forked from clvoloshin/constrained_batch_policy_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenv_dqns.py
92 lines (68 loc) · 3.82 KB
/
env_dqns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from DQN import DeepQLearning
from env_nn import *
class LakeDQN(DeepQLearning):
def __init__(self, *args, **kw):
holes, goals = kw['position_of_holes'], kw['position_of_goals']
del kw['position_of_holes']
del kw['position_of_goals']
self.min_epsilon = kw['min_epsilon']
self.initial_epsilon = kw['initial_epsilon']
self.epsilon_decay_steps = kw['epsilon_decay_steps']
for key in ['min_epsilon', 'initial_epsilon', 'epsilon_decay_steps']:
if key in kw: del kw[key]
super(LakeDQN, self).__init__(*args, **kw)
for key in ['action_space_map','max_time_spent_in_episode','num_iterations','sample_every_N_transitions','batchsize','copy_over_target_every_M_training_iterations', 'buffer_size', 'min_buffer_size_to_train', 'models_path']:
if key in kw: del kw[key]
kw['position_of_holes'],kw['position_of_goals'] = holes, goals
self.state_space_dim = self.env.nS
self.action_space_dim = self.env.nA
self.Q = LakeNN(self.state_space_dim+self.action_space_dim, 1, [self.env.desc.shape[0], self.env.desc.shape[1]], self.action_space_dim, self.gamma, **kw)
self.Q_target = LakeNN(self.state_space_dim+self.action_space_dim, 1, [self.env.desc.shape[0], self.env.desc.shape[1]], self.action_space_dim, self.gamma, **kw)
def sample_random_action(self):
'''
Uniform random
'''
return np.random.choice(self.action_space_dim)
# def epsilon(self, epoch=None, total_steps=None):
# return 1./(total_steps/100 + 3)
def epsilon(self, epoch=None, total_steps=None):
if epoch >= self.epsilon_decay_steps:
return self.min_epsilon
else:
alpha = epoch / float(self.epsilon_decay_steps)
current_epsilon = self.initial_epsilon * (1-alpha) + self.min_epsilon * (alpha)
return current_epsilon
class CarDQN(DeepQLearning):
def __init__(self, *args, **kw):
self.gas_actions = None
self.min_epsilon = kw['min_epsilon']
self.initial_epsilon = kw['initial_epsilon']
self.epsilon_decay_steps = kw['epsilon_decay_steps']
self.action_space_dim = kw['action_space_dim']
for key in ['action_space_dim', 'min_epsilon', 'initial_epsilon', 'epsilon_decay_steps']:
if key in kw: del kw[key]
super(CarDQN, self).__init__(*args, **kw)
for key in ['action_space_map','max_time_spent_in_episode','num_iterations','sample_every_N_transitions','batchsize','copy_over_target_every_M_training_iterations', 'buffer_size', 'min_buffer_size_to_train', 'models_path']:
if key in kw: del kw[key]
from config_car import state_space_dim
self.state_space_dim = state_space_dim
self.Q = CarNN(self.state_space_dim, self.action_space_dim, self.gamma, **kw)
self.Q_target = CarNN(self.state_space_dim, self.action_space_dim, self.gamma, **kw)
def sample_random_action(self):
'''
Biased (toward movement) random
'''
if self.gas_actions is None:
self.gas_actions = {key:val[1] == 1 and val[2] == 0 for key,val in self.action_space_map.iteritems()}
action_weights = 14. * np.array(self.gas_actions.values()) + 1.0
action_weights /= np.sum(action_weights)
return np.random.choice(self.gas_actions.keys(), p=action_weights)
# return np.random.choice(self.action_space_dim)
def epsilon(self, epoch=None, total_steps=None):
if epoch >= self.epsilon_decay_steps:
# return max(.08*((2000-epoch)/1000), 0.) + .02
return self.min_epsilon
else:
alpha = epoch / float(self.epsilon_decay_steps)
current_epsilon = self.initial_epsilon * (1-alpha) + self.min_epsilon * (alpha)
return current_epsilon