forked from YDaiLab/MiMeNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMiMeNet_train.py
1097 lines (822 loc) · 42.6 KB
/
MiMeNet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import warnings
warnings.filterwarnings("ignore")
import os
import json
import argparse
import time
import datetime
import json
import pickle
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import tensorflow as tf
from scipy.stats import spearmanr, mannwhitneyu
import scipy.cluster.hierarchy as shc
from skbio.stats.composition import clr
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
from scipy.cluster.hierarchy import cut_tree
from src.models.MiMeNet import MiMeNet, tune_MiMeNet
###################################################
# Read in command line arguments
###################################################
parser = argparse.ArgumentParser(description='Perform MiMeNet')
parser.add_argument('-micro', '--micro', help='Comma delimited file representing matrix of samples by microbial features', required=True)
parser.add_argument('-metab', '--metab', help= 'Comma delimited file representing matrix of samples by metabolomic features', required=True)
parser.add_argument('-external_micro', '--external_micro', help='Comma delimited file representing matrix of samples by microbial features')
parser.add_argument('-external_metab', '--external_metab', help= 'Comma delimited file representing matrix of samples by metabolomic features')
parser.add_argument('-annotation', '--annotation', help='Comma delimited file annotating subset of metabolite features')
parser.add_argument('-labels', '--labels', help="Comma delimited file for sample labels to associate clusters with")
parser.add_argument('-output', '--output', help='Output directory', required=True)
parser.add_argument('-net_params', '--net_params', help='JSON file of network hyperparameters', default=None)
parser.add_argument('-background', '--background', help='Directory with previously generated background', default=None)
parser.add_argument('-num_background', '--num_background', help='Number of background CV Iterations', default=100, type=int)
parser.add_argument('-micro_norm', '--micro_norm', help='Microbiome normalization (RA, CLR, or None)', default='CLR')
parser.add_argument('-metab_norm', '--metab_norm', help='Metabolome normalization (RA, CLR, or None)', default='CLR')
parser.add_argument('-threshold', '--threshold', help='Define significant correlation threshold', default=None)
parser.add_argument('-num_run_cv', '--num_run_cv', help='Number of iterations for cross-validation', default=1, type=int)
parser.add_argument('-num_cv', '--num_cv', help='Number of cross-validated folds', default=10, type=int)
parser.add_argument('-num_run', '--num_run', help='Number of iterations for training full model', type=int, default=10)
args = parser.parse_args()
micro = args.micro
metab = args.metab
external_micro = args.external_micro
external_metab = args.external_metab
annotation = args.annotation
out = args.output
net_params = args.net_params
threshold = args.threshold
micro_norm = args.micro_norm
metab_norm = args.metab_norm
num_run_cv = args.num_run_cv
num_cv = args.num_cv
num_run = args.num_run
background_dir = args.background
labels = args.labels
num_bg = args.num_background
tuned = False
gen_background = True
if background_dir != None:
gen_background = False
start_time = time.time()
if external_metab != None and external_micro == None:
print("Warning: External metabolites found with no external microbiome...ignoring external set!")
external_metab = None
if net_params != None:
print("Loading network parameters...")
try:
with open(net_params, "r") as infile:
params = json.load(infile)
num_layer = params["num_layer"]
layer_nodes = params["layer_nodes"]
l1 = params["l1"]
l2 = params["l2"]
dropout = params["dropout"]
learning_rate = params["lr"]
tuned = True
print("Loaded network parameters...")
except:
print("Warning: Could not load network parameter file!")
###################################################
# Load Data
###################################################
metab_df = pd.read_csv(metab, index_col=0)
micro_df = pd.read_csv(micro, index_col=0)
if external_metab != None:
external_metab_df = pd.read_csv(external_metab, index_col=0)
if external_micro != None:
external_micro_df = pd.read_csv(external_micro, index_col=0)
###################################################
# Filter only paired samples
###################################################
samples = np.intersect1d(metab_df.columns.values, micro_df.columns.values)
num_samples = len(samples)
metab_df = metab_df[samples]
micro_df = micro_df[samples]
for c in micro_df.columns:
micro_df[c] = pd.to_numeric(micro_df[c])
for c in metab_df.columns:
metab_df[c] = pd.to_numeric(metab_df[c])
if external_metab != None and external_micro != None:
external_samples = np.intersect1d(external_metab_df.columns.values, external_micro_df.columns.values)
external_metab_df = external_metab_df[external_samples]
external_micro_df = external_micro_df[external_samples]
for c in external_micro_df.columns:
external_micro_df[c] = pd.to_numeric(external_micro_df[c])
for c in external_metab_df.columns:
external_metab_df[c] = pd.to_numeric(external_metab_df[c])
num_external_samples = len(external_samples)
elif external_micro != None:
external_samples = external_micro_df.columns.values
external_micro_df = external_micro_df[external_samples]
for c in external_micro_df.columns:
external_micro_df[c] = pd.to_numeric(external_micro_df[c])
num_external_samples = len(external_samples)
###################################################
# Create output directory
###################################################
dirName = 'results'
try:
os.mkdir(dirName)
print("Directory " , dirName , " Created ")
except FileExistsError:
print("Directory " , dirName , " already exists")
dirName = 'results/' + out
try:
os.mkdir(dirName)
print("Directory " , dirName , " Created ")
except FileExistsError:
print("Directory " , dirName , " already exists")
dirName = 'results/' + out + "/Images"
try:
os.mkdir(dirName)
print("Directory " , dirName , " Created ")
except FileExistsError:
print("Directory " , dirName , " already exists")
###################################################
# Filter lowly abundant samples
###################################################
to_drop = []
for microbe in micro_df.index.values:
present_in = sum(micro_df.loc[microbe] > 0.0000)
if present_in <= 0.1 * num_samples:
to_drop.append(microbe)
micro_df = micro_df.drop(to_drop, axis=0)
to_drop = []
for metabolite in metab_df.index.values:
present_in = sum(metab_df.loc[metabolite] > 0.0000)
if present_in <= 0.1 * num_samples:
to_drop.append(metabolite)
metab_df = metab_df.drop(to_drop, axis=0)
if external_micro != None:
common_features = np.intersect1d(micro_df.index.values, external_micro_df.index.values)
micro_df = micro_df.loc[common_features]
external_micro_df = external_micro_df.loc[common_features]
if external_metab != None:
common_features = np.intersect1d(metab_df.index.values, external_metab_df.index.values)
metab_df = metab_df.loc[common_features]
external_metab_df = external_metab_df.loc[common_features]
###################################################
# Transform data to Compositional Data
###################################################
# Transform Microbiome Data
if micro_norm == "CLR":
micro_comp_df = pd.DataFrame(data=np.transpose(clr(micro_df.transpose() + 1)),
index=micro_df.index, columns=micro_df.columns)
if external_micro:
external_micro_comp_df = pd.DataFrame(data=np.transpose(clr(external_micro_df.transpose() + 1)),
index=external_micro_df.index, columns=external_micro_df.columns)
elif micro_norm == "RA":
col_sums = micro_df.sum(axis=0)
micro_comp_df = micro_df/col_sums
if external_micro:
col_sums = external_micro_df.sum(axis=0)
external_micro_comp_df = external_micro_df/col_sums
else:
micro_comp_df = micro_df
if external_micro:
external_micro_comp_df = external_micro_df
# Normalize Metabolome Data
if metab_norm == "CLR":
metab_comp_df = pd.DataFrame(data=np.transpose(clr(metab_df.transpose() + 1)),
index=metab_df.index, columns=metab_df.columns)
if external_metab:
external_metab_comp_df = pd.DataFrame(data=np.transpose(clr(external_metab_df.transpose() + 1)),
index=external_metab_df.index, columns=external_metab_df.columns)
elif metab_norm == "RA":
col_sums = metab_df.sum(axis=0)
metab_comp_df = metab_df/col_sums
if external_metab:
col_sums = external_metab_df.sum(axis=0)
external_metab_comp_df = external_metab_df/col_sums
else:
metab_comp_df = metab_df
if external_metab:
external_metab_comp_df = external_metab_df
micro_comp_df = micro_comp_df.transpose()
metab_comp_df = metab_comp_df.transpose()
if external_micro:
external_micro_comp_df = external_micro_comp_df.transpose()
if external_metab:
external_metab_comp_df = external_metab_comp_df.transpose()
###################################################
# Run Cross-Validation on Dataset
###################################################
score_matrices = []
print("Performing %d runs of %d-fold cross-validation" % (num_run_cv, num_cv))
cv_start_time = time.time()
tune_run_time = 0
micro = micro_comp_df.values
metab = metab_comp_df.values
dirName = 'results/' + out + '/CV'
try:
os.mkdir(dirName)
except FileExistsError:
pass
for run in range(0,num_run_cv):
# Set up output directory for CV runs
dirName = 'results/' + out + '/CV/' + str(run)
try:
os.mkdir(dirName)
except FileExistsError:
pass
# Set up CV partitions
kfold = KFold(n_splits=num_cv, shuffle=True)
cv = 0
for train_index, test_index in kfold.split(samples):
# Set up output directory for CV partition run
dirName = 'results/' + out + '/CV/' + str(run) + '/' + str(cv)
try:
os.mkdir(dirName)
except FileExistsError:
pass
# Partition data into training and test sets
train_micro, test_micro = micro[train_index], micro[test_index]
train_metab, test_metab = metab[train_index], metab[test_index]
train_samples, test_samples = samples[train_index], samples[test_index]
# Store training and test set partitioning
train_microbe_df = pd.DataFrame(data=train_micro, index=train_samples, columns=micro_comp_df.columns)
test_microbe_df = pd.DataFrame(data=test_micro, index=test_samples, columns=micro_comp_df.columns)
train_metab_df = pd.DataFrame(data=train_metab, index=train_samples, columns=metab_comp_df.columns)
test_metab_df = pd.DataFrame(data=test_metab, index=test_samples, columns=metab_comp_df.columns)
train_microbe_df.to_csv(dirName + "/train_microbes.csv")
test_microbe_df.to_csv(dirName + "/test_microbes.csv")
train_metab_df.to_csv(dirName + "/train_metabolites.csv")
test_metab_df.to_csv(dirName + "/test_metabolites.csv")
# Log transform data if RA
if micro_norm == "RA" or micro_norm == None:
train_micro = np.log(train_micro + 1)
test_micro = np.log(test_micro + 1)
if metab_norm == "RA" or metab_norm == None:
train_metab = np.log(train_metab + 1)
test_metab = np.log(test_metab + 1)
# Scale data before neural network training
micro_scaler = StandardScaler().fit(train_micro)
train_micro = micro_scaler.transform(train_micro)
test_micro = micro_scaler.transform(test_micro)
metab_scaler = StandardScaler().fit(train_metab)
train_metab = metab_scaler.transform(train_metab)
test_metab = metab_scaler.transform(test_metab)
# Aggregate paired microbiome and metabolomic data
train = (train_micro, train_metab)
test = (test_micro, test_metab)
# Tune hyperparameters if first partition
if tuned == False:
tune_start_time = time.time()
print("Tuning parameters...")
tuned = True
params = tune_MiMeNet(train)
l1 = params['l1']
l2 = params['l2']
num_layer=params['num_layer']
layer_nodes=params['layer_nodes']
dropout=params['dropout']
with open('results/' +out + '/network_parameters.txt', 'w') as outfile:
json.dump(params, outfile)
tune_run_time = time.time() - tune_start_time
print("Tuning run time: " + (str(datetime.timedelta(seconds=(tune_run_time)))))
print("Run: %02d\t\tFold: %02d" % (run + 1, cv + 1), end="\r")
# Construct Neural Network Model
model = MiMeNet(train_micro.shape[1], train_metab.shape[1], l1=l1, l2=l2,
num_layer=num_layer, layer_nodes=layer_nodes, dropout=dropout)
#Train Neural Network Model
model.train(train)
# Predict on test set
p = model.test(test)
inv_p = metab_scaler.inverse_transform(p)
if metab_norm == "RA" or metab_norm == None:
inv_p = np.exp(inv_p) - 1
inv_p = inv_p/np.sum(inv_p)
score_matrices.append(model.get_scores())
prediction_df = pd.DataFrame(data=inv_p, index=test_samples, columns=metab_comp_df.columns)
score_matrix_df = pd.DataFrame(data=model.get_scores(), index=micro_comp_df.columns, columns=metab_comp_df.columns)
prediction_df.to_csv(dirName + "/prediction.csv")
score_matrix_df.to_csv(dirName + "/score_matrix.csv")
model.destroy()
tf.keras.backend.clear_session()
cv += 1
print("\nCV run time: " + str(datetime.timedelta(seconds=(time.time() - cv_start_time - tune_run_time))))
print("\nCalculating correlations for cross-validated evaluation...")
###################################################
# Calculate correlation across CV
###################################################
correlation_cv_df = pd.DataFrame(index=metab_comp_df.columns)
for run in range(num_run_cv):
preds = pd.concat([pd.read_csv('results/' + out + '/CV/' + str(run)+ '/' + str(cv) + "/prediction.csv",
index_col=0) for cv in range(0, num_cv)])
y = pd.concat([pd.read_csv('results/' + out + '/CV/' + str(run)+ '/' + str(cv) + "/test_metabolites.csv",
index_col=0) for cv in range(0, num_cv)])
cor = y.corrwith(preds, method="spearman")
correlation_cv_df["Run_"+str(run)] = cor.loc[correlation_cv_df.index]
correlation_cv_df["Mean"] = correlation_cv_df.mean(axis=1)
correlation_cv_df = correlation_cv_df.sort_values("Mean", ascending=False)
correlation_cv_df.to_csv('results/' + out + '/cv_correlations.csv')
fig = plt.figure(figsize=(8,8), dpi=300)
ax = fig.add_subplot(111)
sns.distplot(correlation_cv_df["Mean"])
plt.title("IBD Prediction Correlation")
plt.ylabel("Frequency")
plt.xlabel("Spearman Correlation")
plt.text(0.1, 0.9,"Mean: %.3f"% np.mean(correlation_cv_df.values),
horizontalalignment='center',
verticalalignment='center',
transform = ax.transAxes)
plt.savefig('results/' + out + '/Images/cv_correlation_distribution.png')
print("Mean correlation: %f" % np.mean(correlation_cv_df.values))
###################################################
# Generate Background Distributions
###################################################
if gen_background == False:
try:
print("Loading background from directory...")
infile = open(background_dir + "/bg_preds.pkl", "rb")
bg_preds = pickle.load(infile)
infile.close()
infile = open(background_dir + "/bg_truth.pkl", "rb")
bg_truth = pickle.load(infile)
infile.close()
infile = open(background_dir + "/bg_scores_mean.pkl", "rb")
bg_scores_mean = pickle.load(infile)
infile.close()
infile = open(background_dir + "/bg_correlations.pkl", "rb")
bg_corr = pickle.load(infile)
infile.close()
except:
print("Warning: Failed to load background from directory...")
gen_background = True
if gen_background == True:
print("Generating background using 100 10-fold cross-validated runs of shuffled data...")
bg_preds = []
bg_truth = []
bg_scores = []
bg_start_time = time.time()
for run in range(0,num_bg):
preds = []
truth = []
score_matrix = []
micro = micro_comp_df.values
metab = metab_comp_df.values
np.random.shuffle(micro)
np.random.shuffle(metab)
kfold = KFold(n_splits=10)
cv=0
for train_index, test_index in kfold.split(micro):
print("Run: %02d\t\tFold:%02d" % (run + 1, cv + 1), end="\r")
train_micro, test_micro = micro[train_index], micro[test_index]
train_metab, test_metab = metab[train_index], metab[test_index]
# Scale data before neural network training
micro_scaler = StandardScaler().fit(train_micro)
train_micro = micro_scaler.transform(train_micro)
test_micro = micro_scaler.transform(test_micro)
metab_scaler = StandardScaler().fit(train_metab)
train_metab = metab_scaler.transform(train_metab)
test_metab = metab_scaler.transform(test_metab)
train = (train_micro, train_metab)
test = (test_micro, test_metab)
model = MiMeNet(train_micro.shape[1], train_metab.shape[1], l1=l1, l2=l2,
num_layer=num_layer, layer_nodes=layer_nodes, dropout=dropout)
model.train(train)
p = model.test(test)
preds = list(preds) + list(p)
truth = list(truth) + list(test_metab)
score_matrix.append(model.get_scores())
model.destroy()
tf.keras.backend.clear_session()
cv+=1
bg_preds.append(preds)
bg_truth.append(truth)
bg_scores.append(score_matrix)
print("\nFinished generating background...")
print("\nBack ground run time: " + str(datetime.timedelta(seconds=(time.time() - bg_start_time))))
print("Saving background...")
dirName = 'results/' + out + '/BG/'
try:
os.mkdir(dirName)
except FileExistsError:
pass
bg_preds = np.array(bg_preds)
bg_truth = np.array(bg_truth)
bg_scores = np.array(bg_scores)
bg_scores_mean = np.mean(np.array(bg_scores), axis=1)
outfile = open(dirName + "bg_preds.pkl", "wb")
pickle.dump(np.array(bg_preds), outfile)
outfile.close()
outfile = open(dirName + "bg_truth.pkl", "wb")
pickle.dump(np.array(bg_truth), outfile)
outfile.close()
outfile = open(dirName + "bg_scores_mean.pkl", "wb")
pickle.dump(bg_scores_mean, outfile)
outfile.close()
bg_corr = []
for i in range(0, bg_preds.shape[0]):
for j in range(0,bg_preds.shape[-1]):
p_vec = bg_preds[i,:,j]
m_vec = bg_truth[i,:,j]
cor = spearmanr(p_vec, m_vec)
bg_corr.append(cor[0])
outfile = open(dirName + "bg_correlations.pkl", "wb")
pickle.dump(np.array(bg_corr), outfile)
outfile.close()
###################################################
# Identify significantly correlated metabolites
###################################################
if threshold == None:
cutoff_rho = np.quantile(bg_corr, 0.95)
else:
cutoff_rho == threshold
print("The correlation cutoff is %.3f" % cutoff_rho)
print("%d of %d metabolites are significantly correlated" % (sum(correlation_cv_df["Mean"].values > cutoff_rho),
len(correlation_cv_df["Mean"].values)))
sig_metabolites = correlation_cv_df.index[correlation_cv_df["Mean"].values > cutoff_rho]
if annotation != None:
annotation_df = pd.read_csv(annotation, index_col=0)
annotated_metabolites = np.intersect1d(correlation_cv_df.index.values, annotation_df.index.values)
sig_metabolites = annotated_metabolites[correlation_cv_df.loc[annotated_metabolites, "Mean"].values > cutoff_rho]
print("%d of %d annotated metabolites are significantly correlated" % (len(sig_metabolites), len(annotated_metabolites)))
barplot_df = pd.DataFrame(data={"Compound Name":annotation_df.loc[sig_metabolites, "Compound Name"].values,
"Spearman Correlation": correlation_cv_df.loc[sig_metabolites, "Mean"].values},
index=annotation_df.loc[sig_metabolites, "Compound Name"].values)
barplot_df["Compound Name"] = [x.strip().capitalize() for x in barplot_df["Compound Name"].values]
fig = plt.figure(figsize=(8,8), dpi=300)
ax = fig.add_subplot(111)
sns.barplot(x="Spearman Correlation", y='Compound Name',
data=barplot_df.groupby(barplot_df.index).max().sort_values(by="Spearman Correlation", ascending=False).head(20))
plt.tight_layout()
plt.savefig("results/" + out + "/Images/top_correlated_metabolites.png")
else:
barplot_df = pd.DataFrame(data={"Compound Name": correlation_cv_df.loc[sig_metabolites].index.values,
"Spearman Correlation": correlation_cv_df.loc[sig_metabolites, "Mean"].values},
index=correlation_cv_df.loc[sig_metabolites].index.values)
fig = plt.figure(figsize=(8,8), dpi=300)
ax = fig.add_subplot(111)
sns.barplot(x="Spearman Correlation", y='Compound Name',
data=barplot_df.groupby(barplot_df.index).max().sort_values(by="Spearman Correlation", ascending=False).head(20))
plt.savefig("results/" + out + "/Images/top_correlated_metabolites.png")
#######################################################
# Identify microbes with significant interaction scores
#######################################################
mean_score_matrix = np.mean(np.array(score_matrices), axis=0)
reduced_mean_score_matrix = mean_score_matrix[:,[x in sig_metabolites for x in correlation_cv_df.index]]
reduced_bg_score_matrix = bg_scores_mean[:,:,[x in sig_metabolites for x in correlation_cv_df.index]]
sig_edge_matrix = np.zeros(reduced_mean_score_matrix.shape)
for mic in range(reduced_mean_score_matrix.shape[0]):
for met in range(reduced_mean_score_matrix.shape[1]):
sig_cutoff = np.abs(np.quantile(reduced_bg_score_matrix[:,mic,met], 0.975))
if np.abs(reduced_mean_score_matrix[mic,met]) > sig_cutoff:
sig_edge_matrix[mic,met]=1
sig_microbes = micro_comp_df.columns[np.sum(sig_edge_matrix, axis=1)> 0.01 * len(sig_metabolites)]
###################################################
# Compare Correlation Distributions
###################################################
fig = plt.figure(figsize=(8,8), dpi=300)
ax = fig.add_subplot(111)
sns.distplot(bg_corr, label="Background")
sns.distplot(correlation_cv_df["Mean"].values, bins=20, label="Observed")
plt.axvline(x=cutoff_rho, color="red", lw=2, label="95% Cutoff")
plt.axvspan(cutoff_rho, 1.0, alpha=0.2, color='gray')
plt.title("Correlation Distributions for IBD", fontsize=16)
plt.ylabel("Frequency", fontsize=16)
plt.xlabel("Spearman Correlation", fontsize=16)
plt.xlim(-1,1)
plt.text(0.85, 0.9,"Significant Region",
horizontalalignment='center',
verticalalignment='center',
transform = ax.transAxes)
plt.legend()
plt.savefig("results/" + out + "/Images/cv_bg_correlation_distributions.png")
score_matrix_df = pd.DataFrame(np.mean(score_matrices, axis=0), index=micro_comp_df.columns,
columns=metab_comp_df.columns)
reduced_score_df = score_matrix_df.loc[sig_microbes,sig_metabolites]
binary_score_df = pd.DataFrame(np.clip(reduced_score_df/sig_cutoff, -1, 1), index=sig_microbes,
columns= sig_metabolites)
###################################################
# Compute Number of Microbial Modules
###################################################
mic_connectivity_matrices = {}
for i in range(2,20):
mic_connectivity_matrices[i] = np.zeros((len(sig_microbes), len(sig_microbes)))
for s in score_matrices:
mic_linkage_list = shc.linkage(np.clip(s[[x in sig_microbes for x in micro_comp_df.columns],:][:,[x in sig_metabolites for x in metab_comp_df.columns]]/sig_cutoff, -1,1), method='complete')
for i in range(2,20):
microbe_clusters = np.array(cut_tree(mic_linkage_list, n_clusters=i)).reshape(-1)
one_hot_matrix = np.zeros((len(sig_microbes), i))
for m in range(len(microbe_clusters)):
one_hot_matrix[m, microbe_clusters[m]] = 1
mic_connectivity_matrix = np.matmul(one_hot_matrix, np.transpose(one_hot_matrix))
mic_connectivity_matrices[i] += mic_connectivity_matrix
fig = plt.figure(figsize=(8,4), dpi=300)
plt.subplot(1,2,1)
area_x = []
area_y = []
for i in range(2,20):
consensus_matrix = mic_connectivity_matrices[i]/(num_run_cv * num_run)
n = consensus_matrix.shape[0]
consensus_cdf_x = []
consensus_cdf_y = []
area_x.append(int(i))
prev_y = 0
prev_x = 0
area = 0
for j in range(0,101):
x = float(j)/100.0
y = sum(sum(consensus_matrix <= x))/(n*(n-1))
consensus_cdf_x.append(x)
consensus_cdf_y.append(y)
area += (x-prev_x) * (y)
prev_x = x
area_y.append(area)
plt.plot(consensus_cdf_x, consensus_cdf_y, label=str(i) + " Clusters")
plt.xlabel("Consensus Index Value")
plt.ylabel("CDF")
plt.legend()
dk = []
for a in range(len(area_x)):
if area_x[a] == 2:
dk.append(area_y[a])
else:
dk.append((area_y[a] - area_y[a-1])/area_y[a-1])
plt.subplot(1,2,2)
plt.plot(area_x, dk, marker='o')
plt.xlabel("Number of Clusters")
plt.ylabel("Relative Increase of Area under CDF")
plt.axhline(0.025, linewidth=2, color='r')
num_microbiome_clusters = np.max(np.array(area_x)[np.array(dk) > 0.025])
print("Using %d Microbe Clusters" % num_microbiome_clusters)
plt.savefig("results/" + out + "/Images/microbe_cluster_consensus.png")
###################################################
# Compute Number of Metabolic Modules
###################################################
met_connectivity_matrices = {}
for i in range(2,20):
met_connectivity_matrices[i] = np.zeros((len(sig_metabolites), len(sig_metabolites)))
count = 0
for s in score_matrices:
count += 1
met_linkage_list = shc.linkage(np.transpose(np.clip(s[[x in sig_microbes for x in micro_comp_df.columns],:][:,[x in sig_metabolites for x in metab_comp_df.columns]]/sig_cutoff, -1,1)), method='complete')
for i in range(2,20):
metabolite_clusters = np.array(cut_tree(met_linkage_list, n_clusters=i)).reshape(-1)
one_hot_matrix = np.zeros((len(sig_metabolites), i))
for m in range(len(metabolite_clusters)):
one_hot_matrix[m, metabolite_clusters[m]] = 1
met_connectivity_matrix = np.matmul(one_hot_matrix, np.transpose(one_hot_matrix))
met_connectivity_matrices[i] += met_connectivity_matrix
fig = plt.figure(figsize=(8,4), dpi=300)
plt.subplot(1,2,1)
area_x = []
area_y = []
for i in range(2,20):
consensus_matrix = met_connectivity_matrices[i]/(num_run_cv * num_run)
n = consensus_matrix.shape[0]
consensus_cdf_x = []
consensus_cdf_y = []
area_x.append(int(i))
prev_y = 0
prev_x = 0
area = 0
for j in range(0,101):
x = float(j)/100.0
y = sum(sum(consensus_matrix <= x))/(n*(n-1))
consensus_cdf_x.append(x)
consensus_cdf_y.append(y)
area += (x-prev_x) * (y)
prev_x = x
area_y.append(area)
plt.plot(consensus_cdf_x, consensus_cdf_y, label=str(i) + " Clusters")
plt.xlabel("Consensus Index Value")
plt.ylabel("CDF")
plt.legend()
dk = []
for a in range(len(area_x)):
if area_x[a] == 2:
dk.append(area_y[a])
else:
dk.append((area_y[a] - area_y[a-1])/area_y[a-1])
plt.subplot(1,2,2)
plt.plot(area_x, dk, marker='o')
plt.xlabel("Number of Clusters")
plt.ylabel("Relative Increase of Area under CDF")
plt.axhline(0.02, linewidth=2, color='r')
num_metabolite_clusters = np.max(np.array(area_x)[np.array(dk) > 0.02])
print("Using %d Metabolite Clusters" % num_metabolite_clusters)
plt.savefig("results/" + out + "/Images/metabolite_cluster_consensus.png")
###################################################
# Bicluster Interaction Matrix
###################################################
microbe_tree = shc.linkage(binary_score_df.values, method='complete')
metabolite_tree = shc.linkage(np.transpose(binary_score_df.values), method='complete')
metabolite_clusters = np.array(cut_tree(metabolite_tree, n_clusters=num_metabolite_clusters)).reshape(-1)
microbe_clusters = np.array(cut_tree(microbe_tree, n_clusters=num_microbiome_clusters)).reshape(-1)
metab_col_scale = 1/(num_metabolite_clusters-1)
micro_col_scale = 1/(num_microbiome_clusters-1)
micro_colors = [(0.5,1-x*micro_col_scale,x*micro_col_scale) for x in microbe_clusters]
metab_colors = [(1-x*metab_col_scale,0.5,x*metab_col_scale) for x in metabolite_clusters]
sns.clustermap(binary_score_df, method="complete", row_colors = micro_colors, col_colors=metab_colors, row_linkage=microbe_tree,
col_linkage=metabolite_tree, cmap = "coolwarm", figsize=(8,8), cbar_pos=(0.05, 0.88, 0.025, 0.10))
plt.savefig("results/" + out + "/Images/" + "/clustermap.png", dpi=300)
reduced_score_df.to_csv("results/" + out + "/CV/" + "/interaction_score_matrix.csv")
micro_cluster_matrix = np.zeros((reduced_score_df.values.shape[0], reduced_score_df.values.shape[0]))
metab_cluster_matrix = np.zeros((reduced_score_df.values.shape[1], reduced_score_df.values.shape[1]))
for m in range(0, len(microbe_clusters)):
for n in range(m, len(microbe_clusters)):
if microbe_clusters[m] == microbe_clusters[n]:
micro_cluster_matrix[m,n] = 1
micro_cluster_matrix[n,m] = 1
for m in range(0, len(metabolite_clusters)):
for n in range(m, len(metabolite_clusters)):
if metabolite_clusters[m] == metabolite_clusters[n]:
metab_cluster_matrix[m,n] = 1
metab_cluster_matrix[n,m] = 1
pd.DataFrame(data=micro_cluster_matrix, index=reduced_score_df.index,
columns=reduced_score_df.index).to_csv("results/" + out + "/CV/microbe_cluster_matrix.csv")
pd.DataFrame(data=metab_cluster_matrix, index=reduced_score_df.columns,
columns=reduced_score_df.columns).to_csv("results/" + out + "/CV/metabolite_cluster_matrix.csv")
metabolite_cluster_df = pd.DataFrame(data=metabolite_clusters, index=sig_metabolites, columns=["Cluster"])
microbe_cluster_df = pd.DataFrame(data=microbe_clusters, index=sig_microbes, columns=["Cluster"])
metabolite_cluster_df.to_csv("results/" + out + "/metabolite_clusters.csv")
microbe_cluster_df.to_csv("results/" + out +"/microbe_clusters.csv")
###################################################
# Determine Microbial Module Enrichment
###################################################
if labels != None:
try:
labels_df=pd.read_csv(labels, index_col=0)
label_set = np.unique(labels_df.values)
g0 = samples[(labels_df.values==label_set[0]).reshape(-1)]
g1 = samples[(labels_df.values==label_set[1]).reshape(-1)]
micro_sub = micro_comp_df
enriched_in = []
p_list = []
micro_comp_cluster_df = pd.DataFrame(index=samples)
micro_sub = pd.DataFrame(index=micro_sub.index, columns=micro_sub.columns,
data = micro_sub)
for mc in range(num_microbiome_clusters):
g0_cluster = micro_sub.loc[g0, microbe_cluster_df["Cluster"]==mc].mean(1).values
g1_cluster = micro_sub.loc[g1, microbe_cluster_df["Cluster"]==mc].mean(1).values
micro_comp_cluster_df["Module " + str(mc + 1)] = micro_sub.loc[:,microbe_cluster_df["Cluster"]==mc].mean(1).values
p_value = mannwhitneyu(g0_cluster, g1_cluster)[1]
p_list.append(p_value)
if p_value < 0.05:
p_value_one_sided = mannwhitneyu(g0_cluster, g1_cluster, alternative="greater")[1]
if p_value_one_sided < 0.05:
enriched_in.append(labels[0])
else:
enriched_in.append(labels[1])
else:
enriched_in.append("None")
micro_cluster_enrichment_df = pd.DataFrame(index=["Microbial Module " + str(x+1) for x in range(num_microbiome_clusters)])
micro_cluster_enrichment_df["p-value"] = p_list
micro_cluster_enrichment_df["Enriched"] = enriched_in
micro_comp_cluster_df["Diagnosis"] = labels_df.values
micro_cluster_enrichment_df.to_csv("results/" + out + "/microbiome_module_enrichment.csv")
micro_box_df = pd.melt(micro_comp_cluster_df, id_vars= ["Diagnosis"], value_vars=micro_comp_cluster_df.columns[0:num_microbiome_clusters])
plt.figure(figsize=(8,8), dpi=300)
sns.boxplot(data=micro_box_df, x="variable", y="value", hue="Diagnosis")
plt.xlabel("Microbiome Module")
plt.ylabel("Mean Module Abundance")
plt.title("Microbiome Module by Label")
plt.savefig("results/" + out + "/Images/micro_module_enrichment.png")
###################################################
# Determine Microbial Module Enrichment
###################################################
metab_sub = metab_comp_df
enriched_in = []
p_list = []
metab_comp_cluster_df = pd.DataFrame(index=samples)
metab_sub = pd.DataFrame(index=metab_sub.index, columns=metab_sub.columns,
data = metab_sub)
metab_sub = metab_sub[metabolite_cluster_df.index]
for mc in range(num_metabolite_clusters):
g0_cluster = metab_sub.loc[g0, metabolite_cluster_df["Cluster"]==mc].mean(1).values
g1_cluster = metab_sub.loc[g1, metabolite_cluster_df["Cluster"]==mc].mean(1).values
metab_comp_cluster_df["Module " + str(mc + 1)] = metab_sub.loc[:,metabolite_cluster_df["Cluster"]==mc].mean(1).values
p_value = mannwhitneyu(g0_cluster, g1_cluster)[1]
p_list.append(p_value)
if p_value < 0.05:
p_value_one_sided = mannwhitneyu(g0_cluster, g1_cluster, alternative="greater")[1]
if p_value_one_sided < 0.05:
enriched_in.append(labels[0])
else:
enriched_in.append(labels[1])
else:
enriched_in.append("None")
metab_cluster_enrichment_df = pd.DataFrame(index=["Metabolite Module " + str(x+1) for x in range(num_metabolite_clusters)])
metab_cluster_enrichment_df["p-value"] = p_list
metab_cluster_enrichment_df["Enriched"] = enriched_in
metab_comp_cluster_df["Diagnosis"] = labels_df.values
metab_cluster_enrichment_df.to_csv("results/" + out + "/metabolite_cluster_enrichment.csv")
metab_box_df = pd.melt(metab_comp_cluster_df, id_vars= ["Diagnosis"], value_vars=metab_comp_cluster_df.columns[0:num_metabolite_clusters])
plt.figure(figsize=(8,8), dpi=300)
sns.boxplot(data=metab_box_df, x="variable", y="value", hue="Diagnosis")
plt.xlabel("Metabolite Module")
plt.ylabel("Mean Module Abundance")
plt.title("Metabolite Module by Label")
plt.savefig("results/" + out + "/Images/metab_module_enrichment.png")
except:
print("Warning! Could not open label file and perform module enrichment!")
###################################################
# Train Ensemble of Neural Networks on Full Dataset
###################################################
# Set up output directory for training on full dataset
dirName = 'results/' + out + '/Full'
try:
os.mkdir(dirName)
except FileExistsError:
pass
microbe_cluster_matrix_list = []
metabolite_cluster_matrix_list = []
for run in range(0,num_run):
# Set up output directory for training on full dataset
dirName = 'results/' + out + '/Full/' + str(run)
try:
os.mkdir(dirName)
except FileExistsError:
pass
train_micro = micro_comp_df
train_metab = metab_comp_df
# Log transform data if RA
if micro_norm == "RA" or micro_norm == None:
train_micro = np.log(train_micro + 1)
if metab_norm == "RA" or metab_norm == None:
train_metab = np.log(train_metab + 1)
# Scale data before neural network training
micro_scaler = StandardScaler().fit(train_micro)
train_micro = micro_scaler.transform(train_micro)
metab_scaler = StandardScaler().fit(train_metab)
train_metab = metab_scaler.transform(train_metab)
# Aggregate paired microbiome and metabolomic data
train = (train_micro, train_metab)
print("Run: %02d" % (run + 1), end="\r")
# Construct Neural Network Model
model = MiMeNet(train_micro.shape[1], train_metab.shape[1], l1=l1, l2=l2,