvAjLZhSzfOZIphbn87nH3mTX4QZ+ctk8Lp4/ruNG\nm6GU4vanN/Hgqp2ELYP7P76I5TObptCtLq3gyl+/xm+uOYHTe1j0q7cd7PoqamoOIurqEa6P5yh8\nx0G6LsLzkVKA9JFp0ScQlBQqHa1imhaY4Q5LX2eLkgKUBCRSNO3XxW1RaSghDN6pi7KuOsaG2ii2\nbDmOXEuSb0nCpiJiKsJG8t4EoWBzfQRXmuRbkgWFNscX2czKd2jLbk0q2Fof4eXKHNZW5+Aqg7Ex\nj6XDEszMdxgTFUStwTOH6QjDSMVGNUZMJQunB88n/+2S2KQUUql0Ml7qlmwxnW6nhSyNpmscjSKS\n9kTSaLJAKcXTG/Zz6rQRXRKQABZOHMr/XjGfLz/xFmf9z4tcd+pkblw+hdxI8DVcv7eahCd6LErC\nMAyuXjqJxSXD+Pzjb3Llr1/lc8un8vkzp+FLxZ7KODsrGthV0cDOigaq4x5fOGtar05UX9tRiZCK\nk6f2r5ilGTwE3mJz2FuZSHqL5WYthvpC8sU/rOefGw/yX+8/dsALSBC83rNnj+LUaSN44OWdrNtd\nxfcumdNuNci+ZHh+lJvOmMYnTi7h7hWlPPjyTp55Z3+LFLzBzKrSw7i+5KxZozrc9tOnTmLNrkp+\n8Mwm5k8sYs7YQv696SDnHjv6iHgvUlimwQ8umcP771nFj5/dzNfOnclNj73J2KIc7rhsXpdSpueM\nK+Tejy7kly9u58TJwzljZjFzxxU2SVt98jMnc/0jb/CF36+nrCrBjcumZN2XUoofPbuZB1ft5GNL\nJrJ+bzXXP7KWBz6xiFOnNYpFb5XVADC3FW+r7hK2LBwrTCQSw8mVoOqRSoKK4qeEGg+UaWEBSniB\nwGPKtIhghsIYSS8kA7BCoeBB0tRape+Dx9lcHDZMC1IuSYZA+i6gMEyDKNGgEptqNLDOsRSLi2wW\nF9kIBXW+SY1nUuNb1Hgmtb5JjWdRL0w8aeBK8KRBgzDxPAMJnDw0wfFFNjPyXawsPkLTgJkFLjML\nXK4cX8vr1TFWHc7l//YNSb4XiuERwbiYz5iYz7hYYE4+KtpxJcGBiFIpYaeDCnjJlxd8DxrfyJYF\n0FW63WwxZHMhK2i5ySMtNGk0GnQkkkaTFWt3V3HpL1Zz52XzWviRdJb9NQl+9I/N/HX9PsYUxvjG\n+bO4aO4Yfvbvbdy9YhtvfvscCnN71iuowfG59W8beXJtGUW5YWoSXhMz3eF5ETwhyY2E+Mtnl/ao\nuWiKjfuC6j3r91bz1q3n9IhRsubooSbh8aFfrKa8zuFPN57MlJHt+6QIqfjKE+v5y/p9nU610WRP\naXk9tz39Lv/ZeoipxfncetFslk4Zwb6aRIZIHWdnRT31js9Jk4ezfGYx88YXdcvjqjf5xp828NRb\n+1n37bOzqkpXE/e48J6XEELxtfNm8KU/vMUDn1jEmVmIUION7//9XX710k6OHTuEbQfr+dONJ7dq\nLN6TOL7g5ic38Nf1+7jyxInc9v5jCWUh0P30uS3ctaKUjy2ZyO0Xz6E67vGRX70aVIi7enH6gs0N\nj6xl475a/nPz8h4fu1KKqroGvPpDxJ0GhOMg43E8R+K7EmHbQdU2KRFCNBo2S4FSAtMKLloF4pGF\naWX3d1PKIIUtEJZkMrKpnXFKifQdMiUIX/oIRIuopP7mkGOxOxFmvx3iPTvEPjvEASeEUMHvyYx8\nh2XD4ywstNuMctJ0D9MwMbEwMLG0t5NGc1RGImkRSaPJgv96aiOPvraHN245q8fMoF/fVcl3/7aR\njftqOaFkGNUJl5ywxV9vOqVH2m+Np97axwtbypkwNJfJI/MoGZ5HyYg8CnPCbNpfy4d+sZqSEXk8\ncf1J5EW7H6gopOL5TQd54OWdvLazkpywxZfPns61p+kJvabz7K2M84GfryI/FuLPNy5t0+dLSsXN\nf9zAk2vLuPm8Gdy4bGofj/ToQinF85vKuS0jBc8VjRPPnLBFyYg8oiGTDWXV6bSl06ePZPnMYk6b\nPpLCnIFhsq+U4sQfPM+ikqHc+9Hjs97v7bIaLv3FaqRSxMIWa799VrtVygYrDY7P2T99kX01Nt/7\nwBw+tuSYPulXSsVPntvCvSu3s3zGSO65cmG7f6Puen4bP/3XVq5YPIEfXHJcWrA8XO9wxf2vUlaV\n4DfXnMAJk4ax9EcrWDCxiHuuXNgrY69JJPAaanCdemwngUgkUI6Da0uEJxC2k0wtAymSYlLGubll\nBSbM3Y0AUTIpKCmFFLJl3TEpUcJpEbkiZFDtLOXTNBARCsodizdrYrx4OJcKN8SQkGDpsASnD48z\ncpBGJw0WUqJSa3QgX5IZTQWZCXyN+2am3zUKnUaTf5vGTWXcBujFCs2RhRaRBjhaRNL0B0IqTvrh\n88yfUMT9V/Vc5ZZU2394fS93/HMzVXGPG5ZN4f+d1zXz4J7ghc3lfOo3r3PGzFHc9/HjsTr44ytk\n61VM4p7gj2vLeHj1LnYfjjO2MMYnTi7hisUTezzKSnN0sXZ3FR/51avMG1/Ib645gUiziAQFfOev\n7/D4mr186azpfOGsnjXK1bSN7QkefW0PB2ttSobnMWlEsIwaEk2nIFU1uC0MlC3T4OqTS/jaeTP6\nXXhJFVD4yWXz+FAno05/9+puvv2Xd7h4/lj+94oFvTTC/uftshrW7aniqpOO6fPKn4++FrzHo4fE\nOHv2KJbPLGbJ5OFNIlt/sXI7P352M5cuHM8dH5rbIuKtvM7mivtf5WCNzc+uWMC1v32Db50/q9cu\nbsQdl0SiHmXXk/ASeJ6LqK9Heh6eo5BCIT0P6fmNYpIMoodaiEehEJYVAtNASRWYZcukICRkev9s\nUMm/38L3MyKgJEq09ERKjSkw/hadSpHqa6SCd+sirDycx1s1USQGswsc5hQ4zMh3mZDjZZVOJxU9\nUolO0/+0VZnPaCZgZQpeunqepjNoEWmAo0UkTW9ie4IGx2+xfv3eaj71mze4+yMLuGje2F7puybu\n8X9r93Lx/HGdqpjUG/xm9S5u/dtGPnXKJL594exWt9lfk+CHz2zmqQ37aO8n5PhjhnLN0kmce+yo\nrNIPNJpseHrDPm567M12t7lp+VS+cs70Pp/karJHSMX6vVU88XoZf3hjL3PGDeHujyxk0oi8fhvT\n//57Gz97fiuvf+usTpuFK6V4fM1eTpoyvF9fw5HOy9sqeHDVTlZvr8D2JDlhi6VTgzTJqgaXnzy3\nlYvnj+WnH57f5oWQg7U2l9/3Crsr4ygFf7huCSdO7h2vPs8X1CVsRKIGQ/rU2/X4wkPWNySFpEDQ\nAVqISQAYYFghzHAWxtoKZDI9TimZlbCkpML3vCbxItKz205jUwqhFAqZjA9J3ndyPhEYSQeTe0lg\n7t3Tc5Iq1+Slylxeqcyh3A0i16KmZFqey/R8l2l5LqYB5U6IcscK7l2Lg06IuDCJmpJcS5FnSXKs\n4HGOJQkZgcBkojAMMAHTUMRMxZCMinVDQsHjI8kA/GjBMAKz8eBm6YgmTbtoEWmAo0UkTW/xyvbD\n3PDo2nRZ4ebkJNMTUibYRzrf/dtGHl69i9s/MIePZ6Qr2J7ggZd3cs+KUoRSXHnCRIa3klJkmgYn\nTxnOgolD+3LYmqOIFZsPsvG92lafmzg8l/fPG6sFpEHEPzce4OYnN+ALyfcumcMlC7rnPddVLr7n\nZUzT4M83Lu2X/jXZY3uCV3Yc5oXN5azYXE5ZVQKA848bzV1XLOjwwsW+6gSX3/8K+6tt3rr1nB5J\n4W6LqvqGQNyxaxDCD/yRfA9ZXw8KPE8iPEhdlZGejxQ+hmlhhcPNM346hZIKJSRS+iB8Wssuak1I\nUr4TVI7Luh+ZlpWa3JJiVEo0St/aEMSkbGxF4PeYsFTlmmxtiLC1PsLWhgj77KZR0Smj7uKooDji\nUxCS2NIgLszkEjxOCAOhDKQK3kqpAuNwqcCRBqqVDyvPkswdYrOoyObYAoewvqY26Eil7JmY6SQ7\nWn3Udvpd0io//b/GhLzGWnxarBqcaBFpgKNFJE1v8Nf17/G1/9vAxOG5fHzJMbQ275w+qoAlvXSV\nciAipOLa377Bi1sP8cAnFnH69JFNyo6fd+xovnXBLCYMy+3voWo0miOEfdUJvvj79azZVckHF47j\n9ovn9OrEvjnldTYnfP95vnrOdG46Q6dBDiaUUpSW17PrcJxlM0ZmXRnvUJ3D3qo4C3v5gked7eB5\nPtJLgBvHFS62kwgijxoagEA88T2Qfhvn5YaBZYGZ1D6kACRI2RjJ1CEKpB8IVIimAlGrQpKUIL1O\niUmtditlx1FUbSCkj98LBt91vsH2hggGMCrqMyIium3ELZOV62qbVa/bb4dYXxtLRzfNG+JwfJHN\ncQWOjlLStIKRFF0ba+WBGcTtaZGpz0n9vjb398r8JKYuOVWLSAMZLSJpMpFSsb6smoJoiInDczvt\npaGU4hcvbue/n93CiZOGcf/HF2m/ngzqHZ/LfvkKeyvjzJtQyKrSw0wrzufWi47llGkj+nt4Go3m\nCMQXkrtXlHL3im2UDM/jro8s6PXqXymeeH0vN/9xA898/lRmjx3SJ31qjg5szyNuuwBIpw58N+2P\nJH0fGY8HahAgpES4IEVwfm6GkuKRZbQZXSmlRKmkoCQa922PoCKbQPluOliiNSEptW1PiEndITD4\n9pEDrFpctvgKNtdFWFuTw5s1Uep8i4ihmJznMjnXY0qey6Rcj8Lw4Hx9mr6j8Xegubl44/8y10BK\nAMmMkQrSR5u31fRRmyNo0nbLnpu3FCS9psaRHksLDcJodiE/u9fX1nibCOIZkWGqhRzU+l6d0Uhm\nLlnGuJIjo4iLFpE0RywNjs+Ta8t4aNVOdh2OA2AYMK4oJ23kWjI8jznjClk4sajVkHZfSL771EYe\neXUPF80by08um9vvhq4Dkf01CT7w81XEXcGXz57Ox5Yck/UVXo1Go+kqr+44zBd/v5462+O3nzqR\n44/p/dTY63/3BhvKalj99TN0KqSmR1FKURO3k4bZQVobSlFv1yOlCJyFEjbKcdL7CCEDv50uRPAE\n/QTRSh1FKklfIB27caxtCEnBcxKUhxSBh1F/IKUkdVPIAW3y3RZCwbb6COtqYpQ2RChLhBDJqfDw\nsM/kPI8JOR5Dw5KisGBoWFAUluToqCWNZkCiRaQBjhaRjm7KquL89pXdPL5mD3W2z7wJRVy15Bgs\n02BnRQM7KxrYdbiBnYcaqEsaZA+JhTht+kjOmFnMshnFDMuLEHd9PvfYmzy/uZzPnD6Fm8+d0aJ6\ni6aR6riLYRgDpgS3RqM5Oiivtbn8/lepqHN45NMnMm9CUa/15fiCBbf9i0sWjOP7lxzXa/1ojl4c\nz6fBDkQi5dsopwEhBXE3HogzJFPNEokWqWZpLAvDCoFSKOGno5c6QkqJSFoitVYNozNCUuM2XmDg\nLftPUIKUh1JKUhrYlePawpWwOx5mRzzCjniYHQ1hKr2WqbwxUzI0LBgdE4yN+YyNeoyJ+YyO+UT1\n9T2Npt84GkWko8MlWDPoUEpRUe8GwlBFAyu3lvPsOwcwDIPz5ozmU6dMatPDILXv67sqWbG5nJVb\nynl6w34MA+ZPKML2JFsO1HL7xcfy8ZNK+vaFDUKKclsaZ2s0Gk1vUzwkxmPXnsjl973Kxx94jceu\nXdJrqW2v7agk7grOmjWqV9rXaKLhEK4QeJ6PEYqhhIflu+RGcrE9GyF8zFAIs6AAYdso2wbTxLBC\nGOEQhCxMs2nEtBQ++BLl+yjhBaY8rWCaJmYEQmGVFpMyo5PMkAUqhnQDIckwDULhMFIKhGhdqDLM\nMIaZTPmQfhBh1elUs8Z0l64SRGqZWICSIXzDRyjRrTb7mogJ0/I9puU3FndxhEG1b1LlWlR7JtW+\nRZVrUelZ7LctNtRE09FLKVPwXEshFQhlIBRISJuAm0awnZmsJmcYYBmK0VGfklyPY3I8SnI98kOD\n533TaDT9hxaRNAOGP60r44Uth9iVjCqqT0YTQRBRdO2pk7nq5BLGFeW0245hGIwsiHL+cWM4/7gx\nSKl4Z18NKzaX88Lmcg7VOdz38UWcPVtPFjQajWYgM6YwJy0kfeyB13j82iXMGtPzfkUrNpcTC5uc\nNOXoKaCg6Xtyw2FqfR+lwAjnBkKSaZEXzcP2HFwvEHGsWAwZjWAa7YeXmFYILCAaXOyRvo9y3CY+\nR5kYhkEobBAKB+lywm808jbDFhBBuoF3k2EaWGYIw5QIv+0IH8MwwApjWEG0sko6fiulMFTSe0RJ\nMMyk34kJhgkYabPtQIASQYRVNyKbDNMgTJiQDOHjI5Tf8U4DlKilGGUJRkVbj0rzJZS7IfbZIfbb\nwb0jDcykOGQBpqGwjECqCyrJBcKSIhCWfGVQlgizrqbxvHpEJBCVxkR9hoQlQ0KSgpCkMCQoCEly\nLdVqARqNRnN0odPZNAOCJ97Yy81PbmBsYYypowqYNDyXkqS/0aQReYwryumwXK9Go9Fojkz2HI7z\n4ftewRWS31+3hOmjCnqsbaUUp/73C8wcXcCvP7G4x9rVaFoj4XoknECoUcJB2fXp5zzhY3uJdHpb\nV5FKBmKS57WdGpfq05MIt3EuIFwP5bkt2xQiEJO6NbLsUFKilAhS9rrRo5Jq0ItJfUGDb7A7EWZ3\nPMyuRJhd8TCHXQvVimVx2FCMjXmMz/GZkOMxIeYzPkdHMGmObnQ6m0bTD6wureCbf3qbU6eN4MFP\nLtbGzRqNRqNpwsThuTx+3RIuv+8VrvzVa/zh+iVMGZmf9f7/3HiA13ZUcsmCcRw3vmlK3Lbyesqq\nEty47Mg4AdQMbHIiYVzhI3yJYUVRYQFeAoCwFSJk5hN3EwjRmNpkmCamYQZpaZhIJL7w2xSbTMOE\nWAxiscbopFaEIYBw2AQpEcmIJCsSRqggRa5Jm5aFYZjtprj1FIZpYmCCFUYJDyX9LnkdZUYmieSt\n8yl3Rz55IcXsApfZBY3HiFBQ75vUJpc6z6TWt6j0TN6zw7xdG2VVZW56+6KwYHTUZ1TUpzgqKI4k\n76M+EX1ar9EccWgRSdOvlJbX85lH1jJpRB4//+hCLSBpNBqNplUmjcjjsWtP5Ir7X+XKX73KTy6b\nx6nTRra7j+0Jbnv6XR57bQ+GAQ+u2skJJcO45pQSzp49Gss0eH5TOQBnzCzui5eh0ZAbjlDnB6lr\nZiQXZVkopwGSJbfzorm4wsXAwDKs1iu0hcETHp7wEKJtkcUMhSAUQsooyvVQrtvCkDsUMVAKpEgK\nSdEoAloISakUN9NUQZU00fuRSUYyVU5JDyW6JgIZpkEoeZNSIhCBFXe7baWSwI5OLAMKw5LCcNvv\nUY1nUmaHKEuEKUuEOOCEWFsdo1409e7KtySWoQgZipCZTLczgqimmKXItSR5VlB9LtcKUuaa3jc+\nDutpgkYzIMgqnc0wjNNaW6+U+k+Pj6gddDrbkcXheodL7l1N3PX5841LmTAst+OdNBqNRnNUs+VA\nHdf97g12H45zzuxR3HLBbCYOb/n3Y+vBOm56bB1bD9Zz/emTuf60KfxpXRkPr95FWVWC8UNz+OTJ\nJTy1YT++kPz986f2w6vRHK3EHRfbbYw2UsJDOfWBf1AnUUrhSQ/PDwSljpCui3IdlN+Y6ialxHOa\nGm5LTyA9u10tRQqJlALZhql3T6OkAOkje6AqXFDZTWGkDaoNjIxqvUoqmt+Sz2T8mzG21Hqluj22\nwUzcNyh3Qxx0LMqdEDW+iVAGvgyMvv2kH5OvDBLCICFMGoRBXJj4qn3DpZChCBuKkKkIJYWokBms\nGxqWjIz6FEcEI6OCkRGfERFBSAtPml7maExny1ZEeirjvzHgBGCtUuqMrg+x82gR6cjB9gQf/fVr\nvPNeDb+/bgkL2qi0ptFoNBpNcxxf8MDLO7lnRSm+VFx/2mRuWDaF3EgIpRSPrdnDbU+9S0EsxJ0f\nns/p0xsjloRU/OvdAzz48i7W7KoE4PNnTOXL58zor5ejOQpRSlETt5NiSHKdFEinHkN23cPHEz6u\n72QnJgkfGU+kfZOklLg2kDE3UFIiXAc6SGFTUqFUYKgtpepS+lln6U50Uq+jgvcgkJMkvk6lywpP\nQlyYxJOiUtPHgeDkK/CkgacMfGngKXClQaVnUeGEcDOEKAPFsHBKVArS6zIFpmhSjNJm4ZruoEWk\n7BufAPxMKXVpVwbXVbSIdGSglOILv1/P397ax70fXcj5x43p7yFpNBqNZhByoMbmR//YxF/W72NM\nYYyvnjOD5zcf5Jm3D3DqtBHc+eF5FBfE2tz/7bIa/v72fq5ZWkLxkLa302h6A9cX1CfsFuulUw++\n0622fenjeG4Tb6XWkL6PrG809xa+xHNazg2E47RIb+sIKWVaTAnImNwnHyoFSsluRTIFRtw+SggG\ncgRQKpVOG333HkpBjW9yyLE45IYoT94H/7eo9a1W90tFOIWTUU1DwjIZ0eQ3EZ+KQlILTpoWaBEp\n+8YNYKNSanZXBtdVtIh0ZPDT57Zw14pSbj5vhjYy1Wg0Gk23eWNXJbf+bSMb99USMg2+eu4Mrjt1\nMqapz/Y1A5vmaW0plHCaRARlzlyV8AORKYtz+GzEJGHbKLtRzGpesS1FkN6WXb9dQUqZjmjqqqik\nhIfsZlW33kZJpY2++4mEMKhwLQ45Foc9C1caeDJIrfOSUU2eNKj2LMpdq0WVOoPAz8kyFCaBd5SZ\n9Hgy088F60wDLALfp8KwpDAkKAxLhoQkhWHBkJAkYioipiJqBPc69W5wcjSKSFkZaxuGcTeNv8Ym\nMB9Y1/XhaY5GymttfvzsFv64rowPLxrPDadP6e8haTQajeYIYFHJMP520yk8vWEfk0fkt6jAptEM\nVHKjEYAWQpJhRdvcx7CiqFAOyrfBt9sVdUJmiFA01K6YZMViCN9LeyQ1r9iWwgxbGFYM6XmdjkrK\nBtM0g1kGFkoG5t1CiI52a4JhhbGsMFK4AzYyKdPoW0mJTDsuJR9rYanXyLEUE3J8JuRkd/z6Eg57\ngbfTIceixjeRykCowN9JElSyS6/DQKqm6xLSZEdDmBov1iTVrjUsAjEp1o65eHvrYlYgXmk0vU22\n1dkyw3984HGl1KpeGI9mkPFedYLCnDD50bYPJdeXPLRqJ3c9vw1PKG5YNoUvnTUdQ8eDajQajaaH\nsEyDi+eP6+9haDSdJjcaQaFw3OyFGcM0MSK5EM5B+gmSrthtbp8Sk9ryTDJyc1H19ZCMAApHTQxT\n4jeLSDJMEysaRYUjSC8p1PRCZFJQCS6oTNcVMcm0IihDgvKQndy3LzFMk9YSrFKm3y1uWmDqU0Im\njIoKRkW7fwwpBbY0qPFManyLOt/ElUbTRRk4wiAhG32gKj2L9+wQDb5JQrYfqmSg0lXucixFniUJ\nGSodTaXS/wTRUq1VxItZEpU0QE/5TqUem0DMkuQkha6YKZP3QSpgyAg8pkIZ5ufWAJ/uSQVO8v13\nkpFpEAR/migMI0jENQAJyci1pDl88nHl7nouK+nHF9EPZCUiKaV+YxhGBJhJcOht6dVRaQYFq0sr\nuOrBNZiGwYmTh7F8RjFnzCymZEReepsXtpRz+1PvsqOigTNnFnPLhbOZlPG8RqPRaDQazdFOXjSI\nPOqMkASAYWCGcyGci/Ti4LUfmRS2QoStQExyPBspg8mxaVqQk4tsaEhvGwqbmFbLqm2QFHmiUVAg\nfQ/p+V2qLNfhy2siJglEBwbfTfc1gSimMTg8kzIxzbbFgkBgyoxgaikuBRdqM2fvfWN2rmkbwwgi\noXIswWi6JkpJBXbSaLwhaTTelgl5ap0rm6o4RnIsQhocck0SwqBBBBX0egMDRTiZAhg2W4pMgfAU\npPKlRChfkTZNbxRrgvFZhsIyUgJVozG6JwOhy0sKQqnHCtISWkoQCt7LpGjUA687vGsfl50+v9vt\nDCayrc52PnAfsJ3gvZ8EXK+U+kfvDq8p2hNp4FBaXs8H713FqCExls0YyYrN5Ww/FJx4TB6Rx7IZ\nxew+3MDzm8uZPCKPb180m+Uzivt51BqNRqPRaDQDlwbH6byQlIlSjWJSVv3Fm6S4iXgC5TY19ZZS\n4rsgRftzBukLlPBRQvaKoAQk09w6JyY12V94KHnkeRGlRD6jg1ymQIACkiJUUDtORzgd7SgFngoq\n4yWEgUEQhRVOCzyBECST0VS2MElIA1sY2NLEFoHI0xihEwg6QiWFINns+eQ2rT0WKoheauw3KTaZ\nwZErku0IZSBkYwphyhg9YjY+DiW9qRSN2nqmzX/UVMFiJb2pTEXEUGAkTf+T+0kCMcpCYWW+L8lx\nTZ17PGcuntPnn1tv0KOeSMBPgeVKqdJk41OAvwN9KiJpBgaH6x2ufngNkZDJg59czIRhuXzrgtns\nORxnxeaDrNhyiEde203YNPjm+TP55MmTiGinOI1Go9FoNJp26XJEUgrDwIzkoawoyk+A77a7eU44\nRoMSKBn3rAu7AAAgAElEQVSICGZuLEh1y0gBM02TSKxtw+30diELQkFylpISJURQoU34PRYAFEQm\nhTDNrnsmGVY4EJKk36p5eUqGUenKcgM/gqcj8ShFY4RTyzS6bCKcNEcmhgERAyKmpCjc9namAfmm\nIj80cFNE+4OZI4++6q7Zikh1KQEpyQ6grhfGoxng2J7gut+tpbzW4ffXLWHCsNz0cxOH5/LJpZP4\n5NJJxJMnP7mRbA8xjUaj0Wg0Gk1eNIqBgScFUnQtDcmwQhhWASrkoJx4m5FBpmkSDUexnUSwHwZm\nTg6yvr7FtuGwiWkGUUnN09ta9G+aGKYZ+GSTNAlXZLyW4F5JFUQvKQVSZK3XNPdMkkJ0SuoxTAvD\nbL3ce3qbjMdKCkAmNScVxCWojOEOIsGpLQKBqS1xqfEmkVpc0miOcrI21jYM4xngCYJfx8uA1w3D\n+CCAUupPvTQ+zQBCKcXNT25g7e4qfn7lQhZMHNrmtlo80mg0Go1Go+kaqaptEJx/+UIilUIqheP7\nyCzTuQwripETaTfFLWJF8Cw/ndZmhkKQm4uMx1tsa1kmZkzheyC8TgomBhlFVZJRPybp6CUA5QfR\nS0r6kMVr7K4Bd7YEgpNF83if5v8PUuUESDnoRaUUrfkzZUYtSYT2W9JojjKynenHgIPA6cn/H0qu\nu4jg11GLSEcB//OvrfztrX187dwZXDB3TH8PR6PRaDQajeaIxzAMwhlCS04kjO152F6WYlI6xS2C\ndBswZEuhJRaOEpd+WgwwIxEwTWRDfQsdxDAMwhEDK5SdV1JnMEIWFhYQRrgeyms/HS+9XzcMuHsS\nw7QwsEiF8ygpQKU+pyNHaGkatRRuJirpSCWN5kgnWxHJBL6glKoGMAxjKHCnUurqXhuZZkDxx7Vl\n3LWilA8vGs+Ny6b093A0Go1Go9Fojlpi4TCxcJiE6+F4fuA91AGGFcbKKUK6cfASTZ6zTItoOIbt\nNq43QyHIz0c2xKGV9lNeSb4n8T3arQrXFaxIGGWaCN/NKioJGj2TDDNIcZMdpN31NqkIJssKTL2l\n8DmSxKQUzVPhlJTItL+SbPaKk6mMmfXmNRrNoCJbEWluSkACUEpVGYaxoJfGpBlgPPvOfr7+pw2c\nNHk43/vAcRmhyBqNRqPRaDSa/iInEiYWDmF7PrbrZqXjmJHcjKikRgPvSCiCJ7zAWDu1rRWCgnxU\nQwPKbz1VLBQ2MS2J8I3A1qgHhRsjZBEK5SAcB+VnbzZummYQlSSCFLeBkG5lWGEsK4ySHkoceRXi\nMjFME6sVf6W2SB0zKkNUau1RqpqcjnbSaPqXrCORDMMYqpSqAjAMY1gn9tUMUmxP/H/27j1I1u28\n6/vvWeu9dM/MPlvGsmSXZSHhsi2udsyxAo4J+JLYcSBOCBcDCRCSUpEKrgqVggq4guEPCoeby6mE\npFRgYicmhJuDKBzAIQQSEtkyEIPlGy5fsCxsSxB0zt7T3e/7rvXkj/ftnp6Znpme2d3TPd3fj+qc\nmenpy5pZu4+6f/t5nqU/+Fe/X//DB39cv+gdz/Xf/Xu/mFPWAAAA9oiZaVyVqmLUi2am1K1TlVQo\njp8rz968dILbqBzpPL+8FLoEC/KzM+WXkxvby0IICsMYp5Sy8vyAtw2FN7Gu5bFQapobh4SvXFcM\nCnHPwqRQykK5aHXzxfyk4zU/Xc6uTZm6bhFMuSu5L8dKBEvAI1k3CPpjkv4fM/vzw9e/VtIf3M6S\nsA9++Gfe1O/4M/9AP/BTb+o/+qJ363d/xXsIkAAAAPZUjEHPx2O9nM00a9ar2rHyRJ7aRdgTQ1RV\n1JpdGcJtMsXTE6WJyWezO9cRo1S4K6c+TPI8PMQrhCXzqqTcJuW0foubtBwmJaXufie5bctiWHfU\nECR1w0BugpC1mCmaSbp4f+LZl1roqFgCtmWtEMndv8XMvlvSlwwX/Wp3/77tLQu74u7689/9EX3d\nBz6scRX1p3/rF+iL3/O2XS8LAAAAazita8UQNJnd3d5mIcrLkbQ0C6kua3W5u9TWNhfHY+WiUJ5M\nVs5JunTfZoqFKS6923D3/h9JylJ2KXf3a4ELZVQox/1JbqmTp27t0TohRoUY9ypMkvr2L1MlDYGS\nhhPPTD6Eb5kZQmuwYMMZeleDpbwY++3yo6/8Al7V2i1pQ2hEcHTA3pi2+tpv+179le/5qL7wMz9Z\n3/DrP09vf22062UBAADgHkZlqSJEvZjN7jzBLZQnSl1z6dS2k+pE5835yiAplKVURPn5dO3T0+bM\n7GK2Zhhak8r+yPiU7hcoWREViyjPlTx1ym23dqvbPEy6+lhmJlm/BvesnPOjD+e2YUj1vLHraoOX\n57YPlTLtW+vog6X5qX+9+WlyN+2sL/+P3zFwDXONIHfXX/mH/1R/6Nu/Xz/z5ky/68s/R7/9l3+m\nYmCANgAAwFNUxKDn45FezBq17e3tbaE6lU/fWHxtZjqtT/Vydq6U2uvXtyCdnig3hfJ00pcUvYJ+\nELYuAqVOSu2aYVKwfs5QLJTaRrrHAG674bWuBZOpD5okKae+LSonvzT8eRcslP3HIRPx3Mk9y+bV\nNcOP5Evxk80rwBYVOMddiTM/TW5dfeh0/X+iqglHihDpyH34o5/QH/jA9+m7fuyf6xd8+mv6E7/p\n8/UvvfOTdr0sAAAAvCIz07NRrUkwTWbXw6DF9WLZt7VdmYV0Wp9o0k7U3jRQu6qGqqTJvU5Pu818\nSHcssrpGymn9MKmoa+UQldvZRnOSEIcj7AtJLuVhyJO75POqoM093L1YKFaOo7562fLXfcucyz0x\nh2kNfei0Wr/38/3P82ip/96afyqu7hVDwrHvCJGO1P/3stEf+44f1J/5zn+it5xU+kO/+hfq173+\nGVQfAQAAHJhxVSlY0PlsduOcpFCeKHfXTz8bl2OZTE27eqB2CFE6O1NuGvlsJk9p5fXuK4SgaiS1\nbVZqtfZQ7lAWshj6k9w2tJZLbKjEWuhLgnbZAndfNoQipngxh8nTEIj1ARPW01etzd8/bfYQonnb\nXb5U/SRd3Z9dVkOZzVsvr/+7t1S39QjBmFlQkMmGf0uXh63f9bsyM6rL1kCIdGSmbdL//KGf0B//\njh/Si1mn3/xL36Xf+WWfrecn5a6XBgAAgC2py0IxhJvnJJnJ6hP59MW1b43KkSRTc6VSaVmoKqmq\nlLtOPp1urDKpLINizOoau0dVUlAxGik17b3nNj3UcgtcHyi5ck47rVJa19U5TJ7nR+r1VUq8qd6N\nedtdvPOavctVUa6LsMmkIVKZB14W7Nr1LwdVN6xpcS92a4XW3Wu8uT3QzOaPoOXP1I+aX/x0y2Ha\nbetZ/v3NT/Drbzv/nQz3sKKY4mJu2uXfjC99ZhsOD58CQqQj8bE3Z/ofP/jj+tbv/HF9/EWjL/zM\nT9bX/aqfr8/51Ge7XhoAAAAewXxO0pvTqbruepBksZYXjdRdD15GZS2TNLslSJKkUBR9ZVLXyWfN\nRkKceVVS6rK6dv3h27Eq5SEode12qpJuMK9OCTH0b1pzVk77cxrcXSxEzd96LwdL7qlv46NaaS9d\nrora/PU34VUf81XXe3GC3/rXv+uRL1cmHgdCpAP34Y9+Qt/0f/2Y/sr3fFRNyvrS97xNv+2L3q0v\n/MxPvjgdAwAAAEfBzPTaeKzzWaNpc31OkpUn8tSubB+ry1oWTNPZ5M7HCUUhFYVyrqWU+8qknPt2\nt/ywtpZYBIXo6jopNeuf4lYUUblNyu31dr1ts2CKoT9JLqek1OWdD+d+CAuxb38bECoBx4sQ6QB9\n/MVM/8cPfkx/4e/9hD74I/9cJ1XUb3jvZ+i3fOG79HM+5WzXywMAAMCOndSVkvu1k9ssRKk+XdnW\nJklVrGS1adpM1mpzCiFKIUrlxegEl8u7JG9bedveK1QyM5WlDS1u6w/eDmVUKMd9i1u3OiTbthD7\ndrecslJKT7pN7HqolCUNP5P70Ar3dH8+ADcjRDoAObu+96Of0N/6gY/pf//Bn9E//Mi/kLv06W8Z\n6/d+5Xv0619/JzOPAAAAcMm4LK+FSNLQ1lYmqV1dcVTGUqpM0+b8QUGByWRDpZLGY+W27Ydy32OO\n0iu1uBWFctvIU370yiSpP+3tUqtbfvqBy9W5SnN+NSA0W3RDLFczEToBTwch0hP2Qz/9pr75//4x\n/Y3v+2l97M2ZzKTPfcdb9Du/7LP1Je95m37ep72mwGlrAAAAWKGIQXVVaNZcD29CddIfZd+tPpWt\njIVUnTw4SLr0WGUplWU/iLpp5U2zdnXSosWtkVK37uBtU6zrxdeecx9CDaeTufujzFBatLopPqnT\n3e7Dbhm+fLWaSZI8d32LnFzm/aDliz9fh/N7AZ4yQqQnJmfX3/6hj+mb/u6P6v/8xx/XqAz60p/7\ndn3pe96mX/7Zn6JPPqvvvhMAAABA0ris1LTdyu6uUJ/1JxmtGLQt9UGS1SeaNJPrFScPEEKURlG5\nruTn07WHcpuZytoU4v2qkha3D0H9bNylQMPVD8NOXX80+aoT7Tbo+uluhxcorcNC//b0Ypzxhast\nc8xiAnaDEOmJOG86/cW//5P603/3R/UjH3upt79W63d9+efoN773nfqk02rXywMAAMATFIJpVFWa\nzFYHNqE6U8pvyPLqVrMiFBpXY02bifIGgiRpOO3o9ES5KZQn52vnBLEIspDVNbb2rKQbmRSKKBV9\nsOTZ5SnLc9cPB99i6xWB0mqrWuYIloDHt9MQycy+SdKvlPQz7v4LdrmWfTHrkv7JPzvXj378pX70\n4y/1Y/+s//jhj76hN6edftE7nusbv/rz9JW/8NNUxuM7ThAAAACbNSoLTZt2dVuameLoNaXpJ2R5\ndYtXEQqdjZ6pTa2arlFK6882uk2oKqmI8vNzebdee9l8VlLb5rVPcFuHBeuHjg/VSt6lfpZRTltt\nfVsOlCT1QV12Ze9b8I49LlknWOrnLUmES8Bm7LoS6b+X9F9L+pYdr+PR/IvzRr/sv/xbN37/ZdNp\n+S8ZPvm00rveeqp/8xd+mn7NL36HfvHP/qTFMDoAAADgVZmZRlV5YzWSzBTqZ/LpG7cOoi5jqTKW\nalM3hEntK68thCidPVOaTOSz1fOZVq6lDH172+z+7W3rsKKfZSSVfetbl5RzJ91jOPhDhBCkIAUt\nVUi5S/JFUDIPA/uLjy9oun3Idz/zyoZB3vPfHYD17TREcve/Y2bv2uUaHltVBP3a1z/jxu8/GxV6\n91tP9e63nupdbz3V8zGnqgEAAGC7xlWpWdcp3zD7x0KU6jP57M07W7nKWKiMhVJOalKjLnWvPDMp\njsfKZal8fr7+0O0QFEb3G7r9ICaFMiooystKuev6AdFbnqMkzSuV7v4L5pzzkJVcDKs+tva4q+HS\n9eqlPPzZzpfCOQCX7boS6eicVIV+36/6ebteBgAAAHDJuCz1Mt1c7WOxlOpnawVJkhRD1DiMpVJq\nU6c2NUo5PThQCkUhnZ3eq71teeh222irs4yk4cS1qpRUylPqA6XU7TyLCCtOSfPs/ayllHa9vJ2b\nB0yLr5dnrOc0VOANbXFDFRNwrPY+RDKz90l6nyS9853v3PFqAAAAgMNUl4WmXavU3Rzy9EHSmXz6\n5r3ue16dJEltatWm9kGBUghRfnam/HKy9ult0oaHbq/JYlSMUZ4r5baRb7nV7b4smGKIikVUTlk5\np6OrTlrH8iysVbOX5NJtTYPWX2EoBLvcegg8RXsfIrn7+yW9X5Jef/11nmkAAADAlpyUld7sprde\nx2Iljc7k0xcPeoz57CRpKVBK3drVHSZTPD1Rmgb59Pa1LlsM3W6yUvt4byssmGJdy8tSuW33LkyS\npBCDQgyL0+D6mdRZnm8PSI7ZcvXSOhNrV13n4jS5YVaTXC6TZOrH4NrSP9JmZjqZzOzg2/X6n1E6\n5J9xV/Y+RAIAAADwOMoiqiwLte3tQYfFWhrpwUHS4vGGQMnd1eZWbdetPZA7jkbKMSqfv7zX+8Sy\n6odu564vDHm0yqQQFmFSatutD+F+iPlpcL2Lnq75jCCqlTbLFm2GceWspuuuz3S6CKJ8GKTui+on\nSXILQyAVlx7vwnJFlXRRGehrRWPztayutloEYTZM7rKL+7V5RdbKMKwPuua386WDpWw+LH45dJ5f\n1+zaz7n4/XheakX0y+tafgz3pd8pVtlpiGRm/5OkXyHprWb2EUlf5+5/apdrAgAAAI7ZaVXpE126\nszLIYi3VLp+9fOXHNDNVsVIVK7Wp07Q5X6syKZSl9OyZ8stzKa03J0mSYgyKS3Nvcu6rbrJLnrYb\nLFkIKpYrk1La+qymVzUf4L1crZQSs4H2wdVg6Gr0c1cUdHUe1Lq3W3lf97zOqhP0VgVd9/2ZLl13\nKai77barT/Pr52H1Jzz65WsNoZPZ9fUeul2fzvYbdvn4AAAAAC4LwXQ6qvVicnermBUjuWepmWzs\n8ctYyOoTTZrJWjOTQoiyZ/efk3T5PoIUhreZZR8qpXa7p7rNK5MkKbdJOTWPcqLbq5pXK4UYh/DN\nlVOm7Q2vbFWAtCuX2hXjXdc7Lsf3EwMAAAC4VVVEjapyreuG8kQ2OpM2+DfyRSg0rsZrv0Gbz0kK\nJycPK6G4IoSgsg6qxqZYmSxs4E5ve7wyqhiNFeuRrCg2+rvcphCCYhFV1qXKslRRRIVgm9gCAHuK\nmUgAAAAArjmpK7U53Xpa25zFWjaulNtzqV1/2PVtilDopDrReXO+9iluoaqkGJTPJ/dqb7vx/kJQ\nCJIXrtRJedutbkV/WprUt9PkLvVHzG/gZ9m25Qolqa/m6tv0bBHsmS4CuUUVU6YtDnhKCJEAAAAA\nrHRW1XojTdYb2WOmUJ3KY63cvJTlVx8cHUPUSXWiSXPehxJrCLF45fa2q8xMRWmLVjfPfa6Tk7Y2\nz8hCUKyCpFJyKXdJObVPIlCShhbBu74fpKi4GNztnvvB3U5zHLCvCJEAAAAArBRj0Eld6+V0tvZt\nLBaK4+fybipvzl85ZOmDpFOdNy/XDpLm7W15VihPzzd60NIi/Cg0nFgm5W6785NkfctbKKO8S0qp\n28vT3R5qPrhbCloeP9NXM0nz0776j0uneu1grcCxI0QCAAAAcKO6LNTlpFlzv9DCipEs1srdRGpn\n/RHbDxRC0Gl9pvNmopTa9W9XV1Kxufa2q8xMMZpilGKZldIjnO5WRBVFfFKnuz3UXdVMki5XMaVM\nsARsGSESAAAAgFudVJXa1L9JvxczhfJEKk/kaabcTB/c5mZmOq1PNG2natr1K6O20d628nGG+Ukq\npZSz8rzzbJvtbnXdt7ql+VHkuT8tb1HBc/guVTEV81ApL2YuHcmvAXg0hEgAAAAAbmVmOqtrvTlZ\ncz7SqvuIteK4lqdG3s2k7mGBzqgcKYaoaTNZeyDzor2tKZQnm21vWyWGoFhLMWel1rbf6lZESZfP\nIfec5ckl5aH9a6jS8SxlvVJl2D67OuBbGoIlOa1xwAYQIgEAAAC4UxGDxnWl8+mrVfNYrGSxkheN\nfPbyQWFGGUtZbZo2k7XnJEmbP73tzscLQaHuW926ZrttbldZCLIgXQ2X5nKXlLunM6j7VVxUK91u\n3hp3ETA51UzAFYRIAAAAANYyKkt1KatpX32os8VKNi6VmxcPqkoqQvGwOUmxUHj2rJ8n1HVS6uTd\ndoOUEIKqkZRSVmofN0y6cU1FVCgOc1D3Q90WNvVDvn0Ypu5rV8EBh4YQCQAAAMDaTutKXX7AfKRV\nzBTqZ/JiNlQl3e+N+UPnJElSKEupLCVJLpe3nbzrhmBpO6FSjEExSl2blbq+8mXXjmlQ96tYHvI9\nr+2aB0s3udQ2R0UTDgQhEgAAAIC1bWI+0rX7jLU0KuTt+YOqkkblSJKpaacPe3yZbClUyrNGeTaR\nthTyFGVQLFxdJ6VWexHaLAZ1S5JLntJihpLnYZ4S1UqXrHN63FX5pqHn8wKoxfd86Y/FPIjqA09g\nlwiRAAAAANzLpuYjLbMQZfUz5XAuNZN7335U1jJJswcGSctCXUlVIZ/M5M39KpzWZWYqS1OMjzB8\n+76sr1Dqc42lAdVlJU+dcuqkTVSiHaGHBE9XzYOofm7T5X24lkcOF+zRny48cYRIAAAAAO5tk/OR\nloXyRFl6UJBUl7UsmKaz+9/22josSCdj5bqUTyZbm5t0afh2K+V9CpOusGCyUCqUpTznof0tH+xJ\nb/vqchC1enD6KvP2yUU101Klk9TnTbYYCbU0G+pSldTl0+36+710ryuZ1LevmvVf+NBG6kv3u/ZP\ngl0iRAIAAADwIBudj7QklCdyC/2cpHuqYrU4uW0Tw49DLKSzYRB308q7ZitlHSEEVbWUy6yUpLwn\nM5Nustz+lrvUVyfR7rbXLPRp0Don1T1UP/vJ++eIDa2i4X6Pt/znflW0tO76F+tYEXyZWX9Pfbq1\nWOttj7vq8WNcP8Q7FIRIAAAAAB5kG/ORFvddjCTpQUFSGUupMk2b842donUxiPukD5TaTt61Ut5w\ngBaCQpBU9m1LKUme9uNEt5ssTnorS+Uu9cPJqU46SredcHef+1h8/gr3tavbHjpCJAAAAAAPVsSg\nZ+OxXsxmG69IerUgqZDVJ5o2k36GzAZdBEpj5a7rK5S2MDvpWqDUar9mJ11hIShWQaqGMCndXJlE\nGxzwNBEiAQAAAHglRQx6Ph7p5azZ+IwkK0aSmXz64v7rCoVO6zOdNxOl1G50XXOhKKSiUB5V8mkj\nb2dba3ebz05KnZQ67cWpbjcJRZSK21t9Fm1wqWPyM/BEvPpoeAAAAABHz8x0Nqp1MqqWhvNu6L5j\nLRudPXhdp/WJqnK02UVdEUJUPBkrvPaarK61rW6YEILKKqgaSbG6/7yZfRKKqKKuFUcnClUlxdBP\ndu7H1QDYQ1QiAQAAANiYUVmqCFEvm5lSt7l2JYu1NAry2ZsPqsAZlbViiJq2E/mG29uWBQvSeKw8\nquXTmXy2+TY36aLVzQtXzv1oJk/DiKY9rlBaZfnUtxu55CnJXXLP/dH2Pv/BH2+twLEjRAIAAACw\nUX1721jns0bTZnNtZBZLqX5tCJLuHwSVsVCwE03bqdIt83o2YREmlaXyZCKltJXHMTPFaIpR0pDB\nLAZyZyknPblQaSWTrIhDgdLlNjnPuT8VLPfBkhMuAVtDiAQAAABgK07qSkWMejmdbeyUNIuFNHpN\nefamLN8/mIkh6rQ+VZtaNV27tVlJc6EoZM/OlCfTrVUlXXvM+UDuQcpZuesDpeXj0w+FhSAL0spw\nKaV+sHpKhxGmATtGiAQAAABga6oiqjztT29r281U41iIiqPnys0LqWsedB9lLFXGUikntalVm9qt\ntbmZTHFelXR+PvScPZ4YgmLVf76oUkpSTocdqvThUlgMAvYuyT33oZJnKYsT4oB7IkQCAAAAsFVm\npmejkSah1bRpNlMQYqZQP1PWC6l7eIVPDFExRI3K0VCd1Gyt1S0Uhey1Z8rnU3nzOFVJ19Ywr1Iq\nLwKl3B1mhdJVfTtcvHa6lGeXcpZLl1viEgETcBUhEgAAAIBHMa5KlTHqxWymvKE36KE+UzaT2ukr\n39e8OqlJjWbtbCuVSSZTPBkr16V8MpV3253NdJtjDpSWWTAp3DBvqRuGeeeuH7HkLmWngglHixAJ\nAAAAwKPph26P9HLWqGk3E6CE6lTZ/ZUqkpZVsVIZSk3aibpuOzOTQiykszPlrpNPJvItDd5eez1L\ngVLKWflIA6WrbhrmLV2uYOr/lfsquyFgcvdhENVjrRbYPkIkAAAAAI/KzHQ2qnVutrHT20J9pix/\n8Iykq8xMJ9WJ2thp1k6VHzDEex2hKKRnz5SbRnk6ffR5SavEEBQJlO50uYJJWhU0SVdmMaW8uorJ\nhn8x/Bt7jhAJAAAAwE6c1JXMTJPZZoKffkbSmxsLkiSpjIXKeKZZO1Obmj4I2IJQVbKqlM9a5dl+\nhEnS5UDpmIZyb9K1WUzzX51dv65n70+VYzYT9hQhEgAAAICdGVelgpnOZ7ONFGGE6mwYtr25IEmS\n6rJWXdZqU6c29cO3fcNVIyaT1ZVCXfWVSbNZfzT9nlhueXN35ex9lVKiSuleVoRHi28Fk4Woa7OZ\ncu5/x64+WPJ8MaPJ7PrdWrjSVueSMq11eGWESAAAAAB2qi4LBTO9mM5ePZgxU6jOlPIbsrz5odV9\nZVIhd1ebWrWp3cppbqGqFKpKuW3ls6m8258wSerb/WI0xSHroEppuywE2aKUaXXb3DoWc5yWwyjP\nw7DwYd9MkoL60ilbhFTyLGU9/lBxM/Xp2eM+7J3sljTwgBEiAQAAANi5soh6bTzSm5s4uc1McfSa\n0vQTsi3NMjIzVUWlqqj609ya6cYrkyQplKVUlv0A7ulk78KkuasnveXUd+TlJOb87JHbTqKT69Yq\nqUtXzd7fYLkCLcxvvHwn/XUuho/3t1v8kbgaSFmQWR9cWTCZhcXdXVRj9e1+vur2lx7f+9BL0soq\nLLsclJmWruK+dPvhFxODzMIQ6JksBMXi+CKV4/uJAQAAAOylGIOe1bXemGwgkDFTHD1Xmm6nImlZ\nFSuFOmjaTLY3M6kopLNnym3bD+Deoza3qxaB0mBRpUSotN/uUVhjwfobhDuvKYV73fUtjzmvxnp4\nJdZt86iwnju3HAAAAAAeS4xBZ6N6M50iQ0WSimoDd3a7IhQ6rc9UFOVWHyeUpYpnzxROTnQpqdlj\nIQSVZVBVB41OgqqxKVamUNgQRgCPZMi+8HBUIgEAAADYK2URdVLXejmdvfqdmW3l1LbVD2U6qU40\ns5mabgPznW6xmJk0a5Sb/RrAfZdVlUrz9rd+TA+VSsC+IkQCAAAAsHfqslB212S2meCnD5JeSN0G\ngqk71GWtGKMmzaQ/qn2Lwvw0t5zkTSt17d7OTbrJqlDJfTlUIlgC9gUhEgAAAIC9NK5KZc+aNZuZ\naZA9dAMAACAASURBVBTqM2UzqZ1u5P5uU4RCZ/WZJu1EXddu/fFCiNIoShop5yS1Sd428m6786C2\nIQyJUlwafTOfNTU/SExZwwljBEzAYyJEAgAAALC3Tuta2aW23VCQVJ0qy6R2spH7u828va2Nrabt\ndOtVSXMhRKmOUl0pe5aaTt7OnlyF0rJ5sKRwfazyYnB3knIiUAK2iRAJAAAAwF47qyu94Vmp20wI\nE6oTeazk3fRR2tvKWCpa1KSdKqXtVyUtCxakuuoDpXnLW9vKn9AMpbss2uHKoRVuOAUu0wYHbBwh\nEgAAAIC9ZmZ6Vo/0Rp4u2ppe+T5jIYtn8nIsbydbD5NCCDqtT9SkRrNmutWh2zevYWh5G42UUydv\nWnnb9mnLgQgh9NVKS+90F61wPsxXUv9Rw9wl7WAvgKeKEAkAAADA3gvBdFpXejGdbvQ9v4Uoq4cw\nqZtufV5SFSvFOmraTpXS7uYVhVhI40Iaj5W7IVDqDitQmgvLU7uv9sJpqF6SpHwxzJtwCViNEAkA\nAADAk1AWUeO60vl0Mye2LbMQZdWpPNbK7blsi21nMUSd1qeatjO13WwnVUnLQlFIRSFprNy2Q6DU\n9CU7R+CmeUuL1ji/qFySGOaN40aIBAAAAODJGJWlUt7ciW1XWSwU42vybipvzrdajTIqaxUxatpM\nNtam96pCWUplqeyjgxjI/SoWrXE3fP/qiXGLFjmGe+OAESIBAAAAeFJO61pd3tyg7VWsGEmhlLfn\nUrf5yqe5IhQ6Gz3TpJ2obbf3OPd1bSD3rJE3s6OpTlrHXSfGzcMl5aF6iQomHABCJAAAAABPzllV\n64203QHV/bykZ/JiJp+dD6Um2zEuxypCqVm7P1VJcyHEfnZSXcmnQ5iEW91WxXRpBhMhE54YQiQA\nAAAAT06MQWejWm9OtjsIW5Is1rJxpdy82GpVUhkLlfGZmtSoaWf7GSadjJVHlXwyk+9R5dRTclsF\nk7v3/1xtkWPQN/YEIRIAAACAJ2k+aHsye4Qww0xhUZX0cqtv6KtYqYrVfodJpyfKqZJPpvJud6fM\nHRozk5ndGjBJWlQy9Zev6DJcVDZR3YTNIkQCAAAA8GSNq37QdtM+TpBhsZZGxdZnJUlPIEyKhXR2\nJpfLu9SHSV0nTx2zk7ZgETDNhfVuN2+f8zSESkunzC0+LoWiFkzzhzEbHscvbksoddwIkQAAAAA8\naWejWp/w7Q7aXjaflZTDudRMtv54l8OkRjnv12lpJpMVhVRcvL3MqZO6LO86eWqH4T/YheX2udu4\n++WQ6gY3zXTq72PPQya7CMik6wWFq378S5eZZNLid2lrBnmHhBAJAAAAwJP3rB7pjTx91GqdUJ7I\nQz8ryR4h2JmHSW1qNWtnexcmLQux6Pux6krScqjU9pVK+xw0HKl1AiTp9plOc/Pnoc//5dfb7oKp\nT2Tmwcxgcaqdz6uklhc5hDq2dB9L31v+eOlbV6u4NiTE40uRCJEAAAAAPHkhmE7rSi+m00edP2yx\nUBw9V25eSt3jnFpWxlJlLNWmTk03U0r7P5Po5lCJSqVDtAiaHnTjm8Mp7B4hEgAAAICDUBZRJ3Wt\nl9NHPoLeTKE+kxfl1oduL+tPcyueVJg0d3uo1A3HkQHYN4RIAAAAAA5GXRbK7o9zYtsVFmupjo/W\n3jb3lMOkuWuhkmdpPqw7dfKUGNYN7AFCJAAAAAAHZVyV6nJW+0gnti2zWCiO36I8e/Fo7W1zhxAm\nzQULUhmkslxclrtO3iUpJaqVgB0hRAIAAABwcM7qSm884oltV+2ivW1uHiZ1uVOXklJOyp7kTzx0\nCVdPgMupr1ZKQ7CUM8ESsGWESAAAAAAOjpnprKr1Zp496oltl9awo/a2uSIUKsLFW74ud0opqctJ\nKbWPvp5NCyFK1eURzC7vq5VylndDxVLa31PsgKeGEAkAAADAQYox6GxU683J5LGLgRYuTm97IXWP\nP6dp2TxUqtUHSrO2OYgwaZnJZPNqpX68Ul+x1CZ52/ShErOVgAcjRAIAAABwsIoYdDoa6cVkurtF\nmCnUz5TDudRMdreOJUUoVNT9/KRZO+2DlgMVQpTqeDG0u+uGgd1ZykmeGdoNrIsQCQAAAMBBq4qo\nk1Gl8+luK4FCeSIPpXz2QvL9mN3Tz086U5MaNe3uWv8e09XZSpKUUx8qec6ES8AtCJEAAAAAHLxR\nWSpn17TZbfuWxVI2fstetLctq2KlKlZqU6s2tUqpk++qB3AHQiykeP3ynFMfLqUkb1vmK+HoESIB\nAAAAOAondaXsrqbtdruQob3Ni9lOTm+7TRlLlbGUpKMNlJaFEKUQpbKURiPl1Mmbtg+UjqBqC7iK\nEAkAAADA0Tgb1XrDs7pu9wGAxVoaFfL2fK+qkuaWA6Vjane7TYiFNC6k8bifrdS0Uk6Sex+0Hfnv\nB4ePEAkAAADAUXk2GunlrNl9RZIkC1E2H7rdTveqKmnZvN1t1s7UpKafHXTkVs1WkqTsuQ+TskvZ\n+9lK2SVP8kzQhKeNEAkAAADAUTEznY1qzWLU+azZi1atfuh2pdy8kO3xSWl1Wasua03bmVrCpJWC\nBSmGlTOW5vI8WMrDMO/swzDvTMiEvUaIBAAAAOAo1WWhqoj7U5UUC8XR870bur3KqKxVF5VmXaMu\nNUff5nZf/ayl1d9zubxLfcCUkpQIl7A/CJEAAAAAHK29q0oahm5nO5fayW7Xcgcz06ispbJWykkp\nJ3W5U5pX1OBBTCZb1Sa3dFKcuo5gCTtBiAQAAADg6NVloTJGvWxmatvdt5OF6kQe496d3naTGKJi\niKpUSZK63KlLndrUEihtyKWT4gaLtrh5uJS7/uP+/5HBE0WIBAAAAACSQjA9G400Ca0ms923k1ms\npTrIZy8kf1pBTBEKFaHQqBypTa2arlFKu28ZPDSLtrgr7+wX4ZLUh5Dukkvuuf98edC3Z0Kn+wpB\nMus/HhlCJAAAAABYMq5KxRD0cjrbeXubxVIavaY8eyHLTzOEKWOpMpZKOalNLdVJj+C2mUurLE6U\nW2Z28fk8eFp12lx/hUVQtREhyEKQYpTFuPQQ+eJxcpLkfaGev2IYZup/Xgsys77iK5jMghRsCIxM\nFoJMF7+XEI8vUjm+nxgAAAAA7lAVUcXJWC9mU3XdbgMPC1Fx/FzeTeXN+ZNob1tl3vJ2UZ3UKudu\n50Edlk6Uu80tp82t4kuJzqU99iuB0/xrqQ+PingpqLnvY3rOtwda88BIuhYK4W6ESAAAAACwQgim\n18Zjnc8aTZt218uRFSNZrJWbl1I32/VyXsm8OsndF9VJtLsdluVwxparmraY2ZhMFu6ZduFeCJEA\nAAAA4BYndaUYos5n090XAZkp1GfyolZuzp9si9ucmakqKlVFNbS7dWpTQ7sbsKcIkQAAAADgDnUZ\nFcNYL6Yz5T0IOCyWSy1ukyc3eHuVi3a3mmHcwJ4iRAIAAACANRQx6Nmo1otmprTjOUlzVoxkxUie\nGnk3k7rdnyq3CfN2ty53alOrLrVLQ5wB7AohEgAAAACsKcag10YjvZg1atv9qZKxWMliJS86eTeV\nUvNkB3AvK0KhIhRSOVbOWcmz3LOyZ6U8fJ7TrpcJHA1CJAAAAAC4BzPTs1GtlybNmv0JkiTJYiGL\nZ5K7cjeR2tlBtLpJUghBYcW59fNZSl1q9qLVEDhkhEgAAAAA8ACnda1gQZPZHraQmSmUJ1J5Ik8z\n5Wb65Idw32Q+S0llvdT+1jGcG9gCQiQAAAAAeKBxVaqKUZO2VbNH7W3LLNaK41qe2r7V7UDmJq1y\n0f6mvjopEygBm0SIBAAAAACvIMags1irK0tN2navZiUts1jKYikvOuXm5cFWJs2VsVAZCZSATSJE\nAgAAAIANKGLQs1irLQpN2kbdnpzgdpXFQnH8XLk9l5rJrpfzKJYDpS53yp77Qd05yz0xSwlYEyES\nAAAAAGxQWUSVxViTpt3PeUmDUJ7IQ6XcvJAd0QlnRRjeBsfLl18M6G458Q24ASESAAAAAGzBuCrl\n7po27a6XcqO+Kuktys1LqZ3uejk7dXVAd7cIlKhSAuYIkQAAAABgS07qStl9b4duz4XqVB4r5eb8\n4GclreNiQPdIbeqUhhY4d5cvPvqulwk8OkIkAAAAANiis1GtNzzv7YykOYul4vi5PHX9KW6pkQhK\nLuYpXeHuSp6WfkUXvyuXK2dXyknZE8O8cTAIkQAAAABgy56NRvrEZKqc9j9MsFjI4pnkrtxN5F1z\nVDOT1mVmKuyWt9RLM5e63CmlpORJOScqmfBkESIBAAAAwJaZmZ7Vtd6YTJ9OeGCmUJ5I5Yk8NfLZ\nS8n3PwTbR4v2uCV9lZLL1Z8UNz8xbt4uB+yjnYZIZvYVkr5RfUb7J93963e5HgAAAADYlhiDzka1\nXkynT65LzGIlG5fK7URqJ7tezkGIIV4UK105Ka7LnXLOQ+VSHzDREod9sLMQycyipP9G0r8m6SOS\nPmRmH3D379vVmgAAAABgm8oi6nQ00ssnGCTJTKE66Qdwt+eytL+nzj11RSikcPmyixlMrpTzUMHk\nzFzCo9plJdJ7Jf2wu/+IJJnZn5X0VZIIkQAAAAAcrKqIstFIL6azJ9m2ZLFQjK/Ju6m8mdDi9kiW\nZzCVVyqX3L2fu5SzMnOXsEW7DJE+XdJPLH39EUn/8o7WAgAAAACPpiyiXhuP9KKZKe35qW03sWIk\ni3Xf4tZNOclth8xMZSyvhUuS+nY45WF7vJ+7JO9b5Fz9DCY51UxYy94P1jaz90l6nyS9853v3PFq\nAAAAAGAzYgx6bTTSi9lMbftETz8bWtxUjgmT9lQIQWG5N25F0DS3qnLJ3ZWVl06Xy8qc1tezXS/g\n8e0yRPpJSZ+x9PU7hssucff3S3q/JL3++uv81wgAAADAwTAzPRuNdG6Nps0TnjF0KUw6l7oZYdIT\nZHY9FTEzBYVrp8u1qevb5i5devWr/uvlcGqd6qcQgsyiYggymVz9aXY+hFibZovHub0iK4SgGAvF\nEFVYoTKWG1/LvttliPQhSZ9lZu9WHx59taTfuMP1AAAAAMBOnNSVzEyTWbPrpbwaM4XqVCpPlLuJ\nvGtludv1qrAFZSyk+OqRQsqpD2/c+7lP4fb7nJ9al3JSylnS8uwnX/r31UKh/iszW1RnhRBVhHgt\nPEs5KbsvhpeH0M+jCuHKtPMjtLMQyd07M/sdkv66+oK6b3L3D+9qPQAAAACwS+OqVAzhaZ7cdpWZ\nQnkilZLc5bmRd62UWgZx45IYbumvW2EeAG2zCiiGeNH1d7/lHbydzkRy92+X9O27XAMAAAAA7Iuq\niArjsV7MZsrpQMIWM1msZbGWJHlq5amRuoZACXhiqMUCAAAAgD1SxKDn45GK4jDfrlksFapThZNP\nko2eSUW16yUBWNPen84GAAAAAMfGzPTaeKyXs5lmzeHOFLJYyWIlVS5PM3lq+wolAHuJEAkAAAAA\n9tRpXStYePoDt+9iJitGsmIkL7OUGwIlYA8RIgEAAADAHhtXpYKZXk5nu17Ko7AQpNAHSlQoAfuF\nEAkAAAAA9lxd9m/djiVIWrhUoZT6QKlrZflwW/yAfUaIBAAAAABPQF0WcrnOp8dZkWMhysKJVEqe\nuuGEtxknvAGPiBAJAAAAAJ6IUVnKXYc/I+kOFgtZLKTqRJ46ybu+5S11hErAFhEiAQAAAMATMq5K\nSQRJcxYLSUU/Q0mS5yTlljlKwBYQIgEAAADAEzOuSrm7pk2766XsHQtRCrGfo1S08m5KmARsCCES\nAAAAADxBJ3Ull2vWMGT6JhZLWSwJk4ANIUQCAAAAgCfqtK5VhKhp1yp1zAK6yUWY1Mm7CbOTgAci\nRAIAAACAJ6wuC9VloaZLmraNOsKkG/UDuZ9J0tJA7k5KLaESsAZCJAAAAAA4AFURVRVjtV3StGvV\ntmnXS9prFwO5+68vBnITKgE3IUQCAAAAgANSFlFlEdUWSS+bRjkRhqzjYiB3/7WnTp4bKae+/U0u\nue90jcCuESIBAAAAwAEqi6i3FGNNmlbTpiH/uKe+9W3FW2Z3uechUHJ5buVdK8sMOMfhI0QCAAAA\ngAM2rkpVMeplM2Ne0iaYySxefBlLqVQfLuVG3jVDOxypHQ4PIRIAAAAAHLgYg14bjzVrO53PGjkB\nx+aZyWIti7UkyVMrz+3QDkeohMNAiAQAAAAAR6IuC1VF1MtZo6al/WqbLJZ9ldLAUytPreRJnpNs\n0RIHPB2ESAAAAABwRMxMZ6NaTVHonMHbj+ZqqDTnOQ0nwWV5ShchU+Z0PewfQiQAAAAAOEJVEVXG\n0TB4u931co6WhSipn7G0NGppmLGUJO/kOQ/hUh4qmAj+sBuESAAAAABwpMxMJ3WlMkadt40Sg7f3\nh9lwOlwhW/HteQXTvE2O0+HwGAiRAAAAAODIlUXU82KsSdNqMmt2vRysYV7BtGiRW5wO1/aDvOVy\ni7IQpKWPkknK8txJOUtyKXVUN2EthEgAAAAAAEnSuCpVxqiXzYyqpKfmyulwd149Vtcu89RJSpdn\nMzEAHEsIkQAAAAAAC0UMej4e63zWMCvpyCza5+KVb6wIkXweLnnXnzqXWsKmI0CIBAAAAAC4Zj4r\n6SUnuMGuT2WyRdJUyIqRJMlTczGjyV1uJsn6VrpltM89WYRIAAAAAICVyiLqOSe4YU0Wq5Vtcqss\nTp4bWuf6OU6SZEP41H8+XFuW06aXiwcgRAIAAAAA3Gj5BDeqkrApF4PB17yBuzy3w0Dw9DjVTEMl\n1byiStJSVZVJFm665cEiRAIAAAAA3GlelXTeNJo1HCePR2Z2vdLJva9okqs/cS4Nc5rm4ZJdu49L\nl5tk8yBoERSF/rEsrGzju3R3Yd0E7HAQIgEAAAAA1mJmOq1rlbHQ+axRzlQlYYfMhmHgw5fHl+k8\nuuOrvQIAAAAAvJKqiHp+MlJVUpcAHBNCJAAAAADAvZmZzka1zsYjxYK3lsAx4JkOAAAAAHiwqoh6\nPh7rZFTJ7pghA+Bpo/YQAAAAAPDKRmWpuig0aVrN2lbuu14RgE2jEgkAAAAAsBFmppO60mvjsUrm\nJQEHhxAJAAAAALBRMQY9G9U6HdW0uAEHhBAJAAAAALAVdVnoLadjTnEDDgQhEgAAAABga+anuJ2O\nRgqBt6DAU8YzGAAAAACwdXUZ9fxkpLoqRIcb8DQRIgEAAAAAHoWZ6bSu9fzkRKOqZF4S8MTQmAoA\nAAAAeFQh9Ke4jatSs67TtO2UU971sgDcgRAJAAAAALATZqZRWWpUlmq6pEnbKHWEScC+IkQCAAAA\nAOxcVURVxVizttOkbalMAvYQIRIAAAAAYG/UZaG6LDRpWk2bRu67XhGAOUIkAAAAAMDeGVelRkOY\nNGtbwiRgDxAiAQAAAAD2ktnFAO42ZXUpqctJKWVCJWAHCJEAAAAAAHvNzIaZSVGS5O6LUKlJiflJ\nwCMhRAIAAAAAPCnLodKJpLZLalNS0yXlTKAEbAshEgAAAADgSSuLqLKIOqmlpktquk5t19HyBmwY\nIRIAAAAA4GDMK5TcK4ZyAxtGiAQAAAAAODjLQ7mnbadp0xAmAa+IEAkAAAAAcLDMTOOq1KgshjCp\nlZMmAQ9CiAQAAAAAOHjzMGlclYtB3G1OSh2DuIF1ESIBAAAAAI7KfBC3JOXsalKnLmU1bbfjlQH7\njRAJAAAAAHC0QjCNQimVUleWmrStWsIkYKWw6wUAAAAAALAPihj0bFTrbDxSLHi7DFxFJRIAAAAA\nAEuqIqoqxpq2raZNp5yZmwRIhEgAAAAAAKw0KkvVRaFZ1ynl3P+TnNPdcLQIkQAAAAAAuIGZaVSW\nly5zd7WpD5VmXaecqFTCcSBEAgAAAADgHsxMVRElRY2rUrM2adY16jrCJBw2QiQAAAAAAF5BXUbV\n5VhtlzTrOjWc7oYDRYgEAAAAAMAGlEVUWUSlslSXXWbXr5O9b4FLVC3hCSJEAgAAAABgg2IMivHG\n72pUlmq6pGlLCxyeFkIkAAAAAAAeWVVEVUXfAjftOrW0wOEJIEQCAAAAAGBH5i1wXVkq5azsLqlv\ne8suuWflLOVMxRJ2jxAJAAAAAIAdK2JQEcON3+9SVpuSUs5quyQfwibgMREiAQAAAACw566GTPNQ\nqctZXdeJTAmPgRAJAAAAAIAn5nKoVKvt+kCpSZdPfjOTzIJkUhhOi8su5UR7HO6PEAkAAAAAgCeu\nLKJKRY1Vyt3lPg+Q7MbbpJSV3JU9LyqZzCSTycwUzGSSkruarlNLxdPRI0QCAAAAAOCAmJluyY4W\nYgyK/We3X0/9aXLulaZtd63aadXjM7PpMBEiAQAAAACAO5mZxlWpscrFTCZJCkPVUjBTHFrs3F1d\nyupyVvbhY8pUMj1xhEgAAAAAAOBe7jpNzswWLXbLUspyaVGp1H8uubJydrU5ETbtMUIkAAAAAADw\nKOKNwdPlsGk+KDzlPnQKJgULi4qnIgaZmVLKyu6Lf3zxeVZ2yTOB1CYRIgEAAAAAgL2yqopplYu5\nTjfL2ZVyHza5fDE43NRXTMVg164v9VVSkpS9v727LwaRH+vpdoRIAAAAAADgYIVgCuHuQGouxlVT\nyde//SG7uYERAAAAAAAAGBAiAQAAAAAA4E6ESAAAAAAAALgTIRIAAAAAAADuRIgEAAAAAACAOxEi\nAQAAAAAA4E6ESAAAAAAAALgTIRIAAAAAAADuRIgEAAAAAACAOxEiAQAAAAAA4E6ESAAAAAAAALjT\nTkIkM/u1ZvZhM8tm9vou1gAAAAAAAID17aoS6Xsl/WpJf2dHjw8AAAAAAIB7KHbxoO7+/ZJkZrt4\neAAAAAAAANzT3s9EMrP3mdl3m9l3f+xjH9v1cgAAAAAAAI7S1iqRzOx/k/SpK771te7+l9e9H3d/\nv6T3S9Lrr7/uG1oeAAAAAAAA7mFrIZK7f9m27hsAAAAAAACPa+/b2QAAAAAAALB7OwmRzOzfMbOP\nSPqlkv6qmf31XawDAAAAAAAA6zH3pzNmyMw+JunHd72ODXmrpI/vehHYCfb+uLH/x439P17s/XFj\n/48Xe3/c2P/j9tT2/2e7+6fcdaUnFSIdEjP7bnd/fdfrwONj748b+3/c2P/jxd4fN/b/eLH3x439\nP26Huv/MRAIAAAAAAMCdCJEAAAAAAABwJ0Kk3Xn/rheAnWHvjxv7f9zY/+PF3h839v94sffHjf0/\nbge5/8xEAgAAAAAAwJ2oRAIAAAAAAMCdCJG2xMx+zMz+kZn9v2b23cNlP8vMvsPM/vHw8ZOGy83M\n/isz+2Ez+4dm9vm7XT1e1Q37/0fM7AeGPf42M3vL0vV/z7D/P2hmX767leNVrdr7pe/9Z2bmZvbW\n4Wue+wfmpv03s68Znv8fNrM/vHQ5z/0DcsN/+z/PzD44v8zM3jtczvP/gJjZW8zsLwzP8+83s1/K\n677jccP+87rvCKza+6Xv8brvwN20/4f+uo8Qabu+2N0/b+lYv/9c0t9098+S9DeHryXp35D0WcM/\n75P03z76SrENV/f/OyT9Anf/RZJ+SNLvkSQz+3mSvlrSz5f0FZL+hJnFXSwYG3N172VmnyHpX5f0\nT5aux3P/MF3afzP7YklfJelz3f3nS/qjw+U89w/T1ef/H5b0B9z98yT9vuFrief/oflGSX/N3d8j\n6XMlfb943XdMVu0/r/uOw6q953Xf8bi2/8fwuo8Q6XF9laRvHj7/Zkn/9tLl3+K9D0p6i5l92i4W\niO1x97/h7t3w5QclvWP4/Ksk/Vl3n7n7j0r6YUnv3cUasVXfIOl3S1oeRMdz/zj8x5K+3t1nkuTu\nPzNcznP/OLik14bPn0v66PA5z/8DYWbPJf2rkv6UJLl74+7/QrzuOwo37T+v+w7fLc99idd9B++W\n/T/4132ESNvjkv6Gmf09M3vfcNnb3f2fDp//lKS3D59/uqSfWLrtR4bL8HSt2v9lv03S/zp8zv4f\nlmt7b2ZfJekn3f17rlyXvT88q577ny3pl5nZd5rZ3zazLxguZ/8Pz6r9/08l/REz+wn1fxv5e4bL\n2f/D8W5JH5P0p83sH5jZnzSzU/G671jctP/LeN13mFbuPa/7jsZNz/2Df91X7HoBB+yL3P0nzext\nkr7DzH5g+Zvu7mbG0XiH69r+u/vfkSQz+1pJnaRv3ekKsS2rnvu/V31JMw7fqv0vJP0sSb9E0hdI\n+nNm9nN2uUhszar9/zWSfqe7/0Uz+3Xq/8byy3a6SmxaIenzJX2Nu3+nmX2jLlrXJPG678DdtP//\nhcTrvgO3au9/v/rqFF73Hb6bnvsH/7qPSqQtcfefHD7+jKRvU1+q9tPzksXh47y07SclfcbSzd8x\nXIYn6ob9l5n9Vkm/UtJvcvf5i0n2/4Cs2Ptfrv5vKr7HzH5M/f7+fTP7VLH3B+eG5/5HJP2loXz9\nuyRlSW8V+39wbtj/3yLpLw1X+fO6KF1n/w/HRyR9xN2/c/j6L6h/Y8HrvuNw0/7zuu/w3bT3vO47\nDjft/8G/7iNE2oKhjPHZ/HP1SfT3SvqA+heTGj7+5eHzD0j6zcPE/l8i6RNL5c94Ym7afzP7CvW9\n0f+Wu58v3eQDkr7azGoze7f6YXvf9djrxqu7Ye8/5O5vc/d3ufu71P8fy+e7+0+J5/5BueW//f+L\npC8eLv9sSZWkj4vn/kG5Zf8/qj5MlqQvkfSPh895/h+I4b/nP2FmnzNc9KWSvk+87jsKN+0/r/sO\n3w17//d53Xccbvlv/8G/7qOdbTveLunbzEzqf8d/xt3/mpl9SH05238o6ccl/brh+t8u6SvVD9c6\nl/QfPP6SsUE37f8PS6rVtzhI0gfd/be7+4fN7M+p/49OJ+k/cfe0o7Xj1azc+1uuz3P/sNz03K8k\nfZOZfa+kRtJvGf5Gmuf+Yblp/19I+kYzKyRN1Z/II/H8PzRfI+lbh+f7j6jfzyBe9x2LVfv/EmN7\nYwAAAd1JREFUIfG67xis2vub8Nw/PKv2/6UO/HWfXVRWAgAAAAAAAKvRzgYAAAAAAIA7ESIBAAAA\nAADgToRIAAAAAAAAuBMhEgAAAAAAAO5EiAQAAAAAAIA7FbteAAAAwFNgZp8s6W8OX36qpCTpY8PX\n5+7+hTtZGAAAwCMxd9/1GgAAAJ4UM/v9kl64+x/d9VoAAAAeC+1sAAAAr8jMXgwff4WZ/W0z+8tm\n9iNm9vVm9pvM7LvM7B+Z2WcO1/sUM/uLZvah4Z9/Zbc/AQAAwN0IkQAAADbrcyX9dkk/V9K/L+mz\n3f29kv6kpK8ZrvONkr7B3b9A0r87fA8AAGCvMRMJAPD/t3OHuAkEURyH/w/d9CAoBKKWpOfpAbkC\nDhJcdS9Q0RpeRSHghqZkQXyfmt1kkic3v+wMcFub7v5Ikqp6T7I+vt8lWR3Xr0nmVXXa81xVT939\nOemkAAB/ICIBANzW98X6cPF8yPnba5bkpbu/phwMAOA/HGcDAJjeOuejbamqxR1nAQC4iogEADC9\ntyTLqtpW1T6/dygBADy06u57zwAAAADAg/MnEgAAAABDIhIAAAAAQyISAAAAAEMiEgAAAABDIhIA\nAAAAQyISAAAAAEMiEgAAAABDIhIAAAAAQz9IBRUK7XrIfgAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "model_b = pf.ARIMA(data=data_train_b, ar=11, ma=11, integ=0, target='cpu')\n",
- "x = model_b.fit(\"M-H\")\n",
- "model_b.plot_predict(h=60,past_values=100,figsize=(20,8))"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
|