Starting from version 0.20.1, this format is based on Keep a Changelog, and this project adheres to Semantic Versioning. Full commit history is available in the commit logs.
- {attr}
scvi.settings.dl_persistent_workers
allows using persistent workers in {class}scvi.dataloaders.AnnDataLoader
{pr}2924
. - Add option for using external indexes in data splitting classes that are under
scvi.dataloaders
by passingexternal_indexing=list[train_idx,valid_idx,test_idx]
as well as in all models available {pr}2902
. - Add warning if creating data splits in
scvi.dataloaders
that create last batch with less than 3 cells {pr}2916
. - Add new experimental functional API for hyperparameter tuning with
{func}
scvi.autotune.run_autotune
and {class}scvi.autotune.AutotuneExperiment
to replace {class}scvi.autotune.ModelTuner
, {class}scvi.autotune.TunerManager
, and {class}scvi.autotune.TuneAnalysis
{pr}2561
. - Add experimental class {class}
scvi.nn.Embedding
implementing methods for extending embeddings {pr}2574
. - Add experimental support for representing batches with continuously-valued embeddings by passing
in
batch_representation="embedding"
to {class}scvi.model.SCVI
{pr}2576
. - Add experimental mixin classes {class}
scvi.model.base.EmbeddingMixin
and {class}scvi.module.base.EmbeddingModuleMixin
{pr}2576
. - Add option to generate synthetic spatial coordinates in {func}
scvi.data.synthetic_iid
with argumentgenerate_coordinates
{pr}2603
. - Add experimental support for using custom {class}
lightning.pytorch.core.LightningDataModule
s in {func}scvi.autotune.run_autotune
{pr}2605
. - Add {class}
scvi.external.VELOVI
for RNA velocity estimation using variational inference {pr}2611
. - Add
unsigned
argument to {meth}scvi.hub.HubModel.pull_from_s3
to allow for unsigned downloads of models from AWS S3 {pr}2615
. - Add support for
batch_key
in {meth}scvi.model.CondSCVI.setup_anndata
{pr}2626
. - Add support for {meth}
scvi.model.base.RNASeqMixin
in {class}scvi.model.CondSCVI
{pr}2915
. - Add
load_best_on_end
argument to {class}scvi.train.SaveCheckpoint
to load the best model state at the end of training {pr}2672
. - Add experimental class {class}
scvi.distributions.BetaBinomial
implementing the Beta-Binomial distribution with mean-dispersion parameterization for modeling scBS-seq methylation data {pr}2692
. - Add support for custom dataloaders in {class}
scvi.model.base.VAEMixin
methods by specifying thedataloader
argument {pr}2748
. - Add option to use a normal distribution in the generative model of {class}
scvi.model.SCVI
by passing ingene_likelihood="normal"
{pr}2780
. - Add {class}
scvi.external.MRVI
for modeling sample-level heterogeneity in single-cell RNA-seq data {pr}2756
. - Add support for reference mapping with {class}
mudata.MuData
models to {class}scvi.model.base.ArchesMixin
{pr}2578
. - Add argument
return_mean
to {meth}scvi.model.base.VAEMixin.get_reconstruction_error
and {meth}scvi.model.base.VAEMixin.get_elbo
to allow computation without averaging across cells {pr}2362
. - Add support for setting
weights="importance"
in {meth}scvi.model.SCANVI.differential_expression
{pr}2362
.
- Deprecate {func}
scvi.data.cellxgene
, to be removed in v1.3. Please directly use the cellxgene-census instead {pr}2542
. - Deprecate {func}
scvi.nn.one_hot
, to be removed in v1.3. Please directly use theone_hot
function in PyTorch instead {pr}2608
. - Deprecate {class}
scvi.train.SaveBestState
, to be removed in v1.3. Please use {class}scvi.train.SaveCheckpoint
instead {pr}2673
. - Deprecate
save_best
argument in {meth}scvi.model.PEAKVI.train
and {meth}scvi.model.MULTIVI.train
, to be removed in v1.3. Please pass inenable_checkpointing
or specify a custom checkpointing procedure with {class}scvi.train.SaveCheckpoint
instead {pr}2673
. - Move {func}
scvi.model.base._utils._load_legacy_saved_files
to {func}scvi.model.base._save_load._load_legacy_saved_files
{pr}2731
. - Move {func}
scvi.model.base._utils._load_saved_files
to {func}scvi.model.base._save_load._load_saved_files
{pr}2731
. - Move {func}
scvi.model.base._utils._initialize_model
to {func}scvi.model.base._save_load._initialize_model
{pr}2731
. - Move {func}
scvi.model.base._utils._validate_var_names
to {func}scvi.model.base._save_load._validate_var_names
{pr}2731
. - Move {func}
scvi.model.base._utils._prepare_obs
to {func}scvi.model.base._de_core._prepare_obs
{pr}2731
. - Move {func}
scvi.model.base._utils._de_core
to {func}scvi.model.base._de_core._de_core
{pr}2731
. - Move {func}
scvi.model.base._utils._fdr_de_prediction
to {func}scvi.model.base._de_core_._fdr_de_prediction
{pr}2731
. - {func}
scvi.data.synthetic_iid
now generates unique variable names for protein and accessibility data {pr}2739
. - The
data_module
argument in {meth}scvi.model.base.UnsupervisedTrainingMixin.train
has been renamed todatamodule
for consistency {pr}2749
. - Change the default saving method of variable names for {class}
mudata.MuData
based models (e.g. {class}scvi.model.TOTALVI
) to a dictionary of per-mod variable names instead of a concatenated array of all variable names. Users may replicate the previous behavior by passing inlegacy_mudata_format=True
to {meth}scvi.model.base.BaseModelClass.save
{pr}2769
. - Changed internal activation function in {class}
scvi.nn.DecoderTOTALVI
to Softplus to increase numerical stability. This is the new default for new models. Previously trained models will be loaded with exponential activation function {pr}2913
.
- Disable adversarial classifier if training with a single batch.
Previously this raised a None error {pr}
2914
. - {meth}
~scvi.model.SCVI.get_normalized_expression
fixed for Poisson distribution and Negative Binomial with latent_library_size {pr}2915
. - Fix {meth}
scvi.module.VAE.marginal_ll
whenn_mc_samples_per_pass=1
{pr}2362
. - {meth}
scvi.module.VAE.marginal_ll
whenn_mc_samples_per_pass=1
{pr}2362
. - Enable option to drop_last minibatch during training by
datasplitter_kwargs={"drop_last": True}
{pr}2926
. - Fix JAX to be deterministic on CUDA when seed is manually set {pr}
2923
.
- Remove {class}
scvi.autotune.ModelTuner
, {class}scvi.autotune.TunerManager
, and {class}scvi.autotune.TuneAnalysis
in favor of new experimental functional API with {func}scvi.autotune.run_autotune
and {class}scvi.autotune.AutotuneExperiment
{pr}2561
. - Remove
feed_labels
argument and corresponding code paths in {meth}scvi.module.SCANVAE.loss
{pr}2644
. - Remove {class}
scvi.train._callbacks.MetricsCallback
and argumentadditional_val_metrics
in {class}scvi.train.Trainer
{pr}2646
.
- Add argument
return_logits
to {meth}scvi.external.SOLO.predict
that allows returning logits instead of probabilities when passing insoft=True
to replicate the buggy behavior previous to v1.1.3 {pr}2870
.
- Breaking change: Fix {meth}
scvi.external.SOLO.predict
to correctly return probabiities instead of logits when passing insoft=True
(the default option) {pr}2689
. - Breaking change: Fix {class}
scvi.dataloaders.SemiSupervisedDataSplitter
to properly sample unlabeled observations without replacement {pr}2816
.
- Address AnnData >= 0.10 deprecation warning for {func}
anndata.read
by replacing instances with {func}anndata.read_h5ad
{pr}2531
. - Address AnnData >= 0.10 deprecation warning for {class}
anndata._core.sparse_dataset.SparseDataset
by replacing instances with {class}anndata.experimental.CSCDataset
and {class}anndata.experimental.CSRDataset
{pr}2531
.
- Correctly apply non-default user parameters in {class}
scvi.external.POISSONVI
{pr}2522
.
- Add {class}
scvi.external.ContrastiveVI
for contrastiveVI {pr}2242
. - Add {class}
scvi.dataloaders.BatchDistributedSampler
for distributed training {pr}2102
. - Add
additional_val_metrics
argument to {class}scvi.train.Trainer
, allowing to specify additional metrics to compute and log during the validation loop using {class}scvi.train._callbacks.MetricsCallback
{pr}2136
. - Expose
accelerator
anddevice
arguments in {meth}scvi.hub.HubModel.load_model
pr
{2166}. - Add
load_sparse_tensor
argument in {class}scvi.data.AnnTorchDataset
for directly loading SciPy CSR and CSC data structures to their PyTorch counterparts, leading to faster data loading depending on the sparsity of the data {pr}2158
. - Add per-group LFC information to
{meth}
scvi.criticism.PosteriorPredictiveCheck.differential_expression
.metrics["diff_exp"]
is now a dictionary wheresummary
stores the summary dataframe, andlfc_per_model_per_group
stores the per-group LFC {pr}2173
. - Expose {meth}
torch.save
keyword arguments in {class}scvi.model.base.BaseModelClass.save
and {class}scvi.external.GIMVI.save
{pr}2200
. - Add
model_kwargs
andtrain_kwargs
arguments to {meth}scvi.autotune.ModelTuner.fit
{pr}2203
. - Add
datasplitter_kwargs
to modeltrain
methods {pr}2204
. - Add
use_posterior_mean
argument to {meth}scvi.model.SCANVI.predict
for stochastic prediction of celltype labels {pr}2224
. - Add support for Python 3.10+ type annotations in {class}
scvi.autotune.ModelTuner
{pr}2239
. - Add option to log device statistics in {meth}
scvi.autotune.ModelTuner.fit
with argumentmonitor_device_stats
{pr}2260
. - Add option to pass in a random seed to {meth}
scvi.autotune.ModelTuner.fit
with argumentseed
{pr}2260
. - Automatically log the learning rate when
reduce_lr_on_plateau=True
in training plans {pr}2280
. - Add {class}
scvi.external.POISSONVI
to model scATAC-seq fragment counts with a Poisson distribution {pr}2249
- {class}
scvi.train.SemiSupervisedTrainingPlan
now logs the classifier calibration error {pr}2299
. - Passing
enable_checkpointing=True
intotrain
methods is now compatible with our model saves. Additional options can be specified by initializing with {class}scvi.train.SaveCheckpoint
{pr}2317
. - {attr}
scvi.settings.dl_num_workers
is now correctly applied as the defaultnum_workers
in {class}scvi.dataloaders.AnnDataLoader
{pr}2322
. - Passing in
indices
to {class}scvi.criticism.PosteriorPredictiveCheck
allows for running metrics on a subset of the data {pr}2361
. - Add
seed
argument to {func}scvi.model.utils.mde
for reproducibility {pr}2373
. - Add {meth}
scvi.hub.HubModel.save
and {meth}scvi.hub.HubMetadata.save
{pr}2382
. - Add support for Optax 0.1.8 by renaming instances of {func}
optax.additive_weight_decay
to {func}optax.add_weight_decay
{pr}2396
. - Add support for hosting {class}
scvi.hub.HubModel
on AWS S3 via {meth}scvi.hub.HubModel.pull_from_s3
and {meth}scvi.hub.HubModel.push_to_s3
{pr}2378
. - Add clearer error message for {func}
scvi.data.poisson_gene_selection
when input data does not contain raw counts {pr}2422
. - Add API for using custom dataloaders with {class}
scvi.model.SCVI
by makingadata
argument optional on initialization and adding optional argumentdata_module
to {meth}scvi.model.base.UnsupervisedTrainingMixin.train
{pr}2467
. - Add support for Ray 2.8-2.9 in {class}
scvi.autotune.ModelTuner
{pr}2478
.
- Fix bug where
n_hidden
was not being passed into {class}scvi.nn.Encoder
in {class}scvi.model.AmortizedLDA
{pr}2229
- Fix bug in {class}
scvi.module.SCANVAE
where classifier probabilities were interpreted as logits. This is backwards compatible as loading older models will use the old code path {pr}2301
. - Fix bug in {class}
scvi.external.GIMVI
wherebatch_size
was not properly used in inference methods {pr}2366
. - Fix error message formatting in {meth}
scvi.data.fields.LayerField.transfer_field
{pr}2368
. - Fix ambiguous error raised in {meth}
scvi.distributions.NegativeBinomial.log_prob
and {meth}scvi.distributions.ZeroInflatedNegativeBinomial.log_prob
whenscale
not passed in and value not in support {pr}2395
. - Fix initialization of {class}
scvi.distributions.NegativeBinomial
and {class}scvi.distributions.ZeroInflatedNegativeBinomial
whenvalidate_args=True
and optional parameters not passed in {pr}2395
. - Fix error when re-initializing {class}
scvi.external.GIMVI
with the same datasets {pr}2446
.
- Replace
sparse
withsparse_format
argument in {meth}scvi.data.synthetic_iid
for increased flexibility over dataset format {pr}2163
. - Revalidate
devices
when automatically switching from MPS to CPU accelerator in {func}scvi.model._utils.parse_device_args
{pr}2247
. - Refactor {class}
scvi.data.AnnTorchDataset
, now loads continuous data as {class}numpy.float32
and categorical data as {class}numpy.int64
by default {pr}2250
. - Support fractional GPU usage in {class}
scvi.autotune.ModelTuner
pr
{2252}. - Tensorboard is now the default logger in {class}
scvi.autotune.ModelTuner
pr
{2260}. - Match
momentum
andepsilon
in {class}scvi.module.JaxVAE
to the default values in PyTorch {pr}2309
. - Change {class}
scvi.train.SemiSupervisedTrainingPlan
and {class}scvi.train.ClassifierTrainingPlan
accuracy and F1 score computations to use"micro"
reduction rather than"macro"
{pr}2339
. - Internal refactoring of {meth}
scvi.module.VAE.sample
and {meth}scvi.model.base.RNASeqMixin.posterior_predictive_sample
{pr}2377
. - Change
xarray
andsparse
from mandatory to optional dependencies {pr}2480
. - Use {class}
anndata.experimental.CSCDataset
and {class}anndata.experimental.CSRDataset
instead of the deprecated {class}anndata._core.sparse_dataset.SparseDataset
for type checks {pr}2485
. - Make
use_observed_lib_size
argument adjustable in {class}scvi.module.LDVAE
pr
{2494}.
- Remove deprecated
use_gpu
argument in favor of PyTorch Lightning argumentsaccelerator
anddevices
{pr}2114
. - Remove deprecated
scvi._compat.Literal
class {pr}2115
. - Remove chex dependency {pr}
2482
.
- Add support for AnnData 0.10.0 {pr}
2271
.
- Disable the default selection of MPS when
accelerator="auto"
in Lightning {pr}2167
. - Change JAX models to use
dict
instead of {class}flax.core.FrozenDict
according to the Flax migration guide google/flax#3191 {pr}2222
.
- Fix bug in {class}
scvi.model.base.PyroSviTrainMixin
wheretraining_plan
argument is ignored {pr}2162
. - Fix missing docstring for
unlabeled_category
in {class}scvi.model.SCANVI.setup_anndata
and reorder arguments {pr}2189
. - Fix Pandas 2.0 unpickling error in {meth}
scvi.model.base.BaseModelClas.convert_legacy_save
by switching to {func}pandas.read_pickle
for the setup dictionary {pr}2212
.
- Fix link to Scanpy preprocessing in introduction tutorial {pr}
2154
. - Fix link to Ray Tune search API in autotune tutorial {pr}
2154
.
- Add support for Python 3.11 {pr}
1977
.
- Upper bound Chex dependency to 0.1.8 due to NumPy installation conflicts {pr}
2132
.
- Add {class}
scvi.criticism.PosteriorPredictiveCheck
for model evaluation {pr}2058
. - Add {func}
scvi.data.reads_to_fragments
for scATAC data {pr}1946
- Add default
stacklevel
forwarnings
inscvi.settings
{pr}1971
. - Add scBasset motif injection procedure {pr}
2010
. - Add importance sampling based differential expression procedure {pr}
1872
. - Raise clearer error when initializing {class}
scvi.external.SOLO
from {class}scvi.model.SCVI
with extra categorical or continuous covariates {pr}2027
. - Add option to generate {class}
mudata.MuData
in {meth}scvi.data.synthetic_iid
{pr}2028
. - Add option for disabling shuffling prior to splitting data in
{class}
scvi.dataloaders.DataSplitter
{pr}2037
. - Add {meth}
scvi.data.AnnDataManager.create_torch_dataset
and expose custom sampler ability {pr}2036
. - Log training loss through Lightning's progress bar {pr}
2043
. - Filter Jax undetected GPU warnings {pr}
2044
. - Raise warning if MPS backend is selected for PyTorch,
see pytorch/pytorch#77764 {pr}
2045
. - Add
deregister_manager
function to {class}scvi.model.base.BaseModelClass
, allowing to clear {class}scvi.data.AnnDataManager
instances from memory {pr}2060
. - Add option to use a linear classifier in {class}
scvi.model.SCANVI
{pr}2063
. - Add lower bound 0.12.1 for Numpyro dependency {pr}
2078
. - Add new section in scBasset tutorial for motif scoring {pr}
2079
.
- Fix creation of minified adata by copying original uns dict {pr}
2000
. This issue arises with anndata>=0.9.0. - Fix {class}
scvi.model.TOTALVI
{class}scvi.model.MULTIVI
handling of missing protein values {pr}2009
. - Fix bug in {meth}
scvi.distributions.NegativeBinomialMixture.sample
wheretheta
andmu
arguments were switched around {pr}2024
. - Fix bug in {meth}
scvi.dataloaders.SemiSupervisedDataLoader.resample_labels
where the labeled dataloader was not being reinitialized on subsample {pr}2032
. - Fix typo in {class}
scvi.model.JaxSCVI
example snippet {pr}2075
.
- Use sphinx book theme for documentation {pr}
1673
. - {meth}
scvi.model.base.RNASeqMixin.posterior_predictive_sample
now outputs 3-d {class}sparse.GCXS
matrices {pr}1902
. - Add an option to specify
dropout_ratio
in {meth}scvi.data.synthetic_iid
{pr}1920
. - Update to lightning 2.0 {pr}
1961
- Hyperopt is new default searcher for tuner {pr}
1961
- {class}
scvi.train.AdversarialTrainingPlan
no longer encodes data twice during a training step, instead uses same latent for both optimizers {pr}1961
, {pr}1980
- Switch back to using sphinx autodoc typehints {pr}
1970
. - Disable default seed, run
scvi.settings.seed
after import for reproducibility {pr}1976
. - Deprecate
use_gpu
in favor of PyTorch Lightning argumentsaccelerator
anddevices
, to be removed in v1.1 {pr}1978
. - Docs organization {pr}
1983
. - Validate training data and code URLs for {class}
scvi.hub.HubMetadata
and {class}scvi.hub.HubModelCardHelper
{pr}1985
. - Keyword arguments for encoders and decoders can now be passed in from the model level {pr}
1986
. - Expose
local_dir
as a public property in {class}scvi.hub.HubModel
{pr}1994
. - Use {func}
anndata.concat
internally inside {meth}scvi.external.SOLO.from_scvi_model
{pr}2013
. - {class}
scvi.train.SemiSupervisedTrainingPlan
and {class}scvi.train.ClassifierTrainingPlan
now log accuracy, F1 score, and AUROC metrics {pr}2023
. - Switch to cellxgene census for backend for cellxgene data function {pr}
2030
. - Change default
max_cells
andtruncation
in {meth}scvi.model.base.RNASeqMixin._get_importance_weights
{pr}2064
. - Refactor heuristic for default
max_epochs
as a separate function {meth}scvi.model._utils.get_max_epochs_heuristic
{pr}2083
.
- Remove ability to set up ST data in {class}
~scvi.external.SpatialStereoscope.from_rna_model
, which was deprecated. ST data should be set up using {class}~scvi.external.SpatialStereoscope.setup_anndata
{pr}1949
. - Remove custom reusable doc decorator which was used for de docs {pr}
1970
. - Remove
drop_last
as an integer from {class}~scvi.dataloaders.AnnDataLoader
, add typing and code cleanup {pr}1975
. - Remove seqfish and seqfish plus datasets {pr}
2017
. - Remove support for Python 3.8 (NEP 29) {pr}
2021
.
- Fix totalVI differential expression when integer sequential protein names are automatically used
{pr}
1951
. - Fix peakVI scArches test case {pr}
1962
.
- Allow passing in
map_location
into {meth}~scvi.hub.HubMetadata.from_dir
and {meth}~scvi.hub.HubModelCardHelper.from_dir
and set default to"cpu"
{pr}1960
. - Updated tutorials {pr}
1966
.
- Fix
return_dist
docstring of {meth}scvi.model.base.VAEMixin.get_latent_representation
{pr}1932
. - Fix hyperlink to pymde docs {pr}
1944
- Use ruff for fixing and linting {pr}
1921
, {pr}1941
. - Use sphinx autodoc instead of sphinx-autodoc-typehints {pr}
1941
. - Remove .flake8 and .prospector files {pr}
1923
. - Log individual loss terms in {meth}
scvi.module.MULTIVAE.loss
{pr}1936
. - Setting up ST data in {class}
~scvi.external.SpatialStereoscope.from_rna_model
is deprecated. ST data should be set up using {class}~scvi.external.SpatialStereoscope.setup_anndata
{pr}1803
.
- Fixed computation of ELBO during training plan logging when using global kl terms. {pr}
1895
- Fixed usage of {class}
scvi.train.SaveBestState
callback, which affected {class}scvi.model.PEAKVI
training. If using {class}~scvi.model.PEAKVI
, please upgrade. {pr}1913
- Fixed original seed for jax-based models to work with jax 0.4.4. {pr}
1907
, {pr}1909
- Model hyperparameter tuning is available through {class}
~scvi.autotune.ModelTuner
(beta) {pr}1785
,{pr}1802
,{pr}1831
. - Pre-trained models can now be uploaded to and downloaded from Hugging Face models using the
{mod}
~scvi.hub
module {pr}1779
,{pr}1812
,{pr}1828
,{pr}1841
, {pr}1851
,{pr}1862
. - {class}
~anndata.AnnData
.var
and.varm
attributes can now be registered through new fields in {mod}~scvi.data.fields
{pr}1830
,{pr}1839
. - {class}
~scvi.external.SCBASSET
, a reimplementation of the original scBasset model, is available for representation learning of scATAC-seq data (experimental) {pr}1839
,{pr}1844
, {pr}1867
,{pr}1874
,{pr}1882
. - {class}
~scvi.train.LowLevelPyroTrainingPlan
and {class}~scvi.model.base.PyroModelGuideWarmup
added to allow the use of vanilla PyTorch optimization on Pyro models {pr}1845
,{pr}1847
. - Add {meth}
scvi.data.cellxgene
function to download cellxgene datasets {pr}1880
.
- Latent mode support changed so that user data is no longer edited in-place {pr}
1756
. - Minimum supported PyTorch Lightning version is now 1.9 {pr}
1795
,{pr}1833
,{pr}1863
. - Minimum supported Python version is now 3.8 {pr}
1819
. - Poetry removed in favor of Hatch for builds and publishing {pr}
1823
. setup_anndata
docstrings fixed,setup_mudata
docstrings added {pr}1834
,{pr}1837
.- {meth}
~scvi.data.add_dna_sequence
adds DNA sequences to {class}~anndata.AnnData
objects using genomepy {pr}1839
,{pr}1842
. - Update tutorial formatting with pre-commit {pr}
1850
- Expose
accelerators
anddevices
arguments in {class}~scvi.train.Trainer
{pr}1864
. - Development in GitHub Codespaces is now supported {pr}
1836
.
- {class}
~scvi.module.base.LossRecorder
has been removed in favor of {class}~scvi.module.base.LossOutput
{pr}1869
.
- {class}
~scvi.train.JaxTrainingPlan
now correctly updatesglobal_step
through PyTorch Lightning by using a dummy optimizer. {pr}1791
. - CUDA compatibility issue fixed in {meth}
~scvi.distributions.ZeroInflatedNegativeBinomial.sample
{pr}1813
. - Device-backed {class}
~scvi.dataloaders.AnnTorchDataset
fixed to work with sparse data {pr}1824
. - Fix bug {meth}
~scvi.model.base._log_likelihood.compute_reconstruction_error
causing the first batch to be ignored, see more details in {issue}1854
{pr}1857
.
- {ghuser}
adamgayoso
- {ghuser}
eroell
- {ghuser}
gokceneraslan
- {ghuser}
macwiatrak
- {ghuser}
martinkim0
- {ghuser}
saroudant
- {ghuser}
vitkl
- {ghuser}
watiss
- {class}
~scvi.train.TrainingPlan
allows custom PyTorch optimizers #1747. - Improvements to {class}
~scvi.train.JaxTrainingPlan
#1747 #1749. - {class}
~scvi.module.base.LossRecorder
is deprecated. Please substitute with {class}~scvi.module.base.LossOutput
#1749 - All training plans require keyword args after the first positional argument #1749
- {class}
~scvi.module.base.JaxBaseModuleClass
absorbed features from theJaxModuleWrapper
, rendering theJaxModuleWrapper
obsolote, so it was removed. #1751 - Add {class}
scvi.external.Tangram
and {class}scvi.external.tangram.TangramMapper
that implement Tangram for mapping scRNA-seq data to spatial data #1743.
- Remove confusing warning about kl warmup, log kl weight instead #1773
- {class}
~scvi.module.base.LossRecorder
no longer allows access to dictionaries of values if provided during initialization #1749. JaxModuleWrapper
removed. #1751
- Fix
n_proteins
usage in {class}~scvi.model.MULTIVI
#1737. - Remove unused param in {class}
~scvi.model.MULTIVI
#1741. - Fix random seed handling for Jax models #1751.
- Add latent mode support in {class}
~scvi.model.SCVI
#1672. This allows for loading a model using latent representations only (i.e. without the full counts). Not only does this speed up inference by using the cached latent distribution parameters (thus skipping the encoding step), but this also helps in scenarios where the full counts are not available but cached latent parameters are. We provide utility functions and methods to dynamically convert a model to latent mode. - Added {class}
~scvi.external.SCAR
as an external model for ambient RNA removal #1683.
- Faster inference in PyTorch with
torch.inference_mode
#1695. - Upgrade to Lightning 1.6 #1719.
- Update CI workflow to separate static code checking from pytest #1710.
- Add Python 3.10 to CI workflow #1711.
- Add {meth}
~scvi.data.AnnDataManager.register_new_fields
#1689. - Use sphinxcontrib-bibtex for references #1731.
- {meth}
~scvi.model.base.VAEMixin.get_latent_representation
: more explicit and better docstring #1732. - Replace custom attrdict with {class}
~ml_collections
implementation #1696.
- Add weight support to {class}
~scvi.model.MULTIVI
#1697. Old models can't be loaded anymore.
- Support for PyTorch Lightning 1.7 #1622.
- Allow
flax
to use any mutable states used by a model generically with {class}~scvi.module.base.TrainStateWithState
#1665, #1700. - Update publication links in
README
#1667. - Docs now include floating window cross references with
hoverxref
, external links withlinkcode
, andgrid
#1678.
- Fix
get_likelihood_parameters()
failure whengene_likelihood != "zinb"
in {class}~scvi.model.base.RNASeqMixin
#1618. - Fix exception logic when not using the observed library size in {class}
~scvi.module.VAE
initialization #1660. - Replace instances of
super().__init__()
with an argument insuper()
, causingautoreload
extension to throw errors #1671. - Change cell2location tutorial causing docs build to fail #1674.
- Replace instances of
max_epochs
asint
s for new PyTorch Lightning #1686. - Catch case when
torch.backends.mps
is not implemented #1692. - Fix Poisson sampling in {meth}
~scvi.module.VAE.sample
#1702.
- Move
training
argument in {class}~scvi.module.JaxVAE
constructor to a keyword argument into the call method. This simplifies the {class}~scvi.module.base.JaxModuleWrapper
logic and avoids the reinstantiation of {class}~scvi.module.JaxVAE
during evaluation #1580. - Add a static method on the BaseModelClass to return the AnnDataManger's full registry #1617.
- Clarify docstrings for continuous and categorical covariate keys #1637.
- Remove poetry lock, use newer build system #1645.
- Fix CellAssign to accept extra categorical covariates #1629.
- Fix an issue where
max_epochs
is never determined heuristically for totalvi, instead it would always default to 400 #1639.
- Fix an issue where
max_epochs
is never determined heuristically for totalvi, instead it would always default to 400 #1639.
Make sure notebooks are up to date for real this time :).
-
Experimental MuData support for {class}
~scvi.model.TOTALVI
via the method {meth}~scvi.model.TOTALVI.setup_mudata
. For several of the existingAnnDataField
classes, there is now a MuData counterpart with an additionalmod_key
argument used to indicate the modality where the data lives (e.g. {class}~scvi.data.fields.LayerField
to {class}~scvi.data.fields.MuDataLayerField
). These modified classes are simply wrapped versions of the originalAnnDataField
code via the new {class}scvi.data.fields.MuDataWrapper
method #1474. -
Modification of the {meth}
~scvi.module.VAE.generative
method's outputs to return prior and likelihood properties as {class}~torch.distributions.distribution.Distribution
objects. Concerned modules are {class}~scvi.module.AmortizedLDAPyroModule
, {class}AutoZIVAE
, {class}~scvi.module.MULTIVAE
, {class}~scvi.module.PEAKVAE
, {class}~scvi.module.TOTALVAE
, {class}~scvi.module.SCANVAE
, {class}~scvi.module.VAE
, and {class}~scvi.module.VAEC
. This allows facilitating the manipulation of these distributions for model training and inference #1356. -
Major changes to Jax support for scvi-tools models to generalize beyond {class}
~scvi.model.JaxSCVI
. Support for Jax remains experimental and is subject to breaking changes:- Consistent module interface for Flax modules (Jax-backed) via
{class}
~scvi.module.base.JaxModuleWrapper
, such that they are compatible with the existing {class}~scvi.model.base.BaseModelClass
#1506. - {class}
~scvi.train.JaxTrainingPlan
now leverages Pytorch Lightning to factor out Jax-specific training loop implementation #1506. - Enable basic device management in Jax-backed modules #1585.
- Consistent module interface for Flax modules (Jax-backed) via
{class}
- Add {meth}
~scvi.module.base.PyroBaseModuleClass.on_load
callback which is called on {meth}~scvi.model.base.BaseModuleClass.load
prior to loading the module state dict #1542. - Refactor metrics code and use {class}
~torchmetrics.MetricCollection
to update metrics in bulk #1529. - Add
max_kl_weight
andmin_kl_weight
to {class}~scvi.train.TrainingPlan
#1595. - Add a warning to {class}
~scvi.model.base.UnsupervisedTrainingMixin
that is raised ifmax_kl_weight
is not reached during training #1595.
- Any methods relying on the output of
inference
andgenerative
from existing scvi-tools models (e.g. {class}~scvi.model.SCVI
, {class}~scvi.model.SCANVI
) will need to be modified to accepttorch.Distribution
objects rather than tensors for each parameter (e.g.px_m
,px_v
) #1356. - The signature of {meth}
~scvi.train.TrainingPlan.compute_and_log_metrics
has changed to support the use of {class}~torchmetrics.MetricCollection
. The typical modification required will look like changingself.compute_and_log_metrics(scvi_loss, self.elbo_train)
toself.compute_and_log_metrics(scvi_loss, self.train_metrics, "train")
. The same is necessary for validation metrics except withself.val_metrics
and the mode"validation"
#1529.
- Fix issue with {meth}
~scvi.model.SCVI.get_normalized_expression
with multiple samples and additional continuous covariates. This bug originated from {meth}~scvi.module.VAE.generative
failing to match the dimensions of the continuous covariates with the input whenn_samples>1
in {meth}~scvi.module.VAE.inference
in multiple module classes #1548. - Add support for padding layers in {meth}
~scvi.model.SCVI.prepare_query_anndata
which is necessary to run {meth}~scvi.model.SCVI.load_query_data
for a model setup with a layer instead of X #1575.
Note: When applying any model using the {class}~scvi.train.AdversarialTrainingPlan
(e.g.
{class}~scvi.model.TOTALVI
, {class}~scvi.model.MULTIVI
), you should make sure to use v0.16.4
instead of v0.16.3 or v0.16.2. This release fixes a critical bug in the training plan.
- Fix critical issue in {class}
~scvi.train.AdversarialTrainingPlan
wherekl_weight
was overwritten to 0 at each step (#1566). Users should avoid using v0.16.2 and v0.16.3 which both include this bug.
- Removes sphinx max version and removes jinja dependency (#1555).
- Upper bounds protobuf due to pytorch lightning incompatibilities (#1556). Note that #1556 has unique changes as PyTorch Lightning >=1.6.4 adds the upper bound in their requirements.
- Raise appropriate error when
backup_url
is not provided and file is missing on {meth}~scvi.model.base.BaseModelClass.load
(#1527). - Pipe
loss_kwargs
properly in {class}~scvi.train.AdversarialTrainingPlan
, and fix incorrectly piped kwargs in {class}~scvi.model.TOTALVI
and {class}~scvi.model.MULTIVI
(#1532).
- Update scArches Pancreas tutorial, DestVI tutorial (#1520).
- {class}
~scvi.dataloaders.SemiSupervisedDataLoader
and {class}~scvi.dataloaders.SemiSupervisedDataSplitter
no longer takeunlabeled_category
as an initial argument. Instead, theunlabeled_category
is fetched from the labels state registry, assuming that the {class}~scvi.data.AnnDataManager
object is registered with a {class}~scvi.data.fields.LabelsWithUnlabeledObsField
(#1515).
- Bug fixed in {class}
~scvi.model.SCANVI
whereself._labeled_indices
was being improperly set (#1515). - Fix issue where {class}
~scvi.model.SCANVI.load_query_data
would not properly add an obs column with the unlabeled category when thelabels_key
was not present in the query data. - Disable extension of categories for labels in {class}
~scvi.model.SCANVI.load_query_data
(#1519). - Fix an issue with {meth}
~scvi.model.SCANVI.prepare_query_data
to ensure it does nothing when genes are completely matched (#1520).
This release features a refactor of {class}~scvi.model.DestVI
(#1457):
- Bug fix in cell type amortization, which leads to on par performance of cell type amortization
V_encoder
with free parameter for cell type proportionsV
. - Bug fix in library size in {class}
~scvi.model.CondSCVI
, that lead to downstream dependency between sum over cell type proportionsv_ind
and library sizelibrary
in {class}~scvi.model.DestVI
. neg_log_likelihood_prior
is not computed anymore on random subset of single cells but cell type specific subclustering using cluster variancevar_vprior
, cluster meanmean_vprior
and cluster mixture proportionmp_vprior
for computation. This leads to more stable results and faster computation time. Settingvamp_prior_p
in {func}~scvi.model.DestVI.from_rna_model
to the expected resolution is critical in this algorithm.- The new default is to also use dropout
dropout
during the decoder of {class}~scvi.model.CondSCVI
and subsequentlydropout_decoder
in {class}~scvi.model.DestVI
, we found this to be beneficial after bug fixes listed above. - We changed the weighting of the loss on the variances of beta and the prior of eta.
:::{note}
Due to bug fixes listed above this version of {class}~scvi.model.DestVI
is not backwards
compatible. Despite instability in training in the outdated version, we were able to reproduce
results generated with this code. We therefore do not strictly encourage to rerun old experiments.
:::
We published a new tutorial. This new tutorial incorporates a new utility package
destvi_utils that generates exploratory plots of the
results of {class}~scvi.model.DestVI
. We refer to the manual of this package for further
documentation.
- Docs changes (installation #1498, {class}
~scvi.model.DestVI
user guide #1501 and #1508, dark mode code cells #1499). - Add
backup_url
to the {meth}~scvi.model.base.BaseModelClass.load
method of each model class, enabling automatic downloading of model save file (#1505).
- Support for loading legacy loading is removed from {meth}
~scvi.model.base.BaseModelClass.load
. Utility to convert old files to the new file as been added {meth}~scvi.model.base.BaseModelClass.convert_legacy_save
(#1505). - Breaking changes to {class}
~scvi.model.DestVI
as specified above (#1457).
- {meth}
~scvi.model.base.RNASeqMixin.get_likelihood_parameters
fix forn_samples > 1
anddispersion="gene_cell"
#1504. - Fix backwards compatibility for legacy TOTALVI models #1502.
- Add common types file #1467.
- New default is to not pin memory during training when using a GPU. This is much better for shared GPU environments without any performance regression #1473.
- Add peakVI publication reference #1463.
- Update notebooks with new install functionality for Colab #1466.
- Simplify changing the training plan for pyro #1470.
- Optionally scale ELBO by a scalar in {class}
~scvi.train.PyroTrainingPlan
#1469.
- Raise
NotImplementedError
whencategorical_covariate_keys
are used with {meth}scvi.model.SCANVI.load_query_data
. (#1458). - Fix behavior when
continuous_covariate_keys
are used with {meth}scvi.model.SCANVI.classify
. (#1458). - Unlabeled category values are automatically populated when
{meth}
scvi.model.SCANVI.load_query_data
run onadata_target
missing labels column. (#1458). - Fix dataframe rendering in dark mode docs (#1448)
- Fix variance constraint in {class}
~scvi.model.AmortizedLDA
that set an artifical bound on latent topic variance (#1445). - Fix {meth}
scvi.model.base.ArchesMixin.prepare_query_data
to work cross device (e.g., model trained on cuda but method used on cpu; see #1451).
- Remove setuptools pinned requirement due to new PyTorch 1.11 fix (#1436).
- Switch to myst-parsed markdown for docs (#1435).
- Add
prepare_query_data(adata, reference_model)
to {class}~scvi.model.base.ArchesMixin
to enable query data cleaning prior to reference mapping (#1441). - Add Human Lung Cell Atlas tutorial (#1442).
- Errors when arbitrary kwargs are passed into
setup_anndata()
(#1439). - Fix {class}
scvi.external.SOLO
to usetrain_size=0.9
by default, which enables early stopping to work properly (#1438). - Fix scArches version warning (#1431).
- Fix backwards compat for {class}
~scvi.model.SCANVI
loading (#1441).
- Remove
labels_key
from {class}~scvi.model.MULTIVI
as it is not used in the model (#1393). - Use scvi-tools mean/inv_disp parameterization of negative binomial for
{class}
~scvi.model.JaxSCVI
likelihood (#1386). - Use
setup
for Flax-based modules (#1403). - Reimplement {class}
~scvi.module.JaxVAE
using inference/generative paradigm with {class}~scvi.module.base.JaxBaseModuleClass
(#1406). - Use multiple particles optionally in {class}
~scvi.model.JaxSCVI
(#1385). - {class}
~scvi.external.SOLO
no longer warns about count data (#1411). - Class docs are now one page on docs site (#1415).
- Copied AnnData objects are assigned a new uuid and transfer is attempted (#1416).
- Fix an issue with using gene lists and proteins lists as well as
transform_batch
for {class}~scvi.model.TOTALVI
(#1413). - Error gracefully when NaNs present in {class}
~scvi.data.fields.CategoricalJointObsmField
(#1417).
In this release, we have completely refactored the logic behind our data handling strategy (i.e.
setup_anndata
) to allow for:
- Readable data handling for existing models.
- Modular code for easy addition of custom data fields to incorporate into models.
- Avoidance of unexpected edge cases when more than one model is instantiated in one session.
Important Note: This change will not break pipelines for model users (with the exception of a
small change to {class}~scvi.model.SCANVI
). However, there are several breaking changes for model
developers. The data handling tutorial goes over these changes in detail.
This refactor is centered around the new {class}~scvi.data.AnnDataManager
class which
orchestrates any data processing necessary for scvi-tools and stores necessary information, rather
than adding additional fields to the AnnData input.
:::{figure} docs/_static/img/anndata_manager_schematic.svg :align: center :alt: Schematic of data handling strategy with AnnDataManager :class: img-fluid
Schematic of data handling strategy with {class}~scvi.data.AnnDataManager
:::
We also have an exciting new experimental Jax-based scVI implementation via
{class}~scvi.model.JaxSCVI
. While this implementation has limited functionality, we have found it
to be substantially faster than the PyTorch-based implementation. For example, on a 10-core Intel
CPU, Jax on only a CPU can be as fast as PyTorch with a GPU (RTX3090). We will be planning further
Jax integrations in the next releases.
- Major refactor to data handling strategy with the introduction of
{class}
~scvi.data.AnnDataManager
(#1237). - Prevent clobbering between models using the same AnnData object with model instance specific
{class}
~scvi.data.AnnDataManager
mappings (#1342). - Add
size_factor_key
to {class}~scvi.model.SCVI
, {class}~scvi.model.MULTIVI
, {class}~scvi.model.SCANVI
, and {class}~scvi.model.TOTALVI
(#1334). - Add references to the scvi-tools journal publication to the README (#1338, #1339).
- Addition of {func}
scvi.model.utils.mde
(#1372) for accelerated visualization of scvi-tools embeddings. - Documentation and user guide fixes (#1364, #1361)
- Fix for {class}
~scvi.external.SOLO
when {class}~scvi.model.SCVI
was setup with alabels_key
(#1354) - Updates to tutorials (#1369, #1371)
- Furo docs theme (#1290)
- Add {class}
scvi.model.JaxSCVI
and {class}scvi.module.JaxVAE
, drop Numba dependency for checking if data is count data (#1367).
-
The keyword argument
run_setup_anndata
has been removed from built-in datasets since there is no longer a model-agnosticsetup_anndata
method (#1237). -
The function
scvi.model._metrics.clustering_scores
has been removed due to incompatbility with new data handling (#1237). -
{class}
~scvi.model.SCANVI
now takesunlabeled_category
as an argument to {meth}~scvi.model.SCANVI.setup_anndata
rather than on initialization (#1237). -
setup_anndata
is now a class method on model classes and requires specific function calls to ensure proper {class}~scvi.data.AnnDataManager
setup and model save/load. Any model inheriting from {class}~scvi.model.base.BaseModelClass
will need to re-implement this method (#1237).- To adapt existing custom models to v0.15.0, one can references the guidelines below. For some examples of how this was done for the existing models in the codebase, please reference the following PRs: (#1301, #1302).
scvi._CONSTANTS
has been changed toscvi.REGISTRY_KEYS
.setup_anndata()
functions are now class functions and follow a specific structure. Please refer to {meth}~scvi.model.SCVI.setup_anndata
for an example.scvi.data.get_from_registry()
has been removed. This method can be replaced by {meth}scvi.data.AnnDataManager.get_from_registry
.- The setup dict stored directly on the AnnData object,
adata["_scvi"]
, has been deprecated. Instead, this information now lives in {attr}scvi.data.AnnDataManager.registry
. - The data registry can be accessed at {attr}
scvi.data.AnnDataManager.data_registry
. - Summary stats can be accessed at {attr}
scvi.data.AnnDataManager.summary_stats
. - Any field-specific information (e.g.
adata.obs["categorical_mappings"]
) now lives in field-specific state registries. These can be retrieved via the function {meth}~scvi.data.AnnDataManager.get_state_registry
. register_tensor_from_anndata()
has been removed. To register tensors with no relevantAnnDataField
subclass, create a new a new subclass of {class}~scvi.data.fields.BaseAnnDataField
and add it to appropriate model'ssetup_anndata()
function.
Bug fixes, minor improvements of docs, code formatting.
- Update black formatting to stable release (#1324)
- Refresh readme, move tasks image to docs (#1311).
- Add 0.14.5 release note to index (#1296).
- Add test to ensure extra {class}
~scvi.model.SCANVI
training of a pre-trained {class}~scvi.model.SCVI
model does not change original model weights (#1284). - Fix issue in {class}
~scvi.model.TOTALVI
protein background prior initialization to not include protein measurements that are known to be missing (#1282). - Upper bound setuptools due to PyTorch import bug (#1309).
Bug fixes, new tutorials.
- Fix
kl_weight
floor for Pytorch-based models (#1269). - Add support for more Pyro guides (#1267).
- Update scArches, harmonization tutorials, add basic R tutorial, tabula muris label transfer tutorial (#1274).
Bug fixes, some tutorial improvements.
kl_weight
handling for Pyro-based models (#1242).- Allow override of missing protein inference in {class}
~scvi.model.TOTALVI
(#1251). This allows to treat all 0s in a particular batch for one protein as biologically valid. - Fix load documentation (e.g., {meth}
~scvi.model.SCVI.load
, {meth}~scvi.model.TOTALVI.load
) (#1253). - Fix model history on load with Pyro-based models (#1255).
- Model construction tutorial uses new static setup anndata (#1257).
- Add codebase overview figure to docs (#1231).
Bug fix.
- Bug fix to {func}
~scvi.model.base.BaseModelClass
to retain tensors registered byregister_tensor_from_anndata
(#1235). - Expose an instance of our
DocstringProcessor
to aid in documenting derived implementations ofsetup_anndata
method (#1235).
Bug fix and new tutorial.
- Bug fix in {class}
~scvi.external.RNAStereoscope
where loss was computed with mean for a minibatch instead of sum. This ensures reproducibility with the original implementation (#1228). - New Cell2location contributed tutorial (#1232).
Minor hotfixes.
- Filter out mitochrondrial genes as a preprocessing step in the Amortized LDA tutorial (#1213)
- Remove
verbose=True
argument from early stopping callback (#1216)
In this release, we have completely revamped the scvi-tools documentation website by creating a new set of user guides that provide:
- The math behind each method (in a succinct, online methods-like way)
- The relationship between the math and the functions associated with each model
- The relationship between math variables and code variables
Our previous User Guide guide has been renamed to Tutorials and contains all of our existing tutorials (including tutorials for developers).
Another noteworthy addition in this release is the implementation of the (amortized) Latent Dirichlet Allocation (aka LDA) model applied to single-cell gene expression data. We have also prepared a tutorial that demonstrates how to use this model, using a PBMC 10K dataset from 10x Genomics as an example application.
Lastly, in this release we have made a change to reduce user and developer confusion by making the
previously global setup_anndata
method a static class-specific method instead. This provides more
clarity on which parameters are applicable for this call, for each model class. Below is a
before/after for the DESTVI and TOTALVI model classes:
:::{figure} docs/_static/img/setup_anndata_before_after.svg :align: center :alt: setup_anndata before and after :class: img-fluid
setup_anndata
before and after
:::
- Added fixes to support PyTorch Lightning 1.4 (#1103)
- Simplified data handling in R tutorials with sceasy and addressed bugs in package installation (#1122).
- Moved library size distribution computation to model init (#1123)
- Updated Contribution docs to describe how we backport patches (#1129)
- Implemented Latent Dirichlet Allocation as a PyroModule (#1132)
- Made
setup_anndata
a static method on model classes rather than one global function (#1150) - Used Pytorch Lightning's
seed_everything
method to set seed (#1151) - Fixed a bug in {class}
~scvi.model.base.PyroSampleMixin
for posterior sampling (#1158) - Added CITE-Seq datasets (#1182)
- Added user guides to our documentation (#1127, #1157, #1180, #1193, #1183, #1204)
- Early stopping now prints the reason for stopping when applicable (#1208)
setup_anndata
is now an abstract method on model classes. Any model inheriting from {class}~scvi.model.base.BaseModelClass
will need to implement this method (#1150)
None!
- Updated
OrderedDict
typing import to support all Python 3.7 versions (#1114).
None!
- Update Pytorch Lightning version dependency to
>=1.3,<1.4
(#1104).
None!
This release adds features for tighter integration with Pyro for model development, fixes for
{class}~scvi.external.SOLO
, and other enhancements. Users of {class}~scvi.external.SOLO
are
strongly encouraged to upgrade as previous bugs will affect performance.
- Add {class}
scvi.model.base.PyroSampleMixin
for easier posterior sampling with Pyro (#1059). - Add {class}
scvi.model.base.PyroSviTrainMixin
for automated training of Pyro models (#1059). - Ability to pass kwargs to {class}
~scvi.module.Classifier
when using {class}~scvi.external.SOLO
(#1078). - Ability to get doublet predictions for simulated doublets in {class}
~scvi.external.SOLO
(#1076). - Add "comparison" column to differential expression results (#1074).
- Clarify {class}
~scvi.external.CellAssign
size factor usage. See class docstring.
- Update minimum Python version to
3.7.2
(#1082). - Slight interface changes to {class}
~scvi.train.PyroTrainingPlan
."elbo_train"
and"elbo_test"
are now the average over minibatches as ELBO should be on scale of full data andoptim_kwargs
can be set on initialization of training plan (#1059, #1101). - Use pandas read pickle function for pbmc dataset metadata loading (#1099).
- Adds
n_samples_overall
parameter to functions for denoised expression/accesibility/etc. This is used in during differential expression (#1090). - Ignore configure optimizers warning when training Pyro-based models (#1064).
- Fix scale of library size for simulated doublets and expression in {class}
~scvi.external.SOLO
when using observed library size to train original {class}~scvi.model.SCVI
model (#1078, #1085). Currently, library sizes in this case are not appropriately put on the log scale. - Fix issue where anndata setup with a layer led to errors in {class}
~scvi.external.SOLO
(#1098). - Fix
adata
parameter of {func}scvi.external.SOLO.from_scvi_model
, which previously did nothing (#1078). - Fix default
max_epochs
of {class}~scvi.model.SCANVI
when initializing using pre-trained model of {class}~scvi.model.SCVI
(#1079). - Fix bug in
predict()
function of {class}~scvi.model.SCANVI
, which only occurred for soft predictions (#1100).
None!
From the user perspective, this release features the new differential expression functionality (to
be described in a manuscript). For now, it is accessible from
{func}~scvi.model.SCVI.differential_expression
. From the developer perspective, we made changes
with respect to {class}scvi.dataloaders.DataSplitter
and surrounding the Pyro backend. Finally,
we also made changes to adapt our code to PyTorch Lightning version 1.3.
- Pass
n_labels
to {class}~scvi.module.VAE
from {class}~scvi.model.SCVI
(#1055). - Require PyTorch lightning > 1.3, add relevant fixes (#1054).
- Add DestVI reference (#1060).
- Add PeakVI links to README (#1046).
- Automatic delta and eps computation in differential expression (#1043).
- Allow doublet ratio parameter to be changed for used in SOLO (#1066).
- Fix an issue where
transform_batch
options in {class}~scvi.model.TOTALVI
was accidentally altering the batch encoding in the encoder, which leads to poor results (#1072). This bug was introduced in version 0.9.0.
These breaking changes do not affect the user API; though will impact model developers.
- Use PyTorch Lightning data modules for {class}
scvi.dataloaders.DataSplitter
(#1061). This induces a breaking change in the way the data splitter is used. It is no longer callable and now has asetup
method. See {class}~scvi.train.TrainRunner
and its source code, which is straightforward. - No longer require training plans to be initialized with
n_obs_training
argument (#1061).n_obs_training
is now a property that can be set before actual training to rescale the loss. - Log Pyro loss as
train_elbo
and sum over steps (#1071)
- Includes new optional variance parameterization for the
Encoder
module (#1037). - Provides new way to select subpopulations for DE using Pandas queries (#1041).
- Update reference to peakVI (#1046).
- Pin Pytorch Lightning version to <1.3
- PeakVI minor enhancements to differential accessibility and fix scArches support (#1019)
- Add DestVI to the codebase (#1011)
- Versioned tutorial links (#1005)
- Remove old VAEC (#1006)
- Use
.numpy()
to convert torch tensors to numpy ndarrays (#1016) - Support backed AnnData (#1017), just load anndata with
scvi.data.read_h5ad(path, backed='r+')
- Solo interface enhancements (#1009)
- Updated README (#1028)
- Use Python warnings instead of logger warnings (#1021)
- Change totalVI protein background default to
False
is fewer than 10 proteins used (#1034)
- Fix
SaveBestState
warning (#1024) - New default SCANVI max epochs if loaded with pretrained SCVI model (#1025), restores old
<v0.9
behavior. - Fix marginal log likelihood computation, which was only being computed on final minibatch of a
dataloader. This bug was introduced in the
0.9.X
versions (#1033). - Fix bug where extra categoricals were not properly extended in
transfer_anndata_setup
(#1030).
- Update Pyro module backend to better enfore usage of
model
andguide
, automate passing of number of training examples to Pyro modules (#990) - Minimum Pyro version bumped (#988)
- Improve docs clarity (#989)
- Add glossary to developer user guide (#999)
- Add num threads config option to
scvi.settings
(#1001) - Add CellAssign tutorial (#1004)
This release features our new software development kit for building new probabilistic models. Our hope is that others will be able to develop new models by importing scvi-tools into their own packages.
From the user perspective, there are two package-wide API breaking changes and one
{class}~scvi.model.SCANVI
specific breaking change enumerated below. From the method developer
perspective, the entire model backend has been revamped using PyTorch Lightning, and no old code
will be compatible with this and future versions. Also, we dropped support for Python 3.6.
n_epochs
is nowmax_epochs
for consistency with PytorchLightning and to better relect the functionality of the parameter.use_cuda
is nowuse_gpu
for consistency with PytorchLightning.frequency
is nowcheck_val_every_n_epoch
for consistency with PytorchLightning.train_fun_kwargs
andkwargs
throughout thetrain()
methods in the codebase have been removed and various arguments have been reorganized intoplan_kwargs
andtrainer_kwargs
. Generally speaking,plan_kwargs
deal with model optimization like kl warmup, whiletrainer_kwargs
deal with the actual training loop like early stopping.
use_cuda
was removed from the init of each model and was not replaced byuse_gpu
. By default every model is intialized on CPU but can be moved to a device viamodel.to_device()
. If a model is trained withuse_gpu=True
the model will remain on the GPU after training.- When loading saved models, scvi-tools will always attempt to load the model on GPU unless otherwise specified.
- We now support specifying which GPU device to use if there are multiple available GPUs.
- {class}
~scvi.model.SCANVI
no longer pretrains an {class}~scvi.model.SCVI
model by default. This functionality however is preserved via the new {func}~scvi.model.SCANVI.from_scvi_model
method. n_epochs_unsupervised
andn_epochs_semisupervised
have been removed fromtrain
. It has been replaced withmax_epochs
for semisupervised training.n_samples_per_label
is a new argument which will subsample the number of labelled training examples to train on per label each epoch.
- {class}
~scvi.model.PEAKVI
implementation (#877, #921) - {class}
~scvi.external.SOLO
implementation (#923, #933) - {class}
~scvi.external.CellAssign
implementation (#940) - {class}
~scvi.external.RNAStereoscope
and {class}~scvi.external.SpatialStereoscope
implementation (#889, #959) - Pyro integration via {class}
~scvi.module.base.PyroBaseModuleClass
(#895 #903, #927, #931)
- {class}
~scvi.model.SCANVI
bug fixes (#879) - {class}
~scvi.external.GIMVI
moved to external api (#885) - {class}
~scvi.model.TOTALVI
, {class}~scvi.model.SCVI
, and {class}~scvi.model.SCANVI
now support multiple covariates (#886) - Added callback for saving the best state of a model (#887)
- Option to disable progress bar (#905)
- load() documentation improvements (#913)
- updated tutorials, guides, documentation (#924, #925, #929, #934, #947, #971)
- track is now public (#938)
- {class}
~scvi.model.SCANVI
now logs classficiation loss (#966) - get_likelihood_parameter() bug (#967)
- model.history are now pandas DataFrames (#949)
freeze_classifier
option in {func}~scvi.model.SCANVI.load_query_data
for the case whenweight_decay
passed to {func}~scvi.model.SCANVI.train
also passes toClassifierTrainer
Online updates of {class}~scvi.model.SCVI
, {class}~scvi.model.SCANVI
, and {class}~scvi.model.TOTALVI
with the scArches method
It is now possible to iteratively update these models with new samples, without altering the model for the "reference" population. Here we use the scArches method. For usage, please see the tutorial in the user guide.
To enable scArches in our models, we added a few new options. The first is encode_covariates
,
which is an SCVI
option to encode the one-hotted batch covariate. We also allow users to exchange
batch norm in the encoder and decoder with layer norm, which can be though of as batch norm but per
cell. As the layer norm we use has no parameters, it's a bit faster than models with batch norm. We
don't find many differences between using batch norm or layer norm in our models, though we have
kept defaults the same in this case. To run scArches effectively, batch norm should be exhanged
with layer norm.
The learned prior parameters for the protein background were randomly initialized. Now, they can be
set with the empirical_protein_background_prior
option in {class}~scvi.model.TOTALVI
. This
option fits a two-component Gaussian mixture model per cell, separating those proteins that are
background for the cell and those that are foreground, and aggregates the learned mean and variance
of the smaller component across cells. This computation is done per batch, if the batch_key
was
registered. We emphasize this is just for the initialization of a learned parameter in the model.
Many of our models like SCVI
, SCANVI
, and {class}~scvi.model.TOTALVI
learn a latent library
size variable. The option use_observed_lib_size
may now be passed on model initialization. We
have set this as True
by default, as we see no regression in performance, and training is a bit
faster.
- To facilitate these enhancements, saved {class}
~scvi.model.TOTALVI
models from previous versions will not load properly. This is due to an architecture change of the totalVI encoder, related to latent library size handling. - The default latent distribtuion for {class}
~scvi.model.TOTALVI
is now"normal"
. - Autotune was removed from this release. We could not maintain the code given the new API changes and we will soon have alternative ways to tune hyperparameters.
- Protein names during
setup_anndata
are now stored inadata.uns["_scvi"]["protein_names"]
, instead ofadata.uns["scvi_protein_names"]
.
- Fixed an issue where the unlabeled category affected the SCANVI architecture prior distribution.
Unfortunately, by fixing this bug, loading previously trained (<v0.8.0)
{class}
~scvi.model.SCANVI
models will fail.
This small update provides access to our new Discourse forum from the documentation.
scvi is now scvi-tools. Version 0.7 introduces many breaking changes. The best way to learn how to use scvi-tools is with our documentation and tutorials.
- New high-level API and data loading, please see tutorials and examples for usage.
GeneExpressionDataset
and associated classes have been removed.- Built-in datasets now return
AnnData
objects. scvi-tools
now relies entirely on the [AnnData] format.scvi.models
has been moved toscvi.core.module
.Posterior
classes have been reduced to wrappers onDataLoaders
scvi.inference
has been split toscvi.core.data_loaders
forAnnDataLoader
classes andscvi.core.trainers
for trainer classes.- Usage of classes like
Trainer
andAnnDataLoader
now require theAnnData
data object as input.
The scvi-tools package used to be scvi. This page commemorates all the hard work on the scvi package by our numerous contributors.
- @romain
- @adam
- @eddie
- @jeff
- @pierre
- @max
- @yining
- @gabriel
- @achille
- @chenling
- @jules
- @david-kelley
- @william-yang
- @oscar
- @casey-greene
- @jamie-morton
- @valentine-svensson
- @stephen-flemming
- @michael-raevsky
- @james-webber
- @galen
- @francesco-brundu
- @primoz-godec
- @eduardo-beltrame
- @john-reid
- @han-yuan
- @gokcen-eraslan
- downgrade anndata>=0.7 and scanpy>=1.4.6 @galen
- make loompy optional, raise sckmisc import error @adam
- fix PBMCDataset download bug @galen
- fix AnnDatasetFromAnnData _X in adata.obs bug @galen
- add tqdm to within cluster DE genes @adam
- restore tqdm to use simple bar instead of ipywidget @adam
- move to numpydoc for doctstrings @adam
- update issues templates @adam
- Poisson variable gene selection @valentine-svensson
- BrainSmallDataset set defualt save_path_10X @gokcen-eraslan
- train_size must be float between 0.0 and 1.0 @galen
- bump dependency versions @galen
- remove reproducibility notebook @galen
- fix scanVI dataloading @pierre
- updates to totalVI posterior functions and notebooks @adam
- update seurat v3 HVG selection now using skmisc loess @adam
- add back Python 3.6 support @adam
- get_sample_scale() allows gene selection @valentine-svensson
- bug fix to the dataset to anndata method with how cell measurements are stored @adam
- fix requirements @adam
- bug in version for Louvian in setup.py @adam
- update highly variable gene selection to handle sparse matrices @adam
- update DE docstrings @pierre
- improve posterior save load to also handle subclasses @pierre
- Create NB and ZINB distributions with torch and refactor code accordingly @pierre
- typos in autozivae @achille
- bug in csc sparse matrices in anndata data loader @adam
- handles gene and cell attributes with the same name @han-yuan
- fixes anndata overwriting when loading @adam, @pierre
- formatting in basic tutorial @adam
- updates on TotalVI and LDVAE @adam
- fix documentation, compatibility and diverse bugs @adam, @pierre @romain
- fix for external module on scanpy @galen
- do not automatically upper case genes @adam
- AutoZI @oscar
- Made the intro tutorial more user friendly @adam
- Tests for LDVAE notebook @adam
- black codebase @achille @gabriel @adam
- fix compatibility issues with sklearn and numba @romain
- fix Anndata @francesco-brundu
- docstring, totalVI, totalVI notebook and CITE-seq data @adam
- fix type @eduardo-beltrame
- fixing installation guide @jeff
- improved error message for dispersion @stephen-flemming
- gimVI @achille
- synthetic correlated datasets, fixed bug in marginal log likelihood @oscar
- autotune, dataset enhancements @gabriel
- documentation @jeff
- more consistent posterior API, docstring, validation set @adam
- fix anndataset @michael-raevsky
- linearly decoded VAE @valentine-svensson
- support for scanpy, fixed bugs, dataset enhancements @achille
- fix filtering bug, synthetic correlated datasets, docstring, differential expression @pierre
- better docstring @jamie-morton
- classifier based on library size for doublet detection @david-kelley
- corrected notebook @jules
- added UMAP and updated harmonization code @chenling @romain
- support for batch indices in csvdataset @primoz-godec
- speeding up likelihood computations @william-yang
- better anndata interop @casey-greene
- early stopping based on classifier accuracy @david-kelley
- updated to torch v1 @jules
- added stress tests for harmonization @chenling
- fixed autograd breaking @romain
- make removal of empty cells more efficient @john-reid
- switch to os.path.join @casey-greene
- added baselines and datasets for sMFISH imputation @jules
- added harmonization content @chenling
- fixing bugs on DE @romain
- annotation notebook @eddie
- Memory footprint management @jeff
- updated early stopping @max
- docstring @james-webber
- First release on PyPi
- Skeleton code & dependencies @jeff
- Unit tests @max
- PyTorch implementation of scVI @eddie @max
- Dataset preprocessing @eddie @max @yining
- First scVI TensorFlow version @romain