-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattack.py
122 lines (99 loc) · 4.48 KB
/
attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import logging
from typing import Dict
import torch
from copy import deepcopy
from models.model import Model
from models.nc_model import NCModel
#from synthesizers.synthesizer import Synthesizer
from losses.loss_functions import compute_all_losses_and_grads
from utils.min_norm_solvers import MGDASolver
from utils.parameters import Params
logger = logging.getLogger('logger')
class Attack:
params: Params
#synthesizer: Synthesizer
nc_model: Model
nc_optim: torch.optim.Optimizer
# fixed_model: Model
def __init__(self, params):
self.params = params
#self.synthesizer = synthesizer
# NC hyper params
# if 'neural_cleanse' in self.params.loss_tasks:
# self.nc_model = NCModel(params.input_shape[1]).to(params.device)
# self.nc_optim = torch.optim.Adam(self.nc_model.parameters(), 0.01)
def compute_blind_loss(self, model, criterion, batch, attack):
"""
:param model:
:param criterion:
:param batch:
:param attack: Do not attack at all. Ignore all the parameters
:return:
"""
batch = batch.clip(self.params.clip_batch)
loss_tasks = ['normal']
#loss_tasks = self.params.loss_tasks.copy() if attack else ['normal']
#batch_back = self.synthesizer.make_backdoor_batch(batch, attack=attack)
scale = dict()
# if 'neural_cleanse' in loss_tasks:
# self.neural_cleanse_part1(model, batch, batch_back)
if len(loss_tasks) == 1:
loss_values, grads = compute_all_losses_and_grads(
loss_tasks,
self, model, criterion, batch, compute_grad=False
) #只保留这种
# elif self.params.loss_balance == 'MGDA':
# loss_values, grads = compute_all_losses_and_grads(
# loss_tasks,
# self, model, criterion, batch, batch_back, compute_grad=True)
# if len(loss_tasks) > 1:
# scale = MGDASolver.get_scales(grads, loss_values,
# self.params.mgda_normalize,
# loss_tasks)
# elif self.params.loss_balance == 'fixed':
# loss_values, grads = compute_all_losses_and_grads(
# loss_tasks,
# self, model, criterion, batch, batch_back, compute_grad=False)
# for t in loss_tasks:
# scale[t] = self.params.fixed_scales[t]
else:
raise ValueError(f'Please choose between `MGDA` and `fixed`.')
if len(loss_tasks) == 1:
scale = {loss_tasks[0]: 1.0}
blind_loss = self.scale_losses(loss_tasks, loss_values, scale)
return blind_loss
def scale_losses(self, loss_tasks, loss_values, scale):
blind_loss = 0
for it, t in enumerate(loss_tasks):
self.params.running_losses[t].append(loss_values[t].item())
self.params.running_scales[t].append(scale[t])
if it == 0:
blind_loss = scale[t] * loss_values[t]
else:
blind_loss += scale[t] * loss_values[t]
self.params.running_losses['total'].append(blind_loss.item())
return blind_loss
# def neural_cleanse_part1(self, model, batch, batch_back):
# self.nc_model.zero_grad()
# model.zero_grad()
# self.nc_model.switch_grads(True)
# model.switch_grads(False)
# output = model(self.nc_model(batch.inputs))
# nc_tasks = ['neural_cleanse_part1', 'mask_norm']
# criterion = torch.nn.CrossEntropyLoss(reduction='none')
# loss_values, grads = compute_all_losses_and_grads(nc_tasks,
# self, model,
# criterion, batch,
# batch_back,
# compute_grad=False
# )
# # Using NC paper params
# logger.info(loss_values)
# loss = 0.999 * loss_values['neural_cleanse_part1'] + 0.001 * loss_values['mask_norm']
# loss.backward()
# self.nc_optim.step()
# self.nc_model.switch_grads(False)
# model.switch_grads(True)
# def fl_scale_update(self, local_update: Dict[str, torch.Tensor]):
# for name, value in local_update.items():
# value.mul_(self.params.fl_weight_scale)