-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patht2_model.py
144 lines (120 loc) · 4.41 KB
/
t2_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# %%
import torch
import numpy as np
import torch.distributed as dist
from t1_dataset import trn_dl, tst_dl, ds
import random
import time
EMBD = 128
HEAD = 4
BLKS = 8
DROP = 0.1
SQNZ = 512
VOCB = 10000
# %%
class Attention(torch.nn.Module):
def __init__(self, is_causal=False):
super().__init__()
self.is_causal = is_causal
self.out_proj = torch.nn.Linear(EMBD, EMBD)
self.register_buffer(
"mask", torch.tril(torch.ones(SQNZ, SQNZ).view(1, 1, SQNZ, SQNZ))
)
def forward(self, qry, key, val):
Q_B, Q_S, _ = qry.shape
K_B, K_S, _ = key.shape
V_B, V_S, _ = val.shape
EMBD_HEAD = int(EMBD / HEAD)
qry = qry.reshape(Q_B, Q_S, HEAD, EMBD_HEAD).transpose(1, 2)
key = key.reshape(K_B, K_S, HEAD, EMBD_HEAD).transpose(1, 2)
val = val.reshape(V_B, V_S, HEAD, EMBD_HEAD).transpose(1, 2)
msk = self.mask[:, :, :Q_S, :Q_S] == 0
att = qry @ key.transpose(-1, -2) / torch.sqrt(torch.tensor(EMBD_HEAD))
att = att if self.is_causal == False else att.masked_fill(msk, float("-inf"))
att = torch.nn.functional.softmax(att, dim=-1)
out = (att @ val).transpose(1, 2).reshape(Q_B, Q_S, EMBD)
return self.out_proj(out)
class FeedForward(torch.nn.Module):
def __init__(self):
super().__init__()
self.c_fc = torch.nn.Linear(EMBD, EMBD * 4)
self.relu = torch.nn.ReLU()
self.c_proj = torch.nn.Linear(EMBD * 4, EMBD)
self.drop = torch.nn.Dropout(DROP)
def forward(self, x):
x = self.c_fc(x)
x = self.relu(x)
x = self.c_proj(x)
x = self.drop(x)
return x
class EncoderBlock(torch.nn.Module):
def __init__(self):
super().__init__()
self.ln_1 = torch.nn.LayerNorm(EMBD)
self.qkv = torch.nn.Linear(EMBD, EMBD * 3)
self.attn = Attention()
self.ln_2 = torch.nn.LayerNorm(EMBD)
self.ffww = FeedForward()
def forward(self, x):
q, k, v = self.qkv(self.ln_1(x)).split(EMBD, dim=-1)
x = x + self.attn(q, k, v)
x = x + self.ffww(self.ln_2(x))
return x
class DecoderBlock(torch.nn.Module):
def __init__(self):
super().__init__()
self.qkv = torch.nn.Linear(EMBD, EMBD * 3)
self.qry = torch.nn.Linear(EMBD, EMBD)
self.key = torch.nn.Linear(EMBD, EMBD)
self.val = torch.nn.Linear(EMBD, EMBD)
self.c_att = Attention(is_causal=True)
self.x_attn = Attention()
self.ffww = FeedForward()
def forward(self, src, tgt):
q, k, v = self.qkv(tgt).split(EMBD, dim=-1)
tgt = tgt + self.c_att(q, k, v)
qry = self.qry(tgt)
key = self.key(src)
val = self.val(src)
tgt = tgt + self.x_attn(qry, key, val)
tgt = tgt + self.ffww(tgt)
return tgt
class T5(torch.nn.Module):
def __init__(self):
super().__init__()
self.tok_embd = torch.nn.Embedding(VOCB, EMBD)
self.pos_embd = torch.nn.Embedding(SQNZ, EMBD)
self.enc_blks = torch.nn.ModuleList([EncoderBlock() for _ in range(BLKS)])
self.dec_blks = torch.nn.ModuleList([DecoderBlock() for _ in range(BLKS)])
self.vocab = torch.nn.Linear(EMBD, VOCB)
self.rank = self.rank = dist.get_rank()
def forward(self, src, tgt):
src = self.tok_embd(src)
src = src + self.pos_embd(torch.arange(src.size(1), device=self.rank))
for blk in self.enc_blks:
src = blk(src)
tgt = self.tok_embd(tgt)
tgt = tgt + self.pos_embd(torch.arange(tgt.size(1), device=self.rank))
for blk in self.dec_blks:
tgt = blk(src, tgt)
tgt = self.vocab(tgt)
return tgt
def num_params(self):
gpt_params = sum(p.numel() for p in self.parameters())
emb_params = self.tok_embd.weight.numel()
print(f"Total Parameters: {gpt_params} | Embedding: {emb_params}")
return {"gpt_params": gpt_params, "emb_params": emb_params}
def translate(self, src, num=20):
self.eval()
tgt = torch.tensor([[2]], device=self.rank)
for _ in range(num):
with torch.no_grad():
out = self(src, tgt)
out = out[:, -1, :]
nxt = torch.argmax(out, dim=-1, keepdim=True)
if nxt.item() == 3:
break
tgt = torch.cat((tgt, nxt), dim=1)
self.train()
return tgt
#%%