diff --git a/docs/outrank/algorithms/feature_ranking/ranking_mi_numba.html b/docs/outrank/algorithms/feature_ranking/ranking_mi_numba.html index 4045afa..af09096 100644 --- a/docs/outrank/algorithms/feature_ranking/ranking_mi_numba.html +++ b/docs/outrank/algorithms/feature_ranking/ranking_mi_numba.html @@ -146,114 +146,115 @@
114@njit( -115 'float32(int32[:], int32[:], float32, b1)', -116 cache=True, -117 fastmath=True, -118 error_model='numpy', -119 boundscheck=True, -120) -121def mutual_info_estimator_numba( -122 Y, X, approximation_factor=1, cardinality_correction=False, -123): -124 """Core estimator logic. Compute unique elements, subset if required""" -125 -126 all_events = len(X) -127 f_values, f_value_counts = numba_unique(X) -128 -129 # Diagonal entries -130 if np.sum(X - Y) == 0: -131 cardinality_correction = False -132 -133 if approximation_factor < 1: -134 subspace_size = int(approximation_factor * all_events) -135 if subspace_size != 0: -136 subspace = np.random.randint(0, all_events, size=subspace_size) -137 X = X[subspace] -138 Y = Y[subspace] -139 -140 joint_entropy_core = compute_entropies( -141 X, Y, all_events, f_values, f_value_counts, cardinality_correction, -142 ) -143 -144 return approximation_factor * joint_entropy_core +diff --git a/docs/outrank/algorithms/importance_estimator.html b/docs/outrank/algorithms/importance_estimator.html index bb90b6d..1b57d14 100644 --- a/docs/outrank/algorithms/importance_estimator.html +++ b/docs/outrank/algorithms/importance_estimator.html @@ -30,6 +30,9 @@115@njit( +116 'float32(int32[:], int32[:], float32, b1)', +117 cache=True, +118 fastmath=True, +119 error_model='numpy', +120 boundscheck=True, +121) +122def mutual_info_estimator_numba( +123 Y, X, approximation_factor=1, cardinality_correction=False, +124): +125 """Core estimator logic. Compute unique elements, subset if required""" +126 +127 all_events = len(X) +128 f_values, f_value_counts = numba_unique(X) +129 +130 # Diagonal entries +131 if np.sum(X - Y) == 0: +132 cardinality_correction = False +133 +134 if approximation_factor < 1: +135 subspace_size = int(approximation_factor * all_events) +136 if subspace_size != 0: +137 subspace = np.random.randint(0, all_events, size=subspace_size) +138 X = X[subspace] +139 Y = Y[subspace] +140 +141 joint_entropy_core = compute_entropies( +142 X, Y, all_events, f_values, f_value_counts, cardinality_correction, +143 ) +144 +145 return approximation_factor * joint_entropy_coreAPI Documentation
+
183 184 # Hash multi-value tuples and store name-val mappings 185 for remaining_part in remainder: -186 core_parts = remaining_part.split(' ') +186 core_parts = remaining_part.strip().split(' ') 187 namespace_part = core_parts[0] 188 other_parts = '-'.join(x for x in core_parts[1:] if x != '') -189 if namespace_part in fw_col_mapping: -190 remainder_hash[fw_col_mapping[namespace_part]] = other_parts -191 -192 # Construct the consistently-mapped instance based on the remainder mapping -193 the_real_instance = [ -194 remainder_hash.get( -195 el, None, -196 ) for el in table_header[1:] -197 ] -198 if not include_namespace_info: -199 the_real_instance = [ -200 x[2:] if not x is None else None for x in the_real_instance -201 ] -202 -203 parts = [label] + the_real_instance -204 return parts +189 +190 if namespace_part in fw_col_mapping: +191 remainder_hash[fw_col_mapping[namespace_part]] = other_parts +192 else: +193 logging.error(f"Didn't find namespace {namespace_part}") +194 +195 # Construct the consistently-mapped instance based on the remainder mapping +196 the_real_instance = [ +197 remainder_hash.get( +198 el, None, +199 ) for el in table_header[1:] +200 ] +201 if not include_namespace_info: +202 the_real_instance = [ +203 x[2:] if not x is None else None for x in the_real_instance +204 ] +205 +206 parts = [label] + the_real_instance +207 +208 return parts- + logger +
- sklearn_MI
@@ -75,203 +78,234 @@
+1# A module for pairwise computation of importances -- entrypoint for the core ranking algorighm(s) 2from __future__ import annotations 3 - 4import operator - 5import traceback - 6from typing import Any - 7from typing import Dict - 8 - 9import numpy as np - 10import pandas as pd - 11from scipy.stats import pearsonr - 12from sklearn.feature_selection import mutual_info_classif - 13from sklearn.linear_model import LogisticRegression - 14from sklearn.metrics import adjusted_mutual_info_score - 15from sklearn.model_selection import cross_val_score - 16from sklearn.preprocessing import OneHotEncoder - 17from sklearn.svm import SVC - 18 - 19try: - 20 from outrank.algorithms.feature_ranking import ranking_mi_numba - 21 - 22 numba_available = True - 23 - 24except Exception as es: - 25 traceback.print_exc(0) - 26 numba_available = False + 4import logging + 5import operator + 6import traceback + 7from typing import Any + 8from typing import Dict + 9 + 10import numpy as np + 11import pandas as pd + 12from scipy.stats import pearsonr + 13from sklearn.feature_selection import mutual_info_classif + 14from sklearn.linear_model import LogisticRegression + 15from sklearn.metrics import adjusted_mutual_info_score + 16from sklearn.model_selection import cross_val_score + 17from sklearn.preprocessing import OneHotEncoder + 18from sklearn.svm import SVC + 19 + 20logger = logging.getLogger('syn-logger') + 21logger.setLevel(logging.DEBUG) + 22 + 23try: + 24 from outrank.algorithms.feature_ranking import ranking_mi_numba + 25 + 26 numba_available = True 27 - 28 - 29def sklearn_MI(vector_first: Any, vector_second: Any) -> float: - 30 estimate_feature_importance = mutual_info_classif( - 31 vector_first.reshape(-1, 1), vector_second.reshape(-1), discrete_features=True, - 32 )[0] - 33 return estimate_feature_importance - 34 - 35 - 36def sklearn_surrogate( - 37 vector_first: Any, vector_second: Any, surrogate_model: str, - 38) -> float: - 39 if surrogate_model == 'surrogate-LR': - 40 clf = LogisticRegression(max_iter=100000) - 41 elif surrogate_model == 'surrogate-SVM': - 42 clf = SVC(gamma='auto', probability=True) - 43 - 44 transf = OneHotEncoder() - 45 - 46 # They do not commute, swap if needed - 47 if len(np.unique(vector_second) > 2): - 48 vector_third = vector_second - 49 vector_second = vector_first - 50 vector_first = vector_third - 51 del vector_third - 52 - 53 unique_values, counts = np.unique(vector_second, return_counts=True) - 54 - 55 # Establish min support for this type of ranking. - 56 if counts[0] < len(unique_values) * (2**5): - 57 estimate_feature_importance = 0 + 28except Exception as es: + 29 traceback.print_exc(0) + 30 numba_available = False + 31 + 32 + 33def sklearn_MI(vector_first: Any, vector_second: Any) -> float: + 34 estimate_feature_importance = mutual_info_classif( + 35 vector_first.reshape(-1, 1), vector_second.reshape(-1), discrete_features=True, + 36 )[0] + 37 return estimate_feature_importance + 38 + 39 + 40def sklearn_surrogate( + 41 vector_first: Any, vector_second: Any, surrogate_model: str, + 42) -> float: + 43 if surrogate_model == 'surrogate-LR': + 44 clf = LogisticRegression(max_iter=100000) + 45 elif surrogate_model == 'surrogate-SVM': + 46 clf = SVC(gamma='auto', probability=True) + 47 + 48 transf = OneHotEncoder() + 49 + 50 # They do not commute, swap if needed + 51 if len(np.unique(vector_second) > 2): + 52 vector_third = vector_second + 53 vector_second = vector_first + 54 vector_first = vector_third + 55 del vector_third + 56 + 57 unique_values, counts = np.unique(vector_second, return_counts=True) 58 - 59 else: - 60 vector_first = transf.fit_transform(vector_first.reshape(-1, 1)) - 61 estimate_feature_importance_list = cross_val_score( - 62 clf, vector_first, vector_second, scoring='neg_log_loss', cv=4, - 63 ) - 64 - 65 estimate_feature_importance = 1 + \ - 66 np.median(estimate_feature_importance_list) - 67 - 68 return estimate_feature_importance - 69 - 70 - 71def numba_mi(vector_first, vector_second, heuristic): - 72 if heuristic == 'MI-numba-randomized': - 73 cardinality_correction = True + 59 # Establish min support for this type of ranking. + 60 if counts[0] < len(unique_values) * (2**5): + 61 estimate_feature_importance = 0 + 62 + 63 else: + 64 vector_first = transf.fit_transform(vector_first.reshape(-1, 1)) + 65 estimate_feature_importance_list = cross_val_score( + 66 clf, vector_first, vector_second, scoring='neg_log_loss', cv=4, + 67 ) + 68 + 69 estimate_feature_importance = 1 + \ + 70 np.median(estimate_feature_importance_list) + 71 + 72 return estimate_feature_importance + 73 74 - 75 else: - 76 cardinality_correction = False - 77 - 78 estimate_feature_importance = ranking_mi_numba.mutual_info_estimator_numba( - 79 vector_first.reshape(-1).astype(np.int32), - 80 vector_second.reshape(-1).astype(np.int32), - 81 approximation_factor=np.float32(1.0), - 82 cardinality_correction=cardinality_correction, - 83 ) - 84 - 85 return estimate_feature_importance - 86 - 87 - 88def sklearn_mi_adj(vector_first, vector_second): - 89 # AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [avg(H(U), H(V)) - E(MI(U, V))] - 90 estimate_feature_importance = adjusted_mutual_info_score( - 91 vector_first.reshape(-1), vector_second.reshape(-1), - 92 ) - 93 return estimate_feature_importance - 94 - 95 - 96def get_importances_estimate_pairwise(combination, args, tmp_df): - 97 """A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel.""" + 75def numba_mi(vector_first, vector_second, heuristic): + 76 if heuristic == 'MI-numba-randomized': + 77 cardinality_correction = True + 78 + 79 else: + 80 cardinality_correction = False + 81 + 82 estimate_feature_importance = ranking_mi_numba.mutual_info_estimator_numba( + 83 vector_first.reshape(-1).astype(np.int32), + 84 vector_second.reshape(-1).astype(np.int32), + 85 approximation_factor=np.float32(1.0), + 86 cardinality_correction=cardinality_correction, + 87 ) + 88 + 89 return estimate_feature_importance + 90 + 91 + 92def sklearn_mi_adj(vector_first, vector_second): + 93 # AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [avg(H(U), H(V)) - E(MI(U, V))] + 94 estimate_feature_importance = adjusted_mutual_info_score( + 95 vector_first.reshape(-1), vector_second.reshape(-1), + 96 ) + 97 return estimate_feature_importance 98 - 99 feature_one = combination[0] -100 feature_two = combination[1] -101 -102 vector_first = tmp_df[[feature_one]].values.ravel() -103 vector_second = tmp_df[[feature_two]].values.ravel() -104 -105 if len(vector_first) == 0 or len(vector_second) == 0: -106 return [feature_one, feature_two, 0] -107 -108 # Compute score based on the selected heuristic. -109 if args.heuristic == 'MI': -110 # Compute the infoGain -111 estimate_feature_importance = sklearn_MI(vector_first, vector_second) + 99 +100def get_importances_estimate_pairwise(combination, args, tmp_df): +101 """A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel.""" +102 +103 feature_one = combination[0] +104 feature_two = combination[1] +105 +106 if feature_one not in tmp_df.columns: +107 logging.info(f'{feature_one} not found in the constructed data frame - consider increasing --combination_number_upper_bound for better coverage.') +108 return [feature_one, feature_two, 0] +109 elif feature_two not in tmp_df.columns: +110 logging.info(f'{feature_two} not found in the constructed data frame - consider increasing --combination_number_upper_bound for better coverage.') +111 return [feature_one, feature_two, 0] 112 -113 elif 'surrogate-' in args.heuristic: -114 estimate_feature_importance = sklearn_surrogate( -115 vector_first, vector_second, args.heuristic, -116 ) -117 -118 elif 'MI-numba' in args.heuristic: -119 estimate_feature_importance = numba_mi( -120 vector_first, vector_second, args.heuristic, -121 ) -122 -123 elif args.heuristic == 'AMI': -124 estimate_feature_importance = sklearn_mi_adj( -125 vector_first, vector_second, -126 ) -127 -128 elif args.heuristic == 'correlation-Pearson': -129 estimate_feature_importance = pearsonr(vector_first, vector_second)[0] -130 -131 elif args.heuristic == 'Constant': -132 estimate_feature_importance = 0.0 +113 vector_first = tmp_df[[feature_one]].values.ravel() +114 vector_second = tmp_df[[feature_two]].values.ravel() +115 +116 if len(vector_first) == 0 or len(vector_second) == 0: +117 return [feature_one, feature_two, 0] +118 +119 # Compute score based on the selected heuristic. +120 if args.heuristic == 'MI': +121 # Compute the infoGain +122 estimate_feature_importance = sklearn_MI(vector_first, vector_second) +123 +124 elif 'surrogate-' in args.heuristic: +125 estimate_feature_importance = sklearn_surrogate( +126 vector_first, vector_second, args.heuristic, +127 ) +128 +129 elif 'MI-numba' in args.heuristic: +130 estimate_feature_importance = numba_mi( +131 vector_first, vector_second, args.heuristic, +132 ) 133 -134 else: -135 raise ValueError( -136 'Please select one of the possible heuristics (MI, chi2)', +134 elif args.heuristic == 'AMI': +135 estimate_feature_importance = sklearn_mi_adj( +136 vector_first, vector_second, 137 ) 138 -139 return (feature_one, feature_two, estimate_feature_importance) -140 +139 elif args.heuristic == 'correlation-Pearson': +140 estimate_feature_importance = pearsonr(vector_first, vector_second)[0] 141 -142def rank_features_3MR( -143 relevance_dict: dict[str, float], -144 redundancy_dict: dict[tuple[Any, Any], Any], -145 relational_dict: dict[tuple[Any, Any], Any], -146 strategy: str = 'median', -147 alpha: float = 1, -148 beta: float = 1, -149) -> pd.DataFrame: -150 all_features = relevance_dict.keys() -151 most_important_feature = max( -152 relevance_dict.items(), key=operator.itemgetter(1), -153 )[0] -154 ranked_features = [most_important_feature] -155 -156 def calc_higher_order(feature, is_redundancy=True): -157 values = [] -158 for feat in ranked_features: -159 if is_redundancy: -160 values.append(redundancy_dict[(feat, feature)]) -161 else: -162 values.append(relational_dict[(feat, feature)]) -163 if strategy == 'sum': -164 return sum(values) -165 if strategy == 'mean': -166 return np.mean(values) -167 return np.median(values) -168 -169 while len(ranked_features) != len(all_features): -170 top_importance = 0 -171 most_important_feature = '' -172 -173 for ind, feat in enumerate(set(all_features) - set(ranked_features)): -174 feature_redundancy = calc_higher_order(feat) -175 feature_relation = calc_higher_order(feat, False) -176 feature_relevance = relevance_dict[feat] -177 importance = ( -178 feature_relevance - alpha * feature_redundancy + beta * feature_relation -179 ) -180 -181 if (importance > top_importance) or (ind == 0): -182 top_importance = importance -183 most_important_feature = feat -184 ranked_features.append(most_important_feature) -185 return pd.DataFrame( -186 { -187 'Feature': ranked_features, -188 '3mr_ranking': list(range(1, len(ranked_features) + 1)), -189 }, -190 ) +142 elif args.heuristic == 'Constant': +143 estimate_feature_importance = 0.0 +144 +145 else: +146 raise ValueError( +147 'Please select one of the possible heuristics (MI, chi2)', +148 ) +149 +150 return (feature_one, feature_two, estimate_feature_importance) +151 +152 +153def rank_features_3MR( +154 relevance_dict: dict[str, float], +155 redundancy_dict: dict[tuple[Any, Any], Any], +156 relational_dict: dict[tuple[Any, Any], Any], +157 strategy: str = 'median', +158 alpha: float = 1, +159 beta: float = 1, +160) -> pd.DataFrame: +161 all_features = relevance_dict.keys() +162 most_important_feature = max( +163 relevance_dict.items(), key=operator.itemgetter(1), +164 )[0] +165 ranked_features = [most_important_feature] +166 +167 def calc_higher_order(feature, is_redundancy=True): +168 values = [] +169 for feat in ranked_features: +170 interaction_tuple = (feat, feature) +171 if is_redundancy: +172 if interaction_tuple in redundancy_dict: +173 values.append(redundancy_dict[interaction_tuple]) +174 else: +175 logging.info('Not accounting for redundancy tuple {} - please increase the --combination_number_upper_bound for beter coverage of interactions/redundancies.') +176 else: +177 if interaction_tuple in relational_dict: +178 values.append(relational_dict[interaction_tuple]) +179 else: +180 logging.info('Not accounting for interaction tuple {} - please increase the --combination_number_upper_bound for beter coverage of interactions/redundancies.') +181 +182 if strategy == 'sum': +183 return sum(values) +184 if strategy == 'mean': +185 return np.mean(values) +186 return np.median(values) +187 +188 while len(ranked_features) != len(all_features): +189 top_importance = 0 +190 most_important_feature = '' 191 -192 -193def get_importances_estimate_nonmyopic(args: Any, tmp_df: pd.DataFrame): -194 # TODO - nonmyopic algorithms - tmp_df \ args.label vs. label -195 # TODO - this is to be executed directly on df - no need for parallel kernel(s) -196 pass +192 for ind, feat in enumerate(set(all_features) - set(ranked_features)): +193 feature_redundancy = calc_higher_order(feat) +194 feature_relation = calc_higher_order(feat, False) +195 feature_relevance = relevance_dict[feat] +196 importance = ( +197 feature_relevance - alpha * feature_redundancy + beta * feature_relation +198 ) +199 +200 if (importance > top_importance) or (ind == 0): +201 top_importance = importance +202 most_important_feature = feat +203 ranked_features.append(most_important_feature) +204 return pd.DataFrame( +205 { +206 'Feature': ranked_features, +207 '3mr_ranking': list(range(1, len(ranked_features) + 1)), +208 }, +209 ) +210 +211 +212def get_importances_estimate_nonmyopic(args: Any, tmp_df: pd.DataFrame): +213 # TODO - nonmyopic algorithms - tmp_df \ args.label vs. label +214 # TODO - this is to be executed directly on df - no need for parallel kernel(s) +215 pass+ + logger = +<Logger syn-logger (DEBUG)> + + ++ + + + + @@ -283,11 +317,11 @@-
-30def sklearn_MI(vector_first: Any, vector_second: Any) -> float: -31 estimate_feature_importance = mutual_info_classif( -32 vector_first.reshape(-1, 1), vector_second.reshape(-1), discrete_features=True, -33 )[0] -34 return estimate_feature_importance +@@ -305,39 +339,39 @@34def sklearn_MI(vector_first: Any, vector_second: Any) -> float: +35 estimate_feature_importance = mutual_info_classif( +36 vector_first.reshape(-1, 1), vector_second.reshape(-1), discrete_features=True, +37 )[0] +38 return estimate_feature_importance
-37def sklearn_surrogate( -38 vector_first: Any, vector_second: Any, surrogate_model: str, -39) -> float: -40 if surrogate_model == 'surrogate-LR': -41 clf = LogisticRegression(max_iter=100000) -42 elif surrogate_model == 'surrogate-SVM': -43 clf = SVC(gamma='auto', probability=True) -44 -45 transf = OneHotEncoder() -46 -47 # They do not commute, swap if needed -48 if len(np.unique(vector_second) > 2): -49 vector_third = vector_second -50 vector_second = vector_first -51 vector_first = vector_third -52 del vector_third -53 -54 unique_values, counts = np.unique(vector_second, return_counts=True) -55 -56 # Establish min support for this type of ranking. -57 if counts[0] < len(unique_values) * (2**5): -58 estimate_feature_importance = 0 +@@ -355,21 +389,21 @@41def sklearn_surrogate( +42 vector_first: Any, vector_second: Any, surrogate_model: str, +43) -> float: +44 if surrogate_model == 'surrogate-LR': +45 clf = LogisticRegression(max_iter=100000) +46 elif surrogate_model == 'surrogate-SVM': +47 clf = SVC(gamma='auto', probability=True) +48 +49 transf = OneHotEncoder() +50 +51 # They do not commute, swap if needed +52 if len(np.unique(vector_second) > 2): +53 vector_third = vector_second +54 vector_second = vector_first +55 vector_first = vector_third +56 del vector_third +57 +58 unique_values, counts = np.unique(vector_second, return_counts=True) 59 -60 else: -61 vector_first = transf.fit_transform(vector_first.reshape(-1, 1)) -62 estimate_feature_importance_list = cross_val_score( -63 clf, vector_first, vector_second, scoring='neg_log_loss', cv=4, -64 ) -65 -66 estimate_feature_importance = 1 + \ -67 np.median(estimate_feature_importance_list) -68 -69 return estimate_feature_importance +60 # Establish min support for this type of ranking. +61 if counts[0] < len(unique_values) * (2**5): +62 estimate_feature_importance = 0 +63 +64 else: +65 vector_first = transf.fit_transform(vector_first.reshape(-1, 1)) +66 estimate_feature_importance_list = cross_val_score( +67 clf, vector_first, vector_second, scoring='neg_log_loss', cv=4, +68 ) +69 +70 estimate_feature_importance = 1 + \ +71 np.median(estimate_feature_importance_list) +72 +73 return estimate_feature_importance
-72def numba_mi(vector_first, vector_second, heuristic): -73 if heuristic == 'MI-numba-randomized': -74 cardinality_correction = True -75 -76 else: -77 cardinality_correction = False -78 -79 estimate_feature_importance = ranking_mi_numba.mutual_info_estimator_numba( -80 vector_first.reshape(-1).astype(np.int32), -81 vector_second.reshape(-1).astype(np.int32), -82 approximation_factor=np.float32(1.0), -83 cardinality_correction=cardinality_correction, -84 ) -85 -86 return estimate_feature_importance +@@ -387,12 +421,12 @@76def numba_mi(vector_first, vector_second, heuristic): +77 if heuristic == 'MI-numba-randomized': +78 cardinality_correction = True +79 +80 else: +81 cardinality_correction = False +82 +83 estimate_feature_importance = ranking_mi_numba.mutual_info_estimator_numba( +84 vector_first.reshape(-1).astype(np.int32), +85 vector_second.reshape(-1).astype(np.int32), +86 approximation_factor=np.float32(1.0), +87 cardinality_correction=cardinality_correction, +88 ) +89 +90 return estimate_feature_importance
-89def sklearn_mi_adj(vector_first, vector_second): -90 # AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [avg(H(U), H(V)) - E(MI(U, V))] -91 estimate_feature_importance = adjusted_mutual_info_score( -92 vector_first.reshape(-1), vector_second.reshape(-1), -93 ) -94 return estimate_feature_importance +@@ -410,50 +444,57 @@93def sklearn_mi_adj(vector_first, vector_second): +94 # AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [avg(H(U), H(V)) - E(MI(U, V))] +95 estimate_feature_importance = adjusted_mutual_info_score( +96 vector_first.reshape(-1), vector_second.reshape(-1), +97 ) +98 return estimate_feature_importance
-97def get_importances_estimate_pairwise(combination, args, tmp_df): - 98 """A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel.""" - 99 -100 feature_one = combination[0] -101 feature_two = combination[1] -102 -103 vector_first = tmp_df[[feature_one]].values.ravel() -104 vector_second = tmp_df[[feature_two]].values.ravel() -105 -106 if len(vector_first) == 0 or len(vector_second) == 0: -107 return [feature_one, feature_two, 0] -108 -109 # Compute score based on the selected heuristic. -110 if args.heuristic == 'MI': -111 # Compute the infoGain -112 estimate_feature_importance = sklearn_MI(vector_first, vector_second) +@@ -473,55 +514,63 @@101def get_importances_estimate_pairwise(combination, args, tmp_df): +102 """A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel.""" +103 +104 feature_one = combination[0] +105 feature_two = combination[1] +106 +107 if feature_one not in tmp_df.columns: +108 logging.info(f'{feature_one} not found in the constructed data frame - consider increasing --combination_number_upper_bound for better coverage.') +109 return [feature_one, feature_two, 0] +110 elif feature_two not in tmp_df.columns: +111 logging.info(f'{feature_two} not found in the constructed data frame - consider increasing --combination_number_upper_bound for better coverage.') +112 return [feature_one, feature_two, 0] 113 -114 elif 'surrogate-' in args.heuristic: -115 estimate_feature_importance = sklearn_surrogate( -116 vector_first, vector_second, args.heuristic, -117 ) -118 -119 elif 'MI-numba' in args.heuristic: -120 estimate_feature_importance = numba_mi( -121 vector_first, vector_second, args.heuristic, -122 ) -123 -124 elif args.heuristic == 'AMI': -125 estimate_feature_importance = sklearn_mi_adj( -126 vector_first, vector_second, -127 ) -128 -129 elif args.heuristic == 'correlation-Pearson': -130 estimate_feature_importance = pearsonr(vector_first, vector_second)[0] -131 -132 elif args.heuristic == 'Constant': -133 estimate_feature_importance = 0.0 +114 vector_first = tmp_df[[feature_one]].values.ravel() +115 vector_second = tmp_df[[feature_two]].values.ravel() +116 +117 if len(vector_first) == 0 or len(vector_second) == 0: +118 return [feature_one, feature_two, 0] +119 +120 # Compute score based on the selected heuristic. +121 if args.heuristic == 'MI': +122 # Compute the infoGain +123 estimate_feature_importance = sklearn_MI(vector_first, vector_second) +124 +125 elif 'surrogate-' in args.heuristic: +126 estimate_feature_importance = sklearn_surrogate( +127 vector_first, vector_second, args.heuristic, +128 ) +129 +130 elif 'MI-numba' in args.heuristic: +131 estimate_feature_importance = numba_mi( +132 vector_first, vector_second, args.heuristic, +133 ) 134 -135 else: -136 raise ValueError( -137 'Please select one of the possible heuristics (MI, chi2)', +135 elif args.heuristic == 'AMI': +136 estimate_feature_importance = sklearn_mi_adj( +137 vector_first, vector_second, 138 ) 139 -140 return (feature_one, feature_two, estimate_feature_importance) +140 elif args.heuristic == 'correlation-Pearson': +141 estimate_feature_importance = pearsonr(vector_first, vector_second)[0] +142 +143 elif args.heuristic == 'Constant': +144 estimate_feature_importance = 0.0 +145 +146 else: +147 raise ValueError( +148 'Please select one of the possible heuristics (MI, chi2)', +149 ) +150 +151 return (feature_one, feature_two, estimate_feature_importance)
-143def rank_features_3MR( -144 relevance_dict: dict[str, float], -145 redundancy_dict: dict[tuple[Any, Any], Any], -146 relational_dict: dict[tuple[Any, Any], Any], -147 strategy: str = 'median', -148 alpha: float = 1, -149 beta: float = 1, -150) -> pd.DataFrame: -151 all_features = relevance_dict.keys() -152 most_important_feature = max( -153 relevance_dict.items(), key=operator.itemgetter(1), -154 )[0] -155 ranked_features = [most_important_feature] -156 -157 def calc_higher_order(feature, is_redundancy=True): -158 values = [] -159 for feat in ranked_features: -160 if is_redundancy: -161 values.append(redundancy_dict[(feat, feature)]) -162 else: -163 values.append(relational_dict[(feat, feature)]) -164 if strategy == 'sum': -165 return sum(values) -166 if strategy == 'mean': -167 return np.mean(values) -168 return np.median(values) -169 -170 while len(ranked_features) != len(all_features): -171 top_importance = 0 -172 most_important_feature = '' -173 -174 for ind, feat in enumerate(set(all_features) - set(ranked_features)): -175 feature_redundancy = calc_higher_order(feat) -176 feature_relation = calc_higher_order(feat, False) -177 feature_relevance = relevance_dict[feat] -178 importance = ( -179 feature_relevance - alpha * feature_redundancy + beta * feature_relation -180 ) -181 -182 if (importance > top_importance) or (ind == 0): -183 top_importance = importance -184 most_important_feature = feat -185 ranked_features.append(most_important_feature) -186 return pd.DataFrame( -187 { -188 'Feature': ranked_features, -189 '3mr_ranking': list(range(1, len(ranked_features) + 1)), -190 }, -191 ) +@@ -539,10 +588,10 @@154def rank_features_3MR( +155 relevance_dict: dict[str, float], +156 redundancy_dict: dict[tuple[Any, Any], Any], +157 relational_dict: dict[tuple[Any, Any], Any], +158 strategy: str = 'median', +159 alpha: float = 1, +160 beta: float = 1, +161) -> pd.DataFrame: +162 all_features = relevance_dict.keys() +163 most_important_feature = max( +164 relevance_dict.items(), key=operator.itemgetter(1), +165 )[0] +166 ranked_features = [most_important_feature] +167 +168 def calc_higher_order(feature, is_redundancy=True): +169 values = [] +170 for feat in ranked_features: +171 interaction_tuple = (feat, feature) +172 if is_redundancy: +173 if interaction_tuple in redundancy_dict: +174 values.append(redundancy_dict[interaction_tuple]) +175 else: +176 logging.info('Not accounting for redundancy tuple {} - please increase the --combination_number_upper_bound for beter coverage of interactions/redundancies.') +177 else: +178 if interaction_tuple in relational_dict: +179 values.append(relational_dict[interaction_tuple]) +180 else: +181 logging.info('Not accounting for interaction tuple {} - please increase the --combination_number_upper_bound for beter coverage of interactions/redundancies.') +182 +183 if strategy == 'sum': +184 return sum(values) +185 if strategy == 'mean': +186 return np.mean(values) +187 return np.median(values) +188 +189 while len(ranked_features) != len(all_features): +190 top_importance = 0 +191 most_important_feature = '' +192 +193 for ind, feat in enumerate(set(all_features) - set(ranked_features)): +194 feature_redundancy = calc_higher_order(feat) +195 feature_relation = calc_higher_order(feat, False) +196 feature_relevance = relevance_dict[feat] +197 importance = ( +198 feature_relevance - alpha * feature_redundancy + beta * feature_relation +199 ) +200 +201 if (importance > top_importance) or (ind == 0): +202 top_importance = importance +203 most_important_feature = feat +204 ranked_features.append(most_important_feature) +205 return pd.DataFrame( +206 { +207 'Feature': ranked_features, +208 '3mr_ranking': list(range(1, len(ranked_features) + 1)), +209 }, +210 )
@@ -1378,25 +1382,29 @@194def get_importances_estimate_nonmyopic(args: Any, tmp_df: pd.DataFrame): -195 # TODO - nonmyopic algorithms - tmp_df \ args.label vs. label -196 # TODO - this is to be executed directly on df - no need for parallel kernel(s) -197 pass +diff --git a/docs/outrank/core_ranking.html b/docs/outrank/core_ranking.html index ebded07..35caebf 100644 --- a/docs/outrank/core_ranking.html +++ b/docs/outrank/core_ranking.html @@ -194,9 +194,9 @@213def get_importances_estimate_nonmyopic(args: Any, tmp_df: pd.DataFrame): +214 # TODO - nonmyopic algorithms - tmp_df \ args.label vs. label +215 # TODO - this is to be executed directly on df - no need for parallel kernel(s) +216 pass72 73 # Handle cont. types prior to interaction evaluation 74 pbar.set_description('Encoding columns') - 75 col_dots = '.' - 76 start_enc_timer = timer() - 77 tmp_df = pd.DataFrame({k : tmp_df[k].cat.codes for k in all_columns}) + 75 start_enc_timer = timer() + 76 tmp_df = pd.DataFrame({k : tmp_df[k].cat.codes for k in all_columns}) + 77 78 end_enc_timer = timer() 79 out_time_struct['encoding_columns'] = end_enc_timer - start_enc_timer 80 @@ -610,7 +610,7 @@
488 489 focus_set.add(args.label_column) 490 focus_set = {x for x in focus_set if x in input_dataframe.columns} -491 input_dataframe = input_dataframe[focus_set] +491 input_dataframe = input_dataframe[list(focus_set)] 492 493 if args.transformers != 'none': 494 pbar.set_description('Adding transformations') @@ -986,9 +986,9 @@
73 74 # Handle cont. types prior to interaction evaluation 75 pbar.set_description('Encoding columns') - 76 col_dots = '.' - 77 start_enc_timer = timer() - 78 tmp_df = pd.DataFrame({k : tmp_df[k].cat.codes for k in all_columns}) + 76 start_enc_timer = timer() + 77 tmp_df = pd.DataFrame({k : tmp_df[k].cat.codes for k in all_columns}) + 78 79 end_enc_timer = timer() 80 out_time_struct['encoding_columns'] = end_enc_timer - start_enc_timer 81 @@ -1589,7 +1589,7 @@
489 490 focus_set.add(args.label_column) 491 focus_set = {x for x in focus_set if x in input_dataframe.columns} -492 input_dataframe = input_dataframe[focus_set] +492 input_dataframe = input_dataframe[list(focus_set)] 493 494 if args.transformers != 'none': 495 pbar.set_description('Adding transformations') diff --git a/docs/outrank/core_utils.html b/docs/outrank/core_utils.html index 7d47cd0..dc6d242 100644 --- a/docs/outrank/core_utils.html +++ b/docs/outrank/core_utils.html @@ -379,458 +379,462 @@
182 183 # Hash multi-value tuples and store name-val mappings 184 for remaining_part in remainder: -185 core_parts = remaining_part.split(' ') +185 core_parts = remaining_part.strip().split(' ') 186 namespace_part = core_parts[0] 187 other_parts = '-'.join(x for x in core_parts[1:] if x != '') -188 if namespace_part in fw_col_mapping: -189 remainder_hash[fw_col_mapping[namespace_part]] = other_parts -190 -191 # Construct the consistently-mapped instance based on the remainder mapping -192 the_real_instance = [ -193 remainder_hash.get( -194 el, None, -195 ) for el in table_header[1:] -196 ] -197 if not include_namespace_info: -198 the_real_instance = [ -199 x[2:] if not x is None else None for x in the_real_instance -200 ] -201 -202 parts = [label] + the_real_instance -203 return parts +188 +189 if namespace_part in fw_col_mapping: +190 remainder_hash[fw_col_mapping[namespace_part]] = other_parts +191 else: +192 logging.error(f"Didn't find namespace {namespace_part}") +193 +194 # Construct the consistently-mapped instance based on the remainder mapping +195 the_real_instance = [ +196 remainder_hash.get( +197 el, None, +198 ) for el in table_header[1:] +199 ] +200 if not include_namespace_info: +201 the_real_instance = [ +202 x[2:] if not x is None else None for x in the_real_instance +203 ] 204 -205 -206def parse_ob_csv_line( -207 line_string: str, delimiter: str = ',', args: Any = None, -208) -> list[str]: -209 """Data can have commas within JSON field dumps""" -210 -211 clx = list(csv.reader([line_string])).pop() -212 return clx -213 +205 parts = [label] + the_real_instance +206 +207 return parts +208 +209 +210def parse_ob_csv_line( +211 line_string: str, delimiter: str = ',', args: Any = None, +212) -> list[str]: +213 """Data can have commas within JSON field dumps""" 214 -215def generic_line_parser( -216 line_string: str, -217 delimiter: str, -218 args: Any = None, -219 fw_col_mapping: Any = None, -220 table_header: Any = None, -221) -> list[Any]: -222 """A generic method aimed to parse data from different sources.""" -223 -224 if args.data_source == 'ob-raw-dump': -225 return parse_ob_line(line_string, delimiter, args) -226 -227 elif args.data_source == 'ob-vw': -228 return parse_ob_line_vw( -229 line_string, delimiter, args, fw_col_mapping, table_header, -230 ) -231 -232 elif args.data_source == 'ob-csv' or args.data_source == 'csv-raw': -233 return parse_ob_csv_line(line_string, delimiter, args) -234 -235 else: -236 raise NotImplementedError( -237 'Please, specify a valid --data_source argument!', -238 ) -239 -240 -241def read_reference_json(json_path) -> dict[str, dict]: -242 """A helper method for reading a JSON""" -243 with open(json_path) as jp: -244 return json.load(jp) -245 -246 -247def parse_namespace(namespace_path: str) -> tuple[set[str], dict[str, str]]: -248 """Parse the feature namespace for type awareness""" +215 clx = list(csv.reader([line_string])).pop() +216 return clx +217 +218 +219def generic_line_parser( +220 line_string: str, +221 delimiter: str, +222 args: Any = None, +223 fw_col_mapping: Any = None, +224 table_header: Any = None, +225) -> list[Any]: +226 """A generic method aimed to parse data from different sources.""" +227 +228 if args.data_source == 'ob-raw-dump': +229 return parse_ob_line(line_string, delimiter, args) +230 +231 elif args.data_source == 'ob-vw': +232 return parse_ob_line_vw( +233 line_string, delimiter, args, fw_col_mapping, table_header, +234 ) +235 +236 elif args.data_source == 'ob-csv' or args.data_source == 'csv-raw': +237 return parse_ob_csv_line(line_string, delimiter, args) +238 +239 else: +240 raise NotImplementedError( +241 'Please, specify a valid --data_source argument!', +242 ) +243 +244 +245def read_reference_json(json_path) -> dict[str, dict]: +246 """A helper method for reading a JSON""" +247 with open(json_path) as jp: +248 return json.load(jp) 249 -250 float_set = set() -251 id_feature_map = {} -252 -253 with open(namespace_path) as nm: -254 for line in nm: -255 try: -256 namespace_parts = line.strip().split(',') -257 if len(namespace_parts) == 2 and '_' not in namespace_parts[0]: -258 fw_id, feature = namespace_parts -259 type_name = 'generic' -260 -261 else: -262 fw_id, feature, type_name = namespace_parts -263 -264 id_feature_map[fw_id] = feature -265 if type_name == 'f32': -266 float_set.add(feature) -267 except Exception as es: -268 logging.error(f'\U0001F631 {es} -- {namespace_parts}') -269 -270 return float_set, id_feature_map -271 -272 -273def read_column_names(mapping_file: str) -> list[str]: -274 """Read the col. header""" +250 +251def parse_namespace(namespace_path: str) -> tuple[set[str], dict[str, str]]: +252 """Parse the feature namespace for type awareness""" +253 +254 float_set = set() +255 id_feature_map = {} +256 +257 with open(namespace_path) as nm: +258 for line in nm: +259 try: +260 namespace_parts = line.strip().split(',') +261 if len(namespace_parts) == 2 and '_' not in namespace_parts[0]: +262 fw_id, feature = namespace_parts +263 type_name = 'generic' +264 +265 else: +266 fw_id, feature, type_name = namespace_parts +267 +268 id_feature_map[fw_id] = feature +269 if type_name == 'f32': +270 float_set.add(feature) +271 except Exception as es: +272 logging.error(f'\U0001F631 {es} -- {namespace_parts}') +273 +274 return float_set, id_feature_map 275 -276 with open(mapping_file, encoding='utf-8') as mf: -277 columns = mf.read().strip().split('\t') -278 return columns +276 +277def read_column_names(mapping_file: str) -> list[str]: +278 """Read the col. header""" 279 -280 -281def parse_ob_vw_feature_information(data_path) -> DatasetInformationStorage: -282 """A generic parser of ob-based data""" +280 with open(mapping_file, encoding='utf-8') as mf: +281 columns = mf.read().strip().split('\t') +282 return columns 283 -284 # Get column names -285 column_descriptions = os.path.join(data_path, 'vw_namespace_map.csv') -286 column_types, fw_map = parse_namespace(column_descriptions) +284 +285def parse_ob_vw_feature_information(data_path) -> DatasetInformationStorage: +286 """A generic parser of ob-based data""" 287 -288 # We establish column order here -289 column_names = ['label'] + list(fw_map.values()) -290 -291 data_path = os.path.join(data_path, 'data.vw.gz') -292 col_delimiter = None -293 encoding = 'utf-8' +288 # Get column names +289 column_descriptions = os.path.join(data_path, 'vw_namespace_map.csv') +290 column_types, fw_map = parse_namespace(column_descriptions) +291 +292 # We establish column order here +293 column_names = ['label'] + list(fw_map.values()) 294 -295 return DatasetInformationStorage( -296 data_path, column_names, column_types, col_delimiter, encoding, fw_map, -297 ) +295 data_path = os.path.join(data_path, 'data.vw.gz') +296 col_delimiter = None +297 encoding = 'utf-8' 298 -299 -300def parse_ob_raw_feature_information(data_path) -> DatasetInformationStorage: -301 """A generic parser of ob-based data""" +299 return DatasetInformationStorage( +300 data_path, column_names, column_types, col_delimiter, encoding, fw_map, +301 ) 302 -303 # Get column names -304 column_types: list[str] = [] -305 -306 # Get set of numeric columns -307 table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv') -308 table_header = read_column_names(table_header_path) +303 +304def parse_ob_raw_feature_information(data_path) -> DatasetInformationStorage: +305 """A generic parser of ob-based data""" +306 +307 # Get column names +308 column_types: list[str] = [] 309 -310 data_path_train = os.path.join(data_path, 'raw_data/1_train/*') -311 col_delimiter = '\t' -312 encoding = 'utf-8' +310 # Get set of numeric columns +311 table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv') +312 table_header = read_column_names(table_header_path) 313 -314 final_df = [] -315 core_data_folders = glob.glob(data_path_train) -316 for actual_data in core_data_folders: -317 for dump in glob.glob(actual_data + '/*'): -318 tmp_df = pd.read_csv( -319 dump, sep='\t', low_memory=True, dtype='object', -320 ) -321 assert tmp_df.shape[1] == len(table_header) -322 tmp_df.columns = table_header -323 final_df.append(tmp_df) -324 -325 final_df_concat = pd.concat(final_df, axis=0) -326 final_path = os.path.join(data_path, 'raw_dump.tsv') -327 logging.info( -328 f'Stored data dump of dimension {final_df_concat.shape} to {final_path}', -329 ) -330 final_df_concat.to_csv(final_path, sep='\t', index=False) -331 data_path = os.path.join(data_path, 'raw_dump.tsv') -332 -333 return DatasetInformationStorage( -334 data_path, table_header, set(column_types), col_delimiter, encoding, None, -335 ) +314 data_path_train = os.path.join(data_path, 'raw_data/1_train/*') +315 col_delimiter = '\t' +316 encoding = 'utf-8' +317 +318 final_df = [] +319 core_data_folders = glob.glob(data_path_train) +320 for actual_data in core_data_folders: +321 for dump in glob.glob(actual_data + '/*'): +322 tmp_df = pd.read_csv( +323 dump, sep='\t', low_memory=True, dtype='object', +324 ) +325 assert tmp_df.shape[1] == len(table_header) +326 tmp_df.columns = table_header +327 final_df.append(tmp_df) +328 +329 final_df_concat = pd.concat(final_df, axis=0) +330 final_path = os.path.join(data_path, 'raw_dump.tsv') +331 logging.info( +332 f'Stored data dump of dimension {final_df_concat.shape} to {final_path}', +333 ) +334 final_df_concat.to_csv(final_path, sep='\t', index=False) +335 data_path = os.path.join(data_path, 'raw_dump.tsv') 336 -337 -338def parse_ob_feature_information(data_path) -> DatasetInformationStorage: -339 """A generic parser of ob-based data""" +337 return DatasetInformationStorage( +338 data_path, table_header, set(column_types), col_delimiter, encoding, None, +339 ) 340 -341 # Get column names -342 column_names = os.path.join(data_path, 'vw_namespace_map.csv') -343 column_types, _ = parse_namespace(column_names) +341 +342def parse_ob_feature_information(data_path) -> DatasetInformationStorage: +343 """A generic parser of ob-based data""" 344 -345 # Get set of numeric columns -346 table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv') -347 table_header = read_column_names(table_header_path) +345 # Get column names +346 column_names = os.path.join(data_path, 'vw_namespace_map.csv') +347 column_types, _ = parse_namespace(column_names) 348 -349 data_path = os.path.join(data_path, 'raw_data/1_train/*') -350 col_delimiter = '\t' -351 encoding = 'utf-8' +349 # Get set of numeric columns +350 table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv') +351 table_header = read_column_names(table_header_path) 352 -353 return DatasetInformationStorage( -354 data_path, table_header, column_types, col_delimiter, encoding, None, -355 ) +353 data_path = os.path.join(data_path, 'raw_data/1_train/*') +354 col_delimiter = '\t' +355 encoding = 'utf-8' 356 -357 -358def parse_csv_with_description_information(data_path) -> DatasetInformationStorage: -359 dataset_description = read_reference_json( -360 os.path.join(data_path, 'dataset_desc.json'), -361 ) -362 column_names = [] -363 column_types = set() -364 for feature in dataset_description.get('data_features', []): -365 feature_name = feature.get('name') -366 column_names.append(feature_name) -367 feature_type = feature.get('type', '') -368 if 'float' in feature_type or 'Float' in feature_type: -369 column_types.add(feature_name) -370 col_delimiter = ',' -371 data_path = os.path.join(data_path, 'data.csv') -372 encoding = 'latin1' -373 return DatasetInformationStorage( -374 data_path, column_names, column_types, col_delimiter, encoding, None, -375 ) -376 -377 -378def parse_csv_raw(data_path) -> DatasetInformationStorage: -379 column_types: set[str] = set() +357 return DatasetInformationStorage( +358 data_path, table_header, column_types, col_delimiter, encoding, None, +359 ) +360 +361 +362def parse_csv_with_description_information(data_path) -> DatasetInformationStorage: +363 dataset_description = read_reference_json( +364 os.path.join(data_path, 'dataset_desc.json'), +365 ) +366 column_names = [] +367 column_types = set() +368 for feature in dataset_description.get('data_features', []): +369 feature_name = feature.get('name') +370 column_names.append(feature_name) +371 feature_type = feature.get('type', '') +372 if 'float' in feature_type or 'Float' in feature_type: +373 column_types.add(feature_name) +374 col_delimiter = ',' +375 data_path = os.path.join(data_path, 'data.csv') +376 encoding = 'latin1' +377 return DatasetInformationStorage( +378 data_path, column_names, column_types, col_delimiter, encoding, None, +379 ) 380 -381 data_path = os.path.join(data_path, 'data.csv') -382 with open(data_path) as inp_data: -383 header = inp_data.readline() -384 col_delimiter = ',' -385 column_names = header.strip().split(col_delimiter) -386 encoding = 'latin1' -387 return DatasetInformationStorage( -388 data_path, column_names, column_types, col_delimiter, encoding, None, -389 ) -390 -391 -392def extract_features_from_reference_JSON(json_path: str) -> set[Any]: -393 """Given a model's JSON, extract unique features""" +381 +382def parse_csv_raw(data_path) -> DatasetInformationStorage: +383 column_types: set[str] = set() +384 +385 data_path = os.path.join(data_path, 'data.csv') +386 with open(data_path) as inp_data: +387 header = inp_data.readline() +388 col_delimiter = ',' +389 column_names = header.strip().split(col_delimiter) +390 encoding = 'latin1' +391 return DatasetInformationStorage( +392 data_path, column_names, column_types, col_delimiter, encoding, None, +393 ) 394 -395 with open(json_path) as jp: -396 content = json.load(jp) -397 -398 unique_features = set() -399 feature_space = content['desc'].get('features', []) -400 fields_space = content['desc'].get('fields', []) -401 joint_space = feature_space + fields_space -402 -403 for feature_tuple in joint_space: -404 for individual_feature in feature_tuple.split(','): -405 unique_features.add(individual_feature) +395 +396def extract_features_from_reference_JSON(json_path: str) -> set[Any]: +397 """Given a model's JSON, extract unique features""" +398 +399 with open(json_path) as jp: +400 content = json.load(jp) +401 +402 unique_features = set() +403 feature_space = content['desc'].get('features', []) +404 fields_space = content['desc'].get('fields', []) +405 joint_space = feature_space + fields_space 406 -407 return unique_features -408 -409 -410def summarize_feature_bounds_for_transformers( -411 bounds_object_storage: Any, -412 feature_types: list[str], -413 task_name: str, -414 label_name: str, -415 granularity: int = 15, -416 output_summary_table_only: bool = False, -417): -418 """summarization auxilliary method for generating JSON-based specs""" -419 -420 if bounds_object_storage is None: -421 logging.info('Bounds storage object is empty.') -422 exit() +407 for feature_tuple in joint_space: +408 for individual_feature in feature_tuple.split(','): +409 unique_features.add(individual_feature) +410 +411 return unique_features +412 +413 +414def summarize_feature_bounds_for_transformers( +415 bounds_object_storage: Any, +416 feature_types: list[str], +417 task_name: str, +418 label_name: str, +419 granularity: int = 15, +420 output_summary_table_only: bool = False, +421): +422 """summarization auxilliary method for generating JSON-based specs""" 423 -424 final_storage = defaultdict(list) -425 for el in bounds_object_storage: -426 if isinstance(el, dict): -427 for k, v in el.items(): -428 final_storage[k].append(v) -429 -430 summary_table_rows = [] -431 for k, v in final_storage.items(): -432 # Conduct local aggregation + bound changes -433 if k in feature_types and k != label_name: -434 minima, maxima, medians, uniques = [], [], [], [] -435 for feature_summary in v: -436 minima.append(feature_summary.minimum) -437 maxima.append(feature_summary.maximum) -438 medians.append(feature_summary.median) -439 uniques.append(feature_summary.num_unique) -440 summary_table_rows.append( -441 [ -442 k, -443 round(np.min(minima), 2), -444 round(np.max(maxima), 2), -445 round(np.median(medians), 2), -446 int(np.mean(uniques)), -447 ], -448 ) -449 -450 if len(summary_table_rows) == 0: -451 logging.info('No numeric features to summarize.') -452 return None +424 if bounds_object_storage is None: +425 logging.info('Bounds storage object is empty.') +426 exit() +427 +428 final_storage = defaultdict(list) +429 for el in bounds_object_storage: +430 if isinstance(el, dict): +431 for k, v in el.items(): +432 final_storage[k].append(v) +433 +434 summary_table_rows = [] +435 for k, v in final_storage.items(): +436 # Conduct local aggregation + bound changes +437 if k in feature_types and k != label_name: +438 minima, maxima, medians, uniques = [], [], [], [] +439 for feature_summary in v: +440 minima.append(feature_summary.minimum) +441 maxima.append(feature_summary.maximum) +442 medians.append(feature_summary.median) +443 uniques.append(feature_summary.num_unique) +444 summary_table_rows.append( +445 [ +446 k, +447 round(np.min(minima), 2), +448 round(np.max(maxima), 2), +449 round(np.median(medians), 2), +450 int(np.mean(uniques)), +451 ], +452 ) 453 -454 summary_table: pd.Dataframe = pd.DataFrame(summary_table_rows) -455 summary_table.columns = [ -456 'Feature', -457 'Minimum', -458 'Maximum', -459 'Median', -460 'Num avg. unique (batch)', -461 ] -462 -463 if output_summary_table_only: -464 return summary_table -465 -466 if len(summary_table) == 0: -467 logging.info('Summary table empty, skipping transformer generation ..') -468 return +454 if len(summary_table_rows) == 0: +455 logging.info('No numeric features to summarize.') +456 return None +457 +458 summary_table: pd.Dataframe = pd.DataFrame(summary_table_rows) +459 summary_table.columns = [ +460 'Feature', +461 'Minimum', +462 'Maximum', +463 'Median', +464 'Num avg. unique (batch)', +465 ] +466 +467 if output_summary_table_only: +468 return summary_table 469 -470 if task_name == 'feature_summary_transformers': -471 transformers_per_feature = defaultdict(list) -472 -473 # Take care of weights first -> range is pre-defined -474 for k, v in final_storage.items(): -475 if label_name in k or 'dummy' in k: -476 continue -477 -478 weight_template = { -479 'feature': k, -480 'src_features': [k], -481 'transformations': ['Weight'], -482 'weights': [0, 0.5, 1.5, 2, 3, 10], -483 } -484 transformers_per_feature[k].append(weight_template) -485 -486 # Consider numeric transformations - pairs and single ones -487 for enx, row in summary_table.iterrows(): -488 if row.Feature == 'dummy': -489 continue -490 try: -491 actual_range = ( -492 np.arange( -493 row['Minimum'], -494 row['Maximum'], -495 (row['Maximum'] - row['Minimum']) / granularity, -496 ) -497 .round(2) -498 .tolist() -499 ) -500 binner_template = { -501 'feature': f'{row.Feature}', -502 'src_features': [row.Feature], -503 'transformations': [ -504 'BinnerSqrt', -505 'BinnerLog', -506 'BinnerSqrtPlain', -507 'BinnerLogPlain', -508 ], -509 'n': actual_range, -510 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], -511 } -512 -513 except Exception as es: -514 logging.info( -515 f'\U0001F631 Encountered {es}. The problematic feature is: {row}, skipping transformer for this feature ..', -516 ) -517 -518 transformers_per_feature[row.Feature].append(binner_template) -519 -520 # We want the full loop here, due to asymmetry of transformation(s) -521 for enx_second, row_second in summary_table.iterrows(): -522 if enx_second < enx: -523 continue -524 -525 # The n values are defined based on maxima of the second feature -526 if row_second.Feature != row.Feature: -527 n_bound = round(row_second['Median'] + row['Median'], 2) -528 max_bound = round( -529 min(row_second['Maximum'], row['Maximum']), 2, -530 ) -531 min_bound = round( -532 row_second['Minimum'] + row['Minimum'], 2, -533 ) -534 range_spectrum = sorted( -535 list( -536 { -537 0.0, -538 min_bound, -539 n_bound / 10, -540 n_bound / 5, -541 n_bound, -542 max_bound, -543 }, -544 ), -545 ) -546 -547 range_spectrum = [x for x in range_spectrum if x >= 0] -548 binner_pair_template = { -549 'feature': f'{row.Feature}Ratio{row_second.Feature}', -550 'src_features': [row.Feature, row_second.Feature], -551 'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'], -552 'n': range_spectrum, -553 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], -554 } -555 -556 binner_pair_template_second = { -557 'feature': f'{row_second.Feature}Ratio{row.Feature}', -558 'src_features': [row_second.Feature, row.Feature], -559 'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'], -560 'n': range_spectrum, -561 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], -562 } -563 -564 transformers_per_feature[row.Feature].append( -565 binner_pair_template, -566 ) -567 transformers_per_feature[row.Feature].append( -568 binner_pair_template_second, -569 ) -570 -571 binner_templates = [] -572 for k, v in transformers_per_feature.items(): -573 for transformer_struct in v: -574 binner_templates.append(transformer_struct) -575 -576 logging.info( -577 f'Generated {len(binner_templates)} transformation search specifications.\n', -578 ) -579 namespace_full = f'"random_grid_feature_transform": {json.dumps(binner_templates)}, "random_grid_epochs": 512' -580 logging.info('Generated transformations below:\n') -581 print(namespace_full) -582 -583 -584def summarize_rare_counts( -585 term_counter: Any, -586 args: Any, -587 cardinality_object: Any, -588 object_info: DatasetInformationStorage, -589) -> None: -590 """Write rare values""" -591 -592 out_df_rows = [] -593 logging.info( -594 f'Rare value summary (freq <= {args.rare_value_count_upper_bound}) follows ..', -595 ) -596 -597 for namespace_tuple, count in term_counter.items(): -598 namespace, value = namespace_tuple -599 out_df_rows.append([namespace, value, count]) -600 out_df: pd.DataFrame = pd.DataFrame(out_df_rows) -601 out_df.columns = ['Namespace', 'value', 'Count'] -602 out_df.to_csv( -603 os.path.join(args.output_folder, 'rare_values.tsv'), sep='\t', index=False, -604 ) -605 logging.info(f'Wrote rare values to {args.output_folder}/rare_values.tsv') -606 -607 overall_rare_counts = Counter(out_df.Namespace.values) -608 sorted_counts = sorted( -609 overall_rare_counts.items(), key=lambda pair: pair[1], reverse=True, -610 ) -611 for k, v in sorted_counts: -612 logging.info(f'Namespace: {k} ---- Rare values observed: {v}') -613 -614 final_df_rows = [] +470 if len(summary_table) == 0: +471 logging.info('Summary table empty, skipping transformer generation ..') +472 return +473 +474 if task_name == 'feature_summary_transformers': +475 transformers_per_feature = defaultdict(list) +476 +477 # Take care of weights first -> range is pre-defined +478 for k, v in final_storage.items(): +479 if label_name in k or 'dummy' in k: +480 continue +481 +482 weight_template = { +483 'feature': k, +484 'src_features': [k], +485 'transformations': ['Weight'], +486 'weights': [0, 0.5, 1.5, 2, 3, 10], +487 } +488 transformers_per_feature[k].append(weight_template) +489 +490 # Consider numeric transformations - pairs and single ones +491 for enx, row in summary_table.iterrows(): +492 if row.Feature == 'dummy': +493 continue +494 try: +495 actual_range = ( +496 np.arange( +497 row['Minimum'], +498 row['Maximum'], +499 (row['Maximum'] - row['Minimum']) / granularity, +500 ) +501 .round(2) +502 .tolist() +503 ) +504 binner_template = { +505 'feature': f'{row.Feature}', +506 'src_features': [row.Feature], +507 'transformations': [ +508 'BinnerSqrt', +509 'BinnerLog', +510 'BinnerSqrtPlain', +511 'BinnerLogPlain', +512 ], +513 'n': actual_range, +514 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], +515 } +516 +517 except Exception as es: +518 logging.info( +519 f'\U0001F631 Encountered {es}. The problematic feature is: {row}, skipping transformer for this feature ..', +520 ) +521 +522 transformers_per_feature[row.Feature].append(binner_template) +523 +524 # We want the full loop here, due to asymmetry of transformation(s) +525 for enx_second, row_second in summary_table.iterrows(): +526 if enx_second < enx: +527 continue +528 +529 # The n values are defined based on maxima of the second feature +530 if row_second.Feature != row.Feature: +531 n_bound = round(row_second['Median'] + row['Median'], 2) +532 max_bound = round( +533 min(row_second['Maximum'], row['Maximum']), 2, +534 ) +535 min_bound = round( +536 row_second['Minimum'] + row['Minimum'], 2, +537 ) +538 range_spectrum = sorted( +539 list( +540 { +541 0.0, +542 min_bound, +543 n_bound / 10, +544 n_bound / 5, +545 n_bound, +546 max_bound, +547 }, +548 ), +549 ) +550 +551 range_spectrum = [x for x in range_spectrum if x >= 0] +552 binner_pair_template = { +553 'feature': f'{row.Feature}Ratio{row_second.Feature}', +554 'src_features': [row.Feature, row_second.Feature], +555 'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'], +556 'n': range_spectrum, +557 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], +558 } +559 +560 binner_pair_template_second = { +561 'feature': f'{row_second.Feature}Ratio{row.Feature}', +562 'src_features': [row_second.Feature, row.Feature], +563 'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'], +564 'n': range_spectrum, +565 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], +566 } +567 +568 transformers_per_feature[row.Feature].append( +569 binner_pair_template, +570 ) +571 transformers_per_feature[row.Feature].append( +572 binner_pair_template_second, +573 ) +574 +575 binner_templates = [] +576 for k, v in transformers_per_feature.items(): +577 for transformer_struct in v: +578 binner_templates.append(transformer_struct) +579 +580 logging.info( +581 f'Generated {len(binner_templates)} transformation search specifications.\n', +582 ) +583 namespace_full = f'"random_grid_feature_transform": {json.dumps(binner_templates)}, "random_grid_epochs": 512' +584 logging.info('Generated transformations below:\n') +585 print(namespace_full) +586 +587 +588def summarize_rare_counts( +589 term_counter: Any, +590 args: Any, +591 cardinality_object: Any, +592 object_info: DatasetInformationStorage, +593) -> None: +594 """Write rare values""" +595 +596 out_df_rows = [] +597 logging.info( +598 f'Rare value summary (freq <= {args.rare_value_count_upper_bound}) follows ..', +599 ) +600 +601 for namespace_tuple, count in term_counter.items(): +602 namespace, value = namespace_tuple +603 out_df_rows.append([namespace, value, count]) +604 out_df: pd.DataFrame = pd.DataFrame(out_df_rows) +605 out_df.columns = ['Namespace', 'value', 'Count'] +606 out_df.to_csv( +607 os.path.join(args.output_folder, 'rare_values.tsv'), sep='\t', index=False, +608 ) +609 logging.info(f'Wrote rare values to {args.output_folder}/rare_values.tsv') +610 +611 overall_rare_counts = Counter(out_df.Namespace.values) +612 sorted_counts = sorted( +613 overall_rare_counts.items(), key=lambda pair: pair[1], reverse=True, +614 ) 615 for k, v in sorted_counts: -616 cardinality = len(cardinality_object[k]) -617 rare_proportion = np.round(100 * (v / cardinality), 2) -618 col_type = 'nominal' -619 if k in object_info.column_types: -620 col_type = 'numeric' -621 final_df_rows.append( -622 { -623 'rare_proportion': rare_proportion, -624 'feature_type': col_type, -625 'feature_name': k, -626 }, -627 ) -628 -629 final_df: pd.DataFrame = pd.DataFrame(final_df_rows) -630 final_df = final_df.sort_values(by=['rare_proportion']) -631 logging.info( -632 f'Wrote feature sparsity summary to {args.output_folder}/feature_sparsity_summary.tsv', -633 ) -634 final_df.to_csv( -635 f'{args.output_folder}/feature_sparsity_summary.tsv', index=False, sep='\t', -636 ) +616 logging.info(f'Namespace: {k} ---- Rare values observed: {v}') +617 +618 final_df_rows = [] +619 for k, v in sorted_counts: +620 cardinality = len(cardinality_object[k]) +621 rare_proportion = np.round(100 * (v / cardinality), 2) +622 col_type = 'nominal' +623 if k in object_info.column_types: +624 col_type = 'numeric' +625 final_df_rows.append( +626 { +627 'rare_proportion': rare_proportion, +628 'feature_type': col_type, +629 'feature_name': k, +630 }, +631 ) +632 +633 final_df: pd.DataFrame = pd.DataFrame(final_df_rows) +634 final_df = final_df.sort_values(by=['rare_proportion']) +635 logging.info( +636 f'Wrote feature sparsity summary to {args.output_folder}/feature_sparsity_summary.tsv', +637 ) +638 final_df.to_csv( +639 f'{args.output_folder}/feature_sparsity_summary.tsv', index=False, sep='\t', +640 )
207def parse_ob_csv_line( -208 line_string: str, delimiter: str = ',', args: Any = None, -209) -> list[str]: -210 """Data can have commas within JSON field dumps""" -211 -212 clx = list(csv.reader([line_string])).pop() -213 return clx +@@ -1442,30 +1450,30 @@211def parse_ob_csv_line( +212 line_string: str, delimiter: str = ',', args: Any = None, +213) -> list[str]: +214 """Data can have commas within JSON field dumps""" +215 +216 clx = list(csv.reader([line_string])).pop() +217 return clx
216def generic_line_parser( -217 line_string: str, -218 delimiter: str, -219 args: Any = None, -220 fw_col_mapping: Any = None, -221 table_header: Any = None, -222) -> list[Any]: -223 """A generic method aimed to parse data from different sources.""" -224 -225 if args.data_source == 'ob-raw-dump': -226 return parse_ob_line(line_string, delimiter, args) -227 -228 elif args.data_source == 'ob-vw': -229 return parse_ob_line_vw( -230 line_string, delimiter, args, fw_col_mapping, table_header, -231 ) -232 -233 elif args.data_source == 'ob-csv' or args.data_source == 'csv-raw': -234 return parse_ob_csv_line(line_string, delimiter, args) -235 -236 else: -237 raise NotImplementedError( -238 'Please, specify a valid --data_source argument!', -239 ) +@@ -1485,10 +1493,10 @@220def generic_line_parser( +221 line_string: str, +222 delimiter: str, +223 args: Any = None, +224 fw_col_mapping: Any = None, +225 table_header: Any = None, +226) -> list[Any]: +227 """A generic method aimed to parse data from different sources.""" +228 +229 if args.data_source == 'ob-raw-dump': +230 return parse_ob_line(line_string, delimiter, args) +231 +232 elif args.data_source == 'ob-vw': +233 return parse_ob_line_vw( +234 line_string, delimiter, args, fw_col_mapping, table_header, +235 ) +236 +237 elif args.data_source == 'ob-csv' or args.data_source == 'csv-raw': +238 return parse_ob_csv_line(line_string, delimiter, args) +239 +240 else: +241 raise NotImplementedError( +242 'Please, specify a valid --data_source argument!', +243 )
242def read_reference_json(json_path) -> dict[str, dict]: -243 """A helper method for reading a JSON""" -244 with open(json_path) as jp: -245 return json.load(jp) +@@ -1508,30 +1516,30 @@246def read_reference_json(json_path) -> dict[str, dict]: +247 """A helper method for reading a JSON""" +248 with open(json_path) as jp: +249 return json.load(jp)
248def parse_namespace(namespace_path: str) -> tuple[set[str], dict[str, str]]: -249 """Parse the feature namespace for type awareness""" -250 -251 float_set = set() -252 id_feature_map = {} -253 -254 with open(namespace_path) as nm: -255 for line in nm: -256 try: -257 namespace_parts = line.strip().split(',') -258 if len(namespace_parts) == 2 and '_' not in namespace_parts[0]: -259 fw_id, feature = namespace_parts -260 type_name = 'generic' -261 -262 else: -263 fw_id, feature, type_name = namespace_parts -264 -265 id_feature_map[fw_id] = feature -266 if type_name == 'f32': -267 float_set.add(feature) -268 except Exception as es: -269 logging.error(f'\U0001F631 {es} -- {namespace_parts}') -270 -271 return float_set, id_feature_map +@@ -1551,12 +1559,12 @@252def parse_namespace(namespace_path: str) -> tuple[set[str], dict[str, str]]: +253 """Parse the feature namespace for type awareness""" +254 +255 float_set = set() +256 id_feature_map = {} +257 +258 with open(namespace_path) as nm: +259 for line in nm: +260 try: +261 namespace_parts = line.strip().split(',') +262 if len(namespace_parts) == 2 and '_' not in namespace_parts[0]: +263 fw_id, feature = namespace_parts +264 type_name = 'generic' +265 +266 else: +267 fw_id, feature, type_name = namespace_parts +268 +269 id_feature_map[fw_id] = feature +270 if type_name == 'f32': +271 float_set.add(feature) +272 except Exception as es: +273 logging.error(f'\U0001F631 {es} -- {namespace_parts}') +274 +275 return float_set, id_feature_map
274def read_column_names(mapping_file: str) -> list[str]: -275 """Read the col. header""" -276 -277 with open(mapping_file, encoding='utf-8') as mf: -278 columns = mf.read().strip().split('\t') -279 return columns +@@ -1576,23 +1584,23 @@278def read_column_names(mapping_file: str) -> list[str]: +279 """Read the col. header""" +280 +281 with open(mapping_file, encoding='utf-8') as mf: +282 columns = mf.read().strip().split('\t') +283 return columns
282def parse_ob_vw_feature_information(data_path) -> DatasetInformationStorage: -283 """A generic parser of ob-based data""" -284 -285 # Get column names -286 column_descriptions = os.path.join(data_path, 'vw_namespace_map.csv') -287 column_types, fw_map = parse_namespace(column_descriptions) +@@ -1612,42 +1620,42 @@286def parse_ob_vw_feature_information(data_path) -> DatasetInformationStorage: +287 """A generic parser of ob-based data""" 288 -289 # We establish column order here -290 column_names = ['label'] + list(fw_map.values()) -291 -292 data_path = os.path.join(data_path, 'data.vw.gz') -293 col_delimiter = None -294 encoding = 'utf-8' +289 # Get column names +290 column_descriptions = os.path.join(data_path, 'vw_namespace_map.csv') +291 column_types, fw_map = parse_namespace(column_descriptions) +292 +293 # We establish column order here +294 column_names = ['label'] + list(fw_map.values()) 295 -296 return DatasetInformationStorage( -297 data_path, column_names, column_types, col_delimiter, encoding, fw_map, -298 ) +296 data_path = os.path.join(data_path, 'data.vw.gz') +297 col_delimiter = None +298 encoding = 'utf-8' +299 +300 return DatasetInformationStorage( +301 data_path, column_names, column_types, col_delimiter, encoding, fw_map, +302 )
301def parse_ob_raw_feature_information(data_path) -> DatasetInformationStorage: -302 """A generic parser of ob-based data""" -303 -304 # Get column names -305 column_types: list[str] = [] -306 -307 # Get set of numeric columns -308 table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv') -309 table_header = read_column_names(table_header_path) +@@ -1667,24 +1675,24 @@305def parse_ob_raw_feature_information(data_path) -> DatasetInformationStorage: +306 """A generic parser of ob-based data""" +307 +308 # Get column names +309 column_types: list[str] = [] 310 -311 data_path_train = os.path.join(data_path, 'raw_data/1_train/*') -312 col_delimiter = '\t' -313 encoding = 'utf-8' +311 # Get set of numeric columns +312 table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv') +313 table_header = read_column_names(table_header_path) 314 -315 final_df = [] -316 core_data_folders = glob.glob(data_path_train) -317 for actual_data in core_data_folders: -318 for dump in glob.glob(actual_data + '/*'): -319 tmp_df = pd.read_csv( -320 dump, sep='\t', low_memory=True, dtype='object', -321 ) -322 assert tmp_df.shape[1] == len(table_header) -323 tmp_df.columns = table_header -324 final_df.append(tmp_df) -325 -326 final_df_concat = pd.concat(final_df, axis=0) -327 final_path = os.path.join(data_path, 'raw_dump.tsv') -328 logging.info( -329 f'Stored data dump of dimension {final_df_concat.shape} to {final_path}', -330 ) -331 final_df_concat.to_csv(final_path, sep='\t', index=False) -332 data_path = os.path.join(data_path, 'raw_dump.tsv') -333 -334 return DatasetInformationStorage( -335 data_path, table_header, set(column_types), col_delimiter, encoding, None, -336 ) +315 data_path_train = os.path.join(data_path, 'raw_data/1_train/*') +316 col_delimiter = '\t' +317 encoding = 'utf-8' +318 +319 final_df = [] +320 core_data_folders = glob.glob(data_path_train) +321 for actual_data in core_data_folders: +322 for dump in glob.glob(actual_data + '/*'): +323 tmp_df = pd.read_csv( +324 dump, sep='\t', low_memory=True, dtype='object', +325 ) +326 assert tmp_df.shape[1] == len(table_header) +327 tmp_df.columns = table_header +328 final_df.append(tmp_df) +329 +330 final_df_concat = pd.concat(final_df, axis=0) +331 final_path = os.path.join(data_path, 'raw_dump.tsv') +332 logging.info( +333 f'Stored data dump of dimension {final_df_concat.shape} to {final_path}', +334 ) +335 final_df_concat.to_csv(final_path, sep='\t', index=False) +336 data_path = os.path.join(data_path, 'raw_dump.tsv') +337 +338 return DatasetInformationStorage( +339 data_path, table_header, set(column_types), col_delimiter, encoding, None, +340 )
339def parse_ob_feature_information(data_path) -> DatasetInformationStorage: -340 """A generic parser of ob-based data""" -341 -342 # Get column names -343 column_names = os.path.join(data_path, 'vw_namespace_map.csv') -344 column_types, _ = parse_namespace(column_names) +@@ -1704,24 +1712,24 @@343def parse_ob_feature_information(data_path) -> DatasetInformationStorage: +344 """A generic parser of ob-based data""" 345 -346 # Get set of numeric columns -347 table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv') -348 table_header = read_column_names(table_header_path) +346 # Get column names +347 column_names = os.path.join(data_path, 'vw_namespace_map.csv') +348 column_types, _ = parse_namespace(column_names) 349 -350 data_path = os.path.join(data_path, 'raw_data/1_train/*') -351 col_delimiter = '\t' -352 encoding = 'utf-8' +350 # Get set of numeric columns +351 table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv') +352 table_header = read_column_names(table_header_path) 353 -354 return DatasetInformationStorage( -355 data_path, table_header, column_types, col_delimiter, encoding, None, -356 ) +354 data_path = os.path.join(data_path, 'raw_data/1_train/*') +355 col_delimiter = '\t' +356 encoding = 'utf-8' +357 +358 return DatasetInformationStorage( +359 data_path, table_header, column_types, col_delimiter, encoding, None, +360 )
359def parse_csv_with_description_information(data_path) -> DatasetInformationStorage: -360 dataset_description = read_reference_json( -361 os.path.join(data_path, 'dataset_desc.json'), -362 ) -363 column_names = [] -364 column_types = set() -365 for feature in dataset_description.get('data_features', []): -366 feature_name = feature.get('name') -367 column_names.append(feature_name) -368 feature_type = feature.get('type', '') -369 if 'float' in feature_type or 'Float' in feature_type: -370 column_types.add(feature_name) -371 col_delimiter = ',' -372 data_path = os.path.join(data_path, 'data.csv') -373 encoding = 'latin1' -374 return DatasetInformationStorage( -375 data_path, column_names, column_types, col_delimiter, encoding, None, -376 ) +@@ -1739,18 +1747,18 @@363def parse_csv_with_description_information(data_path) -> DatasetInformationStorage: +364 dataset_description = read_reference_json( +365 os.path.join(data_path, 'dataset_desc.json'), +366 ) +367 column_names = [] +368 column_types = set() +369 for feature in dataset_description.get('data_features', []): +370 feature_name = feature.get('name') +371 column_names.append(feature_name) +372 feature_type = feature.get('type', '') +373 if 'float' in feature_type or 'Float' in feature_type: +374 column_types.add(feature_name) +375 col_delimiter = ',' +376 data_path = os.path.join(data_path, 'data.csv') +377 encoding = 'latin1' +378 return DatasetInformationStorage( +379 data_path, column_names, column_types, col_delimiter, encoding, None, +380 )
379def parse_csv_raw(data_path) -> DatasetInformationStorage: -380 column_types: set[str] = set() -381 -382 data_path = os.path.join(data_path, 'data.csv') -383 with open(data_path) as inp_data: -384 header = inp_data.readline() -385 col_delimiter = ',' -386 column_names = header.strip().split(col_delimiter) -387 encoding = 'latin1' -388 return DatasetInformationStorage( -389 data_path, column_names, column_types, col_delimiter, encoding, None, -390 ) +@@ -1768,22 +1776,22 @@383def parse_csv_raw(data_path) -> DatasetInformationStorage: +384 column_types: set[str] = set() +385 +386 data_path = os.path.join(data_path, 'data.csv') +387 with open(data_path) as inp_data: +388 header = inp_data.readline() +389 col_delimiter = ',' +390 column_names = header.strip().split(col_delimiter) +391 encoding = 'latin1' +392 return DatasetInformationStorage( +393 data_path, column_names, column_types, col_delimiter, encoding, None, +394 )
393def extract_features_from_reference_JSON(json_path: str) -> set[Any]: -394 """Given a model's JSON, extract unique features""" -395 -396 with open(json_path) as jp: -397 content = json.load(jp) -398 -399 unique_features = set() -400 feature_space = content['desc'].get('features', []) -401 fields_space = content['desc'].get('fields', []) -402 joint_space = feature_space + fields_space -403 -404 for feature_tuple in joint_space: -405 for individual_feature in feature_tuple.split(','): -406 unique_features.add(individual_feature) +@@ -1803,178 +1811,178 @@397def extract_features_from_reference_JSON(json_path: str) -> set[Any]: +398 """Given a model's JSON, extract unique features""" +399 +400 with open(json_path) as jp: +401 content = json.load(jp) +402 +403 unique_features = set() +404 feature_space = content['desc'].get('features', []) +405 fields_space = content['desc'].get('fields', []) +406 joint_space = feature_space + fields_space 407 -408 return unique_features +408 for feature_tuple in joint_space: +409 for individual_feature in feature_tuple.split(','): +410 unique_features.add(individual_feature) +411 +412 return unique_features
411def summarize_feature_bounds_for_transformers( -412 bounds_object_storage: Any, -413 feature_types: list[str], -414 task_name: str, -415 label_name: str, -416 granularity: int = 15, -417 output_summary_table_only: bool = False, -418): -419 """summarization auxilliary method for generating JSON-based specs""" -420 -421 if bounds_object_storage is None: -422 logging.info('Bounds storage object is empty.') -423 exit() +@@ -1994,59 +2002,59 @@415def summarize_feature_bounds_for_transformers( +416 bounds_object_storage: Any, +417 feature_types: list[str], +418 task_name: str, +419 label_name: str, +420 granularity: int = 15, +421 output_summary_table_only: bool = False, +422): +423 """summarization auxilliary method for generating JSON-based specs""" 424 -425 final_storage = defaultdict(list) -426 for el in bounds_object_storage: -427 if isinstance(el, dict): -428 for k, v in el.items(): -429 final_storage[k].append(v) -430 -431 summary_table_rows = [] -432 for k, v in final_storage.items(): -433 # Conduct local aggregation + bound changes -434 if k in feature_types and k != label_name: -435 minima, maxima, medians, uniques = [], [], [], [] -436 for feature_summary in v: -437 minima.append(feature_summary.minimum) -438 maxima.append(feature_summary.maximum) -439 medians.append(feature_summary.median) -440 uniques.append(feature_summary.num_unique) -441 summary_table_rows.append( -442 [ -443 k, -444 round(np.min(minima), 2), -445 round(np.max(maxima), 2), -446 round(np.median(medians), 2), -447 int(np.mean(uniques)), -448 ], -449 ) -450 -451 if len(summary_table_rows) == 0: -452 logging.info('No numeric features to summarize.') -453 return None +425 if bounds_object_storage is None: +426 logging.info('Bounds storage object is empty.') +427 exit() +428 +429 final_storage = defaultdict(list) +430 for el in bounds_object_storage: +431 if isinstance(el, dict): +432 for k, v in el.items(): +433 final_storage[k].append(v) +434 +435 summary_table_rows = [] +436 for k, v in final_storage.items(): +437 # Conduct local aggregation + bound changes +438 if k in feature_types and k != label_name: +439 minima, maxima, medians, uniques = [], [], [], [] +440 for feature_summary in v: +441 minima.append(feature_summary.minimum) +442 maxima.append(feature_summary.maximum) +443 medians.append(feature_summary.median) +444 uniques.append(feature_summary.num_unique) +445 summary_table_rows.append( +446 [ +447 k, +448 round(np.min(minima), 2), +449 round(np.max(maxima), 2), +450 round(np.median(medians), 2), +451 int(np.mean(uniques)), +452 ], +453 ) 454 -455 summary_table: pd.Dataframe = pd.DataFrame(summary_table_rows) -456 summary_table.columns = [ -457 'Feature', -458 'Minimum', -459 'Maximum', -460 'Median', -461 'Num avg. unique (batch)', -462 ] -463 -464 if output_summary_table_only: -465 return summary_table -466 -467 if len(summary_table) == 0: -468 logging.info('Summary table empty, skipping transformer generation ..') -469 return +455 if len(summary_table_rows) == 0: +456 logging.info('No numeric features to summarize.') +457 return None +458 +459 summary_table: pd.Dataframe = pd.DataFrame(summary_table_rows) +460 summary_table.columns = [ +461 'Feature', +462 'Minimum', +463 'Maximum', +464 'Median', +465 'Num avg. unique (batch)', +466 ] +467 +468 if output_summary_table_only: +469 return summary_table 470 -471 if task_name == 'feature_summary_transformers': -472 transformers_per_feature = defaultdict(list) -473 -474 # Take care of weights first -> range is pre-defined -475 for k, v in final_storage.items(): -476 if label_name in k or 'dummy' in k: -477 continue -478 -479 weight_template = { -480 'feature': k, -481 'src_features': [k], -482 'transformations': ['Weight'], -483 'weights': [0, 0.5, 1.5, 2, 3, 10], -484 } -485 transformers_per_feature[k].append(weight_template) -486 -487 # Consider numeric transformations - pairs and single ones -488 for enx, row in summary_table.iterrows(): -489 if row.Feature == 'dummy': -490 continue -491 try: -492 actual_range = ( -493 np.arange( -494 row['Minimum'], -495 row['Maximum'], -496 (row['Maximum'] - row['Minimum']) / granularity, -497 ) -498 .round(2) -499 .tolist() -500 ) -501 binner_template = { -502 'feature': f'{row.Feature}', -503 'src_features': [row.Feature], -504 'transformations': [ -505 'BinnerSqrt', -506 'BinnerLog', -507 'BinnerSqrtPlain', -508 'BinnerLogPlain', -509 ], -510 'n': actual_range, -511 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], -512 } -513 -514 except Exception as es: -515 logging.info( -516 f'\U0001F631 Encountered {es}. The problematic feature is: {row}, skipping transformer for this feature ..', -517 ) -518 -519 transformers_per_feature[row.Feature].append(binner_template) -520 -521 # We want the full loop here, due to asymmetry of transformation(s) -522 for enx_second, row_second in summary_table.iterrows(): -523 if enx_second < enx: -524 continue -525 -526 # The n values are defined based on maxima of the second feature -527 if row_second.Feature != row.Feature: -528 n_bound = round(row_second['Median'] + row['Median'], 2) -529 max_bound = round( -530 min(row_second['Maximum'], row['Maximum']), 2, -531 ) -532 min_bound = round( -533 row_second['Minimum'] + row['Minimum'], 2, -534 ) -535 range_spectrum = sorted( -536 list( -537 { -538 0.0, -539 min_bound, -540 n_bound / 10, -541 n_bound / 5, -542 n_bound, -543 max_bound, -544 }, -545 ), -546 ) -547 -548 range_spectrum = [x for x in range_spectrum if x >= 0] -549 binner_pair_template = { -550 'feature': f'{row.Feature}Ratio{row_second.Feature}', -551 'src_features': [row.Feature, row_second.Feature], -552 'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'], -553 'n': range_spectrum, -554 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], -555 } -556 -557 binner_pair_template_second = { -558 'feature': f'{row_second.Feature}Ratio{row.Feature}', -559 'src_features': [row_second.Feature, row.Feature], -560 'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'], -561 'n': range_spectrum, -562 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], -563 } -564 -565 transformers_per_feature[row.Feature].append( -566 binner_pair_template, -567 ) -568 transformers_per_feature[row.Feature].append( -569 binner_pair_template_second, -570 ) -571 -572 binner_templates = [] -573 for k, v in transformers_per_feature.items(): -574 for transformer_struct in v: -575 binner_templates.append(transformer_struct) -576 -577 logging.info( -578 f'Generated {len(binner_templates)} transformation search specifications.\n', -579 ) -580 namespace_full = f'"random_grid_feature_transform": {json.dumps(binner_templates)}, "random_grid_epochs": 512' -581 logging.info('Generated transformations below:\n') -582 print(namespace_full) +471 if len(summary_table) == 0: +472 logging.info('Summary table empty, skipping transformer generation ..') +473 return +474 +475 if task_name == 'feature_summary_transformers': +476 transformers_per_feature = defaultdict(list) +477 +478 # Take care of weights first -> range is pre-defined +479 for k, v in final_storage.items(): +480 if label_name in k or 'dummy' in k: +481 continue +482 +483 weight_template = { +484 'feature': k, +485 'src_features': [k], +486 'transformations': ['Weight'], +487 'weights': [0, 0.5, 1.5, 2, 3, 10], +488 } +489 transformers_per_feature[k].append(weight_template) +490 +491 # Consider numeric transformations - pairs and single ones +492 for enx, row in summary_table.iterrows(): +493 if row.Feature == 'dummy': +494 continue +495 try: +496 actual_range = ( +497 np.arange( +498 row['Minimum'], +499 row['Maximum'], +500 (row['Maximum'] - row['Minimum']) / granularity, +501 ) +502 .round(2) +503 .tolist() +504 ) +505 binner_template = { +506 'feature': f'{row.Feature}', +507 'src_features': [row.Feature], +508 'transformations': [ +509 'BinnerSqrt', +510 'BinnerLog', +511 'BinnerSqrtPlain', +512 'BinnerLogPlain', +513 ], +514 'n': actual_range, +515 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], +516 } +517 +518 except Exception as es: +519 logging.info( +520 f'\U0001F631 Encountered {es}. The problematic feature is: {row}, skipping transformer for this feature ..', +521 ) +522 +523 transformers_per_feature[row.Feature].append(binner_template) +524 +525 # We want the full loop here, due to asymmetry of transformation(s) +526 for enx_second, row_second in summary_table.iterrows(): +527 if enx_second < enx: +528 continue +529 +530 # The n values are defined based on maxima of the second feature +531 if row_second.Feature != row.Feature: +532 n_bound = round(row_second['Median'] + row['Median'], 2) +533 max_bound = round( +534 min(row_second['Maximum'], row['Maximum']), 2, +535 ) +536 min_bound = round( +537 row_second['Minimum'] + row['Minimum'], 2, +538 ) +539 range_spectrum = sorted( +540 list( +541 { +542 0.0, +543 min_bound, +544 n_bound / 10, +545 n_bound / 5, +546 n_bound, +547 max_bound, +548 }, +549 ), +550 ) +551 +552 range_spectrum = [x for x in range_spectrum if x >= 0] +553 binner_pair_template = { +554 'feature': f'{row.Feature}Ratio{row_second.Feature}', +555 'src_features': [row.Feature, row_second.Feature], +556 'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'], +557 'n': range_spectrum, +558 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], +559 } +560 +561 binner_pair_template_second = { +562 'feature': f'{row_second.Feature}Ratio{row.Feature}', +563 'src_features': [row_second.Feature, row.Feature], +564 'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'], +565 'n': range_spectrum, +566 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], +567 } +568 +569 transformers_per_feature[row.Feature].append( +570 binner_pair_template, +571 ) +572 transformers_per_feature[row.Feature].append( +573 binner_pair_template_second, +574 ) +575 +576 binner_templates = [] +577 for k, v in transformers_per_feature.items(): +578 for transformer_struct in v: +579 binner_templates.append(transformer_struct) +580 +581 logging.info( +582 f'Generated {len(binner_templates)} transformation search specifications.\n', +583 ) +584 namespace_full = f'"random_grid_feature_transform": {json.dumps(binner_templates)}, "random_grid_epochs": 512' +585 logging.info('Generated transformations below:\n') +586 print(namespace_full)
585def summarize_rare_counts( -586 term_counter: Any, -587 args: Any, -588 cardinality_object: Any, -589 object_info: DatasetInformationStorage, -590) -> None: -591 """Write rare values""" -592 -593 out_df_rows = [] -594 logging.info( -595 f'Rare value summary (freq <= {args.rare_value_count_upper_bound}) follows ..', -596 ) -597 -598 for namespace_tuple, count in term_counter.items(): -599 namespace, value = namespace_tuple -600 out_df_rows.append([namespace, value, count]) -601 out_df: pd.DataFrame = pd.DataFrame(out_df_rows) -602 out_df.columns = ['Namespace', 'value', 'Count'] -603 out_df.to_csv( -604 os.path.join(args.output_folder, 'rare_values.tsv'), sep='\t', index=False, -605 ) -606 logging.info(f'Wrote rare values to {args.output_folder}/rare_values.tsv') -607 -608 overall_rare_counts = Counter(out_df.Namespace.values) -609 sorted_counts = sorted( -610 overall_rare_counts.items(), key=lambda pair: pair[1], reverse=True, -611 ) -612 for k, v in sorted_counts: -613 logging.info(f'Namespace: {k} ---- Rare values observed: {v}') -614 -615 final_df_rows = [] +diff --git a/docs/outrank/task_ranking.html b/docs/outrank/task_ranking.html index 844454d..3bff0db 100644 --- a/docs/outrank/task_ranking.html +++ b/docs/outrank/task_ranking.html @@ -94,253 +94,254 @@589def summarize_rare_counts( +590 term_counter: Any, +591 args: Any, +592 cardinality_object: Any, +593 object_info: DatasetInformationStorage, +594) -> None: +595 """Write rare values""" +596 +597 out_df_rows = [] +598 logging.info( +599 f'Rare value summary (freq <= {args.rare_value_count_upper_bound}) follows ..', +600 ) +601 +602 for namespace_tuple, count in term_counter.items(): +603 namespace, value = namespace_tuple +604 out_df_rows.append([namespace, value, count]) +605 out_df: pd.DataFrame = pd.DataFrame(out_df_rows) +606 out_df.columns = ['Namespace', 'value', 'Count'] +607 out_df.to_csv( +608 os.path.join(args.output_folder, 'rare_values.tsv'), sep='\t', index=False, +609 ) +610 logging.info(f'Wrote rare values to {args.output_folder}/rare_values.tsv') +611 +612 overall_rare_counts = Counter(out_df.Namespace.values) +613 sorted_counts = sorted( +614 overall_rare_counts.items(), key=lambda pair: pair[1], reverse=True, +615 ) 616 for k, v in sorted_counts: -617 cardinality = len(cardinality_object[k]) -618 rare_proportion = np.round(100 * (v / cardinality), 2) -619 col_type = 'nominal' -620 if k in object_info.column_types: -621 col_type = 'numeric' -622 final_df_rows.append( -623 { -624 'rare_proportion': rare_proportion, -625 'feature_type': col_type, -626 'feature_name': k, -627 }, -628 ) -629 -630 final_df: pd.DataFrame = pd.DataFrame(final_df_rows) -631 final_df = final_df.sort_values(by=['rare_proportion']) -632 logging.info( -633 f'Wrote feature sparsity summary to {args.output_folder}/feature_sparsity_summary.tsv', -634 ) -635 final_df.to_csv( -636 f'{args.output_folder}/feature_sparsity_summary.tsv', index=False, sep='\t', -637 ) +617 logging.info(f'Namespace: {k} ---- Rare values observed: {v}') +618 +619 final_df_rows = [] +620 for k, v in sorted_counts: +621 cardinality = len(cardinality_object[k]) +622 rare_proportion = np.round(100 * (v / cardinality), 2) +623 col_type = 'nominal' +624 if k in object_info.column_types: +625 col_type = 'numeric' +626 final_df_rows.append( +627 { +628 'rare_proportion': rare_proportion, +629 'feature_type': col_type, +630 'feature_name': k, +631 }, +632 ) +633 +634 final_df: pd.DataFrame = pd.DataFrame(final_df_rows) +635 final_df = final_df.sort_values(by=['rare_proportion']) +636 logging.info( +637 f'Wrote feature sparsity summary to {args.output_folder}/feature_sparsity_summary.tsv', +638 ) +639 final_df.to_csv( +640 f'{args.output_folder}/feature_sparsity_summary.tsv', index=False, sep='\t', +641 )38 if args.task in ['identify_rare_values', 'feature_summary_transformers']: 39 args.heuristic = 'Constant' 40 - 41 display_tool_name() - 42 display_random_tip() - 43 - 44 dataset_info = get_dataset_info(args) - 45 - 46 for arg in vars(args): - 47 logging.info(f'{arg} set to: {getattr(args, arg)}') - 48 - 49 # Generate output folders (if not present) - 50 output_dir = os.path.dirname( - 51 os.path.join( - 52 args.output_folder, 'pairwise_ranks.tsv', - 53 ), - 54 ) - 55 if not os.path.exists(output_dir): - 56 os.makedirs(output_dir) - 57 - 58 # Initialize the global pool - 59 GLOBAL_CPU_POOL = Pool(args.num_threads) - 60 global_mutual_information_estimates = [] - 61 global_bounds_storage = [] - 62 global_memory_storage = [] - 63 all_timings = [] - 64 # Traverse the batches - 65 for raw_dump in glob.glob(dataset_info.data_path): - 66 - 67 if ( - 68 args.data_source == 'ob-vw' - 69 or args.data_source == 'ob-csv' - 70 or args.data_source == 'csv-raw' - 71 or args.data_source == 'ob-raw-dump' - 72 ): - 73 all_subfiles = [raw_dump] - 74 - 75 for partial_data in all_subfiles: - 76 cmd_arguments = { - 77 'input_file': partial_data, - 78 'fw_col_mapping': dataset_info.fw_map, - 79 'column_descriptions': dataset_info.column_names, - 80 'numeric_column_types': dataset_info.column_types, - 81 'args': args, - 82 'data_encoding': dataset_info.encoding, - 83 'cpu_pool': GLOBAL_CPU_POOL, - 84 'delimiter': dataset_info.col_delimiter, - 85 'logger': logging, - 86 } - 87 - 88 if ( - 89 args.data_source == 'ob-csv' - 90 or args.data_source == 'ob-vw' - 91 or args.data_source == 'csv-raw' - 92 or args.data_source == 'ob-raw-dump' - 93 ): - 94 ( - 95 checkpoint_timings, - 96 mutual_information_estimates, - 97 cardinality_object, - 98 bounds_object_storage, - 99 memory_object_storage, -100 coverage_object, -101 RARE_VALUE_STORAGE, -102 ) = estimate_importances_minibatches(**cmd_arguments) -103 -104 global_bounds_storage += bounds_object_storage -105 global_memory_storage += memory_object_storage -106 all_timings += checkpoint_timings -107 -108 if cardinality_object is None: -109 continue -110 -111 if coverage_object is None: -112 continue -113 -114 if mutual_information_estimates is not None: -115 global_mutual_information_estimates.append( -116 mutual_information_estimates, -117 ) -118 -119 if args.task == 'identify_rare_values': -120 logging.info('Summarizing rare values ..') -121 summarize_rare_counts( -122 RARE_VALUE_STORAGE, args, cardinality_object, dataset_info, -123 ) -124 exit() -125 -126 if args.task == 'feature_summary_transformers': -127 summarize_feature_bounds_for_transformers( -128 bounds_object_storage, -129 dataset_info.column_types, -130 args.task, -131 args.label_column, -132 ) -133 exit() -134 else: -135 summary_of_numeric_features = summarize_feature_bounds_for_transformers( -136 bounds_object_storage, -137 dataset_info.column_types, -138 args.task, -139 args.label_column, -140 output_summary_table_only=True, -141 ) -142 if summary_of_numeric_features is not None: -143 num_out = os.path.join( -144 args.output_folder, 'numeric_feature_statistics.tsv', -145 ) -146 summary_of_numeric_features.to_csv(num_out, sep='\t', index=False) -147 logging.info( -148 f'Stored statistics of numeric features to {num_out} ..', -149 ) -150 -151 # Just in case. -152 GLOBAL_CPU_POOL.close() -153 GLOBAL_CPU_POOL.join() -154 -155 if len(global_mutual_information_estimates) == 0: -156 logging.info('No rankings were obtained, exiting ..') -157 exit() -158 -159 # Compute median imps across batches -160 triplets = pd.concat(global_mutual_information_estimates, axis=0) -161 triplets.columns = ['FeatureA', 'FeatureB', 'Score'] -162 -163 if '3mr' in args.heuristic: -164 # relevance include MI-scores of features w.r.t. labels -165 relevance_df = triplets[triplets.FeatureB == args.label_column].copy() -166 relevance_df = relevance_df[ -167 relevance_df.FeatureA.map(lambda x: ' AND_REL ' not in x) -168 ][['FeatureA', 'Score']] -169 relevance_df = relevance_df[relevance_df.FeatureA != args.label_column] -170 -171 # relations include MI-scores of combinations w.r.t. label -172 relations_df = triplets[triplets.FeatureB == args.label_column][ -173 ['FeatureA', 'Score'] -174 ].copy() -175 relations_df = relations_df[ -176 relations_df.FeatureA.map(lambda x: ' AND_REL ' in x) -177 ] -178 relations_df['FeatureB'] = relations_df.FeatureA.map( -179 lambda x: x.split(' AND_REL ')[1], -180 ) -181 relations_df['FeatureA'] = relations_df.FeatureA.map( -182 lambda x: x.split(' AND_REL ')[0], -183 ) -184 -185 # redundancies include MI-scores of features w.r.t. non-label features -186 redundancies_df = triplets[( -187 triplets.FeatureB != args.label_column -188 )].copy() -189 redundancies_df = redundancies_df[ -190 redundancies_df.FeatureA != -191 args.label_column -192 ] -193 redundancies_df = redundancies_df[ -194 redundancies_df.apply( -195 lambda x: (' AND_REL ' not in x.FeatureA) -196 and (' AND_REL ' not in x.FeatureB), -197 axis=1, -198 ) -199 ] -200 -201 # normalize -202 relevance_df['score'] = (relevance_df.Score - relevance_df.Score.min()) / ( -203 relevance_df.Score.max() - relevance_df.Score.min() -204 ) -205 relations_df['score'] = (relations_df.Score - relations_df.Score.min()) / ( -206 relations_df.Score.max() - relations_df.Score.min() -207 ) -208 redundancies_df['score'] = ( -209 redundancies_df.Score - redundancies_df.Score.min() -210 ) / (redundancies_df.Score.max() - redundancies_df.Score.min()) -211 -212 # create dicts -213 relevance_dict = { -214 row.FeatureA: row.score for _, -215 row in relevance_df.iterrows() -216 } -217 relations_dict = { -218 (row.FeatureA, row.FeatureB): row.score -219 for _, row in relations_df.iterrows() -220 } -221 relations_dict.update( -222 { -223 (row.FeatureB, row.FeatureA): row.score -224 for _, row in relations_df.iterrows() -225 }, -226 ) -227 redundancy_dict = { -228 (row.FeatureA, row.FeatureB): row.score -229 for _, row in redundancies_df.iterrows() -230 } -231 -232 # compute 3mr ranks -233 mrmrmr_ranking = rank_features_3MR( -234 relevance_dict, redundancy_dict, relations_dict, -235 ) -236 mrmrmr_ranking.to_csv( -237 os.path.join(args.output_folder, '3mr_ranks.tsv'), sep='\t', index=False, -238 ) -239 -240 feature_first_modified = [] -241 feature_second_modified = [] -242 -243 if args.include_cardinality_in_feature_names == 'True': -244 for enx in range(triplets.shape[0]): -245 feature_first = triplets.iloc[enx]['FeatureA'] -246 feature_second = triplets.iloc[enx]['FeatureB'] -247 card_first = str(len(cardinality_object[feature_first])) -248 card_second = str(len(cardinality_object[feature_second])) -249 cov_first = int( -250 round((np.mean(np.array(coverage_object[feature_first]))), 1), -251 ) -252 cov_second = int( -253 round(np.mean(np.array(coverage_object[feature_second])), 1), -254 ) -255 -256 feature_first_modified.append( -257 feature_first + f'-({card_first}; {cov_first})', -258 ) -259 feature_second_modified.append( -260 feature_second + f'-({card_second}; {cov_second})', -261 ) -262 -263 triplets['FeatureA'] = feature_first_modified -264 triplets['FeatureB'] = feature_second_modified -265 -266 feature_memory_df = pd.DataFrame(global_memory_storage).mean() -267 feature_memory_df.columns = ['NormalizedSize'] -268 feature_memory_df.to_csv( -269 f'{args.output_folder}/memory.tsv', sep='\t', index=True, -270 ) -271 -272 triplets = triplets.sort_values(by=['Score']) -273 -274 triplets.to_csv( -275 os.path.join(args.output_folder, 'pairwise_ranks.tsv'), sep='\t', index=False, -276 ) -277 -278 # Write timings and config for replicability -279 dfx = pd.DataFrame(all_timings) -280 dfx.to_json(f'{args.output_folder}/timings.json') -281 write_json_dump_to_file(args, f'{args.output_folder}/arguments.json') -282 -283 logging.info( -284 f'Finished with ranking! Result stored as: {args.output_folder}/pairwise_ranks.tsv. Cleaning up tmp files ..', -285 ) -286 -287 os.remove('ranking_checkpoint_tmp.tsv') + 41 if args.silent != 'True': + 42 display_tool_name() + 43 display_random_tip() + 44 + 45 dataset_info = get_dataset_info(args) + 46 + 47 for arg in vars(args): + 48 logging.info(f'{arg} set to: {getattr(args, arg)}') + 49 + 50 # Generate output folders (if not present) + 51 output_dir = os.path.dirname( + 52 os.path.join( + 53 args.output_folder, 'pairwise_ranks.tsv', + 54 ), + 55 ) + 56 if not os.path.exists(output_dir): + 57 os.makedirs(output_dir) + 58 + 59 # Initialize the global pool + 60 GLOBAL_CPU_POOL = Pool(args.num_threads) + 61 global_mutual_information_estimates = [] + 62 global_bounds_storage = [] + 63 global_memory_storage = [] + 64 all_timings = [] + 65 # Traverse the batches + 66 for raw_dump in glob.glob(dataset_info.data_path): + 67 + 68 if ( + 69 args.data_source == 'ob-vw' + 70 or args.data_source == 'ob-csv' + 71 or args.data_source == 'csv-raw' + 72 or args.data_source == 'ob-raw-dump' + 73 ): + 74 all_subfiles = [raw_dump] + 75 + 76 for partial_data in all_subfiles: + 77 cmd_arguments = { + 78 'input_file': partial_data, + 79 'fw_col_mapping': dataset_info.fw_map, + 80 'column_descriptions': dataset_info.column_names, + 81 'numeric_column_types': dataset_info.column_types, + 82 'args': args, + 83 'data_encoding': dataset_info.encoding, + 84 'cpu_pool': GLOBAL_CPU_POOL, + 85 'delimiter': dataset_info.col_delimiter, + 86 'logger': logging, + 87 } + 88 + 89 if ( + 90 args.data_source == 'ob-csv' + 91 or args.data_source == 'ob-vw' + 92 or args.data_source == 'csv-raw' + 93 or args.data_source == 'ob-raw-dump' + 94 ): + 95 ( + 96 checkpoint_timings, + 97 mutual_information_estimates, + 98 cardinality_object, + 99 bounds_object_storage, +100 memory_object_storage, +101 coverage_object, +102 RARE_VALUE_STORAGE, +103 ) = estimate_importances_minibatches(**cmd_arguments) +104 +105 global_bounds_storage += bounds_object_storage +106 global_memory_storage += memory_object_storage +107 all_timings += checkpoint_timings +108 +109 if cardinality_object is None: +110 continue +111 +112 if coverage_object is None: +113 continue +114 +115 if mutual_information_estimates is not None: +116 global_mutual_information_estimates.append( +117 mutual_information_estimates, +118 ) +119 +120 if args.task == 'identify_rare_values': +121 logging.info('Summarizing rare values ..') +122 summarize_rare_counts( +123 RARE_VALUE_STORAGE, args, cardinality_object, dataset_info, +124 ) +125 exit() +126 +127 if args.task == 'feature_summary_transformers': +128 summarize_feature_bounds_for_transformers( +129 bounds_object_storage, +130 dataset_info.column_types, +131 args.task, +132 args.label_column, +133 ) +134 exit() +135 else: +136 summary_of_numeric_features = summarize_feature_bounds_for_transformers( +137 bounds_object_storage, +138 dataset_info.column_types, +139 args.task, +140 args.label_column, +141 output_summary_table_only=True, +142 ) +143 if summary_of_numeric_features is not None: +144 num_out = os.path.join( +145 args.output_folder, 'numeric_feature_statistics.tsv', +146 ) +147 summary_of_numeric_features.to_csv(num_out, sep='\t', index=False) +148 logging.info( +149 f'Stored statistics of numeric features to {num_out} ..', +150 ) +151 +152 # Just in case. +153 GLOBAL_CPU_POOL.close() +154 GLOBAL_CPU_POOL.join() +155 +156 if len(global_mutual_information_estimates) == 0: +157 logging.info('No rankings were obtained, exiting ..') +158 exit() +159 +160 # Compute median imps across batches +161 triplets = pd.concat(global_mutual_information_estimates, axis=0) +162 triplets.columns = ['FeatureA', 'FeatureB', 'Score'] +163 +164 if '3mr' in args.heuristic: +165 # relevance include MI-scores of features w.r.t. labels +166 relevance_df = triplets[triplets.FeatureB == args.label_column].copy() +167 relevance_df = relevance_df[ +168 relevance_df.FeatureA.map(lambda x: ' AND_REL ' not in x) +169 ][['FeatureA', 'Score']] +170 relevance_df = relevance_df[relevance_df.FeatureA != args.label_column] +171 +172 # relations include MI-scores of combinations w.r.t. label +173 relations_df = triplets[triplets.FeatureB == args.label_column][ +174 ['FeatureA', 'Score'] +175 ].copy() +176 relations_df = relations_df[ +177 relations_df.FeatureA.map(lambda x: ' AND_REL ' in x) +178 ] +179 relations_df['FeatureB'] = relations_df.FeatureA.map( +180 lambda x: x.split(' AND_REL ')[1], +181 ) +182 relations_df['FeatureA'] = relations_df.FeatureA.map( +183 lambda x: x.split(' AND_REL ')[0], +184 ) +185 +186 # redundancies include MI-scores of features w.r.t. non-label features +187 redundancies_df = triplets[( +188 triplets.FeatureB != args.label_column +189 )].copy() +190 redundancies_df = redundancies_df[ +191 redundancies_df.FeatureA != +192 args.label_column +193 ] +194 redundancies_df = redundancies_df[ +195 redundancies_df.apply( +196 lambda x: (' AND_REL ' not in x.FeatureA) +197 and (' AND_REL ' not in x.FeatureB), +198 axis=1, +199 ) +200 ] +201 +202 # normalize +203 relevance_df['score'] = (relevance_df.Score - relevance_df.Score.min()) / ( +204 relevance_df.Score.max() - relevance_df.Score.min() +205 ) +206 relations_df['score'] = (relations_df.Score - relations_df.Score.min()) / ( +207 relations_df.Score.max() - relations_df.Score.min() +208 ) +209 redundancies_df['score'] = ( +210 redundancies_df.Score - redundancies_df.Score.min() +211 ) / (redundancies_df.Score.max() - redundancies_df.Score.min()) +212 +213 # create dicts +214 relevance_dict = { +215 row.FeatureA: row.score for _, +216 row in relevance_df.iterrows() +217 } +218 relations_dict = { +219 (row.FeatureA, row.FeatureB): row.score +220 for _, row in relations_df.iterrows() +221 } +222 relations_dict.update( +223 { +224 (row.FeatureB, row.FeatureA): row.score +225 for _, row in relations_df.iterrows() +226 }, +227 ) +228 redundancy_dict = { +229 (row.FeatureA, row.FeatureB): row.score +230 for _, row in redundancies_df.iterrows() +231 } +232 +233 # compute 3mr ranks +234 mrmrmr_ranking = rank_features_3MR( +235 relevance_dict, redundancy_dict, relations_dict, +236 ) +237 mrmrmr_ranking.to_csv( +238 os.path.join(args.output_folder, '3mr_ranks.tsv'), sep='\t', index=False, +239 ) +240 +241 feature_first_modified = [] +242 feature_second_modified = [] +243 +244 if args.include_cardinality_in_feature_names == 'True': +245 for enx in range(triplets.shape[0]): +246 feature_first = triplets.iloc[enx]['FeatureA'] +247 feature_second = triplets.iloc[enx]['FeatureB'] +248 card_first = str(len(cardinality_object[feature_first])) +249 card_second = str(len(cardinality_object[feature_second])) +250 cov_first = int( +251 round((np.mean(np.array(coverage_object[feature_first]))), 1), +252 ) +253 cov_second = int( +254 round(np.mean(np.array(coverage_object[feature_second])), 1), +255 ) +256 +257 feature_first_modified.append( +258 feature_first + f'-({card_first}; {cov_first})', +259 ) +260 feature_second_modified.append( +261 feature_second + f'-({card_second}; {cov_second})', +262 ) +263 +264 triplets['FeatureA'] = feature_first_modified +265 triplets['FeatureB'] = feature_second_modified +266 +267 feature_memory_df = pd.DataFrame(global_memory_storage).mean() +268 feature_memory_df.columns = ['NormalizedSize'] +269 feature_memory_df.to_csv( +270 f'{args.output_folder}/memory.tsv', sep='\t', index=True, +271 ) +272 +273 triplets = triplets.sort_values(by=['Score']) +274 +275 triplets.to_csv( +276 os.path.join(args.output_folder, 'pairwise_ranks.tsv'), sep='\t', index=False, +277 ) +278 +279 # Write timings and config for replicability +280 dfx = pd.DataFrame(all_timings) +281 dfx.to_json(f'{args.output_folder}/timings.json') +282 write_json_dump_to_file(args, f'{args.output_folder}/arguments.json') +283 +284 logging.info( +285 f'Finished with ranking! Result stored as: {args.output_folder}/pairwise_ranks.tsv. Cleaning up tmp files ..', +286 ) +287 +288 os.remove('ranking_checkpoint_tmp.tsv')
All functions/methods can be searched-for (search bar on the left).
\n\nThis tool enables fast screening of feature-feature interactions. Its purpose is to give the user fast insight into potential redundancies/anomalies in the data.\nIt is implemented to operate in _mini batches_, it traverses the raw data
incrementally, refining the rankings as it goes along. The core operation, interaction ranking, outputs triplets which look as follows:
featureA featureB 0.512\nfeatureA featureC 0.125\n
\n\npip install outrank\n
\nand test a minimal cycle with
\n\noutrank --task selftest\n
\nif this passes, you can be pretty certain OutRank will perform as intended. OutRank's primary use case is as a CLI tool, begin exploring with
\n\noutrank --help\n
\nA minimal showcase of performing feature ranking on a generic CSV is demonstrated with this example.
More examples demonstrating OutRank's capabilities are also available.
Identify unique elements in an array, fast
\n", "signature": "(a):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "compute_conditional_entropy", "kind": "function", "doc": "\n", "signature": "(\tY_classes,\tclass_values,\tclass_var_shape,\tinitial_prob,\tnonzero_counts):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "compute_entropies", "kind": "function", "doc": "Core entropy computation function
\n", "signature": "(X, Y, all_events, f_values, f_value_counts, cardinality_correction):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "mutual_info_estimator_numba", "kind": "function", "doc": "Core estimator logic. Compute unique elements, subset if required
\n", "signature": "(Y, X, approximation_factor=1, cardinality_correction=False):", "funcdef": "def"}, "outrank.algorithms.importance_estimator": {"fullname": "outrank.algorithms.importance_estimator", "modulename": "outrank.algorithms.importance_estimator", "kind": "module", "doc": "\n"}, "outrank.algorithms.importance_estimator.sklearn_MI": {"fullname": "outrank.algorithms.importance_estimator.sklearn_MI", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_MI", "kind": "function", "doc": "\n", "signature": "(vector_first: Any, vector_second: Any) -> float:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"fullname": "outrank.algorithms.importance_estimator.sklearn_surrogate", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_surrogate", "kind": "function", "doc": "\n", "signature": "(vector_first: Any, vector_second: Any, surrogate_model: str) -> float:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.numba_mi": {"fullname": "outrank.algorithms.importance_estimator.numba_mi", "modulename": "outrank.algorithms.importance_estimator", "qualname": "numba_mi", "kind": "function", "doc": "\n", "signature": "(vector_first, vector_second, heuristic):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"fullname": "outrank.algorithms.importance_estimator.sklearn_mi_adj", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_mi_adj", "kind": "function", "doc": "\n", "signature": "(vector_first, vector_second):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"fullname": "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise", "modulename": "outrank.algorithms.importance_estimator", "qualname": "get_importances_estimate_pairwise", "kind": "function", "doc": "A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel.
\n", "signature": "(combination, args, tmp_df):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"fullname": "outrank.algorithms.importance_estimator.rank_features_3MR", "modulename": "outrank.algorithms.importance_estimator", "qualname": "rank_features_3MR", "kind": "function", "doc": "\n", "signature": "(\trelevance_dict: dict[str, float],\tredundancy_dict: dict[tuple[typing.Any, typing.Any], typing.Any],\trelational_dict: dict[tuple[typing.Any, typing.Any], typing.Any],\tstrategy: str = 'median',\talpha: float = 1,\tbeta: float = 1) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"fullname": "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic", "modulename": "outrank.algorithms.importance_estimator", "qualname": "get_importances_estimate_nonmyopic", "kind": "function", "doc": "\n", "signature": "(args: Any, tmp_df: pandas.core.frame.DataFrame):", "funcdef": "def"}, "outrank.algorithms.sketches": {"fullname": "outrank.algorithms.sketches", "modulename": "outrank.algorithms.sketches", "kind": "module", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "kind": "module", "doc": "This module implements probabilistic data structure which is able to calculate the cardinality of large multisets in a single pass using little auxiliary memory
\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache", "kind": "class", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.__init__", "kind": "function", "doc": "\n", "signature": "(error_rate=0.005)"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.p", "kind": "variable", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.m", "kind": "variable", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.warmup_set", "kind": "variable", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.warmup_size", "kind": "variable", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.width", "kind": "variable", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.hll_flag", "kind": "variable", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.add", "kind": "function", "doc": "\n", "signature": "(self, value):", "funcdef": "def"}, "outrank.algorithms.synthetic_data_generators": {"fullname": "outrank.algorithms.synthetic_data_generators", "modulename": "outrank.algorithms.synthetic_data_generators", "kind": "module", "doc": "\n"}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"fullname": "outrank.algorithms.synthetic_data_generators.generator_naive", "modulename": "outrank.algorithms.synthetic_data_generators.generator_naive", "kind": "module", "doc": "\n"}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"fullname": "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix", "modulename": "outrank.algorithms.synthetic_data_generators.generator_naive", "qualname": "generate_random_matrix", "kind": "function", "doc": "\n", "signature": "(num_features=100, size=20000):", "funcdef": "def"}, "outrank.core_ranking": {"fullname": "outrank.core_ranking", "modulename": "outrank.core_ranking", "kind": "module", "doc": "\n"}, "outrank.core_ranking.logger": {"fullname": "outrank.core_ranking.logger", "modulename": "outrank.core_ranking", "qualname": "logger", "kind": "variable", "doc": "\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"fullname": "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_CARDINALITY_STORAGE", "kind": "variable", "doc": "\n", "annotation": ": dict[typing.Any, typing.Any]", "default_value": "{}"}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"fullname": "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_RARE_VALUE_STORAGE", "kind": "variable", "doc": "\n", "annotation": ": dict[str, typing.Any]", "default_value": "Counter()"}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"fullname": "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_PRIOR_COMB_COUNTS", "kind": "variable", "doc": "\n", "annotation": ": dict[typing.Any, int]", "default_value": "Counter()"}, "outrank.core_ranking.IGNORED_VALUES": {"fullname": "outrank.core_ranking.IGNORED_VALUES", "modulename": "outrank.core_ranking", "qualname": "IGNORED_VALUES", "kind": "variable", "doc": "\n", "default_value": "set()"}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"fullname": "outrank.core_ranking.HYPERLL_ERROR_BOUND", "modulename": "outrank.core_ranking", "qualname": "HYPERLL_ERROR_BOUND", "kind": "variable", "doc": "\n", "default_value": "0.02"}, "outrank.core_ranking.prior_combinations_sample": {"fullname": "outrank.core_ranking.prior_combinations_sample", "modulename": "outrank.core_ranking", "qualname": "prior_combinations_sample", "kind": "function", "doc": "Make sure only relevant subspace of combinations is selected based on prior counts
\n", "signature": "(\tcombinations: list[tuple[typing.Any, ...]],\targs: Any) -> list[tuple[typing.Any, ...]]:", "funcdef": "def"}, "outrank.core_ranking.mixed_rank_graph": {"fullname": "outrank.core_ranking.mixed_rank_graph", "modulename": "outrank.core_ranking", "qualname": "mixed_rank_graph", "kind": "function", "doc": "Compute the full mixed rank graph corresponding to all pairwise feature interactions based on the selected heuristic
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any,\tcpu_pool: Any,\tpbar: Any) -> outrank.core_utils.BatchRankingSummary:", "funcdef": "def"}, "outrank.core_ranking.enrich_with_transformations": {"fullname": "outrank.core_ranking.enrich_with_transformations", "modulename": "outrank.core_ranking", "qualname": "enrich_with_transformations", "kind": "function", "doc": "Construct a collection of new features based on pre-defined transformations/rules
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tnum_col_types: set[str],\tlogger: Any,\targs: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_combined_features": {"fullname": "outrank.core_ranking.compute_combined_features", "modulename": "outrank.core_ranking", "qualname": "compute_combined_features", "kind": "function", "doc": "Compute higher order features via xxhash-based trick.
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any,\tis_3mr: bool = False) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_expanded_multivalue_features": {"fullname": "outrank.core_ranking.compute_expanded_multivalue_features", "modulename": "outrank.core_ranking", "qualname": "compute_expanded_multivalue_features", "kind": "function", "doc": "Compute one-hot encoded feature space based on each designated multivalue feature. E.g., feature with value \"a,b,c\" becomes three features, values of which are presence of a given value in a mutlivalue feature of choice.
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_subfeatures": {"fullname": "outrank.core_ranking.compute_subfeatures", "modulename": "outrank.core_ranking", "qualname": "compute_subfeatures", "kind": "function", "doc": "Compute derived features that are more fine-grained. Implements logic around two operators that govern feature construction.\n->: One sided construction - every value from left side is fine, separate ones from the right side feature will be considered.\n<->: Two sided construction - two-sided values present. This means that each value from a is combined with each from b, forming |A|*|B| new features (one-hot encoded)
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.include_noisy_features": {"fullname": "outrank.core_ranking.include_noisy_features", "modulename": "outrank.core_ranking", "qualname": "include_noisy_features", "kind": "function", "doc": "Add randomized features that serve as a sanity check
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_coverage": {"fullname": "outrank.core_ranking.compute_coverage", "modulename": "outrank.core_ranking", "qualname": "compute_coverage", "kind": "function", "doc": "Compute coverage of features, incrementally
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any) -> dict[str, set[str]]:", "funcdef": "def"}, "outrank.core_ranking.compute_feature_memory_consumption": {"fullname": "outrank.core_ranking.compute_feature_memory_consumption", "modulename": "outrank.core_ranking", "qualname": "compute_feature_memory_consumption", "kind": "function", "doc": "An approximation of how much feature take up
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any) -> dict[str, set[str]]:", "funcdef": "def"}, "outrank.core_ranking.compute_value_counts": {"fullname": "outrank.core_ranking.compute_value_counts", "modulename": "outrank.core_ranking", "qualname": "compute_value_counts", "kind": "function", "doc": "Update the count structure
\n", "signature": "(input_dataframe: pandas.core.frame.DataFrame, args: Any):", "funcdef": "def"}, "outrank.core_ranking.compute_cardinalities": {"fullname": "outrank.core_ranking.compute_cardinalities", "modulename": "outrank.core_ranking", "qualname": "compute_cardinalities", "kind": "function", "doc": "Compute cardinalities of features, incrementally
\n", "signature": "(input_dataframe: pandas.core.frame.DataFrame, pbar: Any) -> None:", "funcdef": "def"}, "outrank.core_ranking.compute_bounds_increment": {"fullname": "outrank.core_ranking.compute_bounds_increment", "modulename": "outrank.core_ranking", "qualname": "compute_bounds_increment", "kind": "function", "doc": "\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tnumeric_column_types: set[str]) -> dict[str, typing.Any]:", "funcdef": "def"}, "outrank.core_ranking.compute_batch_ranking": {"fullname": "outrank.core_ranking.compute_batch_ranking", "modulename": "outrank.core_ranking", "qualname": "compute_batch_ranking", "kind": "function", "doc": "Enrich the feature space and compute the batch importances
\n", "signature": "(\tline_tmp_storage: list[list[typing.Any]],\tnumeric_column_types: set[str],\targs: Any,\tcpu_pool: Any,\tcolumn_descriptions: list[str],\tlogger: Any,\tpbar: Any) -> tuple[outrank.core_utils.BatchRankingSummary, dict[str, typing.Any], dict[str, set[str]], dict[str, set[str]]]:", "funcdef": "def"}, "outrank.core_ranking.get_num_of_instances": {"fullname": "outrank.core_ranking.get_num_of_instances", "modulename": "outrank.core_ranking", "qualname": "get_num_of_instances", "kind": "function", "doc": "Count the number of lines in a file, fast - useful for progress logging
\n", "signature": "(fname: str) -> int:", "funcdef": "def"}, "outrank.core_ranking.get_grouped_df": {"fullname": "outrank.core_ranking.get_grouped_df", "modulename": "outrank.core_ranking", "qualname": "get_grouped_df", "kind": "function", "doc": "A helper method that enables median-based aggregation after processing
\n", "signature": "(\timportances_df_list: list[tuple[str, str, float]]) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.checkpoint_importances_df": {"fullname": "outrank.core_ranking.checkpoint_importances_df", "modulename": "outrank.core_ranking", "qualname": "checkpoint_importances_df", "kind": "function", "doc": "A helper which stores intermediary state - useful for longer runs
\n", "signature": "(importances_batch: list[tuple[str, str, float]]) -> None:", "funcdef": "def"}, "outrank.core_ranking.estimate_importances_minibatches": {"fullname": "outrank.core_ranking.estimate_importances_minibatches", "modulename": "outrank.core_ranking", "qualname": "estimate_importances_minibatches", "kind": "function", "doc": "Interaction score estimator - suitable for example for csv-like input data types.\nThis type of data is normally a single large csv, meaning that minibatch processing needs to\nhappen during incremental handling of the file (that\"s not the case for pre-separated ob data)
\n", "signature": "(\tinput_file: str,\tcolumn_descriptions: list,\tfw_col_mapping: dict[str, str],\tnumeric_column_types: set,\tbatch_size: int = 100000,\targs: Any = None,\tdata_encoding: str = 'utf-8',\tcpu_pool: Any = None,\tdelimiter: str = '\\t',\tfeature_construction_mode: bool = False,\tlogger: Any = None) -> tuple[list[dict[str, typing.Any]], typing.Any, dict[typing.Any, typing.Any], list[dict[str, typing.Any]], list[dict[str, set[str]]], collections.defaultdict[str, list[set[str]]], dict[str, typing.Any]]:", "funcdef": "def"}, "outrank.core_selftest": {"fullname": "outrank.core_selftest", "modulename": "outrank.core_selftest", "kind": "module", "doc": "\n"}, "outrank.core_utils": {"fullname": "outrank.core_utils", "modulename": "outrank.core_utils", "kind": "module", "doc": "\n"}, "outrank.core_utils.pro_tips": {"fullname": "outrank.core_utils.pro_tips", "modulename": "outrank.core_utils", "qualname": "pro_tips", "kind": "variable", "doc": "\n", "default_value": "['OutRank can construct subfeatures; features based on subspaces. Example command argument is: --subfeature_mapping "feature_a->feature_b;feature_c<->feature_d;feature_c<->feature_e"', 'Heuristic MI-numba-randomized seems like the best of both worlds! (speed + performance).', 'Heuristic surrogate-lr performs cross-validation (internally), keep that in mind!', 'Consider running OutRank on a smaller data sample first, might be enough (--subsampling = a lot).', 'There are two types of combinations supported; unsupervised pairwise ranking (redundancies- --target_ranking_only=False), and supervised combinations - (--interaction_order > 1)', 'Visualization part also includes clustering - this might be very insightful!', 'By default OutRank includes feature cardinality and coverage in feature names (card; cov)', 'Intermediary checkpoints (tmp_checkpoint.tsv) might already give you insights during longer runs.', 'In theory, you can rank redundancies of combined features (--interaction_order AND --target_ranking_only=False).', 'Give it as many threads as physically possible (--num_threads).', 'You can speed up ranking by diminishing feature buffer size (--combination_number_upper_bound determines how many ranking computations per batch will be considered). This, and --subsampling are very powerful together.', 'Want to rank feature transformations, but not sure which ones to choose? --transformers=default should serve as a solid baseline (common DS transformations included).', 'Your target can be any feature! (explaining one feature with others)', 'OutRank uses HyperLogLog for cardinality estimation - this is also a potential usecase (understanding cardinalities across different data sets).', 'Each feature is named as featureName(cardinality, coverage in percents) in the final files.', 'You can generate candidate feature transformation ranges (fw) by using --task=feature_summary_transformers.']"}, "outrank.core_utils.write_json_dump_to_file": {"fullname": "outrank.core_utils.write_json_dump_to_file", "modulename": "outrank.core_utils", "qualname": "write_json_dump_to_file", "kind": "function", "doc": "\n", "signature": "(args: Any, config_name: str) -> None:", "funcdef": "def"}, "outrank.core_utils.internal_hash": {"fullname": "outrank.core_utils.internal_hash", "modulename": "outrank.core_utils", "qualname": "internal_hash", "kind": "function", "doc": "A generic internal hash used throughout ranking procedure - let's hardcode seed here for sure
\n", "signature": "(input_obj: str) -> str:", "funcdef": "def"}, "outrank.core_utils.DatasetInformationStorage": {"fullname": "outrank.core_utils.DatasetInformationStorage", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage", "kind": "class", "doc": "A generic class for holding properties of a given type of dataset
\n"}, "outrank.core_utils.DatasetInformationStorage.__init__": {"fullname": "outrank.core_utils.DatasetInformationStorage.__init__", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.__init__", "kind": "function", "doc": "\n", "signature": "(\tdata_path: str,\tcolumn_names: list[str],\tcolumn_types: set[str],\tcol_delimiter: str | None,\tencoding: str,\tfw_map: dict[str, str] | None)"}, "outrank.core_utils.DatasetInformationStorage.data_path": {"fullname": "outrank.core_utils.DatasetInformationStorage.data_path", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.data_path", "kind": "variable", "doc": "\n", "annotation": ": str"}, "outrank.core_utils.DatasetInformationStorage.column_names": {"fullname": "outrank.core_utils.DatasetInformationStorage.column_names", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.column_names", "kind": "variable", "doc": "\n", "annotation": ": list[str]"}, "outrank.core_utils.DatasetInformationStorage.column_types": {"fullname": "outrank.core_utils.DatasetInformationStorage.column_types", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.column_types", "kind": "variable", "doc": "\n", "annotation": ": set[str]"}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"fullname": "outrank.core_utils.DatasetInformationStorage.col_delimiter", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.col_delimiter", "kind": "variable", "doc": "\n", "annotation": ": str | None"}, "outrank.core_utils.DatasetInformationStorage.encoding": {"fullname": "outrank.core_utils.DatasetInformationStorage.encoding", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.encoding", "kind": "variable", "doc": "\n", "annotation": ": str"}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"fullname": "outrank.core_utils.DatasetInformationStorage.fw_map", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.fw_map", "kind": "variable", "doc": "\n", "annotation": ": dict[str, str] | None"}, "outrank.core_utils.NumericFeatureSummary": {"fullname": "outrank.core_utils.NumericFeatureSummary", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary", "kind": "class", "doc": "A generic class storing numeric feature statistics
\n"}, "outrank.core_utils.NumericFeatureSummary.__init__": {"fullname": "outrank.core_utils.NumericFeatureSummary.__init__", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.__init__", "kind": "function", "doc": "\n", "signature": "(\tfeature_name: str,\tminimum: float,\tmaximum: float,\tmedian: float,\tnum_unique: int)"}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"fullname": "outrank.core_utils.NumericFeatureSummary.feature_name", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.feature_name", "kind": "variable", "doc": "\n", "annotation": ": str"}, "outrank.core_utils.NumericFeatureSummary.minimum": {"fullname": "outrank.core_utils.NumericFeatureSummary.minimum", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.minimum", "kind": "variable", "doc": "\n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.maximum": {"fullname": "outrank.core_utils.NumericFeatureSummary.maximum", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.maximum", "kind": "variable", "doc": "\n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.median": {"fullname": "outrank.core_utils.NumericFeatureSummary.median", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.median", "kind": "variable", "doc": "\n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"fullname": "outrank.core_utils.NumericFeatureSummary.num_unique", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.num_unique", "kind": "variable", "doc": "\n", "annotation": ": int"}, "outrank.core_utils.NominalFeatureSummary": {"fullname": "outrank.core_utils.NominalFeatureSummary", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary", "kind": "class", "doc": "A generic class storing numeric feature statistics
\n"}, "outrank.core_utils.NominalFeatureSummary.__init__": {"fullname": "outrank.core_utils.NominalFeatureSummary.__init__", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.__init__", "kind": "function", "doc": "\n", "signature": "(feature_name: str, num_unique: int)"}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"fullname": "outrank.core_utils.NominalFeatureSummary.feature_name", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.feature_name", "kind": "variable", "doc": "\n", "annotation": ": str"}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"fullname": "outrank.core_utils.NominalFeatureSummary.num_unique", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.num_unique", "kind": "variable", "doc": "\n", "annotation": ": int"}, "outrank.core_utils.BatchRankingSummary": {"fullname": "outrank.core_utils.BatchRankingSummary", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary", "kind": "class", "doc": "A generic class representing batched ranking results
\n"}, "outrank.core_utils.BatchRankingSummary.__init__": {"fullname": "outrank.core_utils.BatchRankingSummary.__init__", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.__init__", "kind": "function", "doc": "\n", "signature": "(\ttriplet_scores: list[tuple[str, str, float]],\tstep_times: dict[str, typing.Any])"}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"fullname": "outrank.core_utils.BatchRankingSummary.triplet_scores", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.triplet_scores", "kind": "variable", "doc": "\n", "annotation": ": list[tuple[str, str, float]]"}, "outrank.core_utils.BatchRankingSummary.step_times": {"fullname": "outrank.core_utils.BatchRankingSummary.step_times", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.step_times", "kind": "variable", "doc": "\n", "annotation": ": dict[str, typing.Any]"}, "outrank.core_utils.display_random_tip": {"fullname": "outrank.core_utils.display_random_tip", "modulename": "outrank.core_utils", "qualname": "display_random_tip", "kind": "function", "doc": "\n", "signature": "() -> None:", "funcdef": "def"}, "outrank.core_utils.get_dataset_info": {"fullname": "outrank.core_utils.get_dataset_info", "modulename": "outrank.core_utils", "qualname": "get_dataset_info", "kind": "function", "doc": "\n", "signature": "(args: Any):", "funcdef": "def"}, "outrank.core_utils.display_tool_name": {"fullname": "outrank.core_utils.display_tool_name", "modulename": "outrank.core_utils", "qualname": "display_tool_name", "kind": "function", "doc": "\n", "signature": "() -> None:", "funcdef": "def"}, "outrank.core_utils.parse_ob_line": {"fullname": "outrank.core_utils.parse_ob_line", "modulename": "outrank.core_utils", "qualname": "parse_ob_line", "kind": "function", "doc": "Outbrain line parsing - generic TSVs
\n", "signature": "(line_string: str, delimiter: str = '\\t', args: Any = None) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_line_vw": {"fullname": "outrank.core_utils.parse_ob_line_vw", "modulename": "outrank.core_utils", "qualname": "parse_ob_line_vw", "kind": "function", "doc": "Parse a sparse vw line into a pandas df with pre-defined namespace
\n", "signature": "(\tline_string: str,\tdelimiter: str,\targs: Any = None,\tfw_col_mapping=None,\ttable_header=None,\tinclude_namespace_info=False) -> list[str | None]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_csv_line": {"fullname": "outrank.core_utils.parse_ob_csv_line", "modulename": "outrank.core_utils", "qualname": "parse_ob_csv_line", "kind": "function", "doc": "Data can have commas within JSON field dumps
\n", "signature": "(line_string: str, delimiter: str = ',', args: Any = None) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.generic_line_parser": {"fullname": "outrank.core_utils.generic_line_parser", "modulename": "outrank.core_utils", "qualname": "generic_line_parser", "kind": "function", "doc": "A generic method aimed to parse data from different sources.
\n", "signature": "(\tline_string: str,\tdelimiter: str,\targs: Any = None,\tfw_col_mapping: Any = None,\ttable_header: Any = None) -> list[typing.Any]:", "funcdef": "def"}, "outrank.core_utils.read_reference_json": {"fullname": "outrank.core_utils.read_reference_json", "modulename": "outrank.core_utils", "qualname": "read_reference_json", "kind": "function", "doc": "A helper method for reading a JSON
\n", "signature": "(json_path) -> dict[str, dict]:", "funcdef": "def"}, "outrank.core_utils.parse_namespace": {"fullname": "outrank.core_utils.parse_namespace", "modulename": "outrank.core_utils", "qualname": "parse_namespace", "kind": "function", "doc": "Parse the feature namespace for type awareness
\n", "signature": "(namespace_path: str) -> tuple[set[str], dict[str, str]]:", "funcdef": "def"}, "outrank.core_utils.read_column_names": {"fullname": "outrank.core_utils.read_column_names", "modulename": "outrank.core_utils", "qualname": "read_column_names", "kind": "function", "doc": "Read the col. header
\n", "signature": "(mapping_file: str) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_vw_feature_information": {"fullname": "outrank.core_utils.parse_ob_vw_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_vw_feature_information", "kind": "function", "doc": "A generic parser of ob-based data
\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_ob_raw_feature_information": {"fullname": "outrank.core_utils.parse_ob_raw_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_raw_feature_information", "kind": "function", "doc": "A generic parser of ob-based data
\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_ob_feature_information": {"fullname": "outrank.core_utils.parse_ob_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_feature_information", "kind": "function", "doc": "A generic parser of ob-based data
\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_csv_with_description_information": {"fullname": "outrank.core_utils.parse_csv_with_description_information", "modulename": "outrank.core_utils", "qualname": "parse_csv_with_description_information", "kind": "function", "doc": "\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_csv_raw": {"fullname": "outrank.core_utils.parse_csv_raw", "modulename": "outrank.core_utils", "qualname": "parse_csv_raw", "kind": "function", "doc": "\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.extract_features_from_reference_JSON": {"fullname": "outrank.core_utils.extract_features_from_reference_JSON", "modulename": "outrank.core_utils", "qualname": "extract_features_from_reference_JSON", "kind": "function", "doc": "Given a model's JSON, extract unique features
\n", "signature": "(json_path: str) -> set[typing.Any]:", "funcdef": "def"}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"fullname": "outrank.core_utils.summarize_feature_bounds_for_transformers", "modulename": "outrank.core_utils", "qualname": "summarize_feature_bounds_for_transformers", "kind": "function", "doc": "summarization auxilliary method for generating JSON-based specs
\n", "signature": "(\tbounds_object_storage: Any,\tfeature_types: list[str],\ttask_name: str,\tlabel_name: str,\tgranularity: int = 15,\toutput_summary_table_only: bool = False):", "funcdef": "def"}, "outrank.core_utils.summarize_rare_counts": {"fullname": "outrank.core_utils.summarize_rare_counts", "modulename": "outrank.core_utils", "qualname": "summarize_rare_counts", "kind": "function", "doc": "Write rare values
\n", "signature": "(\tterm_counter: Any,\targs: Any,\tcardinality_object: Any,\tobject_info: outrank.core_utils.DatasetInformationStorage) -> None:", "funcdef": "def"}, "outrank.feature_transformations": {"fullname": "outrank.feature_transformations", "modulename": "outrank.feature_transformations", "kind": "module", "doc": "\n"}, "outrank.feature_transformations.feature_transformer_vault": {"fullname": "outrank.feature_transformations.feature_transformer_vault", "modulename": "outrank.feature_transformations.feature_transformer_vault", "kind": "module", "doc": "\n"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "kind": "module", "doc": "\n"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "qualname": "MINIMAL_TRANSFORMERS", "kind": "variable", "doc": "\n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)'}"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "qualname": "DEFAULT_TRANSFORMERS", "kind": "variable", "doc": "\n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)', '_tr_div(x,abs(x))*log(abs(x))': 'np.divide(X, np.abs(X)) * np.log(np.abs(X))', '_tr_log(x + sqrt(pow(x,2), 1)': 'np.log(X + np.sqrt(np.power(X, 2) + 1))', '_tr_log*sqrt': 'np.log(X + 1) * np.sqrt(X)', '_tr_log*100': 'np.round(np.log(X + 1) * 100, 0)', '_tr_nonzero': 'np.where(X != 0, 1, 0)', '_tr_round(div(x,max))': 'np.round(np.divide(X, np.max(X)), 0)'}"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "kind": "module", "doc": "\n"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "FW_TRANSFORMERS", "kind": "variable", "doc": "\n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)', '_tr_div(x,abs(x))*log(abs(x))': 'np.divide(X, np.abs(X)) * np.log(np.abs(X))', '_tr_log(x + sqrt(pow(x,2), 1)': 'np.log(X + np.sqrt(np.power(X, 2) + 1))', '_tr_log*sqrt': 'np.log(X + 1) * np.sqrt(X)', '_tr_log*100': 'np.round(np.log(X + 1) * 100, 0)', '_tr_nonzero': 'np.where(X != 0, 1, 0)', '_tr_round(div(x,max))': 'np.round(np.divide(X, np.max(X)), 0)', '_tr_fw_sqrt_res_1_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*1,0), 0))', '_tr_fw_log_res_1_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*1,0), 0))', '_tr_fw_log_res_1_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*1,0), 0))', '_tr_fw_log_res_1_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*1,0), 0))', '_tr_fw_log_res_1_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*1,0), 0))', '_tr_fw_log_res_1_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*1,0), 0))', '_tr_fw_log_res_1_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*1,0), 0))', '_tr_fw_log_res_1_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*1,0), 0))', '_tr_fw_log_res_1_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*1,0), 0))', '_tr_fw_sqrt_res_10_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*10,0), 0))', '_tr_fw_log_res_10_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*10,0), 0))', '_tr_fw_log_res_10_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*10,0), 0))', '_tr_fw_log_res_10_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*10,0), 0))', '_tr_fw_log_res_10_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*10,0), 0))', '_tr_fw_log_res_10_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*10,0), 0))', '_tr_fw_log_res_10_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*10,0), 0))', '_tr_fw_log_res_10_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*10,0), 0))', '_tr_fw_log_res_10_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*10,0), 0))', '_tr_fw_sqrt_res_50_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*50,0), 0))', '_tr_fw_log_res_50_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*50,0), 0))', '_tr_fw_log_res_50_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*50,0), 0))', '_tr_fw_log_res_50_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*50,0), 0))', '_tr_fw_log_res_50_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*50,0), 0))', '_tr_fw_log_res_50_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*50,0), 0))', '_tr_fw_log_res_50_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*50,0), 0))', '_tr_fw_log_res_50_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*50,0), 0))', '_tr_fw_log_res_50_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*50,0), 0))', '_tr_fw_sqrt_res_100_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*100,0), 0))', '_tr_fw_log_res_100_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*100,0), 0))', '_tr_fw_log_res_100_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*100,0), 0))', '_tr_fw_log_res_100_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*100,0), 0))', '_tr_fw_log_res_100_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*100,0), 0))', '_tr_fw_log_res_100_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*100,0), 0))', '_tr_fw_log_res_100_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*100,0), 0))', '_tr_fw_log_res_100_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*100,0), 0))', '_tr_fw_log_res_100_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*100,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*1,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*10,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*50,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*100,0), 0))'}"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "resolution_range", "kind": "variable", "doc": "\n", "default_value": "[1, 10, 50, 100]"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "greater_than_range", "kind": "variable", "doc": "\n", "default_value": "[1, 2, 4, 8, 16, 32, 64, 96]"}, "outrank.feature_transformations.ranking_transformers": {"fullname": "outrank.feature_transformations.ranking_transformers", "modulename": "outrank.feature_transformations.ranking_transformers", "kind": "module", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise", "kind": "class", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise.noise_preset", "kind": "variable", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise.construct_new_features", "kind": "function", "doc": "Generate a few standard noise distributions
\n", "signature": "(self, dataframe: pandas.core.frame.DataFrame, label_column=None):", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric", "kind": "class", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.__init__", "kind": "function", "doc": "\n", "signature": "(numeric_column_names: set[str], preset: str = 'default')"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.numeric_column_names", "kind": "variable", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.constructed_feature_names", "kind": "variable", "doc": "\n", "annotation": ": set[str]"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.max_maj_support", "kind": "variable", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.nan_prop_support", "kind": "variable", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.get_vals", "kind": "function", "doc": "\n", "signature": "(self, tmp_df: pandas.core.frame.DataFrame, col_name: str) -> Any:", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.construct_baseline_features", "kind": "function", "doc": "\n", "signature": "(self, dataframe: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.construct_new_features", "kind": "function", "doc": "\n", "signature": "(self, dataframe: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.task_generators": {"fullname": "outrank.task_generators", "modulename": "outrank.task_generators", "kind": "module", "doc": "\n"}, "outrank.task_generators.logger": {"fullname": "outrank.task_generators.logger", "modulename": "outrank.task_generators", "qualname": "logger", "kind": "variable", "doc": "\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.task_generators.outrank_task_generate_data_set": {"fullname": "outrank.task_generators.outrank_task_generate_data_set", "modulename": "outrank.task_generators", "qualname": "outrank_task_generate_data_set", "kind": "function", "doc": "Core method for generating data sets
\n", "signature": "(args):", "funcdef": "def"}, "outrank.task_ranking": {"fullname": "outrank.task_ranking", "modulename": "outrank.task_ranking", "kind": "module", "doc": "\n"}, "outrank.task_ranking.outrank_task_conduct_ranking": {"fullname": "outrank.task_ranking.outrank_task_conduct_ranking", "modulename": "outrank.task_ranking", "qualname": "outrank_task_conduct_ranking", "kind": "function", "doc": "\n", "signature": "(args: Any):", "funcdef": "def"}, "outrank.task_selftest": {"fullname": "outrank.task_selftest", "modulename": "outrank.task_selftest", "kind": "module", "doc": "\n"}, "outrank.task_selftest.logger": {"fullname": "outrank.task_selftest.logger", "modulename": "outrank.task_selftest", "qualname": "logger", "kind": "variable", "doc": "\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.task_selftest.conduct_self_test": {"fullname": "outrank.task_selftest.conduct_self_test", "modulename": "outrank.task_selftest", "qualname": "conduct_self_test", "kind": "function", "doc": "\n", "signature": "():", "funcdef": "def"}, "outrank.task_summary": {"fullname": "outrank.task_summary", "modulename": "outrank.task_summary", "kind": "module", "doc": "\n"}, "outrank.task_summary.outrank_task_result_summary": {"fullname": "outrank.task_summary.outrank_task_result_summary", "modulename": "outrank.task_summary", "qualname": "outrank_task_result_summary", "kind": "function", "doc": "\n", "signature": "(args):", "funcdef": "def"}, "outrank.task_visualization": {"fullname": "outrank.task_visualization", "modulename": "outrank.task_visualization", "kind": "module", "doc": "\n"}, "outrank.task_visualization.outrank_task_visualize_results": {"fullname": "outrank.task_visualization.outrank_task_visualize_results", "modulename": "outrank.task_visualization", "qualname": "outrank_task_visualize_results", "kind": "function", "doc": "\n", "signature": "(args):", "funcdef": "def"}, "outrank.visualizations": {"fullname": "outrank.visualizations", "modulename": "outrank.visualizations", "kind": "module", "doc": "\n"}, "outrank.visualizations.ranking_visualization": {"fullname": "outrank.visualizations.ranking_visualization", "modulename": "outrank.visualizations.ranking_visualization", "kind": "module", "doc": "\n"}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"fullname": "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_hierarchical_clusters", "kind": "function", "doc": "A method for visualization of hierarchical clusters w.r.t. different linkage functions
\n", "signature": "(\ttriplet_dataframe: pandas.core.frame.DataFrame,\toutput_folder: str,\timage_format: str = 'png',\tmax_num_clusters: int = 100) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"fullname": "outrank.visualizations.ranking_visualization.visualize_heatmap", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_heatmap", "kind": "function", "doc": "\n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\timage_format: str) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"fullname": "outrank.visualizations.ranking_visualization.visualize_barplots", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_barplots", "kind": "function", "doc": "\n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\treference_json: str,\timage_format: str,\tlabel: str,\theuristic: str) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_all": {"fullname": "outrank.visualizations.ranking_visualization.visualize_all", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_all", "kind": "function", "doc": "A method for visualization of the obtained feature interaction maps.
\n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\tlabel: str = '',\treference_json: str = '',\timage_format: str = 'png',\theuristic: str = 'MI') -> None:", "funcdef": "def"}}, "docInfo": {"outrank": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 234}, "outrank.algorithms": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 6}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 11}, "outrank.algorithms.importance_estimator": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_MI": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.numba_mi": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 21}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 204, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.sketches": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 26}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 3}, "outrank.core_ranking": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.IGNORED_VALUES": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.prior_combinations_sample": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 75, "bases": 0, "doc": 15}, "outrank.core_ranking.mixed_rank_graph": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 81, "bases": 0, "doc": 19}, "outrank.core_ranking.enrich_with_transformations": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 92, "bases": 0, "doc": 13}, "outrank.core_ranking.compute_combined_features": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 103, "bases": 0, "doc": 11}, "outrank.core_ranking.compute_expanded_multivalue_features": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 41}, "outrank.core_ranking.compute_subfeatures": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 70}, "outrank.core_ranking.include_noisy_features": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 11}, "outrank.core_ranking.compute_coverage": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 7}, "outrank.core_ranking.compute_feature_memory_consumption": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 10}, "outrank.core_ranking.compute_value_counts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 6}, "outrank.core_ranking.compute_cardinalities": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 7}, "outrank.core_ranking.compute_bounds_increment": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 3}, "outrank.core_ranking.compute_batch_ranking": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 197, "bases": 0, "doc": 11}, "outrank.core_ranking.get_num_of_instances": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 15}, "outrank.core_ranking.get_grouped_df": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 12}, "outrank.core_ranking.checkpoint_importances_df": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 12}, "outrank.core_ranking.estimate_importances_minibatches": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 376, "bases": 0, "doc": 48}, "outrank.core_selftest": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.pro_tips": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 303, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.write_json_dump_to_file": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "outrank.core_utils.internal_hash": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 17}, "outrank.core_utils.DatasetInformationStorage": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 14}, "outrank.core_utils.DatasetInformationStorage.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.data_path": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.column_names": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.column_types": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.encoding": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.NumericFeatureSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.minimum": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.maximum": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.median": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.NominalFeatureSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.BatchRankingSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary.step_times": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.display_random_tip": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "outrank.core_utils.get_dataset_info": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.core_utils.display_tool_name": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "outrank.core_utils.parse_ob_line": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 7}, "outrank.core_utils.parse_ob_line_vw": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 15}, "outrank.core_utils.parse_ob_csv_line": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 10}, "outrank.core_utils.generic_line_parser": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 13}, "outrank.core_utils.read_reference_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 9}, "outrank.core_utils.parse_namespace": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 9}, "outrank.core_utils.read_column_names": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 6}, "outrank.core_utils.parse_ob_vw_feature_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_ob_raw_feature_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_ob_feature_information": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_csv_with_description_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.parse_csv_raw": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.extract_features_from_reference_JSON": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 10}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 10}, "outrank.core_utils.summarize_rare_counts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 5}, "outrank.feature_transformations": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 56, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 173, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 4589, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 4, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"qualname": 3, "fullname": 11, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 8}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"qualname": 4, "fullname": 9, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "outrank.task_generators": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_generators.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_generators.outrank_task_generate_data_set": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "outrank.task_ranking": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_ranking.outrank_task_conduct_ranking": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.task_selftest": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_selftest.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_selftest.conduct_self_test": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 3}, "outrank.task_summary": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_summary.outrank_task_result_summary": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "outrank.task_visualization": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_visualization.outrank_task_visualize_results": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "outrank.visualizations": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 91, "bases": 0, "doc": 15}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 93, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_all": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 135, "bases": 0, "doc": 13}}, "length": 140, "save": true}, "index": {"qualname": {"root": {"3": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 11}}}}, "b": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 1}, "x": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "j": {"docs": {"outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 9, "r": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}, "w": {"docs": {"outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 9}}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}, "b": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 4}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 2}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}}, "fullname": {"root": {"3": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms": {"tf": 1}, "outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_selftest": {"tf": 1}, "outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}, "outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}, "outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.4142135623730951}, "outrank.visualizations": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 140}}}}}}, "f": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}, "b": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms": {"tf": 1}, "outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 29}}}}}}}}, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "j": {"docs": {"outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 35, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 5}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 50}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}, "w": {"docs": {"outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}}, "df": 1, "i": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 8, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 1}, "x": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}}, "df": 6}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 10}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 45}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 11}}}}, "b": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 10}}}, "s": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_selftest": {"tf": 1}, "outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 70}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 9}}, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 11}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_selftest": {"tf": 1}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 6}}}, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 9, "r": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 9}}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 8}}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 7, "s": {"docs": {"outrank.visualizations": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 23}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 21}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}, "outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}, "outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.4142135623730951}}, "df": 12}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}}, "annotation": {"root": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 19, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1.4142135623730951}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 7}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 4}}}}}}}, "default_value": {"root": {"0": {"1": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "2": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 2}, "4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "8": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 22.715633383201094}}, "df": 3}, "1": {"0": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8.06225774829855}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 3}, "docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 2}, "6": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {"outrank.core_utils.pro_tips": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 10.198039027185569}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 6}, "2": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.830951894845301}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 3}, "3": {"2": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "5": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "6": {"4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "8": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "9": {"6": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"outrank.core_ranking.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.795831523312719}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 12.288205727444508}, "outrank.task_generators.logger": {"tf": 1.4142135623730951}, "outrank.task_selftest.logger": {"tf": 1.4142135623730951}}, "df": 11, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.logger": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 5}, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 3.1622776601683795}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.74734012447073}}, "df": 3, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.logger": {"tf": 1.4142135623730951}, "outrank.task_generators.logger": {"tf": 1.4142135623730951}, "outrank.task_selftest.logger": {"tf": 1.4142135623730951}}, "df": 3}}}, "*": {"1": {"0": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.6457513110645907}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.61895003862225}}, "df": 3}}}}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.logger": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 16}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "x": {"2": {"7": {"docs": {"outrank.core_utils.pro_tips": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 4}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 6.324555320336759}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.49468024894146}}, "df": 4}, "docs": {}, "df": 0}, "docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.449489742783178}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.795831523312719}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.130067012440755}}, "df": 3, "+": {"1": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}}}}}}, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 3.872983346207417}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "w": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}}, "df": 2}}, "b": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 2.8284271247461903}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "x": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.449489742783178}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.58257569495584}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.08679276123039}}, "df": 3}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "s": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.445523142259598}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 3.1622776601683795}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.74734012447073}}, "df": 3, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 16.0312195418814}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"0": {"0": {"5": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}, "1": {"0": {"0": {"0": {"0": {"0": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "5": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}, "docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"0": {"0": {"0": {"0": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2}, "outrank.core_utils.parse_ob_line": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 2.8284271247461903}}, "df": 7}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}, "8": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 3.1622776601683795}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 5.5677643628300215}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 5.477225575051661}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 5.477225575051661}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 4.898979485566356}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 5.656854249492381}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 4.242640687119285}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 3.7416573867739413}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 4.242640687119285}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 12.806248474865697}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 5.830951894845301}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 3.4641016151377544}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 3.7416573867739413}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 4.69041575982343}, "outrank.core_ranking.prior_combinations_sample": {"tf": 8}, "outrank.core_ranking.mixed_rank_graph": {"tf": 8}, "outrank.core_ranking.enrich_with_transformations": {"tf": 8.54400374531753}, "outrank.core_ranking.compute_combined_features": {"tf": 9.1104335791443}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 8.246211251235321}, "outrank.core_ranking.compute_subfeatures": {"tf": 8.246211251235321}, "outrank.core_ranking.include_noisy_features": {"tf": 7.681145747868608}, "outrank.core_ranking.compute_coverage": {"tf": 7.14142842854285}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 7.14142842854285}, "outrank.core_ranking.compute_value_counts": {"tf": 5.830951894845301}, "outrank.core_ranking.compute_cardinalities": {"tf": 6}, "outrank.core_ranking.compute_bounds_increment": {"tf": 7.54983443527075}, "outrank.core_ranking.compute_batch_ranking": {"tf": 12.449899597988733}, "outrank.core_ranking.get_num_of_instances": {"tf": 4}, "outrank.core_ranking.get_grouped_df": {"tf": 6.855654600401044}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 5.830951894845301}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 17.204650534085253}, "outrank.core_utils.write_json_dump_to_file": {"tf": 4.898979485566356}, "outrank.core_utils.internal_hash": {"tf": 4}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 9.38083151964686}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 7}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 4.47213595499958}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 7.3484692283495345}, "outrank.core_utils.display_random_tip": {"tf": 3}, "outrank.core_utils.get_dataset_info": {"tf": 3.7416573867739413}, "outrank.core_utils.display_tool_name": {"tf": 3}, "outrank.core_utils.parse_ob_line": {"tf": 7.416198487095663}, "outrank.core_utils.parse_ob_line_vw": {"tf": 8.831760866327848}, "outrank.core_utils.parse_ob_csv_line": {"tf": 7.14142842854285}, "outrank.core_utils.generic_line_parser": {"tf": 8.94427190999916}, "outrank.core_utils.read_reference_json": {"tf": 4.69041575982343}, "outrank.core_utils.parse_namespace": {"tf": 6.082762530298219}, "outrank.core_utils.read_column_names": {"tf": 4.58257569495584}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_ob_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_csv_raw": {"tf": 4.47213595499958}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 5}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 8.774964387392123}, "outrank.core_utils.summarize_rare_counts": {"tf": 7.211102550927978}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 6.164414002968976}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 5.744562646538029}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 6.324555320336759}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 5.656854249492381}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 5.656854249492381}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 3.1622776601683795}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 3.7416573867739413}, "outrank.task_selftest.conduct_self_test": {"tf": 2.6457513110645907}, "outrank.task_summary.outrank_task_result_summary": {"tf": 3.1622776601683795}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 3.1622776601683795}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 8.366600265340756}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 6.855654600401044}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 8.602325267042627}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 10.295630140987}}, "df": 69, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.7320508075688772}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.7320508075688772}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 2.449489742783178}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 3}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 2}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}}, "df": 32}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 25}}}}, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 29}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 5}}, "t": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 10}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 2.6457513110645907}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 3.4641016151377544}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 2.6457513110645907}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.7320508075688772}, "outrank.core_utils.generic_line_parser": {"tf": 1.4142135623730951}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 2}, "outrank.core_utils.read_column_names": {"tf": 1.4142135623730951}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 2.23606797749979}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 2.23606797749979}}, "df": 32, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 13}}}, "t": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 6}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 9}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 6}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.4142135623730951}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 2}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1.7320508075688772}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 17}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 5, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "l": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 4}}}}}, "x": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 4}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 8}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.449489742783178}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.449489742783178}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 10}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 7, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_value_counts": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_cardinalities": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 6}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.23606797749979}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 13}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 7}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 8}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 8}}}, "f": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}}, "df": 2}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0}}, "doc": {"root": {"0": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"5": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"2": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"outrank": {"tf": 9.219544457292887}, "outrank.algorithms": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1.7320508075688772}, "outrank.core_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.logger": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1.7320508075688772}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1.7320508075688772}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1.7320508075688772}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 2.23606797749979}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_value_counts": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_cardinalities": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_selftest": {"tf": 1.7320508075688772}, "outrank.core_utils": {"tf": 1.7320508075688772}, "outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1.7320508075688772}, "outrank.core_utils.internal_hash": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1.7320508075688772}, "outrank.core_utils.display_random_tip": {"tf": 1.7320508075688772}, "outrank.core_utils.get_dataset_info": {"tf": 1.7320508075688772}, "outrank.core_utils.display_tool_name": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.4142135623730951}, "outrank.core_utils.generic_line_parser": {"tf": 1.7320508075688772}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1.4142135623730951}, "outrank.core_utils.read_column_names": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_csv_raw": {"tf": 1.7320508075688772}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1.4142135623730951}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.4142135623730951}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.4142135623730951}, "outrank.feature_transformations": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1.7320508075688772}, "outrank.task_generators": {"tf": 1.7320508075688772}, "outrank.task_generators.logger": {"tf": 1.7320508075688772}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1.7320508075688772}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.7320508075688772}, "outrank.task_selftest": {"tf": 1.7320508075688772}, "outrank.task_selftest.logger": {"tf": 1.7320508075688772}, "outrank.task_selftest.conduct_self_test": {"tf": 1.7320508075688772}, "outrank.task_summary": {"tf": 1.7320508075688772}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.7320508075688772}, "outrank.task_visualization": {"tf": 1.7320508075688772}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.7320508075688772}, "outrank.visualizations": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1.7320508075688772}}, "df": 140, "w": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "o": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 2.449489742783178}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 11}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 2.6457513110645907}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 16}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1, "d": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 9, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.4142135623730951}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 26, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 3}, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 2, "d": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}, "|": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "b": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 13, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 2}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 10, "a": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}, "b": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "c": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 8}}}}}}, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 2}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 8, "d": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}}, "df": 2}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 3, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 10}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "t": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 6, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"outrank": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 3}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}}}}}}}}}, "f": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 3, "r": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"outrank": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1, "n": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 11}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 8}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}, "w": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 4}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"outrank": {"fullname": "outrank", "modulename": "outrank", "kind": "module", "doc": "All functions/methods can be searched-for (search bar on the left).
\n\nThis tool enables fast screening of feature-feature interactions. Its purpose is to give the user fast insight into potential redundancies/anomalies in the data.\nIt is implemented to operate in _mini batches_, it traverses the raw data
incrementally, refining the rankings as it goes along. The core operation, interaction ranking, outputs triplets which look as follows:
featureA featureB 0.512\nfeatureA featureC 0.125\n
\n\npip install outrank\n
\nand test a minimal cycle with
\n\noutrank --task selftest\n
\nif this passes, you can be pretty certain OutRank will perform as intended. OutRank's primary use case is as a CLI tool, begin exploring with
\n\noutrank --help\n
\nA minimal showcase of performing feature ranking on a generic CSV is demonstrated with this example.
More examples demonstrating OutRank's capabilities are also available.
Identify unique elements in an array, fast
\n", "signature": "(a):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "compute_conditional_entropy", "kind": "function", "doc": "\n", "signature": "(\tY_classes,\tclass_values,\tclass_var_shape,\tinitial_prob,\tnonzero_counts):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "compute_entropies", "kind": "function", "doc": "Core entropy computation function
\n", "signature": "(X, Y, all_events, f_values, f_value_counts, cardinality_correction):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "mutual_info_estimator_numba", "kind": "function", "doc": "Core estimator logic. Compute unique elements, subset if required
\n", "signature": "(Y, X, approximation_factor=1, cardinality_correction=False):", "funcdef": "def"}, "outrank.algorithms.importance_estimator": {"fullname": "outrank.algorithms.importance_estimator", "modulename": "outrank.algorithms.importance_estimator", "kind": "module", "doc": "\n"}, "outrank.algorithms.importance_estimator.logger": {"fullname": "outrank.algorithms.importance_estimator.logger", "modulename": "outrank.algorithms.importance_estimator", "qualname": "logger", "kind": "variable", "doc": "\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.algorithms.importance_estimator.sklearn_MI": {"fullname": "outrank.algorithms.importance_estimator.sklearn_MI", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_MI", "kind": "function", "doc": "\n", "signature": "(vector_first: Any, vector_second: Any) -> float:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"fullname": "outrank.algorithms.importance_estimator.sklearn_surrogate", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_surrogate", "kind": "function", "doc": "\n", "signature": "(vector_first: Any, vector_second: Any, surrogate_model: str) -> float:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.numba_mi": {"fullname": "outrank.algorithms.importance_estimator.numba_mi", "modulename": "outrank.algorithms.importance_estimator", "qualname": "numba_mi", "kind": "function", "doc": "\n", "signature": "(vector_first, vector_second, heuristic):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"fullname": "outrank.algorithms.importance_estimator.sklearn_mi_adj", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_mi_adj", "kind": "function", "doc": "\n", "signature": "(vector_first, vector_second):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"fullname": "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise", "modulename": "outrank.algorithms.importance_estimator", "qualname": "get_importances_estimate_pairwise", "kind": "function", "doc": "A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel.
\n", "signature": "(combination, args, tmp_df):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"fullname": "outrank.algorithms.importance_estimator.rank_features_3MR", "modulename": "outrank.algorithms.importance_estimator", "qualname": "rank_features_3MR", "kind": "function", "doc": "\n", "signature": "(\trelevance_dict: dict[str, float],\tredundancy_dict: dict[tuple[typing.Any, typing.Any], typing.Any],\trelational_dict: dict[tuple[typing.Any, typing.Any], typing.Any],\tstrategy: str = 'median',\talpha: float = 1,\tbeta: float = 1) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"fullname": "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic", "modulename": "outrank.algorithms.importance_estimator", "qualname": "get_importances_estimate_nonmyopic", "kind": "function", "doc": "\n", "signature": "(args: Any, tmp_df: pandas.core.frame.DataFrame):", "funcdef": "def"}, "outrank.algorithms.sketches": {"fullname": "outrank.algorithms.sketches", "modulename": "outrank.algorithms.sketches", "kind": "module", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "kind": "module", "doc": "This module implements probabilistic data structure which is able to calculate the cardinality of large multisets in a single pass using little auxiliary memory
\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache", "kind": "class", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.__init__", "kind": "function", "doc": "\n", "signature": "(error_rate=0.005)"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.p", "kind": "variable", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.m", "kind": "variable", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.warmup_set", "kind": "variable", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.warmup_size", "kind": "variable", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.width", "kind": "variable", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.hll_flag", "kind": "variable", "doc": "\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.add", "kind": "function", "doc": "\n", "signature": "(self, value):", "funcdef": "def"}, "outrank.algorithms.synthetic_data_generators": {"fullname": "outrank.algorithms.synthetic_data_generators", "modulename": "outrank.algorithms.synthetic_data_generators", "kind": "module", "doc": "\n"}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"fullname": "outrank.algorithms.synthetic_data_generators.generator_naive", "modulename": "outrank.algorithms.synthetic_data_generators.generator_naive", "kind": "module", "doc": "\n"}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"fullname": "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix", "modulename": "outrank.algorithms.synthetic_data_generators.generator_naive", "qualname": "generate_random_matrix", "kind": "function", "doc": "\n", "signature": "(num_features=100, size=20000):", "funcdef": "def"}, "outrank.core_ranking": {"fullname": "outrank.core_ranking", "modulename": "outrank.core_ranking", "kind": "module", "doc": "\n"}, "outrank.core_ranking.logger": {"fullname": "outrank.core_ranking.logger", "modulename": "outrank.core_ranking", "qualname": "logger", "kind": "variable", "doc": "\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"fullname": "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_CARDINALITY_STORAGE", "kind": "variable", "doc": "\n", "annotation": ": dict[typing.Any, typing.Any]", "default_value": "{}"}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"fullname": "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_RARE_VALUE_STORAGE", "kind": "variable", "doc": "\n", "annotation": ": dict[str, typing.Any]", "default_value": "Counter()"}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"fullname": "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_PRIOR_COMB_COUNTS", "kind": "variable", "doc": "\n", "annotation": ": dict[typing.Any, int]", "default_value": "Counter()"}, "outrank.core_ranking.IGNORED_VALUES": {"fullname": "outrank.core_ranking.IGNORED_VALUES", "modulename": "outrank.core_ranking", "qualname": "IGNORED_VALUES", "kind": "variable", "doc": "\n", "default_value": "set()"}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"fullname": "outrank.core_ranking.HYPERLL_ERROR_BOUND", "modulename": "outrank.core_ranking", "qualname": "HYPERLL_ERROR_BOUND", "kind": "variable", "doc": "\n", "default_value": "0.02"}, "outrank.core_ranking.prior_combinations_sample": {"fullname": "outrank.core_ranking.prior_combinations_sample", "modulename": "outrank.core_ranking", "qualname": "prior_combinations_sample", "kind": "function", "doc": "Make sure only relevant subspace of combinations is selected based on prior counts
\n", "signature": "(\tcombinations: list[tuple[typing.Any, ...]],\targs: Any) -> list[tuple[typing.Any, ...]]:", "funcdef": "def"}, "outrank.core_ranking.mixed_rank_graph": {"fullname": "outrank.core_ranking.mixed_rank_graph", "modulename": "outrank.core_ranking", "qualname": "mixed_rank_graph", "kind": "function", "doc": "Compute the full mixed rank graph corresponding to all pairwise feature interactions based on the selected heuristic
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any,\tcpu_pool: Any,\tpbar: Any) -> outrank.core_utils.BatchRankingSummary:", "funcdef": "def"}, "outrank.core_ranking.enrich_with_transformations": {"fullname": "outrank.core_ranking.enrich_with_transformations", "modulename": "outrank.core_ranking", "qualname": "enrich_with_transformations", "kind": "function", "doc": "Construct a collection of new features based on pre-defined transformations/rules
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tnum_col_types: set[str],\tlogger: Any,\targs: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_combined_features": {"fullname": "outrank.core_ranking.compute_combined_features", "modulename": "outrank.core_ranking", "qualname": "compute_combined_features", "kind": "function", "doc": "Compute higher order features via xxhash-based trick.
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any,\tis_3mr: bool = False) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_expanded_multivalue_features": {"fullname": "outrank.core_ranking.compute_expanded_multivalue_features", "modulename": "outrank.core_ranking", "qualname": "compute_expanded_multivalue_features", "kind": "function", "doc": "Compute one-hot encoded feature space based on each designated multivalue feature. E.g., feature with value \"a,b,c\" becomes three features, values of which are presence of a given value in a mutlivalue feature of choice.
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_subfeatures": {"fullname": "outrank.core_ranking.compute_subfeatures", "modulename": "outrank.core_ranking", "qualname": "compute_subfeatures", "kind": "function", "doc": "Compute derived features that are more fine-grained. Implements logic around two operators that govern feature construction.\n->: One sided construction - every value from left side is fine, separate ones from the right side feature will be considered.\n<->: Two sided construction - two-sided values present. This means that each value from a is combined with each from b, forming |A|*|B| new features (one-hot encoded)
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.include_noisy_features": {"fullname": "outrank.core_ranking.include_noisy_features", "modulename": "outrank.core_ranking", "qualname": "include_noisy_features", "kind": "function", "doc": "Add randomized features that serve as a sanity check
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_coverage": {"fullname": "outrank.core_ranking.compute_coverage", "modulename": "outrank.core_ranking", "qualname": "compute_coverage", "kind": "function", "doc": "Compute coverage of features, incrementally
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any) -> dict[str, set[str]]:", "funcdef": "def"}, "outrank.core_ranking.compute_feature_memory_consumption": {"fullname": "outrank.core_ranking.compute_feature_memory_consumption", "modulename": "outrank.core_ranking", "qualname": "compute_feature_memory_consumption", "kind": "function", "doc": "An approximation of how much feature take up
\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any) -> dict[str, set[str]]:", "funcdef": "def"}, "outrank.core_ranking.compute_value_counts": {"fullname": "outrank.core_ranking.compute_value_counts", "modulename": "outrank.core_ranking", "qualname": "compute_value_counts", "kind": "function", "doc": "Update the count structure
\n", "signature": "(input_dataframe: pandas.core.frame.DataFrame, args: Any):", "funcdef": "def"}, "outrank.core_ranking.compute_cardinalities": {"fullname": "outrank.core_ranking.compute_cardinalities", "modulename": "outrank.core_ranking", "qualname": "compute_cardinalities", "kind": "function", "doc": "Compute cardinalities of features, incrementally
\n", "signature": "(input_dataframe: pandas.core.frame.DataFrame, pbar: Any) -> None:", "funcdef": "def"}, "outrank.core_ranking.compute_bounds_increment": {"fullname": "outrank.core_ranking.compute_bounds_increment", "modulename": "outrank.core_ranking", "qualname": "compute_bounds_increment", "kind": "function", "doc": "\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tnumeric_column_types: set[str]) -> dict[str, typing.Any]:", "funcdef": "def"}, "outrank.core_ranking.compute_batch_ranking": {"fullname": "outrank.core_ranking.compute_batch_ranking", "modulename": "outrank.core_ranking", "qualname": "compute_batch_ranking", "kind": "function", "doc": "Enrich the feature space and compute the batch importances
\n", "signature": "(\tline_tmp_storage: list[list[typing.Any]],\tnumeric_column_types: set[str],\targs: Any,\tcpu_pool: Any,\tcolumn_descriptions: list[str],\tlogger: Any,\tpbar: Any) -> tuple[outrank.core_utils.BatchRankingSummary, dict[str, typing.Any], dict[str, set[str]], dict[str, set[str]]]:", "funcdef": "def"}, "outrank.core_ranking.get_num_of_instances": {"fullname": "outrank.core_ranking.get_num_of_instances", "modulename": "outrank.core_ranking", "qualname": "get_num_of_instances", "kind": "function", "doc": "Count the number of lines in a file, fast - useful for progress logging
\n", "signature": "(fname: str) -> int:", "funcdef": "def"}, "outrank.core_ranking.get_grouped_df": {"fullname": "outrank.core_ranking.get_grouped_df", "modulename": "outrank.core_ranking", "qualname": "get_grouped_df", "kind": "function", "doc": "A helper method that enables median-based aggregation after processing
\n", "signature": "(\timportances_df_list: list[tuple[str, str, float]]) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.checkpoint_importances_df": {"fullname": "outrank.core_ranking.checkpoint_importances_df", "modulename": "outrank.core_ranking", "qualname": "checkpoint_importances_df", "kind": "function", "doc": "A helper which stores intermediary state - useful for longer runs
\n", "signature": "(importances_batch: list[tuple[str, str, float]]) -> None:", "funcdef": "def"}, "outrank.core_ranking.estimate_importances_minibatches": {"fullname": "outrank.core_ranking.estimate_importances_minibatches", "modulename": "outrank.core_ranking", "qualname": "estimate_importances_minibatches", "kind": "function", "doc": "Interaction score estimator - suitable for example for csv-like input data types.\nThis type of data is normally a single large csv, meaning that minibatch processing needs to\nhappen during incremental handling of the file (that\"s not the case for pre-separated ob data)
\n", "signature": "(\tinput_file: str,\tcolumn_descriptions: list,\tfw_col_mapping: dict[str, str],\tnumeric_column_types: set,\tbatch_size: int = 100000,\targs: Any = None,\tdata_encoding: str = 'utf-8',\tcpu_pool: Any = None,\tdelimiter: str = '\\t',\tfeature_construction_mode: bool = False,\tlogger: Any = None) -> tuple[list[dict[str, typing.Any]], typing.Any, dict[typing.Any, typing.Any], list[dict[str, typing.Any]], list[dict[str, set[str]]], collections.defaultdict[str, list[set[str]]], dict[str, typing.Any]]:", "funcdef": "def"}, "outrank.core_selftest": {"fullname": "outrank.core_selftest", "modulename": "outrank.core_selftest", "kind": "module", "doc": "\n"}, "outrank.core_utils": {"fullname": "outrank.core_utils", "modulename": "outrank.core_utils", "kind": "module", "doc": "\n"}, "outrank.core_utils.pro_tips": {"fullname": "outrank.core_utils.pro_tips", "modulename": "outrank.core_utils", "qualname": "pro_tips", "kind": "variable", "doc": "\n", "default_value": "['OutRank can construct subfeatures; features based on subspaces. Example command argument is: --subfeature_mapping "feature_a->feature_b;feature_c<->feature_d;feature_c<->feature_e"', 'Heuristic MI-numba-randomized seems like the best of both worlds! (speed + performance).', 'Heuristic surrogate-lr performs cross-validation (internally), keep that in mind!', 'Consider running OutRank on a smaller data sample first, might be enough (--subsampling = a lot).', 'There are two types of combinations supported; unsupervised pairwise ranking (redundancies- --target_ranking_only=False), and supervised combinations - (--interaction_order > 1)', 'Visualization part also includes clustering - this might be very insightful!', 'By default OutRank includes feature cardinality and coverage in feature names (card; cov)', 'Intermediary checkpoints (tmp_checkpoint.tsv) might already give you insights during longer runs.', 'In theory, you can rank redundancies of combined features (--interaction_order AND --target_ranking_only=False).', 'Give it as many threads as physically possible (--num_threads).', 'You can speed up ranking by diminishing feature buffer size (--combination_number_upper_bound determines how many ranking computations per batch will be considered). This, and --subsampling are very powerful together.', 'Want to rank feature transformations, but not sure which ones to choose? --transformers=default should serve as a solid baseline (common DS transformations included).', 'Your target can be any feature! (explaining one feature with others)', 'OutRank uses HyperLogLog for cardinality estimation - this is also a potential usecase (understanding cardinalities across different data sets).', 'Each feature is named as featureName(cardinality, coverage in percents) in the final files.', 'You can generate candidate feature transformation ranges (fw) by using --task=feature_summary_transformers.']"}, "outrank.core_utils.write_json_dump_to_file": {"fullname": "outrank.core_utils.write_json_dump_to_file", "modulename": "outrank.core_utils", "qualname": "write_json_dump_to_file", "kind": "function", "doc": "\n", "signature": "(args: Any, config_name: str) -> None:", "funcdef": "def"}, "outrank.core_utils.internal_hash": {"fullname": "outrank.core_utils.internal_hash", "modulename": "outrank.core_utils", "qualname": "internal_hash", "kind": "function", "doc": "A generic internal hash used throughout ranking procedure - let's hardcode seed here for sure
\n", "signature": "(input_obj: str) -> str:", "funcdef": "def"}, "outrank.core_utils.DatasetInformationStorage": {"fullname": "outrank.core_utils.DatasetInformationStorage", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage", "kind": "class", "doc": "A generic class for holding properties of a given type of dataset
\n"}, "outrank.core_utils.DatasetInformationStorage.__init__": {"fullname": "outrank.core_utils.DatasetInformationStorage.__init__", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.__init__", "kind": "function", "doc": "\n", "signature": "(\tdata_path: str,\tcolumn_names: list[str],\tcolumn_types: set[str],\tcol_delimiter: str | None,\tencoding: str,\tfw_map: dict[str, str] | None)"}, "outrank.core_utils.DatasetInformationStorage.data_path": {"fullname": "outrank.core_utils.DatasetInformationStorage.data_path", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.data_path", "kind": "variable", "doc": "\n", "annotation": ": str"}, "outrank.core_utils.DatasetInformationStorage.column_names": {"fullname": "outrank.core_utils.DatasetInformationStorage.column_names", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.column_names", "kind": "variable", "doc": "\n", "annotation": ": list[str]"}, "outrank.core_utils.DatasetInformationStorage.column_types": {"fullname": "outrank.core_utils.DatasetInformationStorage.column_types", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.column_types", "kind": "variable", "doc": "\n", "annotation": ": set[str]"}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"fullname": "outrank.core_utils.DatasetInformationStorage.col_delimiter", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.col_delimiter", "kind": "variable", "doc": "\n", "annotation": ": str | None"}, "outrank.core_utils.DatasetInformationStorage.encoding": {"fullname": "outrank.core_utils.DatasetInformationStorage.encoding", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.encoding", "kind": "variable", "doc": "\n", "annotation": ": str"}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"fullname": "outrank.core_utils.DatasetInformationStorage.fw_map", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.fw_map", "kind": "variable", "doc": "\n", "annotation": ": dict[str, str] | None"}, "outrank.core_utils.NumericFeatureSummary": {"fullname": "outrank.core_utils.NumericFeatureSummary", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary", "kind": "class", "doc": "A generic class storing numeric feature statistics
\n"}, "outrank.core_utils.NumericFeatureSummary.__init__": {"fullname": "outrank.core_utils.NumericFeatureSummary.__init__", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.__init__", "kind": "function", "doc": "\n", "signature": "(\tfeature_name: str,\tminimum: float,\tmaximum: float,\tmedian: float,\tnum_unique: int)"}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"fullname": "outrank.core_utils.NumericFeatureSummary.feature_name", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.feature_name", "kind": "variable", "doc": "\n", "annotation": ": str"}, "outrank.core_utils.NumericFeatureSummary.minimum": {"fullname": "outrank.core_utils.NumericFeatureSummary.minimum", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.minimum", "kind": "variable", "doc": "\n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.maximum": {"fullname": "outrank.core_utils.NumericFeatureSummary.maximum", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.maximum", "kind": "variable", "doc": "\n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.median": {"fullname": "outrank.core_utils.NumericFeatureSummary.median", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.median", "kind": "variable", "doc": "\n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"fullname": "outrank.core_utils.NumericFeatureSummary.num_unique", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.num_unique", "kind": "variable", "doc": "\n", "annotation": ": int"}, "outrank.core_utils.NominalFeatureSummary": {"fullname": "outrank.core_utils.NominalFeatureSummary", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary", "kind": "class", "doc": "A generic class storing numeric feature statistics
\n"}, "outrank.core_utils.NominalFeatureSummary.__init__": {"fullname": "outrank.core_utils.NominalFeatureSummary.__init__", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.__init__", "kind": "function", "doc": "\n", "signature": "(feature_name: str, num_unique: int)"}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"fullname": "outrank.core_utils.NominalFeatureSummary.feature_name", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.feature_name", "kind": "variable", "doc": "\n", "annotation": ": str"}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"fullname": "outrank.core_utils.NominalFeatureSummary.num_unique", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.num_unique", "kind": "variable", "doc": "\n", "annotation": ": int"}, "outrank.core_utils.BatchRankingSummary": {"fullname": "outrank.core_utils.BatchRankingSummary", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary", "kind": "class", "doc": "A generic class representing batched ranking results
\n"}, "outrank.core_utils.BatchRankingSummary.__init__": {"fullname": "outrank.core_utils.BatchRankingSummary.__init__", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.__init__", "kind": "function", "doc": "\n", "signature": "(\ttriplet_scores: list[tuple[str, str, float]],\tstep_times: dict[str, typing.Any])"}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"fullname": "outrank.core_utils.BatchRankingSummary.triplet_scores", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.triplet_scores", "kind": "variable", "doc": "\n", "annotation": ": list[tuple[str, str, float]]"}, "outrank.core_utils.BatchRankingSummary.step_times": {"fullname": "outrank.core_utils.BatchRankingSummary.step_times", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.step_times", "kind": "variable", "doc": "\n", "annotation": ": dict[str, typing.Any]"}, "outrank.core_utils.display_random_tip": {"fullname": "outrank.core_utils.display_random_tip", "modulename": "outrank.core_utils", "qualname": "display_random_tip", "kind": "function", "doc": "\n", "signature": "() -> None:", "funcdef": "def"}, "outrank.core_utils.get_dataset_info": {"fullname": "outrank.core_utils.get_dataset_info", "modulename": "outrank.core_utils", "qualname": "get_dataset_info", "kind": "function", "doc": "\n", "signature": "(args: Any):", "funcdef": "def"}, "outrank.core_utils.display_tool_name": {"fullname": "outrank.core_utils.display_tool_name", "modulename": "outrank.core_utils", "qualname": "display_tool_name", "kind": "function", "doc": "\n", "signature": "() -> None:", "funcdef": "def"}, "outrank.core_utils.parse_ob_line": {"fullname": "outrank.core_utils.parse_ob_line", "modulename": "outrank.core_utils", "qualname": "parse_ob_line", "kind": "function", "doc": "Outbrain line parsing - generic TSVs
\n", "signature": "(line_string: str, delimiter: str = '\\t', args: Any = None) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_line_vw": {"fullname": "outrank.core_utils.parse_ob_line_vw", "modulename": "outrank.core_utils", "qualname": "parse_ob_line_vw", "kind": "function", "doc": "Parse a sparse vw line into a pandas df with pre-defined namespace
\n", "signature": "(\tline_string: str,\tdelimiter: str,\targs: Any = None,\tfw_col_mapping=None,\ttable_header=None,\tinclude_namespace_info=False) -> list[str | None]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_csv_line": {"fullname": "outrank.core_utils.parse_ob_csv_line", "modulename": "outrank.core_utils", "qualname": "parse_ob_csv_line", "kind": "function", "doc": "Data can have commas within JSON field dumps
\n", "signature": "(line_string: str, delimiter: str = ',', args: Any = None) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.generic_line_parser": {"fullname": "outrank.core_utils.generic_line_parser", "modulename": "outrank.core_utils", "qualname": "generic_line_parser", "kind": "function", "doc": "A generic method aimed to parse data from different sources.
\n", "signature": "(\tline_string: str,\tdelimiter: str,\targs: Any = None,\tfw_col_mapping: Any = None,\ttable_header: Any = None) -> list[typing.Any]:", "funcdef": "def"}, "outrank.core_utils.read_reference_json": {"fullname": "outrank.core_utils.read_reference_json", "modulename": "outrank.core_utils", "qualname": "read_reference_json", "kind": "function", "doc": "A helper method for reading a JSON
\n", "signature": "(json_path) -> dict[str, dict]:", "funcdef": "def"}, "outrank.core_utils.parse_namespace": {"fullname": "outrank.core_utils.parse_namespace", "modulename": "outrank.core_utils", "qualname": "parse_namespace", "kind": "function", "doc": "Parse the feature namespace for type awareness
\n", "signature": "(namespace_path: str) -> tuple[set[str], dict[str, str]]:", "funcdef": "def"}, "outrank.core_utils.read_column_names": {"fullname": "outrank.core_utils.read_column_names", "modulename": "outrank.core_utils", "qualname": "read_column_names", "kind": "function", "doc": "Read the col. header
\n", "signature": "(mapping_file: str) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_vw_feature_information": {"fullname": "outrank.core_utils.parse_ob_vw_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_vw_feature_information", "kind": "function", "doc": "A generic parser of ob-based data
\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_ob_raw_feature_information": {"fullname": "outrank.core_utils.parse_ob_raw_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_raw_feature_information", "kind": "function", "doc": "A generic parser of ob-based data
\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_ob_feature_information": {"fullname": "outrank.core_utils.parse_ob_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_feature_information", "kind": "function", "doc": "A generic parser of ob-based data
\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_csv_with_description_information": {"fullname": "outrank.core_utils.parse_csv_with_description_information", "modulename": "outrank.core_utils", "qualname": "parse_csv_with_description_information", "kind": "function", "doc": "\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_csv_raw": {"fullname": "outrank.core_utils.parse_csv_raw", "modulename": "outrank.core_utils", "qualname": "parse_csv_raw", "kind": "function", "doc": "\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.extract_features_from_reference_JSON": {"fullname": "outrank.core_utils.extract_features_from_reference_JSON", "modulename": "outrank.core_utils", "qualname": "extract_features_from_reference_JSON", "kind": "function", "doc": "Given a model's JSON, extract unique features
\n", "signature": "(json_path: str) -> set[typing.Any]:", "funcdef": "def"}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"fullname": "outrank.core_utils.summarize_feature_bounds_for_transformers", "modulename": "outrank.core_utils", "qualname": "summarize_feature_bounds_for_transformers", "kind": "function", "doc": "summarization auxilliary method for generating JSON-based specs
\n", "signature": "(\tbounds_object_storage: Any,\tfeature_types: list[str],\ttask_name: str,\tlabel_name: str,\tgranularity: int = 15,\toutput_summary_table_only: bool = False):", "funcdef": "def"}, "outrank.core_utils.summarize_rare_counts": {"fullname": "outrank.core_utils.summarize_rare_counts", "modulename": "outrank.core_utils", "qualname": "summarize_rare_counts", "kind": "function", "doc": "Write rare values
\n", "signature": "(\tterm_counter: Any,\targs: Any,\tcardinality_object: Any,\tobject_info: outrank.core_utils.DatasetInformationStorage) -> None:", "funcdef": "def"}, "outrank.feature_transformations": {"fullname": "outrank.feature_transformations", "modulename": "outrank.feature_transformations", "kind": "module", "doc": "\n"}, "outrank.feature_transformations.feature_transformer_vault": {"fullname": "outrank.feature_transformations.feature_transformer_vault", "modulename": "outrank.feature_transformations.feature_transformer_vault", "kind": "module", "doc": "\n"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "kind": "module", "doc": "\n"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "qualname": "MINIMAL_TRANSFORMERS", "kind": "variable", "doc": "\n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)'}"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "qualname": "DEFAULT_TRANSFORMERS", "kind": "variable", "doc": "\n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)', '_tr_div(x,abs(x))*log(abs(x))': 'np.divide(X, np.abs(X)) * np.log(np.abs(X))', '_tr_log(x + sqrt(pow(x,2), 1)': 'np.log(X + np.sqrt(np.power(X, 2) + 1))', '_tr_log*sqrt': 'np.log(X + 1) * np.sqrt(X)', '_tr_log*100': 'np.round(np.log(X + 1) * 100, 0)', '_tr_nonzero': 'np.where(X != 0, 1, 0)', '_tr_round(div(x,max))': 'np.round(np.divide(X, np.max(X)), 0)'}"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "kind": "module", "doc": "\n"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "FW_TRANSFORMERS", "kind": "variable", "doc": "\n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)', '_tr_div(x,abs(x))*log(abs(x))': 'np.divide(X, np.abs(X)) * np.log(np.abs(X))', '_tr_log(x + sqrt(pow(x,2), 1)': 'np.log(X + np.sqrt(np.power(X, 2) + 1))', '_tr_log*sqrt': 'np.log(X + 1) * np.sqrt(X)', '_tr_log*100': 'np.round(np.log(X + 1) * 100, 0)', '_tr_nonzero': 'np.where(X != 0, 1, 0)', '_tr_round(div(x,max))': 'np.round(np.divide(X, np.max(X)), 0)', '_tr_fw_sqrt_res_1_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*1,0), 0))', '_tr_fw_log_res_1_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*1,0), 0))', '_tr_fw_log_res_1_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*1,0), 0))', '_tr_fw_log_res_1_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*1,0), 0))', '_tr_fw_log_res_1_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*1,0), 0))', '_tr_fw_log_res_1_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*1,0), 0))', '_tr_fw_log_res_1_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*1,0), 0))', '_tr_fw_log_res_1_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*1,0), 0))', '_tr_fw_log_res_1_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*1,0), 0))', '_tr_fw_sqrt_res_10_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*10,0), 0))', '_tr_fw_log_res_10_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*10,0), 0))', '_tr_fw_log_res_10_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*10,0), 0))', '_tr_fw_log_res_10_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*10,0), 0))', '_tr_fw_log_res_10_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*10,0), 0))', '_tr_fw_log_res_10_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*10,0), 0))', '_tr_fw_log_res_10_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*10,0), 0))', '_tr_fw_log_res_10_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*10,0), 0))', '_tr_fw_log_res_10_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*10,0), 0))', '_tr_fw_sqrt_res_50_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*50,0), 0))', '_tr_fw_log_res_50_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*50,0), 0))', '_tr_fw_log_res_50_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*50,0), 0))', '_tr_fw_log_res_50_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*50,0), 0))', '_tr_fw_log_res_50_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*50,0), 0))', '_tr_fw_log_res_50_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*50,0), 0))', '_tr_fw_log_res_50_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*50,0), 0))', '_tr_fw_log_res_50_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*50,0), 0))', '_tr_fw_log_res_50_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*50,0), 0))', '_tr_fw_sqrt_res_100_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*100,0), 0))', '_tr_fw_log_res_100_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*100,0), 0))', '_tr_fw_log_res_100_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*100,0), 0))', '_tr_fw_log_res_100_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*100,0), 0))', '_tr_fw_log_res_100_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*100,0), 0))', '_tr_fw_log_res_100_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*100,0), 0))', '_tr_fw_log_res_100_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*100,0), 0))', '_tr_fw_log_res_100_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*100,0), 0))', '_tr_fw_log_res_100_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*100,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*1,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*10,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*50,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*100,0), 0))'}"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "resolution_range", "kind": "variable", "doc": "\n", "default_value": "[1, 10, 50, 100]"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "greater_than_range", "kind": "variable", "doc": "\n", "default_value": "[1, 2, 4, 8, 16, 32, 64, 96]"}, "outrank.feature_transformations.ranking_transformers": {"fullname": "outrank.feature_transformations.ranking_transformers", "modulename": "outrank.feature_transformations.ranking_transformers", "kind": "module", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise", "kind": "class", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise.noise_preset", "kind": "variable", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise.construct_new_features", "kind": "function", "doc": "Generate a few standard noise distributions
\n", "signature": "(self, dataframe: pandas.core.frame.DataFrame, label_column=None):", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric", "kind": "class", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.__init__", "kind": "function", "doc": "\n", "signature": "(numeric_column_names: set[str], preset: str = 'default')"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.numeric_column_names", "kind": "variable", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.constructed_feature_names", "kind": "variable", "doc": "\n", "annotation": ": set[str]"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.max_maj_support", "kind": "variable", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.nan_prop_support", "kind": "variable", "doc": "\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.get_vals", "kind": "function", "doc": "\n", "signature": "(self, tmp_df: pandas.core.frame.DataFrame, col_name: str) -> Any:", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.construct_baseline_features", "kind": "function", "doc": "\n", "signature": "(self, dataframe: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.construct_new_features", "kind": "function", "doc": "\n", "signature": "(self, dataframe: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.task_generators": {"fullname": "outrank.task_generators", "modulename": "outrank.task_generators", "kind": "module", "doc": "\n"}, "outrank.task_generators.logger": {"fullname": "outrank.task_generators.logger", "modulename": "outrank.task_generators", "qualname": "logger", "kind": "variable", "doc": "\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.task_generators.outrank_task_generate_data_set": {"fullname": "outrank.task_generators.outrank_task_generate_data_set", "modulename": "outrank.task_generators", "qualname": "outrank_task_generate_data_set", "kind": "function", "doc": "Core method for generating data sets
\n", "signature": "(args):", "funcdef": "def"}, "outrank.task_ranking": {"fullname": "outrank.task_ranking", "modulename": "outrank.task_ranking", "kind": "module", "doc": "\n"}, "outrank.task_ranking.outrank_task_conduct_ranking": {"fullname": "outrank.task_ranking.outrank_task_conduct_ranking", "modulename": "outrank.task_ranking", "qualname": "outrank_task_conduct_ranking", "kind": "function", "doc": "\n", "signature": "(args: Any):", "funcdef": "def"}, "outrank.task_selftest": {"fullname": "outrank.task_selftest", "modulename": "outrank.task_selftest", "kind": "module", "doc": "\n"}, "outrank.task_selftest.logger": {"fullname": "outrank.task_selftest.logger", "modulename": "outrank.task_selftest", "qualname": "logger", "kind": "variable", "doc": "\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.task_selftest.conduct_self_test": {"fullname": "outrank.task_selftest.conduct_self_test", "modulename": "outrank.task_selftest", "qualname": "conduct_self_test", "kind": "function", "doc": "\n", "signature": "():", "funcdef": "def"}, "outrank.task_summary": {"fullname": "outrank.task_summary", "modulename": "outrank.task_summary", "kind": "module", "doc": "\n"}, "outrank.task_summary.outrank_task_result_summary": {"fullname": "outrank.task_summary.outrank_task_result_summary", "modulename": "outrank.task_summary", "qualname": "outrank_task_result_summary", "kind": "function", "doc": "\n", "signature": "(args):", "funcdef": "def"}, "outrank.task_visualization": {"fullname": "outrank.task_visualization", "modulename": "outrank.task_visualization", "kind": "module", "doc": "\n"}, "outrank.task_visualization.outrank_task_visualize_results": {"fullname": "outrank.task_visualization.outrank_task_visualize_results", "modulename": "outrank.task_visualization", "qualname": "outrank_task_visualize_results", "kind": "function", "doc": "\n", "signature": "(args):", "funcdef": "def"}, "outrank.visualizations": {"fullname": "outrank.visualizations", "modulename": "outrank.visualizations", "kind": "module", "doc": "\n"}, "outrank.visualizations.ranking_visualization": {"fullname": "outrank.visualizations.ranking_visualization", "modulename": "outrank.visualizations.ranking_visualization", "kind": "module", "doc": "\n"}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"fullname": "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_hierarchical_clusters", "kind": "function", "doc": "A method for visualization of hierarchical clusters w.r.t. different linkage functions
\n", "signature": "(\ttriplet_dataframe: pandas.core.frame.DataFrame,\toutput_folder: str,\timage_format: str = 'png',\tmax_num_clusters: int = 100) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"fullname": "outrank.visualizations.ranking_visualization.visualize_heatmap", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_heatmap", "kind": "function", "doc": "\n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\timage_format: str) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"fullname": "outrank.visualizations.ranking_visualization.visualize_barplots", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_barplots", "kind": "function", "doc": "\n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\treference_json: str,\timage_format: str,\tlabel: str,\theuristic: str) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_all": {"fullname": "outrank.visualizations.ranking_visualization.visualize_all", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_all", "kind": "function", "doc": "A method for visualization of the obtained feature interaction maps.
\n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\tlabel: str = '',\treference_json: str = '',\timage_format: str = 'png',\theuristic: str = 'MI') -> None:", "funcdef": "def"}}, "docInfo": {"outrank": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 234}, "outrank.algorithms": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 6}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 11}, "outrank.algorithms.importance_estimator": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.logger": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_MI": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.numba_mi": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 21}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 204, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.sketches": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 26}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 3}, "outrank.core_ranking": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.IGNORED_VALUES": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.prior_combinations_sample": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 75, "bases": 0, "doc": 15}, "outrank.core_ranking.mixed_rank_graph": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 81, "bases": 0, "doc": 19}, "outrank.core_ranking.enrich_with_transformations": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 92, "bases": 0, "doc": 13}, "outrank.core_ranking.compute_combined_features": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 103, "bases": 0, "doc": 11}, "outrank.core_ranking.compute_expanded_multivalue_features": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 41}, "outrank.core_ranking.compute_subfeatures": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 70}, "outrank.core_ranking.include_noisy_features": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 11}, "outrank.core_ranking.compute_coverage": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 7}, "outrank.core_ranking.compute_feature_memory_consumption": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 10}, "outrank.core_ranking.compute_value_counts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 6}, "outrank.core_ranking.compute_cardinalities": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 7}, "outrank.core_ranking.compute_bounds_increment": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 3}, "outrank.core_ranking.compute_batch_ranking": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 197, "bases": 0, "doc": 11}, "outrank.core_ranking.get_num_of_instances": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 15}, "outrank.core_ranking.get_grouped_df": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 12}, "outrank.core_ranking.checkpoint_importances_df": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 12}, "outrank.core_ranking.estimate_importances_minibatches": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 376, "bases": 0, "doc": 48}, "outrank.core_selftest": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.pro_tips": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 303, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.write_json_dump_to_file": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "outrank.core_utils.internal_hash": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 17}, "outrank.core_utils.DatasetInformationStorage": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 14}, "outrank.core_utils.DatasetInformationStorage.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.data_path": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.column_names": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.column_types": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.encoding": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.NumericFeatureSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.minimum": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.maximum": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.median": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.NominalFeatureSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.BatchRankingSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary.step_times": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.display_random_tip": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "outrank.core_utils.get_dataset_info": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.core_utils.display_tool_name": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "outrank.core_utils.parse_ob_line": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 7}, "outrank.core_utils.parse_ob_line_vw": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 15}, "outrank.core_utils.parse_ob_csv_line": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 10}, "outrank.core_utils.generic_line_parser": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 13}, "outrank.core_utils.read_reference_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 9}, "outrank.core_utils.parse_namespace": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 9}, "outrank.core_utils.read_column_names": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 6}, "outrank.core_utils.parse_ob_vw_feature_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_ob_raw_feature_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_ob_feature_information": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_csv_with_description_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.parse_csv_raw": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.extract_features_from_reference_JSON": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 10}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 10}, "outrank.core_utils.summarize_rare_counts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 5}, "outrank.feature_transformations": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 56, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 173, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 4589, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 4, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"qualname": 3, "fullname": 11, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 8}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"qualname": 4, "fullname": 9, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "outrank.task_generators": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_generators.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_generators.outrank_task_generate_data_set": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "outrank.task_ranking": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_ranking.outrank_task_conduct_ranking": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.task_selftest": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_selftest.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_selftest.conduct_self_test": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 3}, "outrank.task_summary": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_summary.outrank_task_result_summary": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "outrank.task_visualization": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_visualization.outrank_task_visualize_results": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "outrank.visualizations": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 91, "bases": 0, "doc": 15}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 93, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_all": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 135, "bases": 0, "doc": 13}}, "length": 141, "save": true}, "index": {"qualname": {"root": {"3": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 11}}}}, "b": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 1}, "x": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "j": {"docs": {"outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 9, "r": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}, "w": {"docs": {"outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 9}}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}, "b": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 4}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 2}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}}, "fullname": {"root": {"3": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms": {"tf": 1}, "outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_selftest": {"tf": 1}, "outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}, "outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}, "outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.4142135623730951}, "outrank.visualizations": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 141}}}}}}, "f": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}, "b": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms": {"tf": 1}, "outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 30}}}}}}}}, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "j": {"docs": {"outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 35, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 5}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 50}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}, "w": {"docs": {"outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}}, "df": 1, "i": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 8, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 1}, "x": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}}, "df": 6}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 10}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 45}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 11}}}}, "b": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 10}}}, "s": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_selftest": {"tf": 1}, "outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 70}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 10}}, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 9, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 11}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_selftest": {"tf": 1}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 6}}}, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 9, "r": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 9}}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 8}}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 7, "s": {"docs": {"outrank.visualizations": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 23}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 21}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}, "outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}, "outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.4142135623730951}}, "df": 12}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}}, "annotation": {"root": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 19, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1.4142135623730951}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 7}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 4}}}}}}}, "default_value": {"root": {"0": {"1": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "2": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 2}, "4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "8": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 22.715633383201094}}, "df": 3}, "1": {"0": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8.06225774829855}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 3}, "docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 2}, "6": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {"outrank.core_utils.pro_tips": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 10.198039027185569}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 6}, "2": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.830951894845301}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 3}, "3": {"2": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "5": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "6": {"4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "8": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "9": {"6": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.795831523312719}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 12.288205727444508}, "outrank.task_generators.logger": {"tf": 1.4142135623730951}, "outrank.task_selftest.logger": {"tf": 1.4142135623730951}}, "df": 12, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 3.1622776601683795}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.74734012447073}}, "df": 3, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.logger": {"tf": 1.4142135623730951}, "outrank.task_generators.logger": {"tf": 1.4142135623730951}, "outrank.task_selftest.logger": {"tf": 1.4142135623730951}}, "df": 4}}}, "*": {"1": {"0": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.6457513110645907}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.61895003862225}}, "df": 3}}}}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 16}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "x": {"2": {"7": {"docs": {"outrank.core_utils.pro_tips": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 4}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 6.324555320336759}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.49468024894146}}, "df": 4}, "docs": {}, "df": 0}, "docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.449489742783178}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.795831523312719}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.130067012440755}}, "df": 3, "+": {"1": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}}}}}}, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 3.872983346207417}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "w": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}}, "df": 2}}, "b": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 2.8284271247461903}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "x": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.449489742783178}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.58257569495584}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.08679276123039}}, "df": 3}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "s": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.445523142259598}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 3.1622776601683795}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.74734012447073}}, "df": 3, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 16.0312195418814}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"0": {"0": {"5": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}, "1": {"0": {"0": {"0": {"0": {"0": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "5": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}, "docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"0": {"0": {"0": {"0": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2}, "outrank.core_utils.parse_ob_line": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 2.8284271247461903}}, "df": 7}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}, "8": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 3.1622776601683795}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 5.5677643628300215}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 5.477225575051661}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 5.477225575051661}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 4.898979485566356}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 5.656854249492381}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 4.242640687119285}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 3.7416573867739413}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 4.242640687119285}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 12.806248474865697}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 5.830951894845301}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 3.4641016151377544}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 3.7416573867739413}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 4.69041575982343}, "outrank.core_ranking.prior_combinations_sample": {"tf": 8}, "outrank.core_ranking.mixed_rank_graph": {"tf": 8}, "outrank.core_ranking.enrich_with_transformations": {"tf": 8.54400374531753}, "outrank.core_ranking.compute_combined_features": {"tf": 9.1104335791443}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 8.246211251235321}, "outrank.core_ranking.compute_subfeatures": {"tf": 8.246211251235321}, "outrank.core_ranking.include_noisy_features": {"tf": 7.681145747868608}, "outrank.core_ranking.compute_coverage": {"tf": 7.14142842854285}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 7.14142842854285}, "outrank.core_ranking.compute_value_counts": {"tf": 5.830951894845301}, "outrank.core_ranking.compute_cardinalities": {"tf": 6}, "outrank.core_ranking.compute_bounds_increment": {"tf": 7.54983443527075}, "outrank.core_ranking.compute_batch_ranking": {"tf": 12.449899597988733}, "outrank.core_ranking.get_num_of_instances": {"tf": 4}, "outrank.core_ranking.get_grouped_df": {"tf": 6.855654600401044}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 5.830951894845301}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 17.204650534085253}, "outrank.core_utils.write_json_dump_to_file": {"tf": 4.898979485566356}, "outrank.core_utils.internal_hash": {"tf": 4}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 9.38083151964686}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 7}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 4.47213595499958}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 7.3484692283495345}, "outrank.core_utils.display_random_tip": {"tf": 3}, "outrank.core_utils.get_dataset_info": {"tf": 3.7416573867739413}, "outrank.core_utils.display_tool_name": {"tf": 3}, "outrank.core_utils.parse_ob_line": {"tf": 7.416198487095663}, "outrank.core_utils.parse_ob_line_vw": {"tf": 8.831760866327848}, "outrank.core_utils.parse_ob_csv_line": {"tf": 7.14142842854285}, "outrank.core_utils.generic_line_parser": {"tf": 8.94427190999916}, "outrank.core_utils.read_reference_json": {"tf": 4.69041575982343}, "outrank.core_utils.parse_namespace": {"tf": 6.082762530298219}, "outrank.core_utils.read_column_names": {"tf": 4.58257569495584}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_ob_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_csv_raw": {"tf": 4.47213595499958}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 5}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 8.774964387392123}, "outrank.core_utils.summarize_rare_counts": {"tf": 7.211102550927978}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 6.164414002968976}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 5.744562646538029}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 6.324555320336759}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 5.656854249492381}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 5.656854249492381}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 3.1622776601683795}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 3.7416573867739413}, "outrank.task_selftest.conduct_self_test": {"tf": 2.6457513110645907}, "outrank.task_summary.outrank_task_result_summary": {"tf": 3.1622776601683795}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 3.1622776601683795}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 8.366600265340756}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 6.855654600401044}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 8.602325267042627}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 10.295630140987}}, "df": 69, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.7320508075688772}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.7320508075688772}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 2.449489742783178}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 3}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 2}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}}, "df": 32}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 25}}}}, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 29}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 5}}, "t": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 10}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 2.6457513110645907}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 3.4641016151377544}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 2.6457513110645907}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.7320508075688772}, "outrank.core_utils.generic_line_parser": {"tf": 1.4142135623730951}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 2}, "outrank.core_utils.read_column_names": {"tf": 1.4142135623730951}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 2.23606797749979}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 2.23606797749979}}, "df": 32, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 13}}}, "t": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 6}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 9}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 6}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.4142135623730951}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 2}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1.7320508075688772}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 17}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 5, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "l": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 4}}}}}, "x": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 4}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 8}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.449489742783178}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.449489742783178}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 10}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 7, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_value_counts": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_cardinalities": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 6}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.23606797749979}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 13}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 7}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 8}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 8}}}, "f": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}}, "df": 2}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0}}, "doc": {"root": {"0": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"5": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"2": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"outrank": {"tf": 9.219544457292887}, "outrank.algorithms": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.logger": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1.7320508075688772}, "outrank.core_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.logger": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1.7320508075688772}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1.7320508075688772}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1.7320508075688772}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 2.23606797749979}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_value_counts": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_cardinalities": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_selftest": {"tf": 1.7320508075688772}, "outrank.core_utils": {"tf": 1.7320508075688772}, "outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1.7320508075688772}, "outrank.core_utils.internal_hash": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1.7320508075688772}, "outrank.core_utils.display_random_tip": {"tf": 1.7320508075688772}, "outrank.core_utils.get_dataset_info": {"tf": 1.7320508075688772}, "outrank.core_utils.display_tool_name": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.4142135623730951}, "outrank.core_utils.generic_line_parser": {"tf": 1.7320508075688772}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1.4142135623730951}, "outrank.core_utils.read_column_names": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_csv_raw": {"tf": 1.7320508075688772}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1.4142135623730951}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.4142135623730951}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.4142135623730951}, "outrank.feature_transformations": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1.7320508075688772}, "outrank.task_generators": {"tf": 1.7320508075688772}, "outrank.task_generators.logger": {"tf": 1.7320508075688772}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1.7320508075688772}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.7320508075688772}, "outrank.task_selftest": {"tf": 1.7320508075688772}, "outrank.task_selftest.logger": {"tf": 1.7320508075688772}, "outrank.task_selftest.conduct_self_test": {"tf": 1.7320508075688772}, "outrank.task_summary": {"tf": 1.7320508075688772}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.7320508075688772}, "outrank.task_visualization": {"tf": 1.7320508075688772}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.7320508075688772}, "outrank.visualizations": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1.7320508075688772}}, "df": 141, "w": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "o": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 2.449489742783178}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 11}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 2.6457513110645907}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 16}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1, "d": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 9, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.4142135623730951}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 26, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 3}, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 2, "d": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}, "|": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "b": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 13, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 2}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 10, "a": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}, "b": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "c": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 8}}}}}}, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 2}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 8, "d": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}}, "df": 2}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 3, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 10}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "t": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 6, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"outrank": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 3}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}}}}}}}}}, "f": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 3, "r": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"outrank": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1, "n": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 11}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 8}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}, "w": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 4}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough. diff --git a/setup.py b/setup.py index 8e8ebc2..1cf5d74 100644 --- a/setup.py +++ b/setup.py @@ -23,7 +23,7 @@ def _read_description(): packages = [x for x in setuptools.find_packages() if x != 'test'] setuptools.setup( name='outrank', - version='0.95', + version='0.95.1', description='OutRank: Feature ranking for massive sparse data sets.', long_description=_read_description(), long_description_content_type='text/markdown',