Replies: 3 comments 5 replies
-
当我们讨论架构治理的时候,有一个需要明确的前提是所处的是软件领域。架构这个词来源于建筑,软件和建筑的一个关键不同在于软soft,也就是说软件系统比建筑系统更柔性,更容易变更,这也导致更难量化。我们可以看到建筑有各种量化标准,受力计算指标等,但是软件都是各种principles,patterns,frameworks。 我们第二个需要明确的是:如何定义架构治理要解决的问题。如果问题定义不准确,给出的solution可能就面临着拿着锤子到处找钉子的窘境。我想这可能需要区分系统在整个构建到运行生命周期不同的阶段,对应不同的场景找到痛点。但无论要解决的问题是什么(问题及优先级可能因人因时而异),将客观现实当下直观都是必不可少的,是一切治理和优化的基础。尽可能早的暴露出架构问题与设计初衷的差异。 |
Beta Was this translation helpful? Give feedback.
-
聊到“对xxx的治理、对xxx的优化/改进/提高”的时候,套路大多差不多:建立指标、评估现状、设定目标、thin-slice(纵切/MVP)并持续演进。 尝试脑补了一下想要进行架构治理的流程:
|
Beta Was this translation helpful? Give feedback.
-
copy and closed #46 《代码精进之路》一书中,将软件架构划分为业务架构,应用架构、系统架构(我更愿意称职为服务架构)、数据架构、物理架构和运维架构,我觉得还应该补充上技术架构和工程架构。 所以,ArchGuard来说,架构是指什么架构呢?对于开发态来说,也许是在讲应用架构、系统架构和工程架构。 因此,我建议ArchGuard将架构分为应用架构、服务架构、和工程架构更利于使用者对于架构守护的理解。
简而言之,架构应该从多个层次去分析才有意义。软件领域谈架构,它范围太广,以至于包含很多东西,不利于理解,或者会产生歧义。划分清晰的架构层次能让我们更好的对某一层次的架构进行设计,实施,守护和治理。 以上是本人的一个小建议,欢迎斧正。(Meet Up 上本来想提出来的,但是思路还不清晰,哈哈哈 ) |
Beta Was this translation helpful? Give feedback.
-
在架构治理平台 ArchGuard 中,为了实现对架构的治理,我们需要代码 + 模型描述所要处理的内容和数据。所以,在 ArchGuard 中,我们有了代码的模型、依赖的模型、变更的模型等,剩下的两个核心的部分就是架构的模型、架构的治理模型,其它的还有诸如构建的模型等,会在后续的过程中持续引入到系统中。
PS:本文里的架构展开是基于自动化分析需求的,模型也是基于这个动机出发的。
架构是什么??
对单个语言的代码建模并不难,对于一个语言有特别的概念,如 package、class、field、function 等等。在有了明确概念的基础之下,结合我们的业务上的需求,就能构建一个太差不差的模型。在采用 DDD 这一类建模方式的时候,产生共识,提炼知识,形成概念等,便能构建出模型的雏形。
起点:架构是重要的元素
然而,对于架构来说,业内没有统一的定义。于是乎,诸如 Martin Fowler 喜欢引用 GoF(《设计模式》作者们) 之一的 Ralph Johnson 对于架构的描述:
同样的 Grady Booch (UML 的发明者之一)也是惟类似的方式来概括架构的:
所以呢,这让我们感觉说了等于没说,我们得去定义什么是重要的东西。而重要的东西,在不同人、不同场景之下,它是存在差异的。哪怕是同一个类型的软件,在不同的公司、不同的利益相关者的背景之下,重要的东西也尽相同。
原则:可是到底哪些是重要的?
于是乎,我再尝试去引用最新的架构相关的书籍,诸如于我编写这篇文章时,参考的书《软件架构:架构模式、特征及实践指南》一书中 Neal Ford 对于架构的定义:
从模型构筑的层面来说,书中的定义也提供了一个灵活性。诸如于在架构特征的定义里,关注的是各类能力(ability),如互操作性、可适用性、可测试性等等。
在现有的 ArchGuard 这个业务场景之下,我们难以自动化地识别出各类的特征。因为从实践的层面上来说,这些能力并不一定实现了,它是目标架构,可能还只存在于架构蓝图之上的。在这个层面上来说,这里定义的架构,偏向于是设计层面的定义。
从另外一方面来说,架构决策则是在架构治理的过程中,我们所关注的核心。可以在后续针对于这一系列的原则的规则,构建出一个描述架构特征的 DSL。
重要的元素:组件、边界与通信
接着,让我们再回到 Bob 大叔(Robert C. Martin)的《架构整洁之道》书中的定义:
再从 Clean Architecture 模式来说,Bob 大叔一直在强调的是:顶层抽象策略与底层实现要实现解耦。诸如于如何划定合理的边界?如何组合相关的策略与层次?从这个模式上来说,我们得到了一个越来越清晰的定义。
然而,我们还遇到一个更难的问题是,如何定义一个组件是什么?**还有关系是什么?**在书里的序言, Kevlin Henney(《面向模式的软件架构》卷4、卷 5的作者之一)给了一个更精确的描述词:组织结构(structure),从宏观到微观的构筑过程,其中的构件包含了组件、类、函数、模块、层级、服务等。
对于大型软件来说,其组织结构方式异常复杂,它像极了一个国家的层级关系,一级部门、二级部门等等。而部门之间又有复杂的关系,正是层级关系 + 层级的构件构建成了这个复杂的系统。(PS:而了让系统能良好的运行,即其中的组件(螺丝钉)按规则执行,则需要一个督察组织。)
层次结构:组件和关系
软件架构已经有了几十年的历史,我们已经用 ”模式“ 这一词对过去的架构进行了一系列的总结。二十年前,人们初步总结了《面向模式的软件架构》(POSA)。在这里,就引述 POSA 1 的第 6 章里,有一个完整的层级关系介绍:
在今天来看,从模式上来说,软件架构本身并没有发生太大的变化。只是呢,一些定义发生了变化,诸如于组件和接口。在微服务架构风格流行的今天,一个微服务也可以视为一个组件,它包含了一系列的接口,对外提供了复用的能力。而用来描述它们的关系的元素,则不再是过去的函数调用,变为了远程调用、事件触发。
现在,我们有了一详尽的定义,在建模上,可能还欠缺一些元素,诸如于,如何分析出组件间的关系。
第 3 种架构视图:展示工程关注点
在 ArchGuard 中,我们使用了 C4 架构可视化模型作为一种参考视图。这种实现的方式主要是从分析和可视化的层面来考虑的。除了 C4 之外,另外一种主流的方式是 4 + 1 视图。顺带一提,在 4 + 1 的论文《Architectural Blueprints—The “4+1” View Model of Software Architecture》,同样也有一个描述架构的表示公式:
Software architecture = {Elements, Forms, Rationale/Constraints}
。从通识的角度来看,采用 4 + 1 视图是一个比较理想的方式。只是,由于存在大量的 PaaS、IaaS 等 xx 即服务设计的不合理性,使得这些记录基础设计相关信息的代码,并没有与代码库一起存放,使得在辩识上存在一定的难度。
因此,从实现的层面来说,在这里,我们要引用的是《面向模式的软件架构》中,提到的《Software Architecture in Industrial Applications》(也可以参考《实用软件体系结构》一书)架构视图:
在这个视图的定义里,它更能清晰的划分开几个不同层面的考虑因素。采用作者们在最早的论文里提到的示例:
从表格的右边里,我们就可以直接对应到系统所需要的每个层面的设计因素,诸如于编程语言等元素放在代码架构上。换句话来说,在微服务、单体架构下,都能找到自己合适的位置。
概念的最后:描述模型的类型系统
最后,为了保证本文在概念的完整性,我们还需要一种方式来描述这个系统种的模型和一系列的概念,从形式上来说,它是一个类型系统。诸如于,我们在 UML中所表示的 (PlantUML 表示方式):
一个用来描述类型的系统,就是一个类型系统,和编程语言里的类型是等同的。它可以用来解释一系列的概念,以及概念之间如何连接。
顺带一题,如果我们把编程语言看作是一个系统,那么我们就会发现其在设计的有趣之处。类型系统与结构体(或者类)可以用于构建系统中的概念,一个个的表达式则是用于构建概念之间的关系。
建模
对于概念来说,哪怕是有了如此多丰富的展开,要做一个小结也并非一件容易的事情。更何况于模型而言,它是数值上的标准化,一种接近于通用的模型形态。
设计:第一个版本的架构模型
所以,我的第一个尝试是从 《面向模式的软件架构》的定义下手:
示例:对于一个系统来说,它存在一个主的架构模式,如微服务架构。而在每个微服务相当于是一个子系统或者说组件。当然了,一个子系统可以包含多个微服务。而对于个组件来说,它包含了输入和输出,以及一系列的计算逻辑。所以,它的一个模型可能是这样的:
而麻烦的一点在于,组件是动态的,组件之间是存在关系的,组件内部也存在关系。所以,我们还需要考虑如何表示组件间的关系?
所以,如果以宽泛的定义来看,组件其实是树形结构的。同样的,对于架构来说,这种 Connection 也是存在的。根据上面的一系列形态展开,我们就能得到一个初始版本的架构的架构模型。
更多模型相关内容,详见 ArchGuard Scanner 中的初始版本 Architecture.kt 。
实现思路:生成架构模型
ArchGuard 中的模型是通过代码来生成的。在这种业务场景之下,在构建模型的时候,需要平衡设计与实现。由此,基于代码分析的视图方式更适用我们。从代码和依赖中,我们可以:
结合之下,我们就能构建出一个更完整的架构模型。
实现:放弃第一个版本的模型
设计挺美好的,但是当我开始写第一行代码的时候,发现不对劲了:我们有了一个分析的模型,但是输入呢?
仅从项目的分析来说,我们拿到的只是一个代码仓库的代码。一个代码仓库可能是一个模块,一个系统,又或者是一个服务。所以,我们的输入是什么?基于已有的分析情况,如项目依赖(依赖管理工具)、源码结构、语言等?我们缺少构建一个项目所需要的上下文。
我们从源码所能分析到的内容如下所示:
对应的一些分析细节:
java.io.File
就认为带 FileIOclikt
就视为 Kotlin 的 CLI 应用。当然了, 这部分代码还没写完,如果有兴趣,也欢迎来加入我们。
多种架构模型
于是,在 ArchGuard 的背景下,“架构” 的架构模型有多种形态的:
每一个模型都是在上一步的基础上添加了领域知识,那么什么是领域知识呢?如何做好架构?
小结:挑战
模型,一个开始,它需要不断地演进才能适用需要。而有了一个凑合能用的模型,只是这一系列工作的开始,我们还会遇到一系列的挑战。
描绘目标架构
系统中的架构反应的只是现状,如何去描述未来的架构,并将两者进行匹配,又是一个非常有意思的话题。
衡量变化性
我们还将面临的另外一个问题是,软件架构并非是不变的。
软件只要一直在开发,就会以细微地方式变化着。从宏观的层面来说,尽可能架构师都在努力地不去大范围地变动结构。而我们需要面对于这些挑战,诸如于基础设施变化,而这种变化带来的是临时性的中间状态。
如何去表示这种临时性的中间状态,就变得更加有意思。
在这里只开始了迈出了第一步,如果大家有兴趣,欢迎来 ArchGuard 为技术建模。
参考资料
Beta Was this translation helpful? Give feedback.
All reactions