diff --git a/docs/outrank/algorithms/feature_ranking/ranking_mi_numba.html b/docs/outrank/algorithms/feature_ranking/ranking_mi_numba.html index 4045afa..af09096 100644 --- a/docs/outrank/algorithms/feature_ranking/ranking_mi_numba.html +++ b/docs/outrank/algorithms/feature_ranking/ranking_mi_numba.html @@ -146,114 +146,115 @@

81 82 initial_prob = _f_value_counts / all_events 83 x_value_subspace = np.where(X == f_values[f_index]) - 84 Y_classes = Y[x_value_subspace] - 85 index = 0 - 86 nonzero_class_counts = np.zeros(len(class_values), dtype=np.int32) + 84 + 85 Y_classes = Y[x_value_subspace] + 86 Y_classes_spoofed = np.roll(Y, _f_value_counts)[x_value_subspace] 87 - 88 # Cache nonzero counts - 89 for c in class_values: - 90 nonzero_class_counts[index] = np.count_nonzero(Y_classes == c) - 91 index += 1 - 92 conditional_entropy += compute_conditional_entropy( - 93 Y_classes, class_values, _f_value_counts, initial_prob, nonzero_class_counts, - 94 ) + 88 nonzero_class_counts = np.zeros(len(class_values), dtype=np.int32) + 89 nonzero_class_counts_spoofed = np.zeros(len(class_values), dtype=np.int32) + 90 + 91 # Cache nonzero counts + 92 for index, c in enumerate(class_values): + 93 nonzero_class_counts[index] = np.count_nonzero(Y_classes == c) + 94 nonzero_class_counts_spoofed[index] = np.count_nonzero(Y_classes_spoofed == c) 95 - 96 if cardinality_correction: - 97 # A neat hack that seems to work fine (permutations are expensive) - 98 Y_classes = np.roll(Y, _f_value_counts)[x_value_subspace] + 96 conditional_entropy += compute_conditional_entropy( + 97 Y_classes, class_values, _f_value_counts, initial_prob, nonzero_class_counts, + 98 ) 99 -100 background_cond_entropy += compute_conditional_entropy( -101 Y_classes, class_values, _f_value_counts, initial_prob, nonzero_class_counts, -102 ) -103 -104 if not cardinality_correction: -105 return full_entropy - conditional_entropy -106 -107 else: -108 # note: full entropy falls out during derivation of final term -109 core_joint_entropy = -conditional_entropy + background_cond_entropy -110 return core_joint_entropy -111 +100 if cardinality_correction: +101 background_cond_entropy += compute_conditional_entropy( +102 Y_classes_spoofed, class_values, _f_value_counts, initial_prob, nonzero_class_counts_spoofed, +103 ) +104 +105 if not cardinality_correction: +106 return full_entropy - conditional_entropy +107 +108 else: +109 # note: full entropy falls out during derivation of final term +110 core_joint_entropy = -conditional_entropy + background_cond_entropy +111 return core_joint_entropy 112 -113@njit( -114 'float32(int32[:], int32[:], float32, b1)', -115 cache=True, -116 fastmath=True, -117 error_model='numpy', -118 boundscheck=True, -119) -120def mutual_info_estimator_numba( -121 Y, X, approximation_factor=1, cardinality_correction=False, -122): -123 """Core estimator logic. Compute unique elements, subset if required""" -124 -125 all_events = len(X) -126 f_values, f_value_counts = numba_unique(X) -127 -128 # Diagonal entries -129 if np.sum(X - Y) == 0: -130 cardinality_correction = False -131 -132 if approximation_factor < 1: -133 subspace_size = int(approximation_factor * all_events) -134 if subspace_size != 0: -135 subspace = np.random.randint(0, all_events, size=subspace_size) -136 X = X[subspace] -137 Y = Y[subspace] -138 -139 joint_entropy_core = compute_entropies( -140 X, Y, all_events, f_values, f_value_counts, cardinality_correction, -141 ) -142 -143 return approximation_factor * joint_entropy_core -144 +113 +114@njit( +115 'float32(int32[:], int32[:], float32, b1)', +116 cache=True, +117 fastmath=True, +118 error_model='numpy', +119 boundscheck=True, +120) +121def mutual_info_estimator_numba( +122 Y, X, approximation_factor=1, cardinality_correction=False, +123): +124 """Core estimator logic. Compute unique elements, subset if required""" +125 +126 all_events = len(X) +127 f_values, f_value_counts = numba_unique(X) +128 +129 # Diagonal entries +130 if np.sum(X - Y) == 0: +131 cardinality_correction = False +132 +133 if approximation_factor < 1: +134 subspace_size = int(approximation_factor * all_events) +135 if subspace_size != 0: +136 subspace = np.random.randint(0, all_events, size=subspace_size) +137 X = X[subspace] +138 Y = Y[subspace] +139 +140 joint_entropy_core = compute_entropies( +141 X, Y, all_events, f_values, f_value_counts, cardinality_correction, +142 ) +143 +144 return approximation_factor * joint_entropy_core 145 -146if __name__ == '__main__': -147 import pandas as pd -148 from sklearn.feature_selection import mutual_info_classif -149 -150 np.random.seed(123) -151 import time -152 -153 final_times = [] -154 for algo in ['MI-numba-randomized']: -155 for order in range(20, 21): -156 for j in range(1): -157 start = time.time() -158 a = np.random.randint(1000, size=2**order).astype(np.int32) -159 b = np.random.randint(1000, size=2**order).astype(np.int32) -160 if algo == 'MI': -161 final_score = mutual_info_classif( -162 a.reshape(-1, 1), b.reshape(-1), discrete_features=True, -163 ) -164 elif algo == 'MI-numba-randomized': -165 final_score = mutual_info_estimator_numba( -166 a, b, np.float32(1.0), True, -167 ) -168 elif algo == 'MI-numba': -169 final_score = mutual_info_estimator_numba( -170 a, b, np.float32(1.0), False, -171 ) -172 elif algo == 'MI-numba-randomized-ap': -173 final_score = mutual_info_estimator_numba( -174 a, b, np.float32(0.3), True, -175 ) -176 elif algo == 'MI-numba-ap': -177 final_score = mutual_info_estimator_numba( -178 a, b, np.float32(0.3), False, -179 ) -180 -181 end = time.time() -182 tdiff = end - start -183 instance = { -184 'time': tdiff, -185 'samples 2e': order, 'algorithm': algo, -186 } -187 final_times.append(instance) -188 print(instance) -189 dfx = pd.DataFrame(final_times) -190 dfx = dfx.sort_values(by=['samples 2e']) -191 print(dfx) +146 +147if __name__ == '__main__': +148 import pandas as pd +149 from sklearn.feature_selection import mutual_info_classif +150 +151 np.random.seed(123) +152 import time +153 +154 final_times = [] +155 for algo in ['MI-numba-randomized']: +156 for order in range(20, 21): +157 for j in range(1): +158 start = time.time() +159 a = np.random.randint(1000, size=2**order).astype(np.int32) +160 b = np.random.randint(1000, size=2**order).astype(np.int32) +161 if algo == 'MI': +162 final_score = mutual_info_classif( +163 a.reshape(-1, 1), b.reshape(-1), discrete_features=True, +164 ) +165 elif algo == 'MI-numba-randomized': +166 final_score = mutual_info_estimator_numba( +167 a, b, np.float32(1.0), True, +168 ) +169 elif algo == 'MI-numba': +170 final_score = mutual_info_estimator_numba( +171 a, b, np.float32(1.0), False, +172 ) +173 elif algo == 'MI-numba-randomized-ap': +174 final_score = mutual_info_estimator_numba( +175 a, b, np.float32(0.3), True, +176 ) +177 elif algo == 'MI-numba-ap': +178 final_score = mutual_info_estimator_numba( +179 a, b, np.float32(0.3), False, +180 ) +181 +182 end = time.time() +183 tdiff = end - start +184 instance = { +185 'time': tdiff, +186 'samples 2e': order, 'algorithm': algo, +187 } +188 final_times.append(instance) +189 print(instance) +190 dfx = pd.DataFrame(final_times) +191 dfx = dfx.sort_values(by=['samples 2e']) +192 print(dfx) @@ -377,33 +378,34 @@

82 83 initial_prob = _f_value_counts / all_events 84 x_value_subspace = np.where(X == f_values[f_index]) - 85 Y_classes = Y[x_value_subspace] - 86 index = 0 - 87 nonzero_class_counts = np.zeros(len(class_values), dtype=np.int32) + 85 + 86 Y_classes = Y[x_value_subspace] + 87 Y_classes_spoofed = np.roll(Y, _f_value_counts)[x_value_subspace] 88 - 89 # Cache nonzero counts - 90 for c in class_values: - 91 nonzero_class_counts[index] = np.count_nonzero(Y_classes == c) - 92 index += 1 - 93 conditional_entropy += compute_conditional_entropy( - 94 Y_classes, class_values, _f_value_counts, initial_prob, nonzero_class_counts, - 95 ) + 89 nonzero_class_counts = np.zeros(len(class_values), dtype=np.int32) + 90 nonzero_class_counts_spoofed = np.zeros(len(class_values), dtype=np.int32) + 91 + 92 # Cache nonzero counts + 93 for index, c in enumerate(class_values): + 94 nonzero_class_counts[index] = np.count_nonzero(Y_classes == c) + 95 nonzero_class_counts_spoofed[index] = np.count_nonzero(Y_classes_spoofed == c) 96 - 97 if cardinality_correction: - 98 # A neat hack that seems to work fine (permutations are expensive) - 99 Y_classes = np.roll(Y, _f_value_counts)[x_value_subspace] + 97 conditional_entropy += compute_conditional_entropy( + 98 Y_classes, class_values, _f_value_counts, initial_prob, nonzero_class_counts, + 99 ) 100 -101 background_cond_entropy += compute_conditional_entropy( -102 Y_classes, class_values, _f_value_counts, initial_prob, nonzero_class_counts, -103 ) -104 -105 if not cardinality_correction: -106 return full_entropy - conditional_entropy -107 -108 else: -109 # note: full entropy falls out during derivation of final term -110 core_joint_entropy = -conditional_entropy + background_cond_entropy -111 return core_joint_entropy +101 if cardinality_correction: +102 background_cond_entropy += compute_conditional_entropy( +103 Y_classes_spoofed, class_values, _f_value_counts, initial_prob, nonzero_class_counts_spoofed, +104 ) +105 +106 if not cardinality_correction: +107 return full_entropy - conditional_entropy +108 +109 else: +110 # note: full entropy falls out during derivation of final term +111 core_joint_entropy = -conditional_entropy + background_cond_entropy +112 return core_joint_entropy @@ -424,37 +426,37 @@

-
114@njit(
-115    'float32(int32[:], int32[:], float32, b1)',
-116    cache=True,
-117    fastmath=True,
-118    error_model='numpy',
-119    boundscheck=True,
-120)
-121def mutual_info_estimator_numba(
-122    Y, X, approximation_factor=1, cardinality_correction=False,
-123):
-124    """Core estimator logic. Compute unique elements, subset if required"""
-125
-126    all_events = len(X)
-127    f_values, f_value_counts = numba_unique(X)
-128
-129    # Diagonal entries
-130    if np.sum(X - Y) == 0:
-131        cardinality_correction = False
-132
-133    if approximation_factor < 1:
-134        subspace_size = int(approximation_factor * all_events)
-135        if subspace_size != 0:
-136            subspace = np.random.randint(0, all_events, size=subspace_size)
-137            X = X[subspace]
-138            Y = Y[subspace]
-139
-140    joint_entropy_core = compute_entropies(
-141        X, Y, all_events, f_values, f_value_counts, cardinality_correction,
-142    )
-143
-144    return approximation_factor * joint_entropy_core
+            
115@njit(
+116    'float32(int32[:], int32[:], float32, b1)',
+117    cache=True,
+118    fastmath=True,
+119    error_model='numpy',
+120    boundscheck=True,
+121)
+122def mutual_info_estimator_numba(
+123    Y, X, approximation_factor=1, cardinality_correction=False,
+124):
+125    """Core estimator logic. Compute unique elements, subset if required"""
+126
+127    all_events = len(X)
+128    f_values, f_value_counts = numba_unique(X)
+129
+130    # Diagonal entries
+131    if np.sum(X - Y) == 0:
+132        cardinality_correction = False
+133
+134    if approximation_factor < 1:
+135        subspace_size = int(approximation_factor * all_events)
+136        if subspace_size != 0:
+137            subspace = np.random.randint(0, all_events, size=subspace_size)
+138            X = X[subspace]
+139            Y = Y[subspace]
+140
+141    joint_entropy_core = compute_entropies(
+142        X, Y, all_events, f_values, f_value_counts, cardinality_correction,
+143    )
+144
+145    return approximation_factor * joint_entropy_core
 
diff --git a/docs/outrank/algorithms/importance_estimator.html b/docs/outrank/algorithms/importance_estimator.html index bb90b6d..1b57d14 100644 --- a/docs/outrank/algorithms/importance_estimator.html +++ b/docs/outrank/algorithms/importance_estimator.html @@ -30,6 +30,9 @@

API Documentation

    +
  • + logger +
  • sklearn_MI
  • @@ -75,203 +78,234 @@

      1# A module for pairwise computation of importances -- entrypoint for the core ranking algorighm(s)
       2from __future__ import annotations
       3
    -  4import operator
    -  5import traceback
    -  6from typing import Any
    -  7from typing import Dict
    -  8
    -  9import numpy as np
    - 10import pandas as pd
    - 11from scipy.stats import pearsonr
    - 12from sklearn.feature_selection import mutual_info_classif
    - 13from sklearn.linear_model import LogisticRegression
    - 14from sklearn.metrics import adjusted_mutual_info_score
    - 15from sklearn.model_selection import cross_val_score
    - 16from sklearn.preprocessing import OneHotEncoder
    - 17from sklearn.svm import SVC
    - 18
    - 19try:
    - 20    from outrank.algorithms.feature_ranking import ranking_mi_numba
    - 21
    - 22    numba_available = True
    - 23
    - 24except Exception as es:
    - 25    traceback.print_exc(0)
    - 26    numba_available = False
    +  4import logging
    +  5import operator
    +  6import traceback
    +  7from typing import Any
    +  8from typing import Dict
    +  9
    + 10import numpy as np
    + 11import pandas as pd
    + 12from scipy.stats import pearsonr
    + 13from sklearn.feature_selection import mutual_info_classif
    + 14from sklearn.linear_model import LogisticRegression
    + 15from sklearn.metrics import adjusted_mutual_info_score
    + 16from sklearn.model_selection import cross_val_score
    + 17from sklearn.preprocessing import OneHotEncoder
    + 18from sklearn.svm import SVC
    + 19
    + 20logger = logging.getLogger('syn-logger')
    + 21logger.setLevel(logging.DEBUG)
    + 22
    + 23try:
    + 24    from outrank.algorithms.feature_ranking import ranking_mi_numba
    + 25
    + 26    numba_available = True
      27
    - 28
    - 29def sklearn_MI(vector_first: Any, vector_second: Any) -> float:
    - 30    estimate_feature_importance = mutual_info_classif(
    - 31        vector_first.reshape(-1, 1), vector_second.reshape(-1), discrete_features=True,
    - 32    )[0]
    - 33    return estimate_feature_importance
    - 34
    - 35
    - 36def sklearn_surrogate(
    - 37    vector_first: Any, vector_second: Any, surrogate_model: str,
    - 38) -> float:
    - 39    if surrogate_model == 'surrogate-LR':
    - 40        clf = LogisticRegression(max_iter=100000)
    - 41    elif surrogate_model == 'surrogate-SVM':
    - 42        clf = SVC(gamma='auto', probability=True)
    - 43
    - 44    transf = OneHotEncoder()
    - 45
    - 46    # They do not commute, swap if needed
    - 47    if len(np.unique(vector_second) > 2):
    - 48        vector_third = vector_second
    - 49        vector_second = vector_first
    - 50        vector_first = vector_third
    - 51        del vector_third
    - 52
    - 53    unique_values, counts = np.unique(vector_second, return_counts=True)
    - 54
    - 55    # Establish min support for this type of ranking.
    - 56    if counts[0] < len(unique_values) * (2**5):
    - 57        estimate_feature_importance = 0
    + 28except Exception as es:
    + 29    traceback.print_exc(0)
    + 30    numba_available = False
    + 31
    + 32
    + 33def sklearn_MI(vector_first: Any, vector_second: Any) -> float:
    + 34    estimate_feature_importance = mutual_info_classif(
    + 35        vector_first.reshape(-1, 1), vector_second.reshape(-1), discrete_features=True,
    + 36    )[0]
    + 37    return estimate_feature_importance
    + 38
    + 39
    + 40def sklearn_surrogate(
    + 41    vector_first: Any, vector_second: Any, surrogate_model: str,
    + 42) -> float:
    + 43    if surrogate_model == 'surrogate-LR':
    + 44        clf = LogisticRegression(max_iter=100000)
    + 45    elif surrogate_model == 'surrogate-SVM':
    + 46        clf = SVC(gamma='auto', probability=True)
    + 47
    + 48    transf = OneHotEncoder()
    + 49
    + 50    # They do not commute, swap if needed
    + 51    if len(np.unique(vector_second) > 2):
    + 52        vector_third = vector_second
    + 53        vector_second = vector_first
    + 54        vector_first = vector_third
    + 55        del vector_third
    + 56
    + 57    unique_values, counts = np.unique(vector_second, return_counts=True)
      58
    - 59    else:
    - 60        vector_first = transf.fit_transform(vector_first.reshape(-1, 1))
    - 61        estimate_feature_importance_list = cross_val_score(
    - 62            clf, vector_first, vector_second, scoring='neg_log_loss', cv=4,
    - 63        )
    - 64
    - 65        estimate_feature_importance = 1 + \
    - 66            np.median(estimate_feature_importance_list)
    - 67
    - 68    return estimate_feature_importance
    - 69
    - 70
    - 71def numba_mi(vector_first, vector_second, heuristic):
    - 72    if heuristic == 'MI-numba-randomized':
    - 73        cardinality_correction = True
    + 59    # Establish min support for this type of ranking.
    + 60    if counts[0] < len(unique_values) * (2**5):
    + 61        estimate_feature_importance = 0
    + 62
    + 63    else:
    + 64        vector_first = transf.fit_transform(vector_first.reshape(-1, 1))
    + 65        estimate_feature_importance_list = cross_val_score(
    + 66            clf, vector_first, vector_second, scoring='neg_log_loss', cv=4,
    + 67        )
    + 68
    + 69        estimate_feature_importance = 1 + \
    + 70            np.median(estimate_feature_importance_list)
    + 71
    + 72    return estimate_feature_importance
    + 73
      74
    - 75    else:
    - 76        cardinality_correction = False
    - 77
    - 78    estimate_feature_importance = ranking_mi_numba.mutual_info_estimator_numba(
    - 79        vector_first.reshape(-1).astype(np.int32),
    - 80        vector_second.reshape(-1).astype(np.int32),
    - 81        approximation_factor=np.float32(1.0),
    - 82        cardinality_correction=cardinality_correction,
    - 83    )
    - 84
    - 85    return estimate_feature_importance
    - 86
    - 87
    - 88def sklearn_mi_adj(vector_first, vector_second):
    - 89    # AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [avg(H(U), H(V)) - E(MI(U, V))]
    - 90    estimate_feature_importance = adjusted_mutual_info_score(
    - 91        vector_first.reshape(-1), vector_second.reshape(-1),
    - 92    )
    - 93    return estimate_feature_importance
    - 94
    - 95
    - 96def get_importances_estimate_pairwise(combination, args, tmp_df):
    - 97    """A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel."""
    + 75def numba_mi(vector_first, vector_second, heuristic):
    + 76    if heuristic == 'MI-numba-randomized':
    + 77        cardinality_correction = True
    + 78
    + 79    else:
    + 80        cardinality_correction = False
    + 81
    + 82    estimate_feature_importance = ranking_mi_numba.mutual_info_estimator_numba(
    + 83        vector_first.reshape(-1).astype(np.int32),
    + 84        vector_second.reshape(-1).astype(np.int32),
    + 85        approximation_factor=np.float32(1.0),
    + 86        cardinality_correction=cardinality_correction,
    + 87    )
    + 88
    + 89    return estimate_feature_importance
    + 90
    + 91
    + 92def sklearn_mi_adj(vector_first, vector_second):
    + 93    # AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [avg(H(U), H(V)) - E(MI(U, V))]
    + 94    estimate_feature_importance = adjusted_mutual_info_score(
    + 95        vector_first.reshape(-1), vector_second.reshape(-1),
    + 96    )
    + 97    return estimate_feature_importance
      98
    - 99    feature_one = combination[0]
    -100    feature_two = combination[1]
    -101
    -102    vector_first = tmp_df[[feature_one]].values.ravel()
    -103    vector_second = tmp_df[[feature_two]].values.ravel()
    -104
    -105    if len(vector_first) == 0 or len(vector_second) == 0:
    -106        return [feature_one, feature_two, 0]
    -107
    -108    # Compute score based on the selected heuristic.
    -109    if args.heuristic == 'MI':
    -110        # Compute the infoGain
    -111        estimate_feature_importance = sklearn_MI(vector_first, vector_second)
    + 99
    +100def get_importances_estimate_pairwise(combination, args, tmp_df):
    +101    """A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel."""
    +102
    +103    feature_one = combination[0]
    +104    feature_two = combination[1]
    +105
    +106    if feature_one not in tmp_df.columns:
    +107        logging.info(f'{feature_one} not found in the constructed data frame - consider increasing --combination_number_upper_bound for better coverage.')
    +108        return [feature_one, feature_two, 0]
    +109    elif feature_two not in tmp_df.columns:
    +110        logging.info(f'{feature_two} not found in the constructed data frame - consider increasing --combination_number_upper_bound for better coverage.')
    +111        return [feature_one, feature_two, 0]
     112
    -113    elif 'surrogate-' in args.heuristic:
    -114        estimate_feature_importance = sklearn_surrogate(
    -115            vector_first, vector_second, args.heuristic,
    -116        )
    -117
    -118    elif 'MI-numba' in args.heuristic:
    -119        estimate_feature_importance = numba_mi(
    -120            vector_first, vector_second, args.heuristic,
    -121        )
    -122
    -123    elif args.heuristic == 'AMI':
    -124        estimate_feature_importance = sklearn_mi_adj(
    -125            vector_first, vector_second,
    -126        )
    -127
    -128    elif args.heuristic == 'correlation-Pearson':
    -129        estimate_feature_importance = pearsonr(vector_first, vector_second)[0]
    -130
    -131    elif args.heuristic == 'Constant':
    -132        estimate_feature_importance = 0.0
    +113    vector_first = tmp_df[[feature_one]].values.ravel()
    +114    vector_second = tmp_df[[feature_two]].values.ravel()
    +115
    +116    if len(vector_first) == 0 or len(vector_second) == 0:
    +117        return [feature_one, feature_two, 0]
    +118
    +119    # Compute score based on the selected heuristic.
    +120    if args.heuristic == 'MI':
    +121        # Compute the infoGain
    +122        estimate_feature_importance = sklearn_MI(vector_first, vector_second)
    +123
    +124    elif 'surrogate-' in args.heuristic:
    +125        estimate_feature_importance = sklearn_surrogate(
    +126            vector_first, vector_second, args.heuristic,
    +127        )
    +128
    +129    elif 'MI-numba' in args.heuristic:
    +130        estimate_feature_importance = numba_mi(
    +131            vector_first, vector_second, args.heuristic,
    +132        )
     133
    -134    else:
    -135        raise ValueError(
    -136            'Please select one of the possible heuristics (MI, chi2)',
    +134    elif args.heuristic == 'AMI':
    +135        estimate_feature_importance = sklearn_mi_adj(
    +136            vector_first, vector_second,
     137        )
     138
    -139    return (feature_one, feature_two, estimate_feature_importance)
    -140
    +139    elif args.heuristic == 'correlation-Pearson':
    +140        estimate_feature_importance = pearsonr(vector_first, vector_second)[0]
     141
    -142def rank_features_3MR(
    -143    relevance_dict: dict[str, float],
    -144    redundancy_dict: dict[tuple[Any, Any], Any],
    -145    relational_dict: dict[tuple[Any, Any], Any],
    -146    strategy: str = 'median',
    -147    alpha: float = 1,
    -148    beta: float = 1,
    -149) -> pd.DataFrame:
    -150    all_features = relevance_dict.keys()
    -151    most_important_feature = max(
    -152        relevance_dict.items(), key=operator.itemgetter(1),
    -153    )[0]
    -154    ranked_features = [most_important_feature]
    -155
    -156    def calc_higher_order(feature, is_redundancy=True):
    -157        values = []
    -158        for feat in ranked_features:
    -159            if is_redundancy:
    -160                values.append(redundancy_dict[(feat, feature)])
    -161            else:
    -162                values.append(relational_dict[(feat, feature)])
    -163        if strategy == 'sum':
    -164            return sum(values)
    -165        if strategy == 'mean':
    -166            return np.mean(values)
    -167        return np.median(values)
    -168
    -169    while len(ranked_features) != len(all_features):
    -170        top_importance = 0
    -171        most_important_feature = ''
    -172
    -173        for ind, feat in enumerate(set(all_features) - set(ranked_features)):
    -174            feature_redundancy = calc_higher_order(feat)
    -175            feature_relation = calc_higher_order(feat, False)
    -176            feature_relevance = relevance_dict[feat]
    -177            importance = (
    -178                feature_relevance - alpha * feature_redundancy + beta * feature_relation
    -179            )
    -180
    -181            if (importance > top_importance) or (ind == 0):
    -182                top_importance = importance
    -183                most_important_feature = feat
    -184        ranked_features.append(most_important_feature)
    -185    return pd.DataFrame(
    -186        {
    -187            'Feature': ranked_features,
    -188            '3mr_ranking': list(range(1, len(ranked_features) + 1)),
    -189        },
    -190    )
    +142    elif args.heuristic == 'Constant':
    +143        estimate_feature_importance = 0.0
    +144
    +145    else:
    +146        raise ValueError(
    +147            'Please select one of the possible heuristics (MI, chi2)',
    +148        )
    +149
    +150    return (feature_one, feature_two, estimate_feature_importance)
    +151
    +152
    +153def rank_features_3MR(
    +154    relevance_dict: dict[str, float],
    +155    redundancy_dict: dict[tuple[Any, Any], Any],
    +156    relational_dict: dict[tuple[Any, Any], Any],
    +157    strategy: str = 'median',
    +158    alpha: float = 1,
    +159    beta: float = 1,
    +160) -> pd.DataFrame:
    +161    all_features = relevance_dict.keys()
    +162    most_important_feature = max(
    +163        relevance_dict.items(), key=operator.itemgetter(1),
    +164    )[0]
    +165    ranked_features = [most_important_feature]
    +166
    +167    def calc_higher_order(feature, is_redundancy=True):
    +168        values = []
    +169        for feat in ranked_features:
    +170            interaction_tuple = (feat, feature)
    +171            if is_redundancy:
    +172                if interaction_tuple in redundancy_dict:
    +173                    values.append(redundancy_dict[interaction_tuple])
    +174                else:
    +175                    logging.info('Not accounting for redundancy tuple {} - please increase the --combination_number_upper_bound for beter coverage of interactions/redundancies.')
    +176            else:
    +177                if interaction_tuple in relational_dict:
    +178                    values.append(relational_dict[interaction_tuple])
    +179                else:
    +180                    logging.info('Not accounting for interaction tuple {} - please increase the --combination_number_upper_bound for beter coverage of interactions/redundancies.')
    +181
    +182        if strategy == 'sum':
    +183            return sum(values)
    +184        if strategy == 'mean':
    +185            return np.mean(values)
    +186        return np.median(values)
    +187
    +188    while len(ranked_features) != len(all_features):
    +189        top_importance = 0
    +190        most_important_feature = ''
     191
    -192
    -193def get_importances_estimate_nonmyopic(args: Any, tmp_df: pd.DataFrame):
    -194    # TODO - nonmyopic algorithms - tmp_df \ args.label vs. label
    -195    # TODO - this is to be executed directly on df - no need for parallel kernel(s)
    -196    pass
    +192        for ind, feat in enumerate(set(all_features) - set(ranked_features)):
    +193            feature_redundancy = calc_higher_order(feat)
    +194            feature_relation = calc_higher_order(feat, False)
    +195            feature_relevance = relevance_dict[feat]
    +196            importance = (
    +197                feature_relevance - alpha * feature_redundancy + beta * feature_relation
    +198            )
    +199
    +200            if (importance > top_importance) or (ind == 0):
    +201                top_importance = importance
    +202                most_important_feature = feat
    +203        ranked_features.append(most_important_feature)
    +204    return pd.DataFrame(
    +205        {
    +206            'Feature': ranked_features,
    +207            '3mr_ranking': list(range(1, len(ranked_features) + 1)),
    +208        },
    +209    )
    +210
    +211
    +212def get_importances_estimate_nonmyopic(args: Any, tmp_df: pd.DataFrame):
    +213    # TODO - nonmyopic algorithms - tmp_df \ args.label vs. label
    +214    # TODO - this is to be executed directly on df - no need for parallel kernel(s)
    +215    pass
     
    +
    +
    + logger = +<Logger syn-logger (DEBUG)> + + +
    + + + + +
    @@ -283,11 +317,11 @@

    -
    30def sklearn_MI(vector_first: Any, vector_second: Any) -> float:
    -31    estimate_feature_importance = mutual_info_classif(
    -32        vector_first.reshape(-1, 1), vector_second.reshape(-1), discrete_features=True,
    -33    )[0]
    -34    return estimate_feature_importance
    +            
    34def sklearn_MI(vector_first: Any, vector_second: Any) -> float:
    +35    estimate_feature_importance = mutual_info_classif(
    +36        vector_first.reshape(-1, 1), vector_second.reshape(-1), discrete_features=True,
    +37    )[0]
    +38    return estimate_feature_importance
     
    @@ -305,39 +339,39 @@

    -
    37def sklearn_surrogate(
    -38    vector_first: Any, vector_second: Any, surrogate_model: str,
    -39) -> float:
    -40    if surrogate_model == 'surrogate-LR':
    -41        clf = LogisticRegression(max_iter=100000)
    -42    elif surrogate_model == 'surrogate-SVM':
    -43        clf = SVC(gamma='auto', probability=True)
    -44
    -45    transf = OneHotEncoder()
    -46
    -47    # They do not commute, swap if needed
    -48    if len(np.unique(vector_second) > 2):
    -49        vector_third = vector_second
    -50        vector_second = vector_first
    -51        vector_first = vector_third
    -52        del vector_third
    -53
    -54    unique_values, counts = np.unique(vector_second, return_counts=True)
    -55
    -56    # Establish min support for this type of ranking.
    -57    if counts[0] < len(unique_values) * (2**5):
    -58        estimate_feature_importance = 0
    +            
    41def sklearn_surrogate(
    +42    vector_first: Any, vector_second: Any, surrogate_model: str,
    +43) -> float:
    +44    if surrogate_model == 'surrogate-LR':
    +45        clf = LogisticRegression(max_iter=100000)
    +46    elif surrogate_model == 'surrogate-SVM':
    +47        clf = SVC(gamma='auto', probability=True)
    +48
    +49    transf = OneHotEncoder()
    +50
    +51    # They do not commute, swap if needed
    +52    if len(np.unique(vector_second) > 2):
    +53        vector_third = vector_second
    +54        vector_second = vector_first
    +55        vector_first = vector_third
    +56        del vector_third
    +57
    +58    unique_values, counts = np.unique(vector_second, return_counts=True)
     59
    -60    else:
    -61        vector_first = transf.fit_transform(vector_first.reshape(-1, 1))
    -62        estimate_feature_importance_list = cross_val_score(
    -63            clf, vector_first, vector_second, scoring='neg_log_loss', cv=4,
    -64        )
    -65
    -66        estimate_feature_importance = 1 + \
    -67            np.median(estimate_feature_importance_list)
    -68
    -69    return estimate_feature_importance
    +60    # Establish min support for this type of ranking.
    +61    if counts[0] < len(unique_values) * (2**5):
    +62        estimate_feature_importance = 0
    +63
    +64    else:
    +65        vector_first = transf.fit_transform(vector_first.reshape(-1, 1))
    +66        estimate_feature_importance_list = cross_val_score(
    +67            clf, vector_first, vector_second, scoring='neg_log_loss', cv=4,
    +68        )
    +69
    +70        estimate_feature_importance = 1 + \
    +71            np.median(estimate_feature_importance_list)
    +72
    +73    return estimate_feature_importance
     
    @@ -355,21 +389,21 @@

    -
    72def numba_mi(vector_first, vector_second, heuristic):
    -73    if heuristic == 'MI-numba-randomized':
    -74        cardinality_correction = True
    -75
    -76    else:
    -77        cardinality_correction = False
    -78
    -79    estimate_feature_importance = ranking_mi_numba.mutual_info_estimator_numba(
    -80        vector_first.reshape(-1).astype(np.int32),
    -81        vector_second.reshape(-1).astype(np.int32),
    -82        approximation_factor=np.float32(1.0),
    -83        cardinality_correction=cardinality_correction,
    -84    )
    -85
    -86    return estimate_feature_importance
    +            
    76def numba_mi(vector_first, vector_second, heuristic):
    +77    if heuristic == 'MI-numba-randomized':
    +78        cardinality_correction = True
    +79
    +80    else:
    +81        cardinality_correction = False
    +82
    +83    estimate_feature_importance = ranking_mi_numba.mutual_info_estimator_numba(
    +84        vector_first.reshape(-1).astype(np.int32),
    +85        vector_second.reshape(-1).astype(np.int32),
    +86        approximation_factor=np.float32(1.0),
    +87        cardinality_correction=cardinality_correction,
    +88    )
    +89
    +90    return estimate_feature_importance
     
    @@ -387,12 +421,12 @@

    -
    89def sklearn_mi_adj(vector_first, vector_second):
    -90    # AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [avg(H(U), H(V)) - E(MI(U, V))]
    -91    estimate_feature_importance = adjusted_mutual_info_score(
    -92        vector_first.reshape(-1), vector_second.reshape(-1),
    -93    )
    -94    return estimate_feature_importance
    +            
    93def sklearn_mi_adj(vector_first, vector_second):
    +94    # AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [avg(H(U), H(V)) - E(MI(U, V))]
    +95    estimate_feature_importance = adjusted_mutual_info_score(
    +96        vector_first.reshape(-1), vector_second.reshape(-1),
    +97    )
    +98    return estimate_feature_importance
     
    @@ -410,50 +444,57 @@

    -
     97def get_importances_estimate_pairwise(combination, args, tmp_df):
    - 98    """A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel."""
    - 99
    -100    feature_one = combination[0]
    -101    feature_two = combination[1]
    -102
    -103    vector_first = tmp_df[[feature_one]].values.ravel()
    -104    vector_second = tmp_df[[feature_two]].values.ravel()
    -105
    -106    if len(vector_first) == 0 or len(vector_second) == 0:
    -107        return [feature_one, feature_two, 0]
    -108
    -109    # Compute score based on the selected heuristic.
    -110    if args.heuristic == 'MI':
    -111        # Compute the infoGain
    -112        estimate_feature_importance = sklearn_MI(vector_first, vector_second)
    +            
    101def get_importances_estimate_pairwise(combination, args, tmp_df):
    +102    """A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel."""
    +103
    +104    feature_one = combination[0]
    +105    feature_two = combination[1]
    +106
    +107    if feature_one not in tmp_df.columns:
    +108        logging.info(f'{feature_one} not found in the constructed data frame - consider increasing --combination_number_upper_bound for better coverage.')
    +109        return [feature_one, feature_two, 0]
    +110    elif feature_two not in tmp_df.columns:
    +111        logging.info(f'{feature_two} not found in the constructed data frame - consider increasing --combination_number_upper_bound for better coverage.')
    +112        return [feature_one, feature_two, 0]
     113
    -114    elif 'surrogate-' in args.heuristic:
    -115        estimate_feature_importance = sklearn_surrogate(
    -116            vector_first, vector_second, args.heuristic,
    -117        )
    -118
    -119    elif 'MI-numba' in args.heuristic:
    -120        estimate_feature_importance = numba_mi(
    -121            vector_first, vector_second, args.heuristic,
    -122        )
    -123
    -124    elif args.heuristic == 'AMI':
    -125        estimate_feature_importance = sklearn_mi_adj(
    -126            vector_first, vector_second,
    -127        )
    -128
    -129    elif args.heuristic == 'correlation-Pearson':
    -130        estimate_feature_importance = pearsonr(vector_first, vector_second)[0]
    -131
    -132    elif args.heuristic == 'Constant':
    -133        estimate_feature_importance = 0.0
    +114    vector_first = tmp_df[[feature_one]].values.ravel()
    +115    vector_second = tmp_df[[feature_two]].values.ravel()
    +116
    +117    if len(vector_first) == 0 or len(vector_second) == 0:
    +118        return [feature_one, feature_two, 0]
    +119
    +120    # Compute score based on the selected heuristic.
    +121    if args.heuristic == 'MI':
    +122        # Compute the infoGain
    +123        estimate_feature_importance = sklearn_MI(vector_first, vector_second)
    +124
    +125    elif 'surrogate-' in args.heuristic:
    +126        estimate_feature_importance = sklearn_surrogate(
    +127            vector_first, vector_second, args.heuristic,
    +128        )
    +129
    +130    elif 'MI-numba' in args.heuristic:
    +131        estimate_feature_importance = numba_mi(
    +132            vector_first, vector_second, args.heuristic,
    +133        )
     134
    -135    else:
    -136        raise ValueError(
    -137            'Please select one of the possible heuristics (MI, chi2)',
    +135    elif args.heuristic == 'AMI':
    +136        estimate_feature_importance = sklearn_mi_adj(
    +137            vector_first, vector_second,
     138        )
     139
    -140    return (feature_one, feature_two, estimate_feature_importance)
    +140    elif args.heuristic == 'correlation-Pearson':
    +141        estimate_feature_importance = pearsonr(vector_first, vector_second)[0]
    +142
    +143    elif args.heuristic == 'Constant':
    +144        estimate_feature_importance = 0.0
    +145
    +146    else:
    +147        raise ValueError(
    +148            'Please select one of the possible heuristics (MI, chi2)',
    +149        )
    +150
    +151    return (feature_one, feature_two, estimate_feature_importance)
     
    @@ -473,55 +514,63 @@

    -
    143def rank_features_3MR(
    -144    relevance_dict: dict[str, float],
    -145    redundancy_dict: dict[tuple[Any, Any], Any],
    -146    relational_dict: dict[tuple[Any, Any], Any],
    -147    strategy: str = 'median',
    -148    alpha: float = 1,
    -149    beta: float = 1,
    -150) -> pd.DataFrame:
    -151    all_features = relevance_dict.keys()
    -152    most_important_feature = max(
    -153        relevance_dict.items(), key=operator.itemgetter(1),
    -154    )[0]
    -155    ranked_features = [most_important_feature]
    -156
    -157    def calc_higher_order(feature, is_redundancy=True):
    -158        values = []
    -159        for feat in ranked_features:
    -160            if is_redundancy:
    -161                values.append(redundancy_dict[(feat, feature)])
    -162            else:
    -163                values.append(relational_dict[(feat, feature)])
    -164        if strategy == 'sum':
    -165            return sum(values)
    -166        if strategy == 'mean':
    -167            return np.mean(values)
    -168        return np.median(values)
    -169
    -170    while len(ranked_features) != len(all_features):
    -171        top_importance = 0
    -172        most_important_feature = ''
    -173
    -174        for ind, feat in enumerate(set(all_features) - set(ranked_features)):
    -175            feature_redundancy = calc_higher_order(feat)
    -176            feature_relation = calc_higher_order(feat, False)
    -177            feature_relevance = relevance_dict[feat]
    -178            importance = (
    -179                feature_relevance - alpha * feature_redundancy + beta * feature_relation
    -180            )
    -181
    -182            if (importance > top_importance) or (ind == 0):
    -183                top_importance = importance
    -184                most_important_feature = feat
    -185        ranked_features.append(most_important_feature)
    -186    return pd.DataFrame(
    -187        {
    -188            'Feature': ranked_features,
    -189            '3mr_ranking': list(range(1, len(ranked_features) + 1)),
    -190        },
    -191    )
    +            
    154def rank_features_3MR(
    +155    relevance_dict: dict[str, float],
    +156    redundancy_dict: dict[tuple[Any, Any], Any],
    +157    relational_dict: dict[tuple[Any, Any], Any],
    +158    strategy: str = 'median',
    +159    alpha: float = 1,
    +160    beta: float = 1,
    +161) -> pd.DataFrame:
    +162    all_features = relevance_dict.keys()
    +163    most_important_feature = max(
    +164        relevance_dict.items(), key=operator.itemgetter(1),
    +165    )[0]
    +166    ranked_features = [most_important_feature]
    +167
    +168    def calc_higher_order(feature, is_redundancy=True):
    +169        values = []
    +170        for feat in ranked_features:
    +171            interaction_tuple = (feat, feature)
    +172            if is_redundancy:
    +173                if interaction_tuple in redundancy_dict:
    +174                    values.append(redundancy_dict[interaction_tuple])
    +175                else:
    +176                    logging.info('Not accounting for redundancy tuple {} - please increase the --combination_number_upper_bound for beter coverage of interactions/redundancies.')
    +177            else:
    +178                if interaction_tuple in relational_dict:
    +179                    values.append(relational_dict[interaction_tuple])
    +180                else:
    +181                    logging.info('Not accounting for interaction tuple {} - please increase the --combination_number_upper_bound for beter coverage of interactions/redundancies.')
    +182
    +183        if strategy == 'sum':
    +184            return sum(values)
    +185        if strategy == 'mean':
    +186            return np.mean(values)
    +187        return np.median(values)
    +188
    +189    while len(ranked_features) != len(all_features):
    +190        top_importance = 0
    +191        most_important_feature = ''
    +192
    +193        for ind, feat in enumerate(set(all_features) - set(ranked_features)):
    +194            feature_redundancy = calc_higher_order(feat)
    +195            feature_relation = calc_higher_order(feat, False)
    +196            feature_relevance = relevance_dict[feat]
    +197            importance = (
    +198                feature_relevance - alpha * feature_redundancy + beta * feature_relation
    +199            )
    +200
    +201            if (importance > top_importance) or (ind == 0):
    +202                top_importance = importance
    +203                most_important_feature = feat
    +204        ranked_features.append(most_important_feature)
    +205    return pd.DataFrame(
    +206        {
    +207            'Feature': ranked_features,
    +208            '3mr_ranking': list(range(1, len(ranked_features) + 1)),
    +209        },
    +210    )
     
    @@ -539,10 +588,10 @@

    -
    194def get_importances_estimate_nonmyopic(args: Any, tmp_df: pd.DataFrame):
    -195    # TODO - nonmyopic algorithms - tmp_df \ args.label vs. label
    -196    # TODO - this is to be executed directly on df - no need for parallel kernel(s)
    -197    pass
    +            
    213def get_importances_estimate_nonmyopic(args: Any, tmp_df: pd.DataFrame):
    +214    # TODO - nonmyopic algorithms - tmp_df \ args.label vs. label
    +215    # TODO - this is to be executed directly on df - no need for parallel kernel(s)
    +216    pass
     
    diff --git a/docs/outrank/core_ranking.html b/docs/outrank/core_ranking.html index ebded07..35caebf 100644 --- a/docs/outrank/core_ranking.html +++ b/docs/outrank/core_ranking.html @@ -194,9 +194,9 @@

    72 73 # Handle cont. types prior to interaction evaluation 74 pbar.set_description('Encoding columns') - 75 col_dots = '.' - 76 start_enc_timer = timer() - 77 tmp_df = pd.DataFrame({k : tmp_df[k].cat.codes for k in all_columns}) + 75 start_enc_timer = timer() + 76 tmp_df = pd.DataFrame({k : tmp_df[k].cat.codes for k in all_columns}) + 77 78 end_enc_timer = timer() 79 out_time_struct['encoding_columns'] = end_enc_timer - start_enc_timer 80 @@ -610,7 +610,7 @@

    488 489 focus_set.add(args.label_column) 490 focus_set = {x for x in focus_set if x in input_dataframe.columns} -491 input_dataframe = input_dataframe[focus_set] +491 input_dataframe = input_dataframe[list(focus_set)] 492 493 if args.transformers != 'none': 494 pbar.set_description('Adding transformations') @@ -986,9 +986,9 @@

    73 74 # Handle cont. types prior to interaction evaluation 75 pbar.set_description('Encoding columns') - 76 col_dots = '.' - 77 start_enc_timer = timer() - 78 tmp_df = pd.DataFrame({k : tmp_df[k].cat.codes for k in all_columns}) + 76 start_enc_timer = timer() + 77 tmp_df = pd.DataFrame({k : tmp_df[k].cat.codes for k in all_columns}) + 78 79 end_enc_timer = timer() 80 out_time_struct['encoding_columns'] = end_enc_timer - start_enc_timer 81 @@ -1589,7 +1589,7 @@

    489 490 focus_set.add(args.label_column) 491 focus_set = {x for x in focus_set if x in input_dataframe.columns} -492 input_dataframe = input_dataframe[focus_set] +492 input_dataframe = input_dataframe[list(focus_set)] 493 494 if args.transformers != 'none': 495 pbar.set_description('Adding transformations') diff --git a/docs/outrank/core_utils.html b/docs/outrank/core_utils.html index 7d47cd0..dc6d242 100644 --- a/docs/outrank/core_utils.html +++ b/docs/outrank/core_utils.html @@ -379,458 +379,462 @@

    182 183 # Hash multi-value tuples and store name-val mappings 184 for remaining_part in remainder: -185 core_parts = remaining_part.split(' ') +185 core_parts = remaining_part.strip().split(' ') 186 namespace_part = core_parts[0] 187 other_parts = '-'.join(x for x in core_parts[1:] if x != '') -188 if namespace_part in fw_col_mapping: -189 remainder_hash[fw_col_mapping[namespace_part]] = other_parts -190 -191 # Construct the consistently-mapped instance based on the remainder mapping -192 the_real_instance = [ -193 remainder_hash.get( -194 el, None, -195 ) for el in table_header[1:] -196 ] -197 if not include_namespace_info: -198 the_real_instance = [ -199 x[2:] if not x is None else None for x in the_real_instance -200 ] -201 -202 parts = [label] + the_real_instance -203 return parts +188 +189 if namespace_part in fw_col_mapping: +190 remainder_hash[fw_col_mapping[namespace_part]] = other_parts +191 else: +192 logging.error(f"Didn't find namespace {namespace_part}") +193 +194 # Construct the consistently-mapped instance based on the remainder mapping +195 the_real_instance = [ +196 remainder_hash.get( +197 el, None, +198 ) for el in table_header[1:] +199 ] +200 if not include_namespace_info: +201 the_real_instance = [ +202 x[2:] if not x is None else None for x in the_real_instance +203 ] 204 -205 -206def parse_ob_csv_line( -207 line_string: str, delimiter: str = ',', args: Any = None, -208) -> list[str]: -209 """Data can have commas within JSON field dumps""" -210 -211 clx = list(csv.reader([line_string])).pop() -212 return clx -213 +205 parts = [label] + the_real_instance +206 +207 return parts +208 +209 +210def parse_ob_csv_line( +211 line_string: str, delimiter: str = ',', args: Any = None, +212) -> list[str]: +213 """Data can have commas within JSON field dumps""" 214 -215def generic_line_parser( -216 line_string: str, -217 delimiter: str, -218 args: Any = None, -219 fw_col_mapping: Any = None, -220 table_header: Any = None, -221) -> list[Any]: -222 """A generic method aimed to parse data from different sources.""" -223 -224 if args.data_source == 'ob-raw-dump': -225 return parse_ob_line(line_string, delimiter, args) -226 -227 elif args.data_source == 'ob-vw': -228 return parse_ob_line_vw( -229 line_string, delimiter, args, fw_col_mapping, table_header, -230 ) -231 -232 elif args.data_source == 'ob-csv' or args.data_source == 'csv-raw': -233 return parse_ob_csv_line(line_string, delimiter, args) -234 -235 else: -236 raise NotImplementedError( -237 'Please, specify a valid --data_source argument!', -238 ) -239 -240 -241def read_reference_json(json_path) -> dict[str, dict]: -242 """A helper method for reading a JSON""" -243 with open(json_path) as jp: -244 return json.load(jp) -245 -246 -247def parse_namespace(namespace_path: str) -> tuple[set[str], dict[str, str]]: -248 """Parse the feature namespace for type awareness""" +215 clx = list(csv.reader([line_string])).pop() +216 return clx +217 +218 +219def generic_line_parser( +220 line_string: str, +221 delimiter: str, +222 args: Any = None, +223 fw_col_mapping: Any = None, +224 table_header: Any = None, +225) -> list[Any]: +226 """A generic method aimed to parse data from different sources.""" +227 +228 if args.data_source == 'ob-raw-dump': +229 return parse_ob_line(line_string, delimiter, args) +230 +231 elif args.data_source == 'ob-vw': +232 return parse_ob_line_vw( +233 line_string, delimiter, args, fw_col_mapping, table_header, +234 ) +235 +236 elif args.data_source == 'ob-csv' or args.data_source == 'csv-raw': +237 return parse_ob_csv_line(line_string, delimiter, args) +238 +239 else: +240 raise NotImplementedError( +241 'Please, specify a valid --data_source argument!', +242 ) +243 +244 +245def read_reference_json(json_path) -> dict[str, dict]: +246 """A helper method for reading a JSON""" +247 with open(json_path) as jp: +248 return json.load(jp) 249 -250 float_set = set() -251 id_feature_map = {} -252 -253 with open(namespace_path) as nm: -254 for line in nm: -255 try: -256 namespace_parts = line.strip().split(',') -257 if len(namespace_parts) == 2 and '_' not in namespace_parts[0]: -258 fw_id, feature = namespace_parts -259 type_name = 'generic' -260 -261 else: -262 fw_id, feature, type_name = namespace_parts -263 -264 id_feature_map[fw_id] = feature -265 if type_name == 'f32': -266 float_set.add(feature) -267 except Exception as es: -268 logging.error(f'\U0001F631 {es} -- {namespace_parts}') -269 -270 return float_set, id_feature_map -271 -272 -273def read_column_names(mapping_file: str) -> list[str]: -274 """Read the col. header""" +250 +251def parse_namespace(namespace_path: str) -> tuple[set[str], dict[str, str]]: +252 """Parse the feature namespace for type awareness""" +253 +254 float_set = set() +255 id_feature_map = {} +256 +257 with open(namespace_path) as nm: +258 for line in nm: +259 try: +260 namespace_parts = line.strip().split(',') +261 if len(namespace_parts) == 2 and '_' not in namespace_parts[0]: +262 fw_id, feature = namespace_parts +263 type_name = 'generic' +264 +265 else: +266 fw_id, feature, type_name = namespace_parts +267 +268 id_feature_map[fw_id] = feature +269 if type_name == 'f32': +270 float_set.add(feature) +271 except Exception as es: +272 logging.error(f'\U0001F631 {es} -- {namespace_parts}') +273 +274 return float_set, id_feature_map 275 -276 with open(mapping_file, encoding='utf-8') as mf: -277 columns = mf.read().strip().split('\t') -278 return columns +276 +277def read_column_names(mapping_file: str) -> list[str]: +278 """Read the col. header""" 279 -280 -281def parse_ob_vw_feature_information(data_path) -> DatasetInformationStorage: -282 """A generic parser of ob-based data""" +280 with open(mapping_file, encoding='utf-8') as mf: +281 columns = mf.read().strip().split('\t') +282 return columns 283 -284 # Get column names -285 column_descriptions = os.path.join(data_path, 'vw_namespace_map.csv') -286 column_types, fw_map = parse_namespace(column_descriptions) +284 +285def parse_ob_vw_feature_information(data_path) -> DatasetInformationStorage: +286 """A generic parser of ob-based data""" 287 -288 # We establish column order here -289 column_names = ['label'] + list(fw_map.values()) -290 -291 data_path = os.path.join(data_path, 'data.vw.gz') -292 col_delimiter = None -293 encoding = 'utf-8' +288 # Get column names +289 column_descriptions = os.path.join(data_path, 'vw_namespace_map.csv') +290 column_types, fw_map = parse_namespace(column_descriptions) +291 +292 # We establish column order here +293 column_names = ['label'] + list(fw_map.values()) 294 -295 return DatasetInformationStorage( -296 data_path, column_names, column_types, col_delimiter, encoding, fw_map, -297 ) +295 data_path = os.path.join(data_path, 'data.vw.gz') +296 col_delimiter = None +297 encoding = 'utf-8' 298 -299 -300def parse_ob_raw_feature_information(data_path) -> DatasetInformationStorage: -301 """A generic parser of ob-based data""" +299 return DatasetInformationStorage( +300 data_path, column_names, column_types, col_delimiter, encoding, fw_map, +301 ) 302 -303 # Get column names -304 column_types: list[str] = [] -305 -306 # Get set of numeric columns -307 table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv') -308 table_header = read_column_names(table_header_path) +303 +304def parse_ob_raw_feature_information(data_path) -> DatasetInformationStorage: +305 """A generic parser of ob-based data""" +306 +307 # Get column names +308 column_types: list[str] = [] 309 -310 data_path_train = os.path.join(data_path, 'raw_data/1_train/*') -311 col_delimiter = '\t' -312 encoding = 'utf-8' +310 # Get set of numeric columns +311 table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv') +312 table_header = read_column_names(table_header_path) 313 -314 final_df = [] -315 core_data_folders = glob.glob(data_path_train) -316 for actual_data in core_data_folders: -317 for dump in glob.glob(actual_data + '/*'): -318 tmp_df = pd.read_csv( -319 dump, sep='\t', low_memory=True, dtype='object', -320 ) -321 assert tmp_df.shape[1] == len(table_header) -322 tmp_df.columns = table_header -323 final_df.append(tmp_df) -324 -325 final_df_concat = pd.concat(final_df, axis=0) -326 final_path = os.path.join(data_path, 'raw_dump.tsv') -327 logging.info( -328 f'Stored data dump of dimension {final_df_concat.shape} to {final_path}', -329 ) -330 final_df_concat.to_csv(final_path, sep='\t', index=False) -331 data_path = os.path.join(data_path, 'raw_dump.tsv') -332 -333 return DatasetInformationStorage( -334 data_path, table_header, set(column_types), col_delimiter, encoding, None, -335 ) +314 data_path_train = os.path.join(data_path, 'raw_data/1_train/*') +315 col_delimiter = '\t' +316 encoding = 'utf-8' +317 +318 final_df = [] +319 core_data_folders = glob.glob(data_path_train) +320 for actual_data in core_data_folders: +321 for dump in glob.glob(actual_data + '/*'): +322 tmp_df = pd.read_csv( +323 dump, sep='\t', low_memory=True, dtype='object', +324 ) +325 assert tmp_df.shape[1] == len(table_header) +326 tmp_df.columns = table_header +327 final_df.append(tmp_df) +328 +329 final_df_concat = pd.concat(final_df, axis=0) +330 final_path = os.path.join(data_path, 'raw_dump.tsv') +331 logging.info( +332 f'Stored data dump of dimension {final_df_concat.shape} to {final_path}', +333 ) +334 final_df_concat.to_csv(final_path, sep='\t', index=False) +335 data_path = os.path.join(data_path, 'raw_dump.tsv') 336 -337 -338def parse_ob_feature_information(data_path) -> DatasetInformationStorage: -339 """A generic parser of ob-based data""" +337 return DatasetInformationStorage( +338 data_path, table_header, set(column_types), col_delimiter, encoding, None, +339 ) 340 -341 # Get column names -342 column_names = os.path.join(data_path, 'vw_namespace_map.csv') -343 column_types, _ = parse_namespace(column_names) +341 +342def parse_ob_feature_information(data_path) -> DatasetInformationStorage: +343 """A generic parser of ob-based data""" 344 -345 # Get set of numeric columns -346 table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv') -347 table_header = read_column_names(table_header_path) +345 # Get column names +346 column_names = os.path.join(data_path, 'vw_namespace_map.csv') +347 column_types, _ = parse_namespace(column_names) 348 -349 data_path = os.path.join(data_path, 'raw_data/1_train/*') -350 col_delimiter = '\t' -351 encoding = 'utf-8' +349 # Get set of numeric columns +350 table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv') +351 table_header = read_column_names(table_header_path) 352 -353 return DatasetInformationStorage( -354 data_path, table_header, column_types, col_delimiter, encoding, None, -355 ) +353 data_path = os.path.join(data_path, 'raw_data/1_train/*') +354 col_delimiter = '\t' +355 encoding = 'utf-8' 356 -357 -358def parse_csv_with_description_information(data_path) -> DatasetInformationStorage: -359 dataset_description = read_reference_json( -360 os.path.join(data_path, 'dataset_desc.json'), -361 ) -362 column_names = [] -363 column_types = set() -364 for feature in dataset_description.get('data_features', []): -365 feature_name = feature.get('name') -366 column_names.append(feature_name) -367 feature_type = feature.get('type', '') -368 if 'float' in feature_type or 'Float' in feature_type: -369 column_types.add(feature_name) -370 col_delimiter = ',' -371 data_path = os.path.join(data_path, 'data.csv') -372 encoding = 'latin1' -373 return DatasetInformationStorage( -374 data_path, column_names, column_types, col_delimiter, encoding, None, -375 ) -376 -377 -378def parse_csv_raw(data_path) -> DatasetInformationStorage: -379 column_types: set[str] = set() +357 return DatasetInformationStorage( +358 data_path, table_header, column_types, col_delimiter, encoding, None, +359 ) +360 +361 +362def parse_csv_with_description_information(data_path) -> DatasetInformationStorage: +363 dataset_description = read_reference_json( +364 os.path.join(data_path, 'dataset_desc.json'), +365 ) +366 column_names = [] +367 column_types = set() +368 for feature in dataset_description.get('data_features', []): +369 feature_name = feature.get('name') +370 column_names.append(feature_name) +371 feature_type = feature.get('type', '') +372 if 'float' in feature_type or 'Float' in feature_type: +373 column_types.add(feature_name) +374 col_delimiter = ',' +375 data_path = os.path.join(data_path, 'data.csv') +376 encoding = 'latin1' +377 return DatasetInformationStorage( +378 data_path, column_names, column_types, col_delimiter, encoding, None, +379 ) 380 -381 data_path = os.path.join(data_path, 'data.csv') -382 with open(data_path) as inp_data: -383 header = inp_data.readline() -384 col_delimiter = ',' -385 column_names = header.strip().split(col_delimiter) -386 encoding = 'latin1' -387 return DatasetInformationStorage( -388 data_path, column_names, column_types, col_delimiter, encoding, None, -389 ) -390 -391 -392def extract_features_from_reference_JSON(json_path: str) -> set[Any]: -393 """Given a model's JSON, extract unique features""" +381 +382def parse_csv_raw(data_path) -> DatasetInformationStorage: +383 column_types: set[str] = set() +384 +385 data_path = os.path.join(data_path, 'data.csv') +386 with open(data_path) as inp_data: +387 header = inp_data.readline() +388 col_delimiter = ',' +389 column_names = header.strip().split(col_delimiter) +390 encoding = 'latin1' +391 return DatasetInformationStorage( +392 data_path, column_names, column_types, col_delimiter, encoding, None, +393 ) 394 -395 with open(json_path) as jp: -396 content = json.load(jp) -397 -398 unique_features = set() -399 feature_space = content['desc'].get('features', []) -400 fields_space = content['desc'].get('fields', []) -401 joint_space = feature_space + fields_space -402 -403 for feature_tuple in joint_space: -404 for individual_feature in feature_tuple.split(','): -405 unique_features.add(individual_feature) +395 +396def extract_features_from_reference_JSON(json_path: str) -> set[Any]: +397 """Given a model's JSON, extract unique features""" +398 +399 with open(json_path) as jp: +400 content = json.load(jp) +401 +402 unique_features = set() +403 feature_space = content['desc'].get('features', []) +404 fields_space = content['desc'].get('fields', []) +405 joint_space = feature_space + fields_space 406 -407 return unique_features -408 -409 -410def summarize_feature_bounds_for_transformers( -411 bounds_object_storage: Any, -412 feature_types: list[str], -413 task_name: str, -414 label_name: str, -415 granularity: int = 15, -416 output_summary_table_only: bool = False, -417): -418 """summarization auxilliary method for generating JSON-based specs""" -419 -420 if bounds_object_storage is None: -421 logging.info('Bounds storage object is empty.') -422 exit() +407 for feature_tuple in joint_space: +408 for individual_feature in feature_tuple.split(','): +409 unique_features.add(individual_feature) +410 +411 return unique_features +412 +413 +414def summarize_feature_bounds_for_transformers( +415 bounds_object_storage: Any, +416 feature_types: list[str], +417 task_name: str, +418 label_name: str, +419 granularity: int = 15, +420 output_summary_table_only: bool = False, +421): +422 """summarization auxilliary method for generating JSON-based specs""" 423 -424 final_storage = defaultdict(list) -425 for el in bounds_object_storage: -426 if isinstance(el, dict): -427 for k, v in el.items(): -428 final_storage[k].append(v) -429 -430 summary_table_rows = [] -431 for k, v in final_storage.items(): -432 # Conduct local aggregation + bound changes -433 if k in feature_types and k != label_name: -434 minima, maxima, medians, uniques = [], [], [], [] -435 for feature_summary in v: -436 minima.append(feature_summary.minimum) -437 maxima.append(feature_summary.maximum) -438 medians.append(feature_summary.median) -439 uniques.append(feature_summary.num_unique) -440 summary_table_rows.append( -441 [ -442 k, -443 round(np.min(minima), 2), -444 round(np.max(maxima), 2), -445 round(np.median(medians), 2), -446 int(np.mean(uniques)), -447 ], -448 ) -449 -450 if len(summary_table_rows) == 0: -451 logging.info('No numeric features to summarize.') -452 return None +424 if bounds_object_storage is None: +425 logging.info('Bounds storage object is empty.') +426 exit() +427 +428 final_storage = defaultdict(list) +429 for el in bounds_object_storage: +430 if isinstance(el, dict): +431 for k, v in el.items(): +432 final_storage[k].append(v) +433 +434 summary_table_rows = [] +435 for k, v in final_storage.items(): +436 # Conduct local aggregation + bound changes +437 if k in feature_types and k != label_name: +438 minima, maxima, medians, uniques = [], [], [], [] +439 for feature_summary in v: +440 minima.append(feature_summary.minimum) +441 maxima.append(feature_summary.maximum) +442 medians.append(feature_summary.median) +443 uniques.append(feature_summary.num_unique) +444 summary_table_rows.append( +445 [ +446 k, +447 round(np.min(minima), 2), +448 round(np.max(maxima), 2), +449 round(np.median(medians), 2), +450 int(np.mean(uniques)), +451 ], +452 ) 453 -454 summary_table: pd.Dataframe = pd.DataFrame(summary_table_rows) -455 summary_table.columns = [ -456 'Feature', -457 'Minimum', -458 'Maximum', -459 'Median', -460 'Num avg. unique (batch)', -461 ] -462 -463 if output_summary_table_only: -464 return summary_table -465 -466 if len(summary_table) == 0: -467 logging.info('Summary table empty, skipping transformer generation ..') -468 return +454 if len(summary_table_rows) == 0: +455 logging.info('No numeric features to summarize.') +456 return None +457 +458 summary_table: pd.Dataframe = pd.DataFrame(summary_table_rows) +459 summary_table.columns = [ +460 'Feature', +461 'Minimum', +462 'Maximum', +463 'Median', +464 'Num avg. unique (batch)', +465 ] +466 +467 if output_summary_table_only: +468 return summary_table 469 -470 if task_name == 'feature_summary_transformers': -471 transformers_per_feature = defaultdict(list) -472 -473 # Take care of weights first -> range is pre-defined -474 for k, v in final_storage.items(): -475 if label_name in k or 'dummy' in k: -476 continue -477 -478 weight_template = { -479 'feature': k, -480 'src_features': [k], -481 'transformations': ['Weight'], -482 'weights': [0, 0.5, 1.5, 2, 3, 10], -483 } -484 transformers_per_feature[k].append(weight_template) -485 -486 # Consider numeric transformations - pairs and single ones -487 for enx, row in summary_table.iterrows(): -488 if row.Feature == 'dummy': -489 continue -490 try: -491 actual_range = ( -492 np.arange( -493 row['Minimum'], -494 row['Maximum'], -495 (row['Maximum'] - row['Minimum']) / granularity, -496 ) -497 .round(2) -498 .tolist() -499 ) -500 binner_template = { -501 'feature': f'{row.Feature}', -502 'src_features': [row.Feature], -503 'transformations': [ -504 'BinnerSqrt', -505 'BinnerLog', -506 'BinnerSqrtPlain', -507 'BinnerLogPlain', -508 ], -509 'n': actual_range, -510 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], -511 } -512 -513 except Exception as es: -514 logging.info( -515 f'\U0001F631 Encountered {es}. The problematic feature is: {row}, skipping transformer for this feature ..', -516 ) -517 -518 transformers_per_feature[row.Feature].append(binner_template) -519 -520 # We want the full loop here, due to asymmetry of transformation(s) -521 for enx_second, row_second in summary_table.iterrows(): -522 if enx_second < enx: -523 continue -524 -525 # The n values are defined based on maxima of the second feature -526 if row_second.Feature != row.Feature: -527 n_bound = round(row_second['Median'] + row['Median'], 2) -528 max_bound = round( -529 min(row_second['Maximum'], row['Maximum']), 2, -530 ) -531 min_bound = round( -532 row_second['Minimum'] + row['Minimum'], 2, -533 ) -534 range_spectrum = sorted( -535 list( -536 { -537 0.0, -538 min_bound, -539 n_bound / 10, -540 n_bound / 5, -541 n_bound, -542 max_bound, -543 }, -544 ), -545 ) -546 -547 range_spectrum = [x for x in range_spectrum if x >= 0] -548 binner_pair_template = { -549 'feature': f'{row.Feature}Ratio{row_second.Feature}', -550 'src_features': [row.Feature, row_second.Feature], -551 'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'], -552 'n': range_spectrum, -553 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], -554 } -555 -556 binner_pair_template_second = { -557 'feature': f'{row_second.Feature}Ratio{row.Feature}', -558 'src_features': [row_second.Feature, row.Feature], -559 'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'], -560 'n': range_spectrum, -561 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], -562 } -563 -564 transformers_per_feature[row.Feature].append( -565 binner_pair_template, -566 ) -567 transformers_per_feature[row.Feature].append( -568 binner_pair_template_second, -569 ) -570 -571 binner_templates = [] -572 for k, v in transformers_per_feature.items(): -573 for transformer_struct in v: -574 binner_templates.append(transformer_struct) -575 -576 logging.info( -577 f'Generated {len(binner_templates)} transformation search specifications.\n', -578 ) -579 namespace_full = f'"random_grid_feature_transform": {json.dumps(binner_templates)}, "random_grid_epochs": 512' -580 logging.info('Generated transformations below:\n') -581 print(namespace_full) -582 -583 -584def summarize_rare_counts( -585 term_counter: Any, -586 args: Any, -587 cardinality_object: Any, -588 object_info: DatasetInformationStorage, -589) -> None: -590 """Write rare values""" -591 -592 out_df_rows = [] -593 logging.info( -594 f'Rare value summary (freq <= {args.rare_value_count_upper_bound}) follows ..', -595 ) -596 -597 for namespace_tuple, count in term_counter.items(): -598 namespace, value = namespace_tuple -599 out_df_rows.append([namespace, value, count]) -600 out_df: pd.DataFrame = pd.DataFrame(out_df_rows) -601 out_df.columns = ['Namespace', 'value', 'Count'] -602 out_df.to_csv( -603 os.path.join(args.output_folder, 'rare_values.tsv'), sep='\t', index=False, -604 ) -605 logging.info(f'Wrote rare values to {args.output_folder}/rare_values.tsv') -606 -607 overall_rare_counts = Counter(out_df.Namespace.values) -608 sorted_counts = sorted( -609 overall_rare_counts.items(), key=lambda pair: pair[1], reverse=True, -610 ) -611 for k, v in sorted_counts: -612 logging.info(f'Namespace: {k} ---- Rare values observed: {v}') -613 -614 final_df_rows = [] +470 if len(summary_table) == 0: +471 logging.info('Summary table empty, skipping transformer generation ..') +472 return +473 +474 if task_name == 'feature_summary_transformers': +475 transformers_per_feature = defaultdict(list) +476 +477 # Take care of weights first -> range is pre-defined +478 for k, v in final_storage.items(): +479 if label_name in k or 'dummy' in k: +480 continue +481 +482 weight_template = { +483 'feature': k, +484 'src_features': [k], +485 'transformations': ['Weight'], +486 'weights': [0, 0.5, 1.5, 2, 3, 10], +487 } +488 transformers_per_feature[k].append(weight_template) +489 +490 # Consider numeric transformations - pairs and single ones +491 for enx, row in summary_table.iterrows(): +492 if row.Feature == 'dummy': +493 continue +494 try: +495 actual_range = ( +496 np.arange( +497 row['Minimum'], +498 row['Maximum'], +499 (row['Maximum'] - row['Minimum']) / granularity, +500 ) +501 .round(2) +502 .tolist() +503 ) +504 binner_template = { +505 'feature': f'{row.Feature}', +506 'src_features': [row.Feature], +507 'transformations': [ +508 'BinnerSqrt', +509 'BinnerLog', +510 'BinnerSqrtPlain', +511 'BinnerLogPlain', +512 ], +513 'n': actual_range, +514 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], +515 } +516 +517 except Exception as es: +518 logging.info( +519 f'\U0001F631 Encountered {es}. The problematic feature is: {row}, skipping transformer for this feature ..', +520 ) +521 +522 transformers_per_feature[row.Feature].append(binner_template) +523 +524 # We want the full loop here, due to asymmetry of transformation(s) +525 for enx_second, row_second in summary_table.iterrows(): +526 if enx_second < enx: +527 continue +528 +529 # The n values are defined based on maxima of the second feature +530 if row_second.Feature != row.Feature: +531 n_bound = round(row_second['Median'] + row['Median'], 2) +532 max_bound = round( +533 min(row_second['Maximum'], row['Maximum']), 2, +534 ) +535 min_bound = round( +536 row_second['Minimum'] + row['Minimum'], 2, +537 ) +538 range_spectrum = sorted( +539 list( +540 { +541 0.0, +542 min_bound, +543 n_bound / 10, +544 n_bound / 5, +545 n_bound, +546 max_bound, +547 }, +548 ), +549 ) +550 +551 range_spectrum = [x for x in range_spectrum if x >= 0] +552 binner_pair_template = { +553 'feature': f'{row.Feature}Ratio{row_second.Feature}', +554 'src_features': [row.Feature, row_second.Feature], +555 'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'], +556 'n': range_spectrum, +557 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], +558 } +559 +560 binner_pair_template_second = { +561 'feature': f'{row_second.Feature}Ratio{row.Feature}', +562 'src_features': [row_second.Feature, row.Feature], +563 'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'], +564 'n': range_spectrum, +565 'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128], +566 } +567 +568 transformers_per_feature[row.Feature].append( +569 binner_pair_template, +570 ) +571 transformers_per_feature[row.Feature].append( +572 binner_pair_template_second, +573 ) +574 +575 binner_templates = [] +576 for k, v in transformers_per_feature.items(): +577 for transformer_struct in v: +578 binner_templates.append(transformer_struct) +579 +580 logging.info( +581 f'Generated {len(binner_templates)} transformation search specifications.\n', +582 ) +583 namespace_full = f'"random_grid_feature_transform": {json.dumps(binner_templates)}, "random_grid_epochs": 512' +584 logging.info('Generated transformations below:\n') +585 print(namespace_full) +586 +587 +588def summarize_rare_counts( +589 term_counter: Any, +590 args: Any, +591 cardinality_object: Any, +592 object_info: DatasetInformationStorage, +593) -> None: +594 """Write rare values""" +595 +596 out_df_rows = [] +597 logging.info( +598 f'Rare value summary (freq <= {args.rare_value_count_upper_bound}) follows ..', +599 ) +600 +601 for namespace_tuple, count in term_counter.items(): +602 namespace, value = namespace_tuple +603 out_df_rows.append([namespace, value, count]) +604 out_df: pd.DataFrame = pd.DataFrame(out_df_rows) +605 out_df.columns = ['Namespace', 'value', 'Count'] +606 out_df.to_csv( +607 os.path.join(args.output_folder, 'rare_values.tsv'), sep='\t', index=False, +608 ) +609 logging.info(f'Wrote rare values to {args.output_folder}/rare_values.tsv') +610 +611 overall_rare_counts = Counter(out_df.Namespace.values) +612 sorted_counts = sorted( +613 overall_rare_counts.items(), key=lambda pair: pair[1], reverse=True, +614 ) 615 for k, v in sorted_counts: -616 cardinality = len(cardinality_object[k]) -617 rare_proportion = np.round(100 * (v / cardinality), 2) -618 col_type = 'nominal' -619 if k in object_info.column_types: -620 col_type = 'numeric' -621 final_df_rows.append( -622 { -623 'rare_proportion': rare_proportion, -624 'feature_type': col_type, -625 'feature_name': k, -626 }, -627 ) -628 -629 final_df: pd.DataFrame = pd.DataFrame(final_df_rows) -630 final_df = final_df.sort_values(by=['rare_proportion']) -631 logging.info( -632 f'Wrote feature sparsity summary to {args.output_folder}/feature_sparsity_summary.tsv', -633 ) -634 final_df.to_csv( -635 f'{args.output_folder}/feature_sparsity_summary.tsv', index=False, sep='\t', -636 ) +616 logging.info(f'Namespace: {k} ---- Rare values observed: {v}') +617 +618 final_df_rows = [] +619 for k, v in sorted_counts: +620 cardinality = len(cardinality_object[k]) +621 rare_proportion = np.round(100 * (v / cardinality), 2) +622 col_type = 'nominal' +623 if k in object_info.column_types: +624 col_type = 'numeric' +625 final_df_rows.append( +626 { +627 'rare_proportion': rare_proportion, +628 'feature_type': col_type, +629 'feature_name': k, +630 }, +631 ) +632 +633 final_df: pd.DataFrame = pd.DataFrame(final_df_rows) +634 final_df = final_df.sort_values(by=['rare_proportion']) +635 logging.info( +636 f'Wrote feature sparsity summary to {args.output_folder}/feature_sparsity_summary.tsv', +637 ) +638 final_df.to_csv( +639 f'{args.output_folder}/feature_sparsity_summary.tsv', index=False, sep='\t', +640 )

    @@ -1378,25 +1382,29 @@

    183 184 # Hash multi-value tuples and store name-val mappings 185 for remaining_part in remainder: -186 core_parts = remaining_part.split(' ') +186 core_parts = remaining_part.strip().split(' ') 187 namespace_part = core_parts[0] 188 other_parts = '-'.join(x for x in core_parts[1:] if x != '') -189 if namespace_part in fw_col_mapping: -190 remainder_hash[fw_col_mapping[namespace_part]] = other_parts -191 -192 # Construct the consistently-mapped instance based on the remainder mapping -193 the_real_instance = [ -194 remainder_hash.get( -195 el, None, -196 ) for el in table_header[1:] -197 ] -198 if not include_namespace_info: -199 the_real_instance = [ -200 x[2:] if not x is None else None for x in the_real_instance -201 ] -202 -203 parts = [label] + the_real_instance -204 return parts +189 +190 if namespace_part in fw_col_mapping: +191 remainder_hash[fw_col_mapping[namespace_part]] = other_parts +192 else: +193 logging.error(f"Didn't find namespace {namespace_part}") +194 +195 # Construct the consistently-mapped instance based on the remainder mapping +196 the_real_instance = [ +197 remainder_hash.get( +198 el, None, +199 ) for el in table_header[1:] +200 ] +201 if not include_namespace_info: +202 the_real_instance = [ +203 x[2:] if not x is None else None for x in the_real_instance +204 ] +205 +206 parts = [label] + the_real_instance +207 +208 return parts

@@ -1416,13 +1424,13 @@

-
207def parse_ob_csv_line(
-208    line_string: str, delimiter: str = ',', args: Any = None,
-209) -> list[str]:
-210    """Data can have commas within JSON field dumps"""
-211
-212    clx = list(csv.reader([line_string])).pop()
-213    return clx
+            
211def parse_ob_csv_line(
+212    line_string: str, delimiter: str = ',', args: Any = None,
+213) -> list[str]:
+214    """Data can have commas within JSON field dumps"""
+215
+216    clx = list(csv.reader([line_string])).pop()
+217    return clx
 
@@ -1442,30 +1450,30 @@

-
216def generic_line_parser(
-217    line_string: str,
-218    delimiter: str,
-219    args: Any = None,
-220    fw_col_mapping: Any = None,
-221    table_header: Any = None,
-222) -> list[Any]:
-223    """A generic method aimed to parse data from different sources."""
-224
-225    if args.data_source == 'ob-raw-dump':
-226        return parse_ob_line(line_string, delimiter, args)
-227
-228    elif args.data_source == 'ob-vw':
-229        return parse_ob_line_vw(
-230            line_string, delimiter, args, fw_col_mapping, table_header,
-231        )
-232
-233    elif args.data_source == 'ob-csv' or args.data_source == 'csv-raw':
-234        return parse_ob_csv_line(line_string, delimiter, args)
-235
-236    else:
-237        raise NotImplementedError(
-238            'Please, specify a valid --data_source argument!',
-239        )
+            
220def generic_line_parser(
+221    line_string: str,
+222    delimiter: str,
+223    args: Any = None,
+224    fw_col_mapping: Any = None,
+225    table_header: Any = None,
+226) -> list[Any]:
+227    """A generic method aimed to parse data from different sources."""
+228
+229    if args.data_source == 'ob-raw-dump':
+230        return parse_ob_line(line_string, delimiter, args)
+231
+232    elif args.data_source == 'ob-vw':
+233        return parse_ob_line_vw(
+234            line_string, delimiter, args, fw_col_mapping, table_header,
+235        )
+236
+237    elif args.data_source == 'ob-csv' or args.data_source == 'csv-raw':
+238        return parse_ob_csv_line(line_string, delimiter, args)
+239
+240    else:
+241        raise NotImplementedError(
+242            'Please, specify a valid --data_source argument!',
+243        )
 
@@ -1485,10 +1493,10 @@

-
242def read_reference_json(json_path) -> dict[str, dict]:
-243    """A helper method for reading a JSON"""
-244    with open(json_path) as jp:
-245        return json.load(jp)
+            
246def read_reference_json(json_path) -> dict[str, dict]:
+247    """A helper method for reading a JSON"""
+248    with open(json_path) as jp:
+249        return json.load(jp)
 
@@ -1508,30 +1516,30 @@

-
248def parse_namespace(namespace_path: str) -> tuple[set[str], dict[str, str]]:
-249    """Parse the feature namespace for type awareness"""
-250
-251    float_set = set()
-252    id_feature_map = {}
-253
-254    with open(namespace_path) as nm:
-255        for line in nm:
-256            try:
-257                namespace_parts = line.strip().split(',')
-258                if len(namespace_parts) == 2 and '_' not in namespace_parts[0]:
-259                    fw_id, feature = namespace_parts
-260                    type_name = 'generic'
-261
-262                else:
-263                    fw_id, feature, type_name = namespace_parts
-264
-265                id_feature_map[fw_id] = feature
-266                if type_name == 'f32':
-267                    float_set.add(feature)
-268            except Exception as es:
-269                logging.error(f'\U0001F631 {es} -- {namespace_parts}')
-270
-271    return float_set, id_feature_map
+            
252def parse_namespace(namespace_path: str) -> tuple[set[str], dict[str, str]]:
+253    """Parse the feature namespace for type awareness"""
+254
+255    float_set = set()
+256    id_feature_map = {}
+257
+258    with open(namespace_path) as nm:
+259        for line in nm:
+260            try:
+261                namespace_parts = line.strip().split(',')
+262                if len(namespace_parts) == 2 and '_' not in namespace_parts[0]:
+263                    fw_id, feature = namespace_parts
+264                    type_name = 'generic'
+265
+266                else:
+267                    fw_id, feature, type_name = namespace_parts
+268
+269                id_feature_map[fw_id] = feature
+270                if type_name == 'f32':
+271                    float_set.add(feature)
+272            except Exception as es:
+273                logging.error(f'\U0001F631 {es} -- {namespace_parts}')
+274
+275    return float_set, id_feature_map
 
@@ -1551,12 +1559,12 @@

-
274def read_column_names(mapping_file: str) -> list[str]:
-275    """Read the col. header"""
-276
-277    with open(mapping_file, encoding='utf-8') as mf:
-278        columns = mf.read().strip().split('\t')
-279    return columns
+            
278def read_column_names(mapping_file: str) -> list[str]:
+279    """Read the col. header"""
+280
+281    with open(mapping_file, encoding='utf-8') as mf:
+282        columns = mf.read().strip().split('\t')
+283    return columns
 
@@ -1576,23 +1584,23 @@

-
282def parse_ob_vw_feature_information(data_path) -> DatasetInformationStorage:
-283    """A generic parser of ob-based data"""
-284
-285    # Get column names
-286    column_descriptions = os.path.join(data_path, 'vw_namespace_map.csv')
-287    column_types, fw_map = parse_namespace(column_descriptions)
+            
286def parse_ob_vw_feature_information(data_path) -> DatasetInformationStorage:
+287    """A generic parser of ob-based data"""
 288
-289    # We establish column order here
-290    column_names = ['label'] + list(fw_map.values())
-291
-292    data_path = os.path.join(data_path, 'data.vw.gz')
-293    col_delimiter = None
-294    encoding = 'utf-8'
+289    # Get column names
+290    column_descriptions = os.path.join(data_path, 'vw_namespace_map.csv')
+291    column_types, fw_map = parse_namespace(column_descriptions)
+292
+293    # We establish column order here
+294    column_names = ['label'] + list(fw_map.values())
 295
-296    return DatasetInformationStorage(
-297        data_path, column_names, column_types, col_delimiter, encoding, fw_map,
-298    )
+296    data_path = os.path.join(data_path, 'data.vw.gz')
+297    col_delimiter = None
+298    encoding = 'utf-8'
+299
+300    return DatasetInformationStorage(
+301        data_path, column_names, column_types, col_delimiter, encoding, fw_map,
+302    )
 
@@ -1612,42 +1620,42 @@

-
301def parse_ob_raw_feature_information(data_path) -> DatasetInformationStorage:
-302    """A generic parser of ob-based data"""
-303
-304    # Get column names
-305    column_types: list[str] = []
-306
-307    # Get set of numeric columns
-308    table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv')
-309    table_header = read_column_names(table_header_path)
+            
305def parse_ob_raw_feature_information(data_path) -> DatasetInformationStorage:
+306    """A generic parser of ob-based data"""
+307
+308    # Get column names
+309    column_types: list[str] = []
 310
-311    data_path_train = os.path.join(data_path, 'raw_data/1_train/*')
-312    col_delimiter = '\t'
-313    encoding = 'utf-8'
+311    # Get set of numeric columns
+312    table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv')
+313    table_header = read_column_names(table_header_path)
 314
-315    final_df = []
-316    core_data_folders = glob.glob(data_path_train)
-317    for actual_data in core_data_folders:
-318        for dump in glob.glob(actual_data + '/*'):
-319            tmp_df = pd.read_csv(
-320                dump, sep='\t', low_memory=True, dtype='object',
-321            )
-322            assert tmp_df.shape[1] == len(table_header)
-323            tmp_df.columns = table_header
-324            final_df.append(tmp_df)
-325
-326    final_df_concat = pd.concat(final_df, axis=0)
-327    final_path = os.path.join(data_path, 'raw_dump.tsv')
-328    logging.info(
-329        f'Stored data dump of dimension {final_df_concat.shape} to {final_path}',
-330    )
-331    final_df_concat.to_csv(final_path, sep='\t', index=False)
-332    data_path = os.path.join(data_path, 'raw_dump.tsv')
-333
-334    return DatasetInformationStorage(
-335        data_path, table_header, set(column_types), col_delimiter, encoding, None,
-336    )
+315    data_path_train = os.path.join(data_path, 'raw_data/1_train/*')
+316    col_delimiter = '\t'
+317    encoding = 'utf-8'
+318
+319    final_df = []
+320    core_data_folders = glob.glob(data_path_train)
+321    for actual_data in core_data_folders:
+322        for dump in glob.glob(actual_data + '/*'):
+323            tmp_df = pd.read_csv(
+324                dump, sep='\t', low_memory=True, dtype='object',
+325            )
+326            assert tmp_df.shape[1] == len(table_header)
+327            tmp_df.columns = table_header
+328            final_df.append(tmp_df)
+329
+330    final_df_concat = pd.concat(final_df, axis=0)
+331    final_path = os.path.join(data_path, 'raw_dump.tsv')
+332    logging.info(
+333        f'Stored data dump of dimension {final_df_concat.shape} to {final_path}',
+334    )
+335    final_df_concat.to_csv(final_path, sep='\t', index=False)
+336    data_path = os.path.join(data_path, 'raw_dump.tsv')
+337
+338    return DatasetInformationStorage(
+339        data_path, table_header, set(column_types), col_delimiter, encoding, None,
+340    )
 
@@ -1667,24 +1675,24 @@

-
339def parse_ob_feature_information(data_path) -> DatasetInformationStorage:
-340    """A generic parser of ob-based data"""
-341
-342    # Get column names
-343    column_names = os.path.join(data_path, 'vw_namespace_map.csv')
-344    column_types, _ = parse_namespace(column_names)
+            
343def parse_ob_feature_information(data_path) -> DatasetInformationStorage:
+344    """A generic parser of ob-based data"""
 345
-346    # Get set of numeric columns
-347    table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv')
-348    table_header = read_column_names(table_header_path)
+346    # Get column names
+347    column_names = os.path.join(data_path, 'vw_namespace_map.csv')
+348    column_types, _ = parse_namespace(column_names)
 349
-350    data_path = os.path.join(data_path, 'raw_data/1_train/*')
-351    col_delimiter = '\t'
-352    encoding = 'utf-8'
+350    # Get set of numeric columns
+351    table_header_path = os.path.join(data_path, 'raw_data/0_header/header.csv')
+352    table_header = read_column_names(table_header_path)
 353
-354    return DatasetInformationStorage(
-355        data_path, table_header, column_types, col_delimiter, encoding, None,
-356    )
+354    data_path = os.path.join(data_path, 'raw_data/1_train/*')
+355    col_delimiter = '\t'
+356    encoding = 'utf-8'
+357
+358    return DatasetInformationStorage(
+359        data_path, table_header, column_types, col_delimiter, encoding, None,
+360    )
 
@@ -1704,24 +1712,24 @@

-
359def parse_csv_with_description_information(data_path) -> DatasetInformationStorage:
-360    dataset_description = read_reference_json(
-361        os.path.join(data_path, 'dataset_desc.json'),
-362    )
-363    column_names = []
-364    column_types = set()
-365    for feature in dataset_description.get('data_features', []):
-366        feature_name = feature.get('name')
-367        column_names.append(feature_name)
-368        feature_type = feature.get('type', '')
-369        if 'float' in feature_type or 'Float' in feature_type:
-370            column_types.add(feature_name)
-371    col_delimiter = ','
-372    data_path = os.path.join(data_path, 'data.csv')
-373    encoding = 'latin1'
-374    return DatasetInformationStorage(
-375        data_path, column_names, column_types, col_delimiter, encoding, None,
-376    )
+            
363def parse_csv_with_description_information(data_path) -> DatasetInformationStorage:
+364    dataset_description = read_reference_json(
+365        os.path.join(data_path, 'dataset_desc.json'),
+366    )
+367    column_names = []
+368    column_types = set()
+369    for feature in dataset_description.get('data_features', []):
+370        feature_name = feature.get('name')
+371        column_names.append(feature_name)
+372        feature_type = feature.get('type', '')
+373        if 'float' in feature_type or 'Float' in feature_type:
+374            column_types.add(feature_name)
+375    col_delimiter = ','
+376    data_path = os.path.join(data_path, 'data.csv')
+377    encoding = 'latin1'
+378    return DatasetInformationStorage(
+379        data_path, column_names, column_types, col_delimiter, encoding, None,
+380    )
 
@@ -1739,18 +1747,18 @@

-
379def parse_csv_raw(data_path) -> DatasetInformationStorage:
-380    column_types: set[str] = set()
-381
-382    data_path = os.path.join(data_path, 'data.csv')
-383    with open(data_path) as inp_data:
-384        header = inp_data.readline()
-385    col_delimiter = ','
-386    column_names = header.strip().split(col_delimiter)
-387    encoding = 'latin1'
-388    return DatasetInformationStorage(
-389        data_path, column_names, column_types, col_delimiter, encoding, None,
-390    )
+            
383def parse_csv_raw(data_path) -> DatasetInformationStorage:
+384    column_types: set[str] = set()
+385
+386    data_path = os.path.join(data_path, 'data.csv')
+387    with open(data_path) as inp_data:
+388        header = inp_data.readline()
+389    col_delimiter = ','
+390    column_names = header.strip().split(col_delimiter)
+391    encoding = 'latin1'
+392    return DatasetInformationStorage(
+393        data_path, column_names, column_types, col_delimiter, encoding, None,
+394    )
 
@@ -1768,22 +1776,22 @@

-
393def extract_features_from_reference_JSON(json_path: str) -> set[Any]:
-394    """Given a model's JSON, extract unique features"""
-395
-396    with open(json_path) as jp:
-397        content = json.load(jp)
-398
-399    unique_features = set()
-400    feature_space = content['desc'].get('features', [])
-401    fields_space = content['desc'].get('fields', [])
-402    joint_space = feature_space + fields_space
-403
-404    for feature_tuple in joint_space:
-405        for individual_feature in feature_tuple.split(','):
-406            unique_features.add(individual_feature)
+            
397def extract_features_from_reference_JSON(json_path: str) -> set[Any]:
+398    """Given a model's JSON, extract unique features"""
+399
+400    with open(json_path) as jp:
+401        content = json.load(jp)
+402
+403    unique_features = set()
+404    feature_space = content['desc'].get('features', [])
+405    fields_space = content['desc'].get('fields', [])
+406    joint_space = feature_space + fields_space
 407
-408    return unique_features
+408    for feature_tuple in joint_space:
+409        for individual_feature in feature_tuple.split(','):
+410            unique_features.add(individual_feature)
+411
+412    return unique_features
 
@@ -1803,178 +1811,178 @@

-
411def summarize_feature_bounds_for_transformers(
-412    bounds_object_storage: Any,
-413    feature_types: list[str],
-414    task_name: str,
-415    label_name: str,
-416    granularity: int = 15,
-417    output_summary_table_only: bool = False,
-418):
-419    """summarization auxilliary method for generating JSON-based specs"""
-420
-421    if bounds_object_storage is None:
-422        logging.info('Bounds storage object is empty.')
-423        exit()
+            
415def summarize_feature_bounds_for_transformers(
+416    bounds_object_storage: Any,
+417    feature_types: list[str],
+418    task_name: str,
+419    label_name: str,
+420    granularity: int = 15,
+421    output_summary_table_only: bool = False,
+422):
+423    """summarization auxilliary method for generating JSON-based specs"""
 424
-425    final_storage = defaultdict(list)
-426    for el in bounds_object_storage:
-427        if isinstance(el, dict):
-428            for k, v in el.items():
-429                final_storage[k].append(v)
-430
-431    summary_table_rows = []
-432    for k, v in final_storage.items():
-433        # Conduct local aggregation + bound changes
-434        if k in feature_types and k != label_name:
-435            minima, maxima, medians, uniques = [], [], [], []
-436            for feature_summary in v:
-437                minima.append(feature_summary.minimum)
-438                maxima.append(feature_summary.maximum)
-439                medians.append(feature_summary.median)
-440                uniques.append(feature_summary.num_unique)
-441            summary_table_rows.append(
-442                [
-443                    k,
-444                    round(np.min(minima), 2),
-445                    round(np.max(maxima), 2),
-446                    round(np.median(medians), 2),
-447                    int(np.mean(uniques)),
-448                ],
-449            )
-450
-451    if len(summary_table_rows) == 0:
-452        logging.info('No numeric features to summarize.')
-453        return None
+425    if bounds_object_storage is None:
+426        logging.info('Bounds storage object is empty.')
+427        exit()
+428
+429    final_storage = defaultdict(list)
+430    for el in bounds_object_storage:
+431        if isinstance(el, dict):
+432            for k, v in el.items():
+433                final_storage[k].append(v)
+434
+435    summary_table_rows = []
+436    for k, v in final_storage.items():
+437        # Conduct local aggregation + bound changes
+438        if k in feature_types and k != label_name:
+439            minima, maxima, medians, uniques = [], [], [], []
+440            for feature_summary in v:
+441                minima.append(feature_summary.minimum)
+442                maxima.append(feature_summary.maximum)
+443                medians.append(feature_summary.median)
+444                uniques.append(feature_summary.num_unique)
+445            summary_table_rows.append(
+446                [
+447                    k,
+448                    round(np.min(minima), 2),
+449                    round(np.max(maxima), 2),
+450                    round(np.median(medians), 2),
+451                    int(np.mean(uniques)),
+452                ],
+453            )
 454
-455    summary_table: pd.Dataframe = pd.DataFrame(summary_table_rows)
-456    summary_table.columns = [
-457        'Feature',
-458        'Minimum',
-459        'Maximum',
-460        'Median',
-461        'Num avg. unique (batch)',
-462    ]
-463
-464    if output_summary_table_only:
-465        return summary_table
-466
-467    if len(summary_table) == 0:
-468        logging.info('Summary table empty, skipping transformer generation ..')
-469        return
+455    if len(summary_table_rows) == 0:
+456        logging.info('No numeric features to summarize.')
+457        return None
+458
+459    summary_table: pd.Dataframe = pd.DataFrame(summary_table_rows)
+460    summary_table.columns = [
+461        'Feature',
+462        'Minimum',
+463        'Maximum',
+464        'Median',
+465        'Num avg. unique (batch)',
+466    ]
+467
+468    if output_summary_table_only:
+469        return summary_table
 470
-471    if task_name == 'feature_summary_transformers':
-472        transformers_per_feature = defaultdict(list)
-473
-474        # Take care of weights first -> range is pre-defined
-475        for k, v in final_storage.items():
-476            if label_name in k or 'dummy' in k:
-477                continue
-478
-479            weight_template = {
-480                'feature': k,
-481                'src_features': [k],
-482                'transformations': ['Weight'],
-483                'weights': [0, 0.5, 1.5, 2, 3, 10],
-484            }
-485            transformers_per_feature[k].append(weight_template)
-486
-487        # Consider numeric transformations - pairs and single ones
-488        for enx, row in summary_table.iterrows():
-489            if row.Feature == 'dummy':
-490                continue
-491            try:
-492                actual_range = (
-493                    np.arange(
-494                        row['Minimum'],
-495                        row['Maximum'],
-496                        (row['Maximum'] - row['Minimum']) / granularity,
-497                    )
-498                    .round(2)
-499                    .tolist()
-500                )
-501                binner_template = {
-502                    'feature': f'{row.Feature}',
-503                    'src_features': [row.Feature],
-504                    'transformations': [
-505                        'BinnerSqrt',
-506                        'BinnerLog',
-507                        'BinnerSqrtPlain',
-508                        'BinnerLogPlain',
-509                    ],
-510                    'n': actual_range,
-511                    'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128],
-512                }
-513
-514            except Exception as es:
-515                logging.info(
-516                    f'\U0001F631 Encountered {es}. The problematic feature is: {row}, skipping transformer for this feature ..',
-517                )
-518
-519            transformers_per_feature[row.Feature].append(binner_template)
-520
-521            # We want the full loop here, due to asymmetry of transformation(s)
-522            for enx_second, row_second in summary_table.iterrows():
-523                if enx_second < enx:
-524                    continue
-525
-526                # The n values are defined based on maxima of the second feature
-527                if row_second.Feature != row.Feature:
-528                    n_bound = round(row_second['Median'] + row['Median'], 2)
-529                    max_bound = round(
-530                        min(row_second['Maximum'], row['Maximum']), 2,
-531                    )
-532                    min_bound = round(
-533                        row_second['Minimum'] + row['Minimum'], 2,
-534                    )
-535                    range_spectrum = sorted(
-536                        list(
-537                            {
-538                                0.0,
-539                                min_bound,
-540                                n_bound / 10,
-541                                n_bound / 5,
-542                                n_bound,
-543                                max_bound,
-544                            },
-545                        ),
-546                    )
-547
-548                    range_spectrum = [x for x in range_spectrum if x >= 0]
-549                    binner_pair_template = {
-550                        'feature': f'{row.Feature}Ratio{row_second.Feature}',
-551                        'src_features': [row.Feature, row_second.Feature],
-552                        'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'],
-553                        'n': range_spectrum,
-554                        'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128],
-555                    }
-556
-557                    binner_pair_template_second = {
-558                        'feature': f'{row_second.Feature}Ratio{row.Feature}',
-559                        'src_features': [row_second.Feature, row.Feature],
-560                        'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'],
-561                        'n': range_spectrum,
-562                        'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128],
-563                    }
-564
-565                    transformers_per_feature[row.Feature].append(
-566                        binner_pair_template,
-567                    )
-568                    transformers_per_feature[row.Feature].append(
-569                        binner_pair_template_second,
-570                    )
-571
-572        binner_templates = []
-573        for k, v in transformers_per_feature.items():
-574            for transformer_struct in v:
-575                binner_templates.append(transformer_struct)
-576
-577        logging.info(
-578            f'Generated {len(binner_templates)} transformation search specifications.\n',
-579        )
-580        namespace_full = f'"random_grid_feature_transform": {json.dumps(binner_templates)}, "random_grid_epochs": 512'
-581        logging.info('Generated transformations below:\n')
-582        print(namespace_full)
+471    if len(summary_table) == 0:
+472        logging.info('Summary table empty, skipping transformer generation ..')
+473        return
+474
+475    if task_name == 'feature_summary_transformers':
+476        transformers_per_feature = defaultdict(list)
+477
+478        # Take care of weights first -> range is pre-defined
+479        for k, v in final_storage.items():
+480            if label_name in k or 'dummy' in k:
+481                continue
+482
+483            weight_template = {
+484                'feature': k,
+485                'src_features': [k],
+486                'transformations': ['Weight'],
+487                'weights': [0, 0.5, 1.5, 2, 3, 10],
+488            }
+489            transformers_per_feature[k].append(weight_template)
+490
+491        # Consider numeric transformations - pairs and single ones
+492        for enx, row in summary_table.iterrows():
+493            if row.Feature == 'dummy':
+494                continue
+495            try:
+496                actual_range = (
+497                    np.arange(
+498                        row['Minimum'],
+499                        row['Maximum'],
+500                        (row['Maximum'] - row['Minimum']) / granularity,
+501                    )
+502                    .round(2)
+503                    .tolist()
+504                )
+505                binner_template = {
+506                    'feature': f'{row.Feature}',
+507                    'src_features': [row.Feature],
+508                    'transformations': [
+509                        'BinnerSqrt',
+510                        'BinnerLog',
+511                        'BinnerSqrtPlain',
+512                        'BinnerLogPlain',
+513                    ],
+514                    'n': actual_range,
+515                    'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128],
+516                }
+517
+518            except Exception as es:
+519                logging.info(
+520                    f'\U0001F631 Encountered {es}. The problematic feature is: {row}, skipping transformer for this feature ..',
+521                )
+522
+523            transformers_per_feature[row.Feature].append(binner_template)
+524
+525            # We want the full loop here, due to asymmetry of transformation(s)
+526            for enx_second, row_second in summary_table.iterrows():
+527                if enx_second < enx:
+528                    continue
+529
+530                # The n values are defined based on maxima of the second feature
+531                if row_second.Feature != row.Feature:
+532                    n_bound = round(row_second['Median'] + row['Median'], 2)
+533                    max_bound = round(
+534                        min(row_second['Maximum'], row['Maximum']), 2,
+535                    )
+536                    min_bound = round(
+537                        row_second['Minimum'] + row['Minimum'], 2,
+538                    )
+539                    range_spectrum = sorted(
+540                        list(
+541                            {
+542                                0.0,
+543                                min_bound,
+544                                n_bound / 10,
+545                                n_bound / 5,
+546                                n_bound,
+547                                max_bound,
+548                            },
+549                        ),
+550                    )
+551
+552                    range_spectrum = [x for x in range_spectrum if x >= 0]
+553                    binner_pair_template = {
+554                        'feature': f'{row.Feature}Ratio{row_second.Feature}',
+555                        'src_features': [row.Feature, row_second.Feature],
+556                        'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'],
+557                        'n': range_spectrum,
+558                        'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128],
+559                    }
+560
+561                    binner_pair_template_second = {
+562                        'feature': f'{row_second.Feature}Ratio{row.Feature}',
+563                        'src_features': [row_second.Feature, row.Feature],
+564                        'transformations': ['BinnerLogRatioPlain', 'BinnerLogRatio'],
+565                        'n': range_spectrum,
+566                        'resolutions': [0.1, 2, 4, 8, 16, 32, 64, 128],
+567                    }
+568
+569                    transformers_per_feature[row.Feature].append(
+570                        binner_pair_template,
+571                    )
+572                    transformers_per_feature[row.Feature].append(
+573                        binner_pair_template_second,
+574                    )
+575
+576        binner_templates = []
+577        for k, v in transformers_per_feature.items():
+578            for transformer_struct in v:
+579                binner_templates.append(transformer_struct)
+580
+581        logging.info(
+582            f'Generated {len(binner_templates)} transformation search specifications.\n',
+583        )
+584        namespace_full = f'"random_grid_feature_transform": {json.dumps(binner_templates)}, "random_grid_epochs": 512'
+585        logging.info('Generated transformations below:\n')
+586        print(namespace_full)
 
@@ -1994,59 +2002,59 @@

-
585def summarize_rare_counts(
-586    term_counter: Any,
-587    args: Any,
-588    cardinality_object: Any,
-589    object_info: DatasetInformationStorage,
-590) -> None:
-591    """Write rare values"""
-592
-593    out_df_rows = []
-594    logging.info(
-595        f'Rare value summary (freq <= {args.rare_value_count_upper_bound}) follows ..',
-596    )
-597
-598    for namespace_tuple, count in term_counter.items():
-599        namespace, value = namespace_tuple
-600        out_df_rows.append([namespace, value, count])
-601    out_df: pd.DataFrame = pd.DataFrame(out_df_rows)
-602    out_df.columns = ['Namespace', 'value', 'Count']
-603    out_df.to_csv(
-604        os.path.join(args.output_folder, 'rare_values.tsv'), sep='\t', index=False,
-605    )
-606    logging.info(f'Wrote rare values to {args.output_folder}/rare_values.tsv')
-607
-608    overall_rare_counts = Counter(out_df.Namespace.values)
-609    sorted_counts = sorted(
-610        overall_rare_counts.items(), key=lambda pair: pair[1], reverse=True,
-611    )
-612    for k, v in sorted_counts:
-613        logging.info(f'Namespace: {k} ---- Rare values observed: {v}')
-614
-615    final_df_rows = []
+            
589def summarize_rare_counts(
+590    term_counter: Any,
+591    args: Any,
+592    cardinality_object: Any,
+593    object_info: DatasetInformationStorage,
+594) -> None:
+595    """Write rare values"""
+596
+597    out_df_rows = []
+598    logging.info(
+599        f'Rare value summary (freq <= {args.rare_value_count_upper_bound}) follows ..',
+600    )
+601
+602    for namespace_tuple, count in term_counter.items():
+603        namespace, value = namespace_tuple
+604        out_df_rows.append([namespace, value, count])
+605    out_df: pd.DataFrame = pd.DataFrame(out_df_rows)
+606    out_df.columns = ['Namespace', 'value', 'Count']
+607    out_df.to_csv(
+608        os.path.join(args.output_folder, 'rare_values.tsv'), sep='\t', index=False,
+609    )
+610    logging.info(f'Wrote rare values to {args.output_folder}/rare_values.tsv')
+611
+612    overall_rare_counts = Counter(out_df.Namespace.values)
+613    sorted_counts = sorted(
+614        overall_rare_counts.items(), key=lambda pair: pair[1], reverse=True,
+615    )
 616    for k, v in sorted_counts:
-617        cardinality = len(cardinality_object[k])
-618        rare_proportion = np.round(100 * (v / cardinality), 2)
-619        col_type = 'nominal'
-620        if k in object_info.column_types:
-621            col_type = 'numeric'
-622        final_df_rows.append(
-623            {
-624                'rare_proportion': rare_proportion,
-625                'feature_type': col_type,
-626                'feature_name': k,
-627            },
-628        )
-629
-630    final_df: pd.DataFrame = pd.DataFrame(final_df_rows)
-631    final_df = final_df.sort_values(by=['rare_proportion'])
-632    logging.info(
-633        f'Wrote feature sparsity summary to {args.output_folder}/feature_sparsity_summary.tsv',
-634    )
-635    final_df.to_csv(
-636        f'{args.output_folder}/feature_sparsity_summary.tsv', index=False, sep='\t',
-637    )
+617        logging.info(f'Namespace: {k} ---- Rare values observed: {v}')
+618
+619    final_df_rows = []
+620    for k, v in sorted_counts:
+621        cardinality = len(cardinality_object[k])
+622        rare_proportion = np.round(100 * (v / cardinality), 2)
+623        col_type = 'nominal'
+624        if k in object_info.column_types:
+625            col_type = 'numeric'
+626        final_df_rows.append(
+627            {
+628                'rare_proportion': rare_proportion,
+629                'feature_type': col_type,
+630                'feature_name': k,
+631            },
+632        )
+633
+634    final_df: pd.DataFrame = pd.DataFrame(final_df_rows)
+635    final_df = final_df.sort_values(by=['rare_proportion'])
+636    logging.info(
+637        f'Wrote feature sparsity summary to {args.output_folder}/feature_sparsity_summary.tsv',
+638    )
+639    final_df.to_csv(
+640        f'{args.output_folder}/feature_sparsity_summary.tsv', index=False, sep='\t',
+641    )
 
diff --git a/docs/outrank/task_ranking.html b/docs/outrank/task_ranking.html index 844454d..3bff0db 100644 --- a/docs/outrank/task_ranking.html +++ b/docs/outrank/task_ranking.html @@ -94,253 +94,254 @@

38 if args.task in ['identify_rare_values', 'feature_summary_transformers']: 39 args.heuristic = 'Constant' 40 - 41 display_tool_name() - 42 display_random_tip() - 43 - 44 dataset_info = get_dataset_info(args) - 45 - 46 for arg in vars(args): - 47 logging.info(f'{arg} set to: {getattr(args, arg)}') - 48 - 49 # Generate output folders (if not present) - 50 output_dir = os.path.dirname( - 51 os.path.join( - 52 args.output_folder, 'pairwise_ranks.tsv', - 53 ), - 54 ) - 55 if not os.path.exists(output_dir): - 56 os.makedirs(output_dir) - 57 - 58 # Initialize the global pool - 59 GLOBAL_CPU_POOL = Pool(args.num_threads) - 60 global_mutual_information_estimates = [] - 61 global_bounds_storage = [] - 62 global_memory_storage = [] - 63 all_timings = [] - 64 # Traverse the batches - 65 for raw_dump in glob.glob(dataset_info.data_path): - 66 - 67 if ( - 68 args.data_source == 'ob-vw' - 69 or args.data_source == 'ob-csv' - 70 or args.data_source == 'csv-raw' - 71 or args.data_source == 'ob-raw-dump' - 72 ): - 73 all_subfiles = [raw_dump] - 74 - 75 for partial_data in all_subfiles: - 76 cmd_arguments = { - 77 'input_file': partial_data, - 78 'fw_col_mapping': dataset_info.fw_map, - 79 'column_descriptions': dataset_info.column_names, - 80 'numeric_column_types': dataset_info.column_types, - 81 'args': args, - 82 'data_encoding': dataset_info.encoding, - 83 'cpu_pool': GLOBAL_CPU_POOL, - 84 'delimiter': dataset_info.col_delimiter, - 85 'logger': logging, - 86 } - 87 - 88 if ( - 89 args.data_source == 'ob-csv' - 90 or args.data_source == 'ob-vw' - 91 or args.data_source == 'csv-raw' - 92 or args.data_source == 'ob-raw-dump' - 93 ): - 94 ( - 95 checkpoint_timings, - 96 mutual_information_estimates, - 97 cardinality_object, - 98 bounds_object_storage, - 99 memory_object_storage, -100 coverage_object, -101 RARE_VALUE_STORAGE, -102 ) = estimate_importances_minibatches(**cmd_arguments) -103 -104 global_bounds_storage += bounds_object_storage -105 global_memory_storage += memory_object_storage -106 all_timings += checkpoint_timings -107 -108 if cardinality_object is None: -109 continue -110 -111 if coverage_object is None: -112 continue -113 -114 if mutual_information_estimates is not None: -115 global_mutual_information_estimates.append( -116 mutual_information_estimates, -117 ) -118 -119 if args.task == 'identify_rare_values': -120 logging.info('Summarizing rare values ..') -121 summarize_rare_counts( -122 RARE_VALUE_STORAGE, args, cardinality_object, dataset_info, -123 ) -124 exit() -125 -126 if args.task == 'feature_summary_transformers': -127 summarize_feature_bounds_for_transformers( -128 bounds_object_storage, -129 dataset_info.column_types, -130 args.task, -131 args.label_column, -132 ) -133 exit() -134 else: -135 summary_of_numeric_features = summarize_feature_bounds_for_transformers( -136 bounds_object_storage, -137 dataset_info.column_types, -138 args.task, -139 args.label_column, -140 output_summary_table_only=True, -141 ) -142 if summary_of_numeric_features is not None: -143 num_out = os.path.join( -144 args.output_folder, 'numeric_feature_statistics.tsv', -145 ) -146 summary_of_numeric_features.to_csv(num_out, sep='\t', index=False) -147 logging.info( -148 f'Stored statistics of numeric features to {num_out} ..', -149 ) -150 -151 # Just in case. -152 GLOBAL_CPU_POOL.close() -153 GLOBAL_CPU_POOL.join() -154 -155 if len(global_mutual_information_estimates) == 0: -156 logging.info('No rankings were obtained, exiting ..') -157 exit() -158 -159 # Compute median imps across batches -160 triplets = pd.concat(global_mutual_information_estimates, axis=0) -161 triplets.columns = ['FeatureA', 'FeatureB', 'Score'] -162 -163 if '3mr' in args.heuristic: -164 # relevance include MI-scores of features w.r.t. labels -165 relevance_df = triplets[triplets.FeatureB == args.label_column].copy() -166 relevance_df = relevance_df[ -167 relevance_df.FeatureA.map(lambda x: ' AND_REL ' not in x) -168 ][['FeatureA', 'Score']] -169 relevance_df = relevance_df[relevance_df.FeatureA != args.label_column] -170 -171 # relations include MI-scores of combinations w.r.t. label -172 relations_df = triplets[triplets.FeatureB == args.label_column][ -173 ['FeatureA', 'Score'] -174 ].copy() -175 relations_df = relations_df[ -176 relations_df.FeatureA.map(lambda x: ' AND_REL ' in x) -177 ] -178 relations_df['FeatureB'] = relations_df.FeatureA.map( -179 lambda x: x.split(' AND_REL ')[1], -180 ) -181 relations_df['FeatureA'] = relations_df.FeatureA.map( -182 lambda x: x.split(' AND_REL ')[0], -183 ) -184 -185 # redundancies include MI-scores of features w.r.t. non-label features -186 redundancies_df = triplets[( -187 triplets.FeatureB != args.label_column -188 )].copy() -189 redundancies_df = redundancies_df[ -190 redundancies_df.FeatureA != -191 args.label_column -192 ] -193 redundancies_df = redundancies_df[ -194 redundancies_df.apply( -195 lambda x: (' AND_REL ' not in x.FeatureA) -196 and (' AND_REL ' not in x.FeatureB), -197 axis=1, -198 ) -199 ] -200 -201 # normalize -202 relevance_df['score'] = (relevance_df.Score - relevance_df.Score.min()) / ( -203 relevance_df.Score.max() - relevance_df.Score.min() -204 ) -205 relations_df['score'] = (relations_df.Score - relations_df.Score.min()) / ( -206 relations_df.Score.max() - relations_df.Score.min() -207 ) -208 redundancies_df['score'] = ( -209 redundancies_df.Score - redundancies_df.Score.min() -210 ) / (redundancies_df.Score.max() - redundancies_df.Score.min()) -211 -212 # create dicts -213 relevance_dict = { -214 row.FeatureA: row.score for _, -215 row in relevance_df.iterrows() -216 } -217 relations_dict = { -218 (row.FeatureA, row.FeatureB): row.score -219 for _, row in relations_df.iterrows() -220 } -221 relations_dict.update( -222 { -223 (row.FeatureB, row.FeatureA): row.score -224 for _, row in relations_df.iterrows() -225 }, -226 ) -227 redundancy_dict = { -228 (row.FeatureA, row.FeatureB): row.score -229 for _, row in redundancies_df.iterrows() -230 } -231 -232 # compute 3mr ranks -233 mrmrmr_ranking = rank_features_3MR( -234 relevance_dict, redundancy_dict, relations_dict, -235 ) -236 mrmrmr_ranking.to_csv( -237 os.path.join(args.output_folder, '3mr_ranks.tsv'), sep='\t', index=False, -238 ) -239 -240 feature_first_modified = [] -241 feature_second_modified = [] -242 -243 if args.include_cardinality_in_feature_names == 'True': -244 for enx in range(triplets.shape[0]): -245 feature_first = triplets.iloc[enx]['FeatureA'] -246 feature_second = triplets.iloc[enx]['FeatureB'] -247 card_first = str(len(cardinality_object[feature_first])) -248 card_second = str(len(cardinality_object[feature_second])) -249 cov_first = int( -250 round((np.mean(np.array(coverage_object[feature_first]))), 1), -251 ) -252 cov_second = int( -253 round(np.mean(np.array(coverage_object[feature_second])), 1), -254 ) -255 -256 feature_first_modified.append( -257 feature_first + f'-({card_first}; {cov_first})', -258 ) -259 feature_second_modified.append( -260 feature_second + f'-({card_second}; {cov_second})', -261 ) -262 -263 triplets['FeatureA'] = feature_first_modified -264 triplets['FeatureB'] = feature_second_modified -265 -266 feature_memory_df = pd.DataFrame(global_memory_storage).mean() -267 feature_memory_df.columns = ['NormalizedSize'] -268 feature_memory_df.to_csv( -269 f'{args.output_folder}/memory.tsv', sep='\t', index=True, -270 ) -271 -272 triplets = triplets.sort_values(by=['Score']) -273 -274 triplets.to_csv( -275 os.path.join(args.output_folder, 'pairwise_ranks.tsv'), sep='\t', index=False, -276 ) -277 -278 # Write timings and config for replicability -279 dfx = pd.DataFrame(all_timings) -280 dfx.to_json(f'{args.output_folder}/timings.json') -281 write_json_dump_to_file(args, f'{args.output_folder}/arguments.json') -282 -283 logging.info( -284 f'Finished with ranking! Result stored as: {args.output_folder}/pairwise_ranks.tsv. Cleaning up tmp files ..', -285 ) -286 -287 os.remove('ranking_checkpoint_tmp.tsv') + 41 if args.silent != 'True': + 42 display_tool_name() + 43 display_random_tip() + 44 + 45 dataset_info = get_dataset_info(args) + 46 + 47 for arg in vars(args): + 48 logging.info(f'{arg} set to: {getattr(args, arg)}') + 49 + 50 # Generate output folders (if not present) + 51 output_dir = os.path.dirname( + 52 os.path.join( + 53 args.output_folder, 'pairwise_ranks.tsv', + 54 ), + 55 ) + 56 if not os.path.exists(output_dir): + 57 os.makedirs(output_dir) + 58 + 59 # Initialize the global pool + 60 GLOBAL_CPU_POOL = Pool(args.num_threads) + 61 global_mutual_information_estimates = [] + 62 global_bounds_storage = [] + 63 global_memory_storage = [] + 64 all_timings = [] + 65 # Traverse the batches + 66 for raw_dump in glob.glob(dataset_info.data_path): + 67 + 68 if ( + 69 args.data_source == 'ob-vw' + 70 or args.data_source == 'ob-csv' + 71 or args.data_source == 'csv-raw' + 72 or args.data_source == 'ob-raw-dump' + 73 ): + 74 all_subfiles = [raw_dump] + 75 + 76 for partial_data in all_subfiles: + 77 cmd_arguments = { + 78 'input_file': partial_data, + 79 'fw_col_mapping': dataset_info.fw_map, + 80 'column_descriptions': dataset_info.column_names, + 81 'numeric_column_types': dataset_info.column_types, + 82 'args': args, + 83 'data_encoding': dataset_info.encoding, + 84 'cpu_pool': GLOBAL_CPU_POOL, + 85 'delimiter': dataset_info.col_delimiter, + 86 'logger': logging, + 87 } + 88 + 89 if ( + 90 args.data_source == 'ob-csv' + 91 or args.data_source == 'ob-vw' + 92 or args.data_source == 'csv-raw' + 93 or args.data_source == 'ob-raw-dump' + 94 ): + 95 ( + 96 checkpoint_timings, + 97 mutual_information_estimates, + 98 cardinality_object, + 99 bounds_object_storage, +100 memory_object_storage, +101 coverage_object, +102 RARE_VALUE_STORAGE, +103 ) = estimate_importances_minibatches(**cmd_arguments) +104 +105 global_bounds_storage += bounds_object_storage +106 global_memory_storage += memory_object_storage +107 all_timings += checkpoint_timings +108 +109 if cardinality_object is None: +110 continue +111 +112 if coverage_object is None: +113 continue +114 +115 if mutual_information_estimates is not None: +116 global_mutual_information_estimates.append( +117 mutual_information_estimates, +118 ) +119 +120 if args.task == 'identify_rare_values': +121 logging.info('Summarizing rare values ..') +122 summarize_rare_counts( +123 RARE_VALUE_STORAGE, args, cardinality_object, dataset_info, +124 ) +125 exit() +126 +127 if args.task == 'feature_summary_transformers': +128 summarize_feature_bounds_for_transformers( +129 bounds_object_storage, +130 dataset_info.column_types, +131 args.task, +132 args.label_column, +133 ) +134 exit() +135 else: +136 summary_of_numeric_features = summarize_feature_bounds_for_transformers( +137 bounds_object_storage, +138 dataset_info.column_types, +139 args.task, +140 args.label_column, +141 output_summary_table_only=True, +142 ) +143 if summary_of_numeric_features is not None: +144 num_out = os.path.join( +145 args.output_folder, 'numeric_feature_statistics.tsv', +146 ) +147 summary_of_numeric_features.to_csv(num_out, sep='\t', index=False) +148 logging.info( +149 f'Stored statistics of numeric features to {num_out} ..', +150 ) +151 +152 # Just in case. +153 GLOBAL_CPU_POOL.close() +154 GLOBAL_CPU_POOL.join() +155 +156 if len(global_mutual_information_estimates) == 0: +157 logging.info('No rankings were obtained, exiting ..') +158 exit() +159 +160 # Compute median imps across batches +161 triplets = pd.concat(global_mutual_information_estimates, axis=0) +162 triplets.columns = ['FeatureA', 'FeatureB', 'Score'] +163 +164 if '3mr' in args.heuristic: +165 # relevance include MI-scores of features w.r.t. labels +166 relevance_df = triplets[triplets.FeatureB == args.label_column].copy() +167 relevance_df = relevance_df[ +168 relevance_df.FeatureA.map(lambda x: ' AND_REL ' not in x) +169 ][['FeatureA', 'Score']] +170 relevance_df = relevance_df[relevance_df.FeatureA != args.label_column] +171 +172 # relations include MI-scores of combinations w.r.t. label +173 relations_df = triplets[triplets.FeatureB == args.label_column][ +174 ['FeatureA', 'Score'] +175 ].copy() +176 relations_df = relations_df[ +177 relations_df.FeatureA.map(lambda x: ' AND_REL ' in x) +178 ] +179 relations_df['FeatureB'] = relations_df.FeatureA.map( +180 lambda x: x.split(' AND_REL ')[1], +181 ) +182 relations_df['FeatureA'] = relations_df.FeatureA.map( +183 lambda x: x.split(' AND_REL ')[0], +184 ) +185 +186 # redundancies include MI-scores of features w.r.t. non-label features +187 redundancies_df = triplets[( +188 triplets.FeatureB != args.label_column +189 )].copy() +190 redundancies_df = redundancies_df[ +191 redundancies_df.FeatureA != +192 args.label_column +193 ] +194 redundancies_df = redundancies_df[ +195 redundancies_df.apply( +196 lambda x: (' AND_REL ' not in x.FeatureA) +197 and (' AND_REL ' not in x.FeatureB), +198 axis=1, +199 ) +200 ] +201 +202 # normalize +203 relevance_df['score'] = (relevance_df.Score - relevance_df.Score.min()) / ( +204 relevance_df.Score.max() - relevance_df.Score.min() +205 ) +206 relations_df['score'] = (relations_df.Score - relations_df.Score.min()) / ( +207 relations_df.Score.max() - relations_df.Score.min() +208 ) +209 redundancies_df['score'] = ( +210 redundancies_df.Score - redundancies_df.Score.min() +211 ) / (redundancies_df.Score.max() - redundancies_df.Score.min()) +212 +213 # create dicts +214 relevance_dict = { +215 row.FeatureA: row.score for _, +216 row in relevance_df.iterrows() +217 } +218 relations_dict = { +219 (row.FeatureA, row.FeatureB): row.score +220 for _, row in relations_df.iterrows() +221 } +222 relations_dict.update( +223 { +224 (row.FeatureB, row.FeatureA): row.score +225 for _, row in relations_df.iterrows() +226 }, +227 ) +228 redundancy_dict = { +229 (row.FeatureA, row.FeatureB): row.score +230 for _, row in redundancies_df.iterrows() +231 } +232 +233 # compute 3mr ranks +234 mrmrmr_ranking = rank_features_3MR( +235 relevance_dict, redundancy_dict, relations_dict, +236 ) +237 mrmrmr_ranking.to_csv( +238 os.path.join(args.output_folder, '3mr_ranks.tsv'), sep='\t', index=False, +239 ) +240 +241 feature_first_modified = [] +242 feature_second_modified = [] +243 +244 if args.include_cardinality_in_feature_names == 'True': +245 for enx in range(triplets.shape[0]): +246 feature_first = triplets.iloc[enx]['FeatureA'] +247 feature_second = triplets.iloc[enx]['FeatureB'] +248 card_first = str(len(cardinality_object[feature_first])) +249 card_second = str(len(cardinality_object[feature_second])) +250 cov_first = int( +251 round((np.mean(np.array(coverage_object[feature_first]))), 1), +252 ) +253 cov_second = int( +254 round(np.mean(np.array(coverage_object[feature_second])), 1), +255 ) +256 +257 feature_first_modified.append( +258 feature_first + f'-({card_first}; {cov_first})', +259 ) +260 feature_second_modified.append( +261 feature_second + f'-({card_second}; {cov_second})', +262 ) +263 +264 triplets['FeatureA'] = feature_first_modified +265 triplets['FeatureB'] = feature_second_modified +266 +267 feature_memory_df = pd.DataFrame(global_memory_storage).mean() +268 feature_memory_df.columns = ['NormalizedSize'] +269 feature_memory_df.to_csv( +270 f'{args.output_folder}/memory.tsv', sep='\t', index=True, +271 ) +272 +273 triplets = triplets.sort_values(by=['Score']) +274 +275 triplets.to_csv( +276 os.path.join(args.output_folder, 'pairwise_ranks.tsv'), sep='\t', index=False, +277 ) +278 +279 # Write timings and config for replicability +280 dfx = pd.DataFrame(all_timings) +281 dfx.to_json(f'{args.output_folder}/timings.json') +282 write_json_dump_to_file(args, f'{args.output_folder}/arguments.json') +283 +284 logging.info( +285 f'Finished with ranking! Result stored as: {args.output_folder}/pairwise_ranks.tsv. Cleaning up tmp files ..', +286 ) +287 +288 os.remove('ranking_checkpoint_tmp.tsv')

@@ -363,253 +364,254 @@

39 if args.task in ['identify_rare_values', 'feature_summary_transformers']: 40 args.heuristic = 'Constant' 41 - 42 display_tool_name() - 43 display_random_tip() - 44 - 45 dataset_info = get_dataset_info(args) - 46 - 47 for arg in vars(args): - 48 logging.info(f'{arg} set to: {getattr(args, arg)}') - 49 - 50 # Generate output folders (if not present) - 51 output_dir = os.path.dirname( - 52 os.path.join( - 53 args.output_folder, 'pairwise_ranks.tsv', - 54 ), - 55 ) - 56 if not os.path.exists(output_dir): - 57 os.makedirs(output_dir) - 58 - 59 # Initialize the global pool - 60 GLOBAL_CPU_POOL = Pool(args.num_threads) - 61 global_mutual_information_estimates = [] - 62 global_bounds_storage = [] - 63 global_memory_storage = [] - 64 all_timings = [] - 65 # Traverse the batches - 66 for raw_dump in glob.glob(dataset_info.data_path): - 67 - 68 if ( - 69 args.data_source == 'ob-vw' - 70 or args.data_source == 'ob-csv' - 71 or args.data_source == 'csv-raw' - 72 or args.data_source == 'ob-raw-dump' - 73 ): - 74 all_subfiles = [raw_dump] - 75 - 76 for partial_data in all_subfiles: - 77 cmd_arguments = { - 78 'input_file': partial_data, - 79 'fw_col_mapping': dataset_info.fw_map, - 80 'column_descriptions': dataset_info.column_names, - 81 'numeric_column_types': dataset_info.column_types, - 82 'args': args, - 83 'data_encoding': dataset_info.encoding, - 84 'cpu_pool': GLOBAL_CPU_POOL, - 85 'delimiter': dataset_info.col_delimiter, - 86 'logger': logging, - 87 } - 88 - 89 if ( - 90 args.data_source == 'ob-csv' - 91 or args.data_source == 'ob-vw' - 92 or args.data_source == 'csv-raw' - 93 or args.data_source == 'ob-raw-dump' - 94 ): - 95 ( - 96 checkpoint_timings, - 97 mutual_information_estimates, - 98 cardinality_object, - 99 bounds_object_storage, -100 memory_object_storage, -101 coverage_object, -102 RARE_VALUE_STORAGE, -103 ) = estimate_importances_minibatches(**cmd_arguments) -104 -105 global_bounds_storage += bounds_object_storage -106 global_memory_storage += memory_object_storage -107 all_timings += checkpoint_timings -108 -109 if cardinality_object is None: -110 continue -111 -112 if coverage_object is None: -113 continue -114 -115 if mutual_information_estimates is not None: -116 global_mutual_information_estimates.append( -117 mutual_information_estimates, -118 ) -119 -120 if args.task == 'identify_rare_values': -121 logging.info('Summarizing rare values ..') -122 summarize_rare_counts( -123 RARE_VALUE_STORAGE, args, cardinality_object, dataset_info, -124 ) -125 exit() -126 -127 if args.task == 'feature_summary_transformers': -128 summarize_feature_bounds_for_transformers( -129 bounds_object_storage, -130 dataset_info.column_types, -131 args.task, -132 args.label_column, -133 ) -134 exit() -135 else: -136 summary_of_numeric_features = summarize_feature_bounds_for_transformers( -137 bounds_object_storage, -138 dataset_info.column_types, -139 args.task, -140 args.label_column, -141 output_summary_table_only=True, -142 ) -143 if summary_of_numeric_features is not None: -144 num_out = os.path.join( -145 args.output_folder, 'numeric_feature_statistics.tsv', -146 ) -147 summary_of_numeric_features.to_csv(num_out, sep='\t', index=False) -148 logging.info( -149 f'Stored statistics of numeric features to {num_out} ..', -150 ) -151 -152 # Just in case. -153 GLOBAL_CPU_POOL.close() -154 GLOBAL_CPU_POOL.join() -155 -156 if len(global_mutual_information_estimates) == 0: -157 logging.info('No rankings were obtained, exiting ..') -158 exit() -159 -160 # Compute median imps across batches -161 triplets = pd.concat(global_mutual_information_estimates, axis=0) -162 triplets.columns = ['FeatureA', 'FeatureB', 'Score'] -163 -164 if '3mr' in args.heuristic: -165 # relevance include MI-scores of features w.r.t. labels -166 relevance_df = triplets[triplets.FeatureB == args.label_column].copy() -167 relevance_df = relevance_df[ -168 relevance_df.FeatureA.map(lambda x: ' AND_REL ' not in x) -169 ][['FeatureA', 'Score']] -170 relevance_df = relevance_df[relevance_df.FeatureA != args.label_column] -171 -172 # relations include MI-scores of combinations w.r.t. label -173 relations_df = triplets[triplets.FeatureB == args.label_column][ -174 ['FeatureA', 'Score'] -175 ].copy() -176 relations_df = relations_df[ -177 relations_df.FeatureA.map(lambda x: ' AND_REL ' in x) -178 ] -179 relations_df['FeatureB'] = relations_df.FeatureA.map( -180 lambda x: x.split(' AND_REL ')[1], -181 ) -182 relations_df['FeatureA'] = relations_df.FeatureA.map( -183 lambda x: x.split(' AND_REL ')[0], -184 ) -185 -186 # redundancies include MI-scores of features w.r.t. non-label features -187 redundancies_df = triplets[( -188 triplets.FeatureB != args.label_column -189 )].copy() -190 redundancies_df = redundancies_df[ -191 redundancies_df.FeatureA != -192 args.label_column -193 ] -194 redundancies_df = redundancies_df[ -195 redundancies_df.apply( -196 lambda x: (' AND_REL ' not in x.FeatureA) -197 and (' AND_REL ' not in x.FeatureB), -198 axis=1, -199 ) -200 ] -201 -202 # normalize -203 relevance_df['score'] = (relevance_df.Score - relevance_df.Score.min()) / ( -204 relevance_df.Score.max() - relevance_df.Score.min() -205 ) -206 relations_df['score'] = (relations_df.Score - relations_df.Score.min()) / ( -207 relations_df.Score.max() - relations_df.Score.min() -208 ) -209 redundancies_df['score'] = ( -210 redundancies_df.Score - redundancies_df.Score.min() -211 ) / (redundancies_df.Score.max() - redundancies_df.Score.min()) -212 -213 # create dicts -214 relevance_dict = { -215 row.FeatureA: row.score for _, -216 row in relevance_df.iterrows() -217 } -218 relations_dict = { -219 (row.FeatureA, row.FeatureB): row.score -220 for _, row in relations_df.iterrows() -221 } -222 relations_dict.update( -223 { -224 (row.FeatureB, row.FeatureA): row.score -225 for _, row in relations_df.iterrows() -226 }, -227 ) -228 redundancy_dict = { -229 (row.FeatureA, row.FeatureB): row.score -230 for _, row in redundancies_df.iterrows() -231 } -232 -233 # compute 3mr ranks -234 mrmrmr_ranking = rank_features_3MR( -235 relevance_dict, redundancy_dict, relations_dict, -236 ) -237 mrmrmr_ranking.to_csv( -238 os.path.join(args.output_folder, '3mr_ranks.tsv'), sep='\t', index=False, -239 ) -240 -241 feature_first_modified = [] -242 feature_second_modified = [] -243 -244 if args.include_cardinality_in_feature_names == 'True': -245 for enx in range(triplets.shape[0]): -246 feature_first = triplets.iloc[enx]['FeatureA'] -247 feature_second = triplets.iloc[enx]['FeatureB'] -248 card_first = str(len(cardinality_object[feature_first])) -249 card_second = str(len(cardinality_object[feature_second])) -250 cov_first = int( -251 round((np.mean(np.array(coverage_object[feature_first]))), 1), -252 ) -253 cov_second = int( -254 round(np.mean(np.array(coverage_object[feature_second])), 1), -255 ) -256 -257 feature_first_modified.append( -258 feature_first + f'-({card_first}; {cov_first})', -259 ) -260 feature_second_modified.append( -261 feature_second + f'-({card_second}; {cov_second})', -262 ) -263 -264 triplets['FeatureA'] = feature_first_modified -265 triplets['FeatureB'] = feature_second_modified -266 -267 feature_memory_df = pd.DataFrame(global_memory_storage).mean() -268 feature_memory_df.columns = ['NormalizedSize'] -269 feature_memory_df.to_csv( -270 f'{args.output_folder}/memory.tsv', sep='\t', index=True, -271 ) -272 -273 triplets = triplets.sort_values(by=['Score']) -274 -275 triplets.to_csv( -276 os.path.join(args.output_folder, 'pairwise_ranks.tsv'), sep='\t', index=False, -277 ) -278 -279 # Write timings and config for replicability -280 dfx = pd.DataFrame(all_timings) -281 dfx.to_json(f'{args.output_folder}/timings.json') -282 write_json_dump_to_file(args, f'{args.output_folder}/arguments.json') -283 -284 logging.info( -285 f'Finished with ranking! Result stored as: {args.output_folder}/pairwise_ranks.tsv. Cleaning up tmp files ..', -286 ) -287 -288 os.remove('ranking_checkpoint_tmp.tsv') + 42 if args.silent != 'True': + 43 display_tool_name() + 44 display_random_tip() + 45 + 46 dataset_info = get_dataset_info(args) + 47 + 48 for arg in vars(args): + 49 logging.info(f'{arg} set to: {getattr(args, arg)}') + 50 + 51 # Generate output folders (if not present) + 52 output_dir = os.path.dirname( + 53 os.path.join( + 54 args.output_folder, 'pairwise_ranks.tsv', + 55 ), + 56 ) + 57 if not os.path.exists(output_dir): + 58 os.makedirs(output_dir) + 59 + 60 # Initialize the global pool + 61 GLOBAL_CPU_POOL = Pool(args.num_threads) + 62 global_mutual_information_estimates = [] + 63 global_bounds_storage = [] + 64 global_memory_storage = [] + 65 all_timings = [] + 66 # Traverse the batches + 67 for raw_dump in glob.glob(dataset_info.data_path): + 68 + 69 if ( + 70 args.data_source == 'ob-vw' + 71 or args.data_source == 'ob-csv' + 72 or args.data_source == 'csv-raw' + 73 or args.data_source == 'ob-raw-dump' + 74 ): + 75 all_subfiles = [raw_dump] + 76 + 77 for partial_data in all_subfiles: + 78 cmd_arguments = { + 79 'input_file': partial_data, + 80 'fw_col_mapping': dataset_info.fw_map, + 81 'column_descriptions': dataset_info.column_names, + 82 'numeric_column_types': dataset_info.column_types, + 83 'args': args, + 84 'data_encoding': dataset_info.encoding, + 85 'cpu_pool': GLOBAL_CPU_POOL, + 86 'delimiter': dataset_info.col_delimiter, + 87 'logger': logging, + 88 } + 89 + 90 if ( + 91 args.data_source == 'ob-csv' + 92 or args.data_source == 'ob-vw' + 93 or args.data_source == 'csv-raw' + 94 or args.data_source == 'ob-raw-dump' + 95 ): + 96 ( + 97 checkpoint_timings, + 98 mutual_information_estimates, + 99 cardinality_object, +100 bounds_object_storage, +101 memory_object_storage, +102 coverage_object, +103 RARE_VALUE_STORAGE, +104 ) = estimate_importances_minibatches(**cmd_arguments) +105 +106 global_bounds_storage += bounds_object_storage +107 global_memory_storage += memory_object_storage +108 all_timings += checkpoint_timings +109 +110 if cardinality_object is None: +111 continue +112 +113 if coverage_object is None: +114 continue +115 +116 if mutual_information_estimates is not None: +117 global_mutual_information_estimates.append( +118 mutual_information_estimates, +119 ) +120 +121 if args.task == 'identify_rare_values': +122 logging.info('Summarizing rare values ..') +123 summarize_rare_counts( +124 RARE_VALUE_STORAGE, args, cardinality_object, dataset_info, +125 ) +126 exit() +127 +128 if args.task == 'feature_summary_transformers': +129 summarize_feature_bounds_for_transformers( +130 bounds_object_storage, +131 dataset_info.column_types, +132 args.task, +133 args.label_column, +134 ) +135 exit() +136 else: +137 summary_of_numeric_features = summarize_feature_bounds_for_transformers( +138 bounds_object_storage, +139 dataset_info.column_types, +140 args.task, +141 args.label_column, +142 output_summary_table_only=True, +143 ) +144 if summary_of_numeric_features is not None: +145 num_out = os.path.join( +146 args.output_folder, 'numeric_feature_statistics.tsv', +147 ) +148 summary_of_numeric_features.to_csv(num_out, sep='\t', index=False) +149 logging.info( +150 f'Stored statistics of numeric features to {num_out} ..', +151 ) +152 +153 # Just in case. +154 GLOBAL_CPU_POOL.close() +155 GLOBAL_CPU_POOL.join() +156 +157 if len(global_mutual_information_estimates) == 0: +158 logging.info('No rankings were obtained, exiting ..') +159 exit() +160 +161 # Compute median imps across batches +162 triplets = pd.concat(global_mutual_information_estimates, axis=0) +163 triplets.columns = ['FeatureA', 'FeatureB', 'Score'] +164 +165 if '3mr' in args.heuristic: +166 # relevance include MI-scores of features w.r.t. labels +167 relevance_df = triplets[triplets.FeatureB == args.label_column].copy() +168 relevance_df = relevance_df[ +169 relevance_df.FeatureA.map(lambda x: ' AND_REL ' not in x) +170 ][['FeatureA', 'Score']] +171 relevance_df = relevance_df[relevance_df.FeatureA != args.label_column] +172 +173 # relations include MI-scores of combinations w.r.t. label +174 relations_df = triplets[triplets.FeatureB == args.label_column][ +175 ['FeatureA', 'Score'] +176 ].copy() +177 relations_df = relations_df[ +178 relations_df.FeatureA.map(lambda x: ' AND_REL ' in x) +179 ] +180 relations_df['FeatureB'] = relations_df.FeatureA.map( +181 lambda x: x.split(' AND_REL ')[1], +182 ) +183 relations_df['FeatureA'] = relations_df.FeatureA.map( +184 lambda x: x.split(' AND_REL ')[0], +185 ) +186 +187 # redundancies include MI-scores of features w.r.t. non-label features +188 redundancies_df = triplets[( +189 triplets.FeatureB != args.label_column +190 )].copy() +191 redundancies_df = redundancies_df[ +192 redundancies_df.FeatureA != +193 args.label_column +194 ] +195 redundancies_df = redundancies_df[ +196 redundancies_df.apply( +197 lambda x: (' AND_REL ' not in x.FeatureA) +198 and (' AND_REL ' not in x.FeatureB), +199 axis=1, +200 ) +201 ] +202 +203 # normalize +204 relevance_df['score'] = (relevance_df.Score - relevance_df.Score.min()) / ( +205 relevance_df.Score.max() - relevance_df.Score.min() +206 ) +207 relations_df['score'] = (relations_df.Score - relations_df.Score.min()) / ( +208 relations_df.Score.max() - relations_df.Score.min() +209 ) +210 redundancies_df['score'] = ( +211 redundancies_df.Score - redundancies_df.Score.min() +212 ) / (redundancies_df.Score.max() - redundancies_df.Score.min()) +213 +214 # create dicts +215 relevance_dict = { +216 row.FeatureA: row.score for _, +217 row in relevance_df.iterrows() +218 } +219 relations_dict = { +220 (row.FeatureA, row.FeatureB): row.score +221 for _, row in relations_df.iterrows() +222 } +223 relations_dict.update( +224 { +225 (row.FeatureB, row.FeatureA): row.score +226 for _, row in relations_df.iterrows() +227 }, +228 ) +229 redundancy_dict = { +230 (row.FeatureA, row.FeatureB): row.score +231 for _, row in redundancies_df.iterrows() +232 } +233 +234 # compute 3mr ranks +235 mrmrmr_ranking = rank_features_3MR( +236 relevance_dict, redundancy_dict, relations_dict, +237 ) +238 mrmrmr_ranking.to_csv( +239 os.path.join(args.output_folder, '3mr_ranks.tsv'), sep='\t', index=False, +240 ) +241 +242 feature_first_modified = [] +243 feature_second_modified = [] +244 +245 if args.include_cardinality_in_feature_names == 'True': +246 for enx in range(triplets.shape[0]): +247 feature_first = triplets.iloc[enx]['FeatureA'] +248 feature_second = triplets.iloc[enx]['FeatureB'] +249 card_first = str(len(cardinality_object[feature_first])) +250 card_second = str(len(cardinality_object[feature_second])) +251 cov_first = int( +252 round((np.mean(np.array(coverage_object[feature_first]))), 1), +253 ) +254 cov_second = int( +255 round(np.mean(np.array(coverage_object[feature_second])), 1), +256 ) +257 +258 feature_first_modified.append( +259 feature_first + f'-({card_first}; {cov_first})', +260 ) +261 feature_second_modified.append( +262 feature_second + f'-({card_second}; {cov_second})', +263 ) +264 +265 triplets['FeatureA'] = feature_first_modified +266 triplets['FeatureB'] = feature_second_modified +267 +268 feature_memory_df = pd.DataFrame(global_memory_storage).mean() +269 feature_memory_df.columns = ['NormalizedSize'] +270 feature_memory_df.to_csv( +271 f'{args.output_folder}/memory.tsv', sep='\t', index=True, +272 ) +273 +274 triplets = triplets.sort_values(by=['Score']) +275 +276 triplets.to_csv( +277 os.path.join(args.output_folder, 'pairwise_ranks.tsv'), sep='\t', index=False, +278 ) +279 +280 # Write timings and config for replicability +281 dfx = pd.DataFrame(all_timings) +282 dfx.to_json(f'{args.output_folder}/timings.json') +283 write_json_dump_to_file(args, f'{args.output_folder}/arguments.json') +284 +285 logging.info( +286 f'Finished with ranking! Result stored as: {args.output_folder}/pairwise_ranks.tsv. Cleaning up tmp files ..', +287 ) +288 +289 os.remove('ranking_checkpoint_tmp.tsv') diff --git a/docs/search.js b/docs/search.js index 8adf396..e292afb 100644 --- a/docs/search.js +++ b/docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oWelcome to OutRank's documentation!

\n\n

All functions/methods can be searched-for (search bar on the left).

\n\n

This tool enables fast screening of feature-feature interactions. Its purpose is to give the user fast insight into potential redundancies/anomalies in the data.\nIt is implemented to operate in _mini batches_, it traverses the raw data incrementally, refining the rankings as it goes along. The core operation, interaction ranking, outputs triplets which look as follows:

\n\n
featureA    featureB    0.512\nfeatureA    featureC    0.125\n
\n\n

Setup

\n\n
\n
pip install outrank\n
\n
\n\n

and test a minimal cycle with

\n\n
\n
outrank --task selftest\n
\n
\n\n

if this passes, you can be pretty certain OutRank will perform as intended. OutRank's primary use case is as a CLI tool, begin exploring with

\n\n
\n
outrank --help\n
\n
\n\n

Example use cases

\n\n\n"}, "outrank.algorithms": {"fullname": "outrank.algorithms", "modulename": "outrank.algorithms", "kind": "module", "doc": "

\n"}, "outrank.algorithms.feature_ranking": {"fullname": "outrank.algorithms.feature_ranking", "modulename": "outrank.algorithms.feature_ranking", "kind": "module", "doc": "

\n"}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "kind": "module", "doc": "

\n"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "numba_unique", "kind": "function", "doc": "

Identify unique elements in an array, fast

\n", "signature": "(a):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "compute_conditional_entropy", "kind": "function", "doc": "

\n", "signature": "(\tY_classes,\tclass_values,\tclass_var_shape,\tinitial_prob,\tnonzero_counts):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "compute_entropies", "kind": "function", "doc": "

Core entropy computation function

\n", "signature": "(X, Y, all_events, f_values, f_value_counts, cardinality_correction):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "mutual_info_estimator_numba", "kind": "function", "doc": "

Core estimator logic. Compute unique elements, subset if required

\n", "signature": "(Y, X, approximation_factor=1, cardinality_correction=False):", "funcdef": "def"}, "outrank.algorithms.importance_estimator": {"fullname": "outrank.algorithms.importance_estimator", "modulename": "outrank.algorithms.importance_estimator", "kind": "module", "doc": "

\n"}, "outrank.algorithms.importance_estimator.sklearn_MI": {"fullname": "outrank.algorithms.importance_estimator.sklearn_MI", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_MI", "kind": "function", "doc": "

\n", "signature": "(vector_first: Any, vector_second: Any) -> float:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"fullname": "outrank.algorithms.importance_estimator.sklearn_surrogate", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_surrogate", "kind": "function", "doc": "

\n", "signature": "(vector_first: Any, vector_second: Any, surrogate_model: str) -> float:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.numba_mi": {"fullname": "outrank.algorithms.importance_estimator.numba_mi", "modulename": "outrank.algorithms.importance_estimator", "qualname": "numba_mi", "kind": "function", "doc": "

\n", "signature": "(vector_first, vector_second, heuristic):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"fullname": "outrank.algorithms.importance_estimator.sklearn_mi_adj", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_mi_adj", "kind": "function", "doc": "

\n", "signature": "(vector_first, vector_second):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"fullname": "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise", "modulename": "outrank.algorithms.importance_estimator", "qualname": "get_importances_estimate_pairwise", "kind": "function", "doc": "

A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel.

\n", "signature": "(combination, args, tmp_df):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"fullname": "outrank.algorithms.importance_estimator.rank_features_3MR", "modulename": "outrank.algorithms.importance_estimator", "qualname": "rank_features_3MR", "kind": "function", "doc": "

\n", "signature": "(\trelevance_dict: dict[str, float],\tredundancy_dict: dict[tuple[typing.Any, typing.Any], typing.Any],\trelational_dict: dict[tuple[typing.Any, typing.Any], typing.Any],\tstrategy: str = 'median',\talpha: float = 1,\tbeta: float = 1) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"fullname": "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic", "modulename": "outrank.algorithms.importance_estimator", "qualname": "get_importances_estimate_nonmyopic", "kind": "function", "doc": "

\n", "signature": "(args: Any, tmp_df: pandas.core.frame.DataFrame):", "funcdef": "def"}, "outrank.algorithms.sketches": {"fullname": "outrank.algorithms.sketches", "modulename": "outrank.algorithms.sketches", "kind": "module", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "kind": "module", "doc": "

This module implements probabilistic data structure which is able to calculate the cardinality of large multisets in a single pass using little auxiliary memory

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache", "kind": "class", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.__init__", "kind": "function", "doc": "

\n", "signature": "(error_rate=0.005)"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.p", "kind": "variable", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.m", "kind": "variable", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.warmup_set", "kind": "variable", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.warmup_size", "kind": "variable", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.width", "kind": "variable", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.hll_flag", "kind": "variable", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.add", "kind": "function", "doc": "

\n", "signature": "(self, value):", "funcdef": "def"}, "outrank.algorithms.synthetic_data_generators": {"fullname": "outrank.algorithms.synthetic_data_generators", "modulename": "outrank.algorithms.synthetic_data_generators", "kind": "module", "doc": "

\n"}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"fullname": "outrank.algorithms.synthetic_data_generators.generator_naive", "modulename": "outrank.algorithms.synthetic_data_generators.generator_naive", "kind": "module", "doc": "

\n"}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"fullname": "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix", "modulename": "outrank.algorithms.synthetic_data_generators.generator_naive", "qualname": "generate_random_matrix", "kind": "function", "doc": "

\n", "signature": "(num_features=100, size=20000):", "funcdef": "def"}, "outrank.core_ranking": {"fullname": "outrank.core_ranking", "modulename": "outrank.core_ranking", "kind": "module", "doc": "

\n"}, "outrank.core_ranking.logger": {"fullname": "outrank.core_ranking.logger", "modulename": "outrank.core_ranking", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"fullname": "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_CARDINALITY_STORAGE", "kind": "variable", "doc": "

\n", "annotation": ": dict[typing.Any, typing.Any]", "default_value": "{}"}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"fullname": "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_RARE_VALUE_STORAGE", "kind": "variable", "doc": "

\n", "annotation": ": dict[str, typing.Any]", "default_value": "Counter()"}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"fullname": "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_PRIOR_COMB_COUNTS", "kind": "variable", "doc": "

\n", "annotation": ": dict[typing.Any, int]", "default_value": "Counter()"}, "outrank.core_ranking.IGNORED_VALUES": {"fullname": "outrank.core_ranking.IGNORED_VALUES", "modulename": "outrank.core_ranking", "qualname": "IGNORED_VALUES", "kind": "variable", "doc": "

\n", "default_value": "set()"}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"fullname": "outrank.core_ranking.HYPERLL_ERROR_BOUND", "modulename": "outrank.core_ranking", "qualname": "HYPERLL_ERROR_BOUND", "kind": "variable", "doc": "

\n", "default_value": "0.02"}, "outrank.core_ranking.prior_combinations_sample": {"fullname": "outrank.core_ranking.prior_combinations_sample", "modulename": "outrank.core_ranking", "qualname": "prior_combinations_sample", "kind": "function", "doc": "

Make sure only relevant subspace of combinations is selected based on prior counts

\n", "signature": "(\tcombinations: list[tuple[typing.Any, ...]],\targs: Any) -> list[tuple[typing.Any, ...]]:", "funcdef": "def"}, "outrank.core_ranking.mixed_rank_graph": {"fullname": "outrank.core_ranking.mixed_rank_graph", "modulename": "outrank.core_ranking", "qualname": "mixed_rank_graph", "kind": "function", "doc": "

Compute the full mixed rank graph corresponding to all pairwise feature interactions based on the selected heuristic

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any,\tcpu_pool: Any,\tpbar: Any) -> outrank.core_utils.BatchRankingSummary:", "funcdef": "def"}, "outrank.core_ranking.enrich_with_transformations": {"fullname": "outrank.core_ranking.enrich_with_transformations", "modulename": "outrank.core_ranking", "qualname": "enrich_with_transformations", "kind": "function", "doc": "

Construct a collection of new features based on pre-defined transformations/rules

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tnum_col_types: set[str],\tlogger: Any,\targs: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_combined_features": {"fullname": "outrank.core_ranking.compute_combined_features", "modulename": "outrank.core_ranking", "qualname": "compute_combined_features", "kind": "function", "doc": "

Compute higher order features via xxhash-based trick.

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any,\tis_3mr: bool = False) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_expanded_multivalue_features": {"fullname": "outrank.core_ranking.compute_expanded_multivalue_features", "modulename": "outrank.core_ranking", "qualname": "compute_expanded_multivalue_features", "kind": "function", "doc": "

Compute one-hot encoded feature space based on each designated multivalue feature. E.g., feature with value \"a,b,c\" becomes three features, values of which are presence of a given value in a mutlivalue feature of choice.

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_subfeatures": {"fullname": "outrank.core_ranking.compute_subfeatures", "modulename": "outrank.core_ranking", "qualname": "compute_subfeatures", "kind": "function", "doc": "

Compute derived features that are more fine-grained. Implements logic around two operators that govern feature construction.\n->: One sided construction - every value from left side is fine, separate ones from the right side feature will be considered.\n<->: Two sided construction - two-sided values present. This means that each value from a is combined with each from b, forming |A|*|B| new features (one-hot encoded)

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.include_noisy_features": {"fullname": "outrank.core_ranking.include_noisy_features", "modulename": "outrank.core_ranking", "qualname": "include_noisy_features", "kind": "function", "doc": "

Add randomized features that serve as a sanity check

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_coverage": {"fullname": "outrank.core_ranking.compute_coverage", "modulename": "outrank.core_ranking", "qualname": "compute_coverage", "kind": "function", "doc": "

Compute coverage of features, incrementally

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any) -> dict[str, set[str]]:", "funcdef": "def"}, "outrank.core_ranking.compute_feature_memory_consumption": {"fullname": "outrank.core_ranking.compute_feature_memory_consumption", "modulename": "outrank.core_ranking", "qualname": "compute_feature_memory_consumption", "kind": "function", "doc": "

An approximation of how much feature take up

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any) -> dict[str, set[str]]:", "funcdef": "def"}, "outrank.core_ranking.compute_value_counts": {"fullname": "outrank.core_ranking.compute_value_counts", "modulename": "outrank.core_ranking", "qualname": "compute_value_counts", "kind": "function", "doc": "

Update the count structure

\n", "signature": "(input_dataframe: pandas.core.frame.DataFrame, args: Any):", "funcdef": "def"}, "outrank.core_ranking.compute_cardinalities": {"fullname": "outrank.core_ranking.compute_cardinalities", "modulename": "outrank.core_ranking", "qualname": "compute_cardinalities", "kind": "function", "doc": "

Compute cardinalities of features, incrementally

\n", "signature": "(input_dataframe: pandas.core.frame.DataFrame, pbar: Any) -> None:", "funcdef": "def"}, "outrank.core_ranking.compute_bounds_increment": {"fullname": "outrank.core_ranking.compute_bounds_increment", "modulename": "outrank.core_ranking", "qualname": "compute_bounds_increment", "kind": "function", "doc": "

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tnumeric_column_types: set[str]) -> dict[str, typing.Any]:", "funcdef": "def"}, "outrank.core_ranking.compute_batch_ranking": {"fullname": "outrank.core_ranking.compute_batch_ranking", "modulename": "outrank.core_ranking", "qualname": "compute_batch_ranking", "kind": "function", "doc": "

Enrich the feature space and compute the batch importances

\n", "signature": "(\tline_tmp_storage: list[list[typing.Any]],\tnumeric_column_types: set[str],\targs: Any,\tcpu_pool: Any,\tcolumn_descriptions: list[str],\tlogger: Any,\tpbar: Any) -> tuple[outrank.core_utils.BatchRankingSummary, dict[str, typing.Any], dict[str, set[str]], dict[str, set[str]]]:", "funcdef": "def"}, "outrank.core_ranking.get_num_of_instances": {"fullname": "outrank.core_ranking.get_num_of_instances", "modulename": "outrank.core_ranking", "qualname": "get_num_of_instances", "kind": "function", "doc": "

Count the number of lines in a file, fast - useful for progress logging

\n", "signature": "(fname: str) -> int:", "funcdef": "def"}, "outrank.core_ranking.get_grouped_df": {"fullname": "outrank.core_ranking.get_grouped_df", "modulename": "outrank.core_ranking", "qualname": "get_grouped_df", "kind": "function", "doc": "

A helper method that enables median-based aggregation after processing

\n", "signature": "(\timportances_df_list: list[tuple[str, str, float]]) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.checkpoint_importances_df": {"fullname": "outrank.core_ranking.checkpoint_importances_df", "modulename": "outrank.core_ranking", "qualname": "checkpoint_importances_df", "kind": "function", "doc": "

A helper which stores intermediary state - useful for longer runs

\n", "signature": "(importances_batch: list[tuple[str, str, float]]) -> None:", "funcdef": "def"}, "outrank.core_ranking.estimate_importances_minibatches": {"fullname": "outrank.core_ranking.estimate_importances_minibatches", "modulename": "outrank.core_ranking", "qualname": "estimate_importances_minibatches", "kind": "function", "doc": "

Interaction score estimator - suitable for example for csv-like input data types.\nThis type of data is normally a single large csv, meaning that minibatch processing needs to\nhappen during incremental handling of the file (that\"s not the case for pre-separated ob data)

\n", "signature": "(\tinput_file: str,\tcolumn_descriptions: list,\tfw_col_mapping: dict[str, str],\tnumeric_column_types: set,\tbatch_size: int = 100000,\targs: Any = None,\tdata_encoding: str = 'utf-8',\tcpu_pool: Any = None,\tdelimiter: str = '\\t',\tfeature_construction_mode: bool = False,\tlogger: Any = None) -> tuple[list[dict[str, typing.Any]], typing.Any, dict[typing.Any, typing.Any], list[dict[str, typing.Any]], list[dict[str, set[str]]], collections.defaultdict[str, list[set[str]]], dict[str, typing.Any]]:", "funcdef": "def"}, "outrank.core_selftest": {"fullname": "outrank.core_selftest", "modulename": "outrank.core_selftest", "kind": "module", "doc": "

\n"}, "outrank.core_utils": {"fullname": "outrank.core_utils", "modulename": "outrank.core_utils", "kind": "module", "doc": "

\n"}, "outrank.core_utils.pro_tips": {"fullname": "outrank.core_utils.pro_tips", "modulename": "outrank.core_utils", "qualname": "pro_tips", "kind": "variable", "doc": "

\n", "default_value": "['OutRank can construct subfeatures; features based on subspaces. Example command argument is: --subfeature_mapping "feature_a->feature_b;feature_c<->feature_d;feature_c<->feature_e"', 'Heuristic MI-numba-randomized seems like the best of both worlds! (speed + performance).', 'Heuristic surrogate-lr performs cross-validation (internally), keep that in mind!', 'Consider running OutRank on a smaller data sample first, might be enough (--subsampling = a lot).', 'There are two types of combinations supported; unsupervised pairwise ranking (redundancies- --target_ranking_only=False), and supervised combinations - (--interaction_order > 1)', 'Visualization part also includes clustering - this might be very insightful!', 'By default OutRank includes feature cardinality and coverage in feature names (card; cov)', 'Intermediary checkpoints (tmp_checkpoint.tsv) might already give you insights during longer runs.', 'In theory, you can rank redundancies of combined features (--interaction_order AND --target_ranking_only=False).', 'Give it as many threads as physically possible (--num_threads).', 'You can speed up ranking by diminishing feature buffer size (--combination_number_upper_bound determines how many ranking computations per batch will be considered). This, and --subsampling are very powerful together.', 'Want to rank feature transformations, but not sure which ones to choose? --transformers=default should serve as a solid baseline (common DS transformations included).', 'Your target can be any feature! (explaining one feature with others)', 'OutRank uses HyperLogLog for cardinality estimation - this is also a potential usecase (understanding cardinalities across different data sets).', 'Each feature is named as featureName(cardinality, coverage in percents) in the final files.', 'You can generate candidate feature transformation ranges (fw) by using --task=feature_summary_transformers.']"}, "outrank.core_utils.write_json_dump_to_file": {"fullname": "outrank.core_utils.write_json_dump_to_file", "modulename": "outrank.core_utils", "qualname": "write_json_dump_to_file", "kind": "function", "doc": "

\n", "signature": "(args: Any, config_name: str) -> None:", "funcdef": "def"}, "outrank.core_utils.internal_hash": {"fullname": "outrank.core_utils.internal_hash", "modulename": "outrank.core_utils", "qualname": "internal_hash", "kind": "function", "doc": "

A generic internal hash used throughout ranking procedure - let's hardcode seed here for sure

\n", "signature": "(input_obj: str) -> str:", "funcdef": "def"}, "outrank.core_utils.DatasetInformationStorage": {"fullname": "outrank.core_utils.DatasetInformationStorage", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage", "kind": "class", "doc": "

A generic class for holding properties of a given type of dataset

\n"}, "outrank.core_utils.DatasetInformationStorage.__init__": {"fullname": "outrank.core_utils.DatasetInformationStorage.__init__", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.__init__", "kind": "function", "doc": "

\n", "signature": "(\tdata_path: str,\tcolumn_names: list[str],\tcolumn_types: set[str],\tcol_delimiter: str | None,\tencoding: str,\tfw_map: dict[str, str] | None)"}, "outrank.core_utils.DatasetInformationStorage.data_path": {"fullname": "outrank.core_utils.DatasetInformationStorage.data_path", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.data_path", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "outrank.core_utils.DatasetInformationStorage.column_names": {"fullname": "outrank.core_utils.DatasetInformationStorage.column_names", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.column_names", "kind": "variable", "doc": "

\n", "annotation": ": list[str]"}, "outrank.core_utils.DatasetInformationStorage.column_types": {"fullname": "outrank.core_utils.DatasetInformationStorage.column_types", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.column_types", "kind": "variable", "doc": "

\n", "annotation": ": set[str]"}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"fullname": "outrank.core_utils.DatasetInformationStorage.col_delimiter", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.col_delimiter", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "outrank.core_utils.DatasetInformationStorage.encoding": {"fullname": "outrank.core_utils.DatasetInformationStorage.encoding", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.encoding", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"fullname": "outrank.core_utils.DatasetInformationStorage.fw_map", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.fw_map", "kind": "variable", "doc": "

\n", "annotation": ": dict[str, str] | None"}, "outrank.core_utils.NumericFeatureSummary": {"fullname": "outrank.core_utils.NumericFeatureSummary", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary", "kind": "class", "doc": "

A generic class storing numeric feature statistics

\n"}, "outrank.core_utils.NumericFeatureSummary.__init__": {"fullname": "outrank.core_utils.NumericFeatureSummary.__init__", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.__init__", "kind": "function", "doc": "

\n", "signature": "(\tfeature_name: str,\tminimum: float,\tmaximum: float,\tmedian: float,\tnum_unique: int)"}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"fullname": "outrank.core_utils.NumericFeatureSummary.feature_name", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.feature_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "outrank.core_utils.NumericFeatureSummary.minimum": {"fullname": "outrank.core_utils.NumericFeatureSummary.minimum", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.minimum", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.maximum": {"fullname": "outrank.core_utils.NumericFeatureSummary.maximum", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.maximum", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.median": {"fullname": "outrank.core_utils.NumericFeatureSummary.median", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.median", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"fullname": "outrank.core_utils.NumericFeatureSummary.num_unique", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.num_unique", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "outrank.core_utils.NominalFeatureSummary": {"fullname": "outrank.core_utils.NominalFeatureSummary", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary", "kind": "class", "doc": "

A generic class storing numeric feature statistics

\n"}, "outrank.core_utils.NominalFeatureSummary.__init__": {"fullname": "outrank.core_utils.NominalFeatureSummary.__init__", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.__init__", "kind": "function", "doc": "

\n", "signature": "(feature_name: str, num_unique: int)"}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"fullname": "outrank.core_utils.NominalFeatureSummary.feature_name", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.feature_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"fullname": "outrank.core_utils.NominalFeatureSummary.num_unique", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.num_unique", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "outrank.core_utils.BatchRankingSummary": {"fullname": "outrank.core_utils.BatchRankingSummary", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary", "kind": "class", "doc": "

A generic class representing batched ranking results

\n"}, "outrank.core_utils.BatchRankingSummary.__init__": {"fullname": "outrank.core_utils.BatchRankingSummary.__init__", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.__init__", "kind": "function", "doc": "

\n", "signature": "(\ttriplet_scores: list[tuple[str, str, float]],\tstep_times: dict[str, typing.Any])"}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"fullname": "outrank.core_utils.BatchRankingSummary.triplet_scores", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.triplet_scores", "kind": "variable", "doc": "

\n", "annotation": ": list[tuple[str, str, float]]"}, "outrank.core_utils.BatchRankingSummary.step_times": {"fullname": "outrank.core_utils.BatchRankingSummary.step_times", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.step_times", "kind": "variable", "doc": "

\n", "annotation": ": dict[str, typing.Any]"}, "outrank.core_utils.display_random_tip": {"fullname": "outrank.core_utils.display_random_tip", "modulename": "outrank.core_utils", "qualname": "display_random_tip", "kind": "function", "doc": "

\n", "signature": "() -> None:", "funcdef": "def"}, "outrank.core_utils.get_dataset_info": {"fullname": "outrank.core_utils.get_dataset_info", "modulename": "outrank.core_utils", "qualname": "get_dataset_info", "kind": "function", "doc": "

\n", "signature": "(args: Any):", "funcdef": "def"}, "outrank.core_utils.display_tool_name": {"fullname": "outrank.core_utils.display_tool_name", "modulename": "outrank.core_utils", "qualname": "display_tool_name", "kind": "function", "doc": "

\n", "signature": "() -> None:", "funcdef": "def"}, "outrank.core_utils.parse_ob_line": {"fullname": "outrank.core_utils.parse_ob_line", "modulename": "outrank.core_utils", "qualname": "parse_ob_line", "kind": "function", "doc": "

Outbrain line parsing - generic TSVs

\n", "signature": "(line_string: str, delimiter: str = '\\t', args: Any = None) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_line_vw": {"fullname": "outrank.core_utils.parse_ob_line_vw", "modulename": "outrank.core_utils", "qualname": "parse_ob_line_vw", "kind": "function", "doc": "

Parse a sparse vw line into a pandas df with pre-defined namespace

\n", "signature": "(\tline_string: str,\tdelimiter: str,\targs: Any = None,\tfw_col_mapping=None,\ttable_header=None,\tinclude_namespace_info=False) -> list[str | None]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_csv_line": {"fullname": "outrank.core_utils.parse_ob_csv_line", "modulename": "outrank.core_utils", "qualname": "parse_ob_csv_line", "kind": "function", "doc": "

Data can have commas within JSON field dumps

\n", "signature": "(line_string: str, delimiter: str = ',', args: Any = None) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.generic_line_parser": {"fullname": "outrank.core_utils.generic_line_parser", "modulename": "outrank.core_utils", "qualname": "generic_line_parser", "kind": "function", "doc": "

A generic method aimed to parse data from different sources.

\n", "signature": "(\tline_string: str,\tdelimiter: str,\targs: Any = None,\tfw_col_mapping: Any = None,\ttable_header: Any = None) -> list[typing.Any]:", "funcdef": "def"}, "outrank.core_utils.read_reference_json": {"fullname": "outrank.core_utils.read_reference_json", "modulename": "outrank.core_utils", "qualname": "read_reference_json", "kind": "function", "doc": "

A helper method for reading a JSON

\n", "signature": "(json_path) -> dict[str, dict]:", "funcdef": "def"}, "outrank.core_utils.parse_namespace": {"fullname": "outrank.core_utils.parse_namespace", "modulename": "outrank.core_utils", "qualname": "parse_namespace", "kind": "function", "doc": "

Parse the feature namespace for type awareness

\n", "signature": "(namespace_path: str) -> tuple[set[str], dict[str, str]]:", "funcdef": "def"}, "outrank.core_utils.read_column_names": {"fullname": "outrank.core_utils.read_column_names", "modulename": "outrank.core_utils", "qualname": "read_column_names", "kind": "function", "doc": "

Read the col. header

\n", "signature": "(mapping_file: str) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_vw_feature_information": {"fullname": "outrank.core_utils.parse_ob_vw_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_vw_feature_information", "kind": "function", "doc": "

A generic parser of ob-based data

\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_ob_raw_feature_information": {"fullname": "outrank.core_utils.parse_ob_raw_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_raw_feature_information", "kind": "function", "doc": "

A generic parser of ob-based data

\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_ob_feature_information": {"fullname": "outrank.core_utils.parse_ob_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_feature_information", "kind": "function", "doc": "

A generic parser of ob-based data

\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_csv_with_description_information": {"fullname": "outrank.core_utils.parse_csv_with_description_information", "modulename": "outrank.core_utils", "qualname": "parse_csv_with_description_information", "kind": "function", "doc": "

\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_csv_raw": {"fullname": "outrank.core_utils.parse_csv_raw", "modulename": "outrank.core_utils", "qualname": "parse_csv_raw", "kind": "function", "doc": "

\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.extract_features_from_reference_JSON": {"fullname": "outrank.core_utils.extract_features_from_reference_JSON", "modulename": "outrank.core_utils", "qualname": "extract_features_from_reference_JSON", "kind": "function", "doc": "

Given a model's JSON, extract unique features

\n", "signature": "(json_path: str) -> set[typing.Any]:", "funcdef": "def"}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"fullname": "outrank.core_utils.summarize_feature_bounds_for_transformers", "modulename": "outrank.core_utils", "qualname": "summarize_feature_bounds_for_transformers", "kind": "function", "doc": "

summarization auxilliary method for generating JSON-based specs

\n", "signature": "(\tbounds_object_storage: Any,\tfeature_types: list[str],\ttask_name: str,\tlabel_name: str,\tgranularity: int = 15,\toutput_summary_table_only: bool = False):", "funcdef": "def"}, "outrank.core_utils.summarize_rare_counts": {"fullname": "outrank.core_utils.summarize_rare_counts", "modulename": "outrank.core_utils", "qualname": "summarize_rare_counts", "kind": "function", "doc": "

Write rare values

\n", "signature": "(\tterm_counter: Any,\targs: Any,\tcardinality_object: Any,\tobject_info: outrank.core_utils.DatasetInformationStorage) -> None:", "funcdef": "def"}, "outrank.feature_transformations": {"fullname": "outrank.feature_transformations", "modulename": "outrank.feature_transformations", "kind": "module", "doc": "

\n"}, "outrank.feature_transformations.feature_transformer_vault": {"fullname": "outrank.feature_transformations.feature_transformer_vault", "modulename": "outrank.feature_transformations.feature_transformer_vault", "kind": "module", "doc": "

\n"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "kind": "module", "doc": "

\n"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "qualname": "MINIMAL_TRANSFORMERS", "kind": "variable", "doc": "

\n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)'}"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "qualname": "DEFAULT_TRANSFORMERS", "kind": "variable", "doc": "

\n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)', '_tr_div(x,abs(x))*log(abs(x))': 'np.divide(X, np.abs(X)) * np.log(np.abs(X))', '_tr_log(x + sqrt(pow(x,2), 1)': 'np.log(X + np.sqrt(np.power(X, 2) + 1))', '_tr_log*sqrt': 'np.log(X + 1) * np.sqrt(X)', '_tr_log*100': 'np.round(np.log(X + 1) * 100, 0)', '_tr_nonzero': 'np.where(X != 0, 1, 0)', '_tr_round(div(x,max))': 'np.round(np.divide(X, np.max(X)), 0)'}"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "kind": "module", "doc": "

\n"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "FW_TRANSFORMERS", "kind": "variable", "doc": "

\n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)', '_tr_div(x,abs(x))*log(abs(x))': 'np.divide(X, np.abs(X)) * np.log(np.abs(X))', '_tr_log(x + sqrt(pow(x,2), 1)': 'np.log(X + np.sqrt(np.power(X, 2) + 1))', '_tr_log*sqrt': 'np.log(X + 1) * np.sqrt(X)', '_tr_log*100': 'np.round(np.log(X + 1) * 100, 0)', '_tr_nonzero': 'np.where(X != 0, 1, 0)', '_tr_round(div(x,max))': 'np.round(np.divide(X, np.max(X)), 0)', '_tr_fw_sqrt_res_1_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*1,0), 0))', '_tr_fw_log_res_1_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*1,0), 0))', '_tr_fw_log_res_1_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*1,0), 0))', '_tr_fw_log_res_1_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*1,0), 0))', '_tr_fw_log_res_1_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*1,0), 0))', '_tr_fw_log_res_1_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*1,0), 0))', '_tr_fw_log_res_1_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*1,0), 0))', '_tr_fw_log_res_1_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*1,0), 0))', '_tr_fw_log_res_1_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*1,0), 0))', '_tr_fw_sqrt_res_10_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*10,0), 0))', '_tr_fw_log_res_10_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*10,0), 0))', '_tr_fw_log_res_10_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*10,0), 0))', '_tr_fw_log_res_10_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*10,0), 0))', '_tr_fw_log_res_10_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*10,0), 0))', '_tr_fw_log_res_10_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*10,0), 0))', '_tr_fw_log_res_10_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*10,0), 0))', '_tr_fw_log_res_10_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*10,0), 0))', '_tr_fw_log_res_10_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*10,0), 0))', '_tr_fw_sqrt_res_50_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*50,0), 0))', '_tr_fw_log_res_50_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*50,0), 0))', '_tr_fw_log_res_50_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*50,0), 0))', '_tr_fw_log_res_50_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*50,0), 0))', '_tr_fw_log_res_50_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*50,0), 0))', '_tr_fw_log_res_50_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*50,0), 0))', '_tr_fw_log_res_50_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*50,0), 0))', '_tr_fw_log_res_50_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*50,0), 0))', '_tr_fw_log_res_50_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*50,0), 0))', '_tr_fw_sqrt_res_100_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*100,0), 0))', '_tr_fw_log_res_100_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*100,0), 0))', '_tr_fw_log_res_100_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*100,0), 0))', '_tr_fw_log_res_100_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*100,0), 0))', '_tr_fw_log_res_100_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*100,0), 0))', '_tr_fw_log_res_100_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*100,0), 0))', '_tr_fw_log_res_100_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*100,0), 0))', '_tr_fw_log_res_100_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*100,0), 0))', '_tr_fw_log_res_100_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*100,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*1,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*10,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*50,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*100,0), 0))'}"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "resolution_range", "kind": "variable", "doc": "

\n", "default_value": "[1, 10, 50, 100]"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "greater_than_range", "kind": "variable", "doc": "

\n", "default_value": "[1, 2, 4, 8, 16, 32, 64, 96]"}, "outrank.feature_transformations.ranking_transformers": {"fullname": "outrank.feature_transformations.ranking_transformers", "modulename": "outrank.feature_transformations.ranking_transformers", "kind": "module", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise", "kind": "class", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise.noise_preset", "kind": "variable", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise.construct_new_features", "kind": "function", "doc": "

Generate a few standard noise distributions

\n", "signature": "(self, dataframe: pandas.core.frame.DataFrame, label_column=None):", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric", "kind": "class", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.__init__", "kind": "function", "doc": "

\n", "signature": "(numeric_column_names: set[str], preset: str = 'default')"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.numeric_column_names", "kind": "variable", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.constructed_feature_names", "kind": "variable", "doc": "

\n", "annotation": ": set[str]"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.max_maj_support", "kind": "variable", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.nan_prop_support", "kind": "variable", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.get_vals", "kind": "function", "doc": "

\n", "signature": "(self, tmp_df: pandas.core.frame.DataFrame, col_name: str) -> Any:", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.construct_baseline_features", "kind": "function", "doc": "

\n", "signature": "(self, dataframe: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.construct_new_features", "kind": "function", "doc": "

\n", "signature": "(self, dataframe: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.task_generators": {"fullname": "outrank.task_generators", "modulename": "outrank.task_generators", "kind": "module", "doc": "

\n"}, "outrank.task_generators.logger": {"fullname": "outrank.task_generators.logger", "modulename": "outrank.task_generators", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.task_generators.outrank_task_generate_data_set": {"fullname": "outrank.task_generators.outrank_task_generate_data_set", "modulename": "outrank.task_generators", "qualname": "outrank_task_generate_data_set", "kind": "function", "doc": "

Core method for generating data sets

\n", "signature": "(args):", "funcdef": "def"}, "outrank.task_ranking": {"fullname": "outrank.task_ranking", "modulename": "outrank.task_ranking", "kind": "module", "doc": "

\n"}, "outrank.task_ranking.outrank_task_conduct_ranking": {"fullname": "outrank.task_ranking.outrank_task_conduct_ranking", "modulename": "outrank.task_ranking", "qualname": "outrank_task_conduct_ranking", "kind": "function", "doc": "

\n", "signature": "(args: Any):", "funcdef": "def"}, "outrank.task_selftest": {"fullname": "outrank.task_selftest", "modulename": "outrank.task_selftest", "kind": "module", "doc": "

\n"}, "outrank.task_selftest.logger": {"fullname": "outrank.task_selftest.logger", "modulename": "outrank.task_selftest", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.task_selftest.conduct_self_test": {"fullname": "outrank.task_selftest.conduct_self_test", "modulename": "outrank.task_selftest", "qualname": "conduct_self_test", "kind": "function", "doc": "

\n", "signature": "():", "funcdef": "def"}, "outrank.task_summary": {"fullname": "outrank.task_summary", "modulename": "outrank.task_summary", "kind": "module", "doc": "

\n"}, "outrank.task_summary.outrank_task_result_summary": {"fullname": "outrank.task_summary.outrank_task_result_summary", "modulename": "outrank.task_summary", "qualname": "outrank_task_result_summary", "kind": "function", "doc": "

\n", "signature": "(args):", "funcdef": "def"}, "outrank.task_visualization": {"fullname": "outrank.task_visualization", "modulename": "outrank.task_visualization", "kind": "module", "doc": "

\n"}, "outrank.task_visualization.outrank_task_visualize_results": {"fullname": "outrank.task_visualization.outrank_task_visualize_results", "modulename": "outrank.task_visualization", "qualname": "outrank_task_visualize_results", "kind": "function", "doc": "

\n", "signature": "(args):", "funcdef": "def"}, "outrank.visualizations": {"fullname": "outrank.visualizations", "modulename": "outrank.visualizations", "kind": "module", "doc": "

\n"}, "outrank.visualizations.ranking_visualization": {"fullname": "outrank.visualizations.ranking_visualization", "modulename": "outrank.visualizations.ranking_visualization", "kind": "module", "doc": "

\n"}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"fullname": "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_hierarchical_clusters", "kind": "function", "doc": "

A method for visualization of hierarchical clusters w.r.t. different linkage functions

\n", "signature": "(\ttriplet_dataframe: pandas.core.frame.DataFrame,\toutput_folder: str,\timage_format: str = 'png',\tmax_num_clusters: int = 100) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"fullname": "outrank.visualizations.ranking_visualization.visualize_heatmap", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_heatmap", "kind": "function", "doc": "

\n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\timage_format: str) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"fullname": "outrank.visualizations.ranking_visualization.visualize_barplots", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_barplots", "kind": "function", "doc": "

\n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\treference_json: str,\timage_format: str,\tlabel: str,\theuristic: str) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_all": {"fullname": "outrank.visualizations.ranking_visualization.visualize_all", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_all", "kind": "function", "doc": "

A method for visualization of the obtained feature interaction maps.

\n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\tlabel: str = '',\treference_json: str = '',\timage_format: str = 'png',\theuristic: str = 'MI') -> None:", "funcdef": "def"}}, "docInfo": {"outrank": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 234}, "outrank.algorithms": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 6}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 11}, "outrank.algorithms.importance_estimator": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_MI": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.numba_mi": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 21}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 204, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.sketches": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 26}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 3}, "outrank.core_ranking": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.IGNORED_VALUES": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.prior_combinations_sample": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 75, "bases": 0, "doc": 15}, "outrank.core_ranking.mixed_rank_graph": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 81, "bases": 0, "doc": 19}, "outrank.core_ranking.enrich_with_transformations": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 92, "bases": 0, "doc": 13}, "outrank.core_ranking.compute_combined_features": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 103, "bases": 0, "doc": 11}, "outrank.core_ranking.compute_expanded_multivalue_features": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 41}, "outrank.core_ranking.compute_subfeatures": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 70}, "outrank.core_ranking.include_noisy_features": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 11}, "outrank.core_ranking.compute_coverage": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 7}, "outrank.core_ranking.compute_feature_memory_consumption": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 10}, "outrank.core_ranking.compute_value_counts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 6}, "outrank.core_ranking.compute_cardinalities": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 7}, "outrank.core_ranking.compute_bounds_increment": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 3}, "outrank.core_ranking.compute_batch_ranking": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 197, "bases": 0, "doc": 11}, "outrank.core_ranking.get_num_of_instances": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 15}, "outrank.core_ranking.get_grouped_df": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 12}, "outrank.core_ranking.checkpoint_importances_df": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 12}, "outrank.core_ranking.estimate_importances_minibatches": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 376, "bases": 0, "doc": 48}, "outrank.core_selftest": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.pro_tips": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 303, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.write_json_dump_to_file": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "outrank.core_utils.internal_hash": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 17}, "outrank.core_utils.DatasetInformationStorage": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 14}, "outrank.core_utils.DatasetInformationStorage.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.data_path": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.column_names": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.column_types": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.encoding": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.NumericFeatureSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.minimum": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.maximum": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.median": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.NominalFeatureSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.BatchRankingSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary.step_times": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.display_random_tip": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "outrank.core_utils.get_dataset_info": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.core_utils.display_tool_name": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "outrank.core_utils.parse_ob_line": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 7}, "outrank.core_utils.parse_ob_line_vw": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 15}, "outrank.core_utils.parse_ob_csv_line": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 10}, "outrank.core_utils.generic_line_parser": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 13}, "outrank.core_utils.read_reference_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 9}, "outrank.core_utils.parse_namespace": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 9}, "outrank.core_utils.read_column_names": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 6}, "outrank.core_utils.parse_ob_vw_feature_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_ob_raw_feature_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_ob_feature_information": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_csv_with_description_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.parse_csv_raw": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.extract_features_from_reference_JSON": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 10}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 10}, "outrank.core_utils.summarize_rare_counts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 5}, "outrank.feature_transformations": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 56, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 173, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 4589, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 4, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"qualname": 3, "fullname": 11, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 8}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"qualname": 4, "fullname": 9, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "outrank.task_generators": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_generators.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_generators.outrank_task_generate_data_set": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "outrank.task_ranking": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_ranking.outrank_task_conduct_ranking": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.task_selftest": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_selftest.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_selftest.conduct_self_test": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 3}, "outrank.task_summary": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_summary.outrank_task_result_summary": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "outrank.task_visualization": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_visualization.outrank_task_visualize_results": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "outrank.visualizations": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 91, "bases": 0, "doc": 15}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 93, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_all": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 135, "bases": 0, "doc": 13}}, "length": 140, "save": true}, "index": {"qualname": {"root": {"3": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 11}}}}, "b": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 1}, "x": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "j": {"docs": {"outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 9, "r": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}, "w": {"docs": {"outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 9}}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}, "b": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 4}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 2}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}}, "fullname": {"root": {"3": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms": {"tf": 1}, "outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_selftest": {"tf": 1}, "outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}, "outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}, "outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.4142135623730951}, "outrank.visualizations": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 140}}}}}}, "f": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}, "b": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms": {"tf": 1}, "outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 29}}}}}}}}, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "j": {"docs": {"outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 35, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 5}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 50}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}, "w": {"docs": {"outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}}, "df": 1, "i": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 8, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 1}, "x": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}}, "df": 6}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 10}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 45}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 11}}}}, "b": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 10}}}, "s": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_selftest": {"tf": 1}, "outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 70}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 9}}, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 11}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_selftest": {"tf": 1}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 6}}}, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 9, "r": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 9}}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 8}}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 7, "s": {"docs": {"outrank.visualizations": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 23}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 21}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}, "outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}, "outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.4142135623730951}}, "df": 12}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}}, "annotation": {"root": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 19, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1.4142135623730951}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 7}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 4}}}}}}}, "default_value": {"root": {"0": {"1": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "2": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 2}, "4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "8": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 22.715633383201094}}, "df": 3}, "1": {"0": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8.06225774829855}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 3}, "docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 2}, "6": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {"outrank.core_utils.pro_tips": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 10.198039027185569}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 6}, "2": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.830951894845301}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 3}, "3": {"2": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "5": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "6": {"4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "8": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "9": {"6": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"outrank.core_ranking.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.795831523312719}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 12.288205727444508}, "outrank.task_generators.logger": {"tf": 1.4142135623730951}, "outrank.task_selftest.logger": {"tf": 1.4142135623730951}}, "df": 11, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.logger": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 5}, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 3.1622776601683795}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.74734012447073}}, "df": 3, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.logger": {"tf": 1.4142135623730951}, "outrank.task_generators.logger": {"tf": 1.4142135623730951}, "outrank.task_selftest.logger": {"tf": 1.4142135623730951}}, "df": 3}}}, "*": {"1": {"0": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.6457513110645907}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.61895003862225}}, "df": 3}}}}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.logger": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 16}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "x": {"2": {"7": {"docs": {"outrank.core_utils.pro_tips": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 4}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 6.324555320336759}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.49468024894146}}, "df": 4}, "docs": {}, "df": 0}, "docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.449489742783178}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.795831523312719}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.130067012440755}}, "df": 3, "+": {"1": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}}}}}}, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 3.872983346207417}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "w": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}}, "df": 2}}, "b": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 2.8284271247461903}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "x": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.449489742783178}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.58257569495584}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.08679276123039}}, "df": 3}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "s": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.445523142259598}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 3.1622776601683795}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.74734012447073}}, "df": 3, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 16.0312195418814}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"0": {"0": {"5": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}, "1": {"0": {"0": {"0": {"0": {"0": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "5": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}, "docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"0": {"0": {"0": {"0": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2}, "outrank.core_utils.parse_ob_line": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 2.8284271247461903}}, "df": 7}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}, "8": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 3.1622776601683795}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 5.5677643628300215}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 5.477225575051661}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 5.477225575051661}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 4.898979485566356}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 5.656854249492381}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 4.242640687119285}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 3.7416573867739413}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 4.242640687119285}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 12.806248474865697}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 5.830951894845301}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 3.4641016151377544}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 3.7416573867739413}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 4.69041575982343}, "outrank.core_ranking.prior_combinations_sample": {"tf": 8}, "outrank.core_ranking.mixed_rank_graph": {"tf": 8}, "outrank.core_ranking.enrich_with_transformations": {"tf": 8.54400374531753}, "outrank.core_ranking.compute_combined_features": {"tf": 9.1104335791443}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 8.246211251235321}, "outrank.core_ranking.compute_subfeatures": {"tf": 8.246211251235321}, "outrank.core_ranking.include_noisy_features": {"tf": 7.681145747868608}, "outrank.core_ranking.compute_coverage": {"tf": 7.14142842854285}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 7.14142842854285}, "outrank.core_ranking.compute_value_counts": {"tf": 5.830951894845301}, "outrank.core_ranking.compute_cardinalities": {"tf": 6}, "outrank.core_ranking.compute_bounds_increment": {"tf": 7.54983443527075}, "outrank.core_ranking.compute_batch_ranking": {"tf": 12.449899597988733}, "outrank.core_ranking.get_num_of_instances": {"tf": 4}, "outrank.core_ranking.get_grouped_df": {"tf": 6.855654600401044}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 5.830951894845301}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 17.204650534085253}, "outrank.core_utils.write_json_dump_to_file": {"tf": 4.898979485566356}, "outrank.core_utils.internal_hash": {"tf": 4}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 9.38083151964686}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 7}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 4.47213595499958}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 7.3484692283495345}, "outrank.core_utils.display_random_tip": {"tf": 3}, "outrank.core_utils.get_dataset_info": {"tf": 3.7416573867739413}, "outrank.core_utils.display_tool_name": {"tf": 3}, "outrank.core_utils.parse_ob_line": {"tf": 7.416198487095663}, "outrank.core_utils.parse_ob_line_vw": {"tf": 8.831760866327848}, "outrank.core_utils.parse_ob_csv_line": {"tf": 7.14142842854285}, "outrank.core_utils.generic_line_parser": {"tf": 8.94427190999916}, "outrank.core_utils.read_reference_json": {"tf": 4.69041575982343}, "outrank.core_utils.parse_namespace": {"tf": 6.082762530298219}, "outrank.core_utils.read_column_names": {"tf": 4.58257569495584}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_ob_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_csv_raw": {"tf": 4.47213595499958}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 5}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 8.774964387392123}, "outrank.core_utils.summarize_rare_counts": {"tf": 7.211102550927978}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 6.164414002968976}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 5.744562646538029}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 6.324555320336759}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 5.656854249492381}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 5.656854249492381}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 3.1622776601683795}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 3.7416573867739413}, "outrank.task_selftest.conduct_self_test": {"tf": 2.6457513110645907}, "outrank.task_summary.outrank_task_result_summary": {"tf": 3.1622776601683795}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 3.1622776601683795}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 8.366600265340756}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 6.855654600401044}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 8.602325267042627}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 10.295630140987}}, "df": 69, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.7320508075688772}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.7320508075688772}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 2.449489742783178}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 3}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 2}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}}, "df": 32}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 25}}}}, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 29}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 5}}, "t": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 10}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 2.6457513110645907}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 3.4641016151377544}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 2.6457513110645907}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.7320508075688772}, "outrank.core_utils.generic_line_parser": {"tf": 1.4142135623730951}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 2}, "outrank.core_utils.read_column_names": {"tf": 1.4142135623730951}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 2.23606797749979}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 2.23606797749979}}, "df": 32, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 13}}}, "t": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 6}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 9}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 6}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.4142135623730951}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 2}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1.7320508075688772}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 17}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 5, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "l": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 4}}}}}, "x": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 4}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 8}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.449489742783178}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.449489742783178}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 10}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 7, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_value_counts": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_cardinalities": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 6}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.23606797749979}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 13}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 7}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 8}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 8}}}, "f": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}}, "df": 2}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0}}, "doc": {"root": {"0": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"5": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"2": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"outrank": {"tf": 9.219544457292887}, "outrank.algorithms": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1.7320508075688772}, "outrank.core_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.logger": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1.7320508075688772}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1.7320508075688772}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1.7320508075688772}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 2.23606797749979}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_value_counts": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_cardinalities": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_selftest": {"tf": 1.7320508075688772}, "outrank.core_utils": {"tf": 1.7320508075688772}, "outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1.7320508075688772}, "outrank.core_utils.internal_hash": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1.7320508075688772}, "outrank.core_utils.display_random_tip": {"tf": 1.7320508075688772}, "outrank.core_utils.get_dataset_info": {"tf": 1.7320508075688772}, "outrank.core_utils.display_tool_name": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.4142135623730951}, "outrank.core_utils.generic_line_parser": {"tf": 1.7320508075688772}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1.4142135623730951}, "outrank.core_utils.read_column_names": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_csv_raw": {"tf": 1.7320508075688772}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1.4142135623730951}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.4142135623730951}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.4142135623730951}, "outrank.feature_transformations": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1.7320508075688772}, "outrank.task_generators": {"tf": 1.7320508075688772}, "outrank.task_generators.logger": {"tf": 1.7320508075688772}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1.7320508075688772}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.7320508075688772}, "outrank.task_selftest": {"tf": 1.7320508075688772}, "outrank.task_selftest.logger": {"tf": 1.7320508075688772}, "outrank.task_selftest.conduct_self_test": {"tf": 1.7320508075688772}, "outrank.task_summary": {"tf": 1.7320508075688772}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.7320508075688772}, "outrank.task_visualization": {"tf": 1.7320508075688772}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.7320508075688772}, "outrank.visualizations": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1.7320508075688772}}, "df": 140, "w": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "o": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 2.449489742783178}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 11}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 2.6457513110645907}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 16}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1, "d": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 9, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.4142135623730951}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 26, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 3}, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 2, "d": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}, "|": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "b": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 13, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 2}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 10, "a": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}, "b": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "c": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 8}}}}}}, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 2}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 8, "d": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}}, "df": 2}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 3, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 10}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "t": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 6, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"outrank": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 3}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}}}}}}}}}, "f": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 3, "r": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"outrank": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1, "n": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 11}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 8}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}, "w": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 4}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"outrank": {"fullname": "outrank", "modulename": "outrank", "kind": "module", "doc": "

Welcome to OutRank's documentation!

\n\n

All functions/methods can be searched-for (search bar on the left).

\n\n

This tool enables fast screening of feature-feature interactions. Its purpose is to give the user fast insight into potential redundancies/anomalies in the data.\nIt is implemented to operate in _mini batches_, it traverses the raw data incrementally, refining the rankings as it goes along. The core operation, interaction ranking, outputs triplets which look as follows:

\n\n
featureA    featureB    0.512\nfeatureA    featureC    0.125\n
\n\n

Setup

\n\n
\n
pip install outrank\n
\n
\n\n

and test a minimal cycle with

\n\n
\n
outrank --task selftest\n
\n
\n\n

if this passes, you can be pretty certain OutRank will perform as intended. OutRank's primary use case is as a CLI tool, begin exploring with

\n\n
\n
outrank --help\n
\n
\n\n

Example use cases

\n\n\n"}, "outrank.algorithms": {"fullname": "outrank.algorithms", "modulename": "outrank.algorithms", "kind": "module", "doc": "

\n"}, "outrank.algorithms.feature_ranking": {"fullname": "outrank.algorithms.feature_ranking", "modulename": "outrank.algorithms.feature_ranking", "kind": "module", "doc": "

\n"}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "kind": "module", "doc": "

\n"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "numba_unique", "kind": "function", "doc": "

Identify unique elements in an array, fast

\n", "signature": "(a):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "compute_conditional_entropy", "kind": "function", "doc": "

\n", "signature": "(\tY_classes,\tclass_values,\tclass_var_shape,\tinitial_prob,\tnonzero_counts):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "compute_entropies", "kind": "function", "doc": "

Core entropy computation function

\n", "signature": "(X, Y, all_events, f_values, f_value_counts, cardinality_correction):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "mutual_info_estimator_numba", "kind": "function", "doc": "

Core estimator logic. Compute unique elements, subset if required

\n", "signature": "(Y, X, approximation_factor=1, cardinality_correction=False):", "funcdef": "def"}, "outrank.algorithms.importance_estimator": {"fullname": "outrank.algorithms.importance_estimator", "modulename": "outrank.algorithms.importance_estimator", "kind": "module", "doc": "

\n"}, "outrank.algorithms.importance_estimator.logger": {"fullname": "outrank.algorithms.importance_estimator.logger", "modulename": "outrank.algorithms.importance_estimator", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.algorithms.importance_estimator.sklearn_MI": {"fullname": "outrank.algorithms.importance_estimator.sklearn_MI", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_MI", "kind": "function", "doc": "

\n", "signature": "(vector_first: Any, vector_second: Any) -> float:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"fullname": "outrank.algorithms.importance_estimator.sklearn_surrogate", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_surrogate", "kind": "function", "doc": "

\n", "signature": "(vector_first: Any, vector_second: Any, surrogate_model: str) -> float:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.numba_mi": {"fullname": "outrank.algorithms.importance_estimator.numba_mi", "modulename": "outrank.algorithms.importance_estimator", "qualname": "numba_mi", "kind": "function", "doc": "

\n", "signature": "(vector_first, vector_second, heuristic):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"fullname": "outrank.algorithms.importance_estimator.sklearn_mi_adj", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_mi_adj", "kind": "function", "doc": "

\n", "signature": "(vector_first, vector_second):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"fullname": "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise", "modulename": "outrank.algorithms.importance_estimator", "qualname": "get_importances_estimate_pairwise", "kind": "function", "doc": "

A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel.

\n", "signature": "(combination, args, tmp_df):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"fullname": "outrank.algorithms.importance_estimator.rank_features_3MR", "modulename": "outrank.algorithms.importance_estimator", "qualname": "rank_features_3MR", "kind": "function", "doc": "

\n", "signature": "(\trelevance_dict: dict[str, float],\tredundancy_dict: dict[tuple[typing.Any, typing.Any], typing.Any],\trelational_dict: dict[tuple[typing.Any, typing.Any], typing.Any],\tstrategy: str = 'median',\talpha: float = 1,\tbeta: float = 1) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"fullname": "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic", "modulename": "outrank.algorithms.importance_estimator", "qualname": "get_importances_estimate_nonmyopic", "kind": "function", "doc": "

\n", "signature": "(args: Any, tmp_df: pandas.core.frame.DataFrame):", "funcdef": "def"}, "outrank.algorithms.sketches": {"fullname": "outrank.algorithms.sketches", "modulename": "outrank.algorithms.sketches", "kind": "module", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "kind": "module", "doc": "

This module implements probabilistic data structure which is able to calculate the cardinality of large multisets in a single pass using little auxiliary memory

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache", "kind": "class", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.__init__", "kind": "function", "doc": "

\n", "signature": "(error_rate=0.005)"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.p", "kind": "variable", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.m", "kind": "variable", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.warmup_set", "kind": "variable", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.warmup_size", "kind": "variable", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.width", "kind": "variable", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.hll_flag", "kind": "variable", "doc": "

\n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.add", "kind": "function", "doc": "

\n", "signature": "(self, value):", "funcdef": "def"}, "outrank.algorithms.synthetic_data_generators": {"fullname": "outrank.algorithms.synthetic_data_generators", "modulename": "outrank.algorithms.synthetic_data_generators", "kind": "module", "doc": "

\n"}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"fullname": "outrank.algorithms.synthetic_data_generators.generator_naive", "modulename": "outrank.algorithms.synthetic_data_generators.generator_naive", "kind": "module", "doc": "

\n"}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"fullname": "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix", "modulename": "outrank.algorithms.synthetic_data_generators.generator_naive", "qualname": "generate_random_matrix", "kind": "function", "doc": "

\n", "signature": "(num_features=100, size=20000):", "funcdef": "def"}, "outrank.core_ranking": {"fullname": "outrank.core_ranking", "modulename": "outrank.core_ranking", "kind": "module", "doc": "

\n"}, "outrank.core_ranking.logger": {"fullname": "outrank.core_ranking.logger", "modulename": "outrank.core_ranking", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"fullname": "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_CARDINALITY_STORAGE", "kind": "variable", "doc": "

\n", "annotation": ": dict[typing.Any, typing.Any]", "default_value": "{}"}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"fullname": "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_RARE_VALUE_STORAGE", "kind": "variable", "doc": "

\n", "annotation": ": dict[str, typing.Any]", "default_value": "Counter()"}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"fullname": "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_PRIOR_COMB_COUNTS", "kind": "variable", "doc": "

\n", "annotation": ": dict[typing.Any, int]", "default_value": "Counter()"}, "outrank.core_ranking.IGNORED_VALUES": {"fullname": "outrank.core_ranking.IGNORED_VALUES", "modulename": "outrank.core_ranking", "qualname": "IGNORED_VALUES", "kind": "variable", "doc": "

\n", "default_value": "set()"}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"fullname": "outrank.core_ranking.HYPERLL_ERROR_BOUND", "modulename": "outrank.core_ranking", "qualname": "HYPERLL_ERROR_BOUND", "kind": "variable", "doc": "

\n", "default_value": "0.02"}, "outrank.core_ranking.prior_combinations_sample": {"fullname": "outrank.core_ranking.prior_combinations_sample", "modulename": "outrank.core_ranking", "qualname": "prior_combinations_sample", "kind": "function", "doc": "

Make sure only relevant subspace of combinations is selected based on prior counts

\n", "signature": "(\tcombinations: list[tuple[typing.Any, ...]],\targs: Any) -> list[tuple[typing.Any, ...]]:", "funcdef": "def"}, "outrank.core_ranking.mixed_rank_graph": {"fullname": "outrank.core_ranking.mixed_rank_graph", "modulename": "outrank.core_ranking", "qualname": "mixed_rank_graph", "kind": "function", "doc": "

Compute the full mixed rank graph corresponding to all pairwise feature interactions based on the selected heuristic

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any,\tcpu_pool: Any,\tpbar: Any) -> outrank.core_utils.BatchRankingSummary:", "funcdef": "def"}, "outrank.core_ranking.enrich_with_transformations": {"fullname": "outrank.core_ranking.enrich_with_transformations", "modulename": "outrank.core_ranking", "qualname": "enrich_with_transformations", "kind": "function", "doc": "

Construct a collection of new features based on pre-defined transformations/rules

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tnum_col_types: set[str],\tlogger: Any,\targs: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_combined_features": {"fullname": "outrank.core_ranking.compute_combined_features", "modulename": "outrank.core_ranking", "qualname": "compute_combined_features", "kind": "function", "doc": "

Compute higher order features via xxhash-based trick.

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any,\tis_3mr: bool = False) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_expanded_multivalue_features": {"fullname": "outrank.core_ranking.compute_expanded_multivalue_features", "modulename": "outrank.core_ranking", "qualname": "compute_expanded_multivalue_features", "kind": "function", "doc": "

Compute one-hot encoded feature space based on each designated multivalue feature. E.g., feature with value \"a,b,c\" becomes three features, values of which are presence of a given value in a mutlivalue feature of choice.

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_subfeatures": {"fullname": "outrank.core_ranking.compute_subfeatures", "modulename": "outrank.core_ranking", "qualname": "compute_subfeatures", "kind": "function", "doc": "

Compute derived features that are more fine-grained. Implements logic around two operators that govern feature construction.\n->: One sided construction - every value from left side is fine, separate ones from the right side feature will be considered.\n<->: Two sided construction - two-sided values present. This means that each value from a is combined with each from b, forming |A|*|B| new features (one-hot encoded)

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.include_noisy_features": {"fullname": "outrank.core_ranking.include_noisy_features", "modulename": "outrank.core_ranking", "qualname": "include_noisy_features", "kind": "function", "doc": "

Add randomized features that serve as a sanity check

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_coverage": {"fullname": "outrank.core_ranking.compute_coverage", "modulename": "outrank.core_ranking", "qualname": "compute_coverage", "kind": "function", "doc": "

Compute coverage of features, incrementally

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any) -> dict[str, set[str]]:", "funcdef": "def"}, "outrank.core_ranking.compute_feature_memory_consumption": {"fullname": "outrank.core_ranking.compute_feature_memory_consumption", "modulename": "outrank.core_ranking", "qualname": "compute_feature_memory_consumption", "kind": "function", "doc": "

An approximation of how much feature take up

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any) -> dict[str, set[str]]:", "funcdef": "def"}, "outrank.core_ranking.compute_value_counts": {"fullname": "outrank.core_ranking.compute_value_counts", "modulename": "outrank.core_ranking", "qualname": "compute_value_counts", "kind": "function", "doc": "

Update the count structure

\n", "signature": "(input_dataframe: pandas.core.frame.DataFrame, args: Any):", "funcdef": "def"}, "outrank.core_ranking.compute_cardinalities": {"fullname": "outrank.core_ranking.compute_cardinalities", "modulename": "outrank.core_ranking", "qualname": "compute_cardinalities", "kind": "function", "doc": "

Compute cardinalities of features, incrementally

\n", "signature": "(input_dataframe: pandas.core.frame.DataFrame, pbar: Any) -> None:", "funcdef": "def"}, "outrank.core_ranking.compute_bounds_increment": {"fullname": "outrank.core_ranking.compute_bounds_increment", "modulename": "outrank.core_ranking", "qualname": "compute_bounds_increment", "kind": "function", "doc": "

\n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tnumeric_column_types: set[str]) -> dict[str, typing.Any]:", "funcdef": "def"}, "outrank.core_ranking.compute_batch_ranking": {"fullname": "outrank.core_ranking.compute_batch_ranking", "modulename": "outrank.core_ranking", "qualname": "compute_batch_ranking", "kind": "function", "doc": "

Enrich the feature space and compute the batch importances

\n", "signature": "(\tline_tmp_storage: list[list[typing.Any]],\tnumeric_column_types: set[str],\targs: Any,\tcpu_pool: Any,\tcolumn_descriptions: list[str],\tlogger: Any,\tpbar: Any) -> tuple[outrank.core_utils.BatchRankingSummary, dict[str, typing.Any], dict[str, set[str]], dict[str, set[str]]]:", "funcdef": "def"}, "outrank.core_ranking.get_num_of_instances": {"fullname": "outrank.core_ranking.get_num_of_instances", "modulename": "outrank.core_ranking", "qualname": "get_num_of_instances", "kind": "function", "doc": "

Count the number of lines in a file, fast - useful for progress logging

\n", "signature": "(fname: str) -> int:", "funcdef": "def"}, "outrank.core_ranking.get_grouped_df": {"fullname": "outrank.core_ranking.get_grouped_df", "modulename": "outrank.core_ranking", "qualname": "get_grouped_df", "kind": "function", "doc": "

A helper method that enables median-based aggregation after processing

\n", "signature": "(\timportances_df_list: list[tuple[str, str, float]]) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.checkpoint_importances_df": {"fullname": "outrank.core_ranking.checkpoint_importances_df", "modulename": "outrank.core_ranking", "qualname": "checkpoint_importances_df", "kind": "function", "doc": "

A helper which stores intermediary state - useful for longer runs

\n", "signature": "(importances_batch: list[tuple[str, str, float]]) -> None:", "funcdef": "def"}, "outrank.core_ranking.estimate_importances_minibatches": {"fullname": "outrank.core_ranking.estimate_importances_minibatches", "modulename": "outrank.core_ranking", "qualname": "estimate_importances_minibatches", "kind": "function", "doc": "

Interaction score estimator - suitable for example for csv-like input data types.\nThis type of data is normally a single large csv, meaning that minibatch processing needs to\nhappen during incremental handling of the file (that\"s not the case for pre-separated ob data)

\n", "signature": "(\tinput_file: str,\tcolumn_descriptions: list,\tfw_col_mapping: dict[str, str],\tnumeric_column_types: set,\tbatch_size: int = 100000,\targs: Any = None,\tdata_encoding: str = 'utf-8',\tcpu_pool: Any = None,\tdelimiter: str = '\\t',\tfeature_construction_mode: bool = False,\tlogger: Any = None) -> tuple[list[dict[str, typing.Any]], typing.Any, dict[typing.Any, typing.Any], list[dict[str, typing.Any]], list[dict[str, set[str]]], collections.defaultdict[str, list[set[str]]], dict[str, typing.Any]]:", "funcdef": "def"}, "outrank.core_selftest": {"fullname": "outrank.core_selftest", "modulename": "outrank.core_selftest", "kind": "module", "doc": "

\n"}, "outrank.core_utils": {"fullname": "outrank.core_utils", "modulename": "outrank.core_utils", "kind": "module", "doc": "

\n"}, "outrank.core_utils.pro_tips": {"fullname": "outrank.core_utils.pro_tips", "modulename": "outrank.core_utils", "qualname": "pro_tips", "kind": "variable", "doc": "

\n", "default_value": "['OutRank can construct subfeatures; features based on subspaces. Example command argument is: --subfeature_mapping "feature_a->feature_b;feature_c<->feature_d;feature_c<->feature_e"', 'Heuristic MI-numba-randomized seems like the best of both worlds! (speed + performance).', 'Heuristic surrogate-lr performs cross-validation (internally), keep that in mind!', 'Consider running OutRank on a smaller data sample first, might be enough (--subsampling = a lot).', 'There are two types of combinations supported; unsupervised pairwise ranking (redundancies- --target_ranking_only=False), and supervised combinations - (--interaction_order > 1)', 'Visualization part also includes clustering - this might be very insightful!', 'By default OutRank includes feature cardinality and coverage in feature names (card; cov)', 'Intermediary checkpoints (tmp_checkpoint.tsv) might already give you insights during longer runs.', 'In theory, you can rank redundancies of combined features (--interaction_order AND --target_ranking_only=False).', 'Give it as many threads as physically possible (--num_threads).', 'You can speed up ranking by diminishing feature buffer size (--combination_number_upper_bound determines how many ranking computations per batch will be considered). This, and --subsampling are very powerful together.', 'Want to rank feature transformations, but not sure which ones to choose? --transformers=default should serve as a solid baseline (common DS transformations included).', 'Your target can be any feature! (explaining one feature with others)', 'OutRank uses HyperLogLog for cardinality estimation - this is also a potential usecase (understanding cardinalities across different data sets).', 'Each feature is named as featureName(cardinality, coverage in percents) in the final files.', 'You can generate candidate feature transformation ranges (fw) by using --task=feature_summary_transformers.']"}, "outrank.core_utils.write_json_dump_to_file": {"fullname": "outrank.core_utils.write_json_dump_to_file", "modulename": "outrank.core_utils", "qualname": "write_json_dump_to_file", "kind": "function", "doc": "

\n", "signature": "(args: Any, config_name: str) -> None:", "funcdef": "def"}, "outrank.core_utils.internal_hash": {"fullname": "outrank.core_utils.internal_hash", "modulename": "outrank.core_utils", "qualname": "internal_hash", "kind": "function", "doc": "

A generic internal hash used throughout ranking procedure - let's hardcode seed here for sure

\n", "signature": "(input_obj: str) -> str:", "funcdef": "def"}, "outrank.core_utils.DatasetInformationStorage": {"fullname": "outrank.core_utils.DatasetInformationStorage", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage", "kind": "class", "doc": "

A generic class for holding properties of a given type of dataset

\n"}, "outrank.core_utils.DatasetInformationStorage.__init__": {"fullname": "outrank.core_utils.DatasetInformationStorage.__init__", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.__init__", "kind": "function", "doc": "

\n", "signature": "(\tdata_path: str,\tcolumn_names: list[str],\tcolumn_types: set[str],\tcol_delimiter: str | None,\tencoding: str,\tfw_map: dict[str, str] | None)"}, "outrank.core_utils.DatasetInformationStorage.data_path": {"fullname": "outrank.core_utils.DatasetInformationStorage.data_path", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.data_path", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "outrank.core_utils.DatasetInformationStorage.column_names": {"fullname": "outrank.core_utils.DatasetInformationStorage.column_names", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.column_names", "kind": "variable", "doc": "

\n", "annotation": ": list[str]"}, "outrank.core_utils.DatasetInformationStorage.column_types": {"fullname": "outrank.core_utils.DatasetInformationStorage.column_types", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.column_types", "kind": "variable", "doc": "

\n", "annotation": ": set[str]"}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"fullname": "outrank.core_utils.DatasetInformationStorage.col_delimiter", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.col_delimiter", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "outrank.core_utils.DatasetInformationStorage.encoding": {"fullname": "outrank.core_utils.DatasetInformationStorage.encoding", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.encoding", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"fullname": "outrank.core_utils.DatasetInformationStorage.fw_map", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.fw_map", "kind": "variable", "doc": "

\n", "annotation": ": dict[str, str] | None"}, "outrank.core_utils.NumericFeatureSummary": {"fullname": "outrank.core_utils.NumericFeatureSummary", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary", "kind": "class", "doc": "

A generic class storing numeric feature statistics

\n"}, "outrank.core_utils.NumericFeatureSummary.__init__": {"fullname": "outrank.core_utils.NumericFeatureSummary.__init__", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.__init__", "kind": "function", "doc": "

\n", "signature": "(\tfeature_name: str,\tminimum: float,\tmaximum: float,\tmedian: float,\tnum_unique: int)"}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"fullname": "outrank.core_utils.NumericFeatureSummary.feature_name", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.feature_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "outrank.core_utils.NumericFeatureSummary.minimum": {"fullname": "outrank.core_utils.NumericFeatureSummary.minimum", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.minimum", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.maximum": {"fullname": "outrank.core_utils.NumericFeatureSummary.maximum", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.maximum", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.median": {"fullname": "outrank.core_utils.NumericFeatureSummary.median", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.median", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"fullname": "outrank.core_utils.NumericFeatureSummary.num_unique", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.num_unique", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "outrank.core_utils.NominalFeatureSummary": {"fullname": "outrank.core_utils.NominalFeatureSummary", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary", "kind": "class", "doc": "

A generic class storing numeric feature statistics

\n"}, "outrank.core_utils.NominalFeatureSummary.__init__": {"fullname": "outrank.core_utils.NominalFeatureSummary.__init__", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.__init__", "kind": "function", "doc": "

\n", "signature": "(feature_name: str, num_unique: int)"}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"fullname": "outrank.core_utils.NominalFeatureSummary.feature_name", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.feature_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"fullname": "outrank.core_utils.NominalFeatureSummary.num_unique", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.num_unique", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "outrank.core_utils.BatchRankingSummary": {"fullname": "outrank.core_utils.BatchRankingSummary", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary", "kind": "class", "doc": "

A generic class representing batched ranking results

\n"}, "outrank.core_utils.BatchRankingSummary.__init__": {"fullname": "outrank.core_utils.BatchRankingSummary.__init__", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.__init__", "kind": "function", "doc": "

\n", "signature": "(\ttriplet_scores: list[tuple[str, str, float]],\tstep_times: dict[str, typing.Any])"}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"fullname": "outrank.core_utils.BatchRankingSummary.triplet_scores", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.triplet_scores", "kind": "variable", "doc": "

\n", "annotation": ": list[tuple[str, str, float]]"}, "outrank.core_utils.BatchRankingSummary.step_times": {"fullname": "outrank.core_utils.BatchRankingSummary.step_times", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.step_times", "kind": "variable", "doc": "

\n", "annotation": ": dict[str, typing.Any]"}, "outrank.core_utils.display_random_tip": {"fullname": "outrank.core_utils.display_random_tip", "modulename": "outrank.core_utils", "qualname": "display_random_tip", "kind": "function", "doc": "

\n", "signature": "() -> None:", "funcdef": "def"}, "outrank.core_utils.get_dataset_info": {"fullname": "outrank.core_utils.get_dataset_info", "modulename": "outrank.core_utils", "qualname": "get_dataset_info", "kind": "function", "doc": "

\n", "signature": "(args: Any):", "funcdef": "def"}, "outrank.core_utils.display_tool_name": {"fullname": "outrank.core_utils.display_tool_name", "modulename": "outrank.core_utils", "qualname": "display_tool_name", "kind": "function", "doc": "

\n", "signature": "() -> None:", "funcdef": "def"}, "outrank.core_utils.parse_ob_line": {"fullname": "outrank.core_utils.parse_ob_line", "modulename": "outrank.core_utils", "qualname": "parse_ob_line", "kind": "function", "doc": "

Outbrain line parsing - generic TSVs

\n", "signature": "(line_string: str, delimiter: str = '\\t', args: Any = None) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_line_vw": {"fullname": "outrank.core_utils.parse_ob_line_vw", "modulename": "outrank.core_utils", "qualname": "parse_ob_line_vw", "kind": "function", "doc": "

Parse a sparse vw line into a pandas df with pre-defined namespace

\n", "signature": "(\tline_string: str,\tdelimiter: str,\targs: Any = None,\tfw_col_mapping=None,\ttable_header=None,\tinclude_namespace_info=False) -> list[str | None]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_csv_line": {"fullname": "outrank.core_utils.parse_ob_csv_line", "modulename": "outrank.core_utils", "qualname": "parse_ob_csv_line", "kind": "function", "doc": "

Data can have commas within JSON field dumps

\n", "signature": "(line_string: str, delimiter: str = ',', args: Any = None) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.generic_line_parser": {"fullname": "outrank.core_utils.generic_line_parser", "modulename": "outrank.core_utils", "qualname": "generic_line_parser", "kind": "function", "doc": "

A generic method aimed to parse data from different sources.

\n", "signature": "(\tline_string: str,\tdelimiter: str,\targs: Any = None,\tfw_col_mapping: Any = None,\ttable_header: Any = None) -> list[typing.Any]:", "funcdef": "def"}, "outrank.core_utils.read_reference_json": {"fullname": "outrank.core_utils.read_reference_json", "modulename": "outrank.core_utils", "qualname": "read_reference_json", "kind": "function", "doc": "

A helper method for reading a JSON

\n", "signature": "(json_path) -> dict[str, dict]:", "funcdef": "def"}, "outrank.core_utils.parse_namespace": {"fullname": "outrank.core_utils.parse_namespace", "modulename": "outrank.core_utils", "qualname": "parse_namespace", "kind": "function", "doc": "

Parse the feature namespace for type awareness

\n", "signature": "(namespace_path: str) -> tuple[set[str], dict[str, str]]:", "funcdef": "def"}, "outrank.core_utils.read_column_names": {"fullname": "outrank.core_utils.read_column_names", "modulename": "outrank.core_utils", "qualname": "read_column_names", "kind": "function", "doc": "

Read the col. header

\n", "signature": "(mapping_file: str) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_vw_feature_information": {"fullname": "outrank.core_utils.parse_ob_vw_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_vw_feature_information", "kind": "function", "doc": "

A generic parser of ob-based data

\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_ob_raw_feature_information": {"fullname": "outrank.core_utils.parse_ob_raw_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_raw_feature_information", "kind": "function", "doc": "

A generic parser of ob-based data

\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_ob_feature_information": {"fullname": "outrank.core_utils.parse_ob_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_feature_information", "kind": "function", "doc": "

A generic parser of ob-based data

\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_csv_with_description_information": {"fullname": "outrank.core_utils.parse_csv_with_description_information", "modulename": "outrank.core_utils", "qualname": "parse_csv_with_description_information", "kind": "function", "doc": "

\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_csv_raw": {"fullname": "outrank.core_utils.parse_csv_raw", "modulename": "outrank.core_utils", "qualname": "parse_csv_raw", "kind": "function", "doc": "

\n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.extract_features_from_reference_JSON": {"fullname": "outrank.core_utils.extract_features_from_reference_JSON", "modulename": "outrank.core_utils", "qualname": "extract_features_from_reference_JSON", "kind": "function", "doc": "

Given a model's JSON, extract unique features

\n", "signature": "(json_path: str) -> set[typing.Any]:", "funcdef": "def"}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"fullname": "outrank.core_utils.summarize_feature_bounds_for_transformers", "modulename": "outrank.core_utils", "qualname": "summarize_feature_bounds_for_transformers", "kind": "function", "doc": "

summarization auxilliary method for generating JSON-based specs

\n", "signature": "(\tbounds_object_storage: Any,\tfeature_types: list[str],\ttask_name: str,\tlabel_name: str,\tgranularity: int = 15,\toutput_summary_table_only: bool = False):", "funcdef": "def"}, "outrank.core_utils.summarize_rare_counts": {"fullname": "outrank.core_utils.summarize_rare_counts", "modulename": "outrank.core_utils", "qualname": "summarize_rare_counts", "kind": "function", "doc": "

Write rare values

\n", "signature": "(\tterm_counter: Any,\targs: Any,\tcardinality_object: Any,\tobject_info: outrank.core_utils.DatasetInformationStorage) -> None:", "funcdef": "def"}, "outrank.feature_transformations": {"fullname": "outrank.feature_transformations", "modulename": "outrank.feature_transformations", "kind": "module", "doc": "

\n"}, "outrank.feature_transformations.feature_transformer_vault": {"fullname": "outrank.feature_transformations.feature_transformer_vault", "modulename": "outrank.feature_transformations.feature_transformer_vault", "kind": "module", "doc": "

\n"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "kind": "module", "doc": "

\n"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "qualname": "MINIMAL_TRANSFORMERS", "kind": "variable", "doc": "

\n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)'}"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "qualname": "DEFAULT_TRANSFORMERS", "kind": "variable", "doc": "

\n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)', '_tr_div(x,abs(x))*log(abs(x))': 'np.divide(X, np.abs(X)) * np.log(np.abs(X))', '_tr_log(x + sqrt(pow(x,2), 1)': 'np.log(X + np.sqrt(np.power(X, 2) + 1))', '_tr_log*sqrt': 'np.log(X + 1) * np.sqrt(X)', '_tr_log*100': 'np.round(np.log(X + 1) * 100, 0)', '_tr_nonzero': 'np.where(X != 0, 1, 0)', '_tr_round(div(x,max))': 'np.round(np.divide(X, np.max(X)), 0)'}"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "kind": "module", "doc": "

\n"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "FW_TRANSFORMERS", "kind": "variable", "doc": "

\n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)', '_tr_div(x,abs(x))*log(abs(x))': 'np.divide(X, np.abs(X)) * np.log(np.abs(X))', '_tr_log(x + sqrt(pow(x,2), 1)': 'np.log(X + np.sqrt(np.power(X, 2) + 1))', '_tr_log*sqrt': 'np.log(X + 1) * np.sqrt(X)', '_tr_log*100': 'np.round(np.log(X + 1) * 100, 0)', '_tr_nonzero': 'np.where(X != 0, 1, 0)', '_tr_round(div(x,max))': 'np.round(np.divide(X, np.max(X)), 0)', '_tr_fw_sqrt_res_1_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*1,0), 0))', '_tr_fw_log_res_1_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*1,0), 0))', '_tr_fw_log_res_1_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*1,0), 0))', '_tr_fw_log_res_1_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*1,0), 0))', '_tr_fw_log_res_1_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*1,0), 0))', '_tr_fw_log_res_1_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*1,0), 0))', '_tr_fw_log_res_1_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*1,0), 0))', '_tr_fw_log_res_1_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*1,0), 0))', '_tr_fw_log_res_1_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*1,0), 0))', '_tr_fw_sqrt_res_10_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*10,0), 0))', '_tr_fw_log_res_10_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*10,0), 0))', '_tr_fw_log_res_10_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*10,0), 0))', '_tr_fw_log_res_10_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*10,0), 0))', '_tr_fw_log_res_10_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*10,0), 0))', '_tr_fw_log_res_10_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*10,0), 0))', '_tr_fw_log_res_10_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*10,0), 0))', '_tr_fw_log_res_10_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*10,0), 0))', '_tr_fw_log_res_10_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*10,0), 0))', '_tr_fw_sqrt_res_50_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*50,0), 0))', '_tr_fw_log_res_50_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*50,0), 0))', '_tr_fw_log_res_50_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*50,0), 0))', '_tr_fw_log_res_50_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*50,0), 0))', '_tr_fw_log_res_50_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*50,0), 0))', '_tr_fw_log_res_50_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*50,0), 0))', '_tr_fw_log_res_50_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*50,0), 0))', '_tr_fw_log_res_50_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*50,0), 0))', '_tr_fw_log_res_50_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*50,0), 0))', '_tr_fw_sqrt_res_100_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*100,0), 0))', '_tr_fw_log_res_100_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*100,0), 0))', '_tr_fw_log_res_100_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*100,0), 0))', '_tr_fw_log_res_100_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*100,0), 0))', '_tr_fw_log_res_100_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*100,0), 0))', '_tr_fw_log_res_100_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*100,0), 0))', '_tr_fw_log_res_100_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*100,0), 0))', '_tr_fw_log_res_100_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*100,0), 0))', '_tr_fw_log_res_100_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*100,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*1,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*10,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*50,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*100,0), 0))'}"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "resolution_range", "kind": "variable", "doc": "

\n", "default_value": "[1, 10, 50, 100]"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "greater_than_range", "kind": "variable", "doc": "

\n", "default_value": "[1, 2, 4, 8, 16, 32, 64, 96]"}, "outrank.feature_transformations.ranking_transformers": {"fullname": "outrank.feature_transformations.ranking_transformers", "modulename": "outrank.feature_transformations.ranking_transformers", "kind": "module", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise", "kind": "class", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise.noise_preset", "kind": "variable", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise.construct_new_features", "kind": "function", "doc": "

Generate a few standard noise distributions

\n", "signature": "(self, dataframe: pandas.core.frame.DataFrame, label_column=None):", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric", "kind": "class", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.__init__", "kind": "function", "doc": "

\n", "signature": "(numeric_column_names: set[str], preset: str = 'default')"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.numeric_column_names", "kind": "variable", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.constructed_feature_names", "kind": "variable", "doc": "

\n", "annotation": ": set[str]"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.max_maj_support", "kind": "variable", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.nan_prop_support", "kind": "variable", "doc": "

\n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.get_vals", "kind": "function", "doc": "

\n", "signature": "(self, tmp_df: pandas.core.frame.DataFrame, col_name: str) -> Any:", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.construct_baseline_features", "kind": "function", "doc": "

\n", "signature": "(self, dataframe: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.construct_new_features", "kind": "function", "doc": "

\n", "signature": "(self, dataframe: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.task_generators": {"fullname": "outrank.task_generators", "modulename": "outrank.task_generators", "kind": "module", "doc": "

\n"}, "outrank.task_generators.logger": {"fullname": "outrank.task_generators.logger", "modulename": "outrank.task_generators", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.task_generators.outrank_task_generate_data_set": {"fullname": "outrank.task_generators.outrank_task_generate_data_set", "modulename": "outrank.task_generators", "qualname": "outrank_task_generate_data_set", "kind": "function", "doc": "

Core method for generating data sets

\n", "signature": "(args):", "funcdef": "def"}, "outrank.task_ranking": {"fullname": "outrank.task_ranking", "modulename": "outrank.task_ranking", "kind": "module", "doc": "

\n"}, "outrank.task_ranking.outrank_task_conduct_ranking": {"fullname": "outrank.task_ranking.outrank_task_conduct_ranking", "modulename": "outrank.task_ranking", "qualname": "outrank_task_conduct_ranking", "kind": "function", "doc": "

\n", "signature": "(args: Any):", "funcdef": "def"}, "outrank.task_selftest": {"fullname": "outrank.task_selftest", "modulename": "outrank.task_selftest", "kind": "module", "doc": "

\n"}, "outrank.task_selftest.logger": {"fullname": "outrank.task_selftest.logger", "modulename": "outrank.task_selftest", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.task_selftest.conduct_self_test": {"fullname": "outrank.task_selftest.conduct_self_test", "modulename": "outrank.task_selftest", "qualname": "conduct_self_test", "kind": "function", "doc": "

\n", "signature": "():", "funcdef": "def"}, "outrank.task_summary": {"fullname": "outrank.task_summary", "modulename": "outrank.task_summary", "kind": "module", "doc": "

\n"}, "outrank.task_summary.outrank_task_result_summary": {"fullname": "outrank.task_summary.outrank_task_result_summary", "modulename": "outrank.task_summary", "qualname": "outrank_task_result_summary", "kind": "function", "doc": "

\n", "signature": "(args):", "funcdef": "def"}, "outrank.task_visualization": {"fullname": "outrank.task_visualization", "modulename": "outrank.task_visualization", "kind": "module", "doc": "

\n"}, "outrank.task_visualization.outrank_task_visualize_results": {"fullname": "outrank.task_visualization.outrank_task_visualize_results", "modulename": "outrank.task_visualization", "qualname": "outrank_task_visualize_results", "kind": "function", "doc": "

\n", "signature": "(args):", "funcdef": "def"}, "outrank.visualizations": {"fullname": "outrank.visualizations", "modulename": "outrank.visualizations", "kind": "module", "doc": "

\n"}, "outrank.visualizations.ranking_visualization": {"fullname": "outrank.visualizations.ranking_visualization", "modulename": "outrank.visualizations.ranking_visualization", "kind": "module", "doc": "

\n"}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"fullname": "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_hierarchical_clusters", "kind": "function", "doc": "

A method for visualization of hierarchical clusters w.r.t. different linkage functions

\n", "signature": "(\ttriplet_dataframe: pandas.core.frame.DataFrame,\toutput_folder: str,\timage_format: str = 'png',\tmax_num_clusters: int = 100) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"fullname": "outrank.visualizations.ranking_visualization.visualize_heatmap", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_heatmap", "kind": "function", "doc": "

\n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\timage_format: str) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"fullname": "outrank.visualizations.ranking_visualization.visualize_barplots", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_barplots", "kind": "function", "doc": "

\n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\treference_json: str,\timage_format: str,\tlabel: str,\theuristic: str) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_all": {"fullname": "outrank.visualizations.ranking_visualization.visualize_all", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_all", "kind": "function", "doc": "

A method for visualization of the obtained feature interaction maps.

\n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\tlabel: str = '',\treference_json: str = '',\timage_format: str = 'png',\theuristic: str = 'MI') -> None:", "funcdef": "def"}}, "docInfo": {"outrank": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 234}, "outrank.algorithms": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 6}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 11}, "outrank.algorithms.importance_estimator": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.logger": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_MI": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.numba_mi": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 21}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 204, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.sketches": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 26}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 3}, "outrank.core_ranking": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.IGNORED_VALUES": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.prior_combinations_sample": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 75, "bases": 0, "doc": 15}, "outrank.core_ranking.mixed_rank_graph": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 81, "bases": 0, "doc": 19}, "outrank.core_ranking.enrich_with_transformations": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 92, "bases": 0, "doc": 13}, "outrank.core_ranking.compute_combined_features": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 103, "bases": 0, "doc": 11}, "outrank.core_ranking.compute_expanded_multivalue_features": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 41}, "outrank.core_ranking.compute_subfeatures": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 70}, "outrank.core_ranking.include_noisy_features": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 11}, "outrank.core_ranking.compute_coverage": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 7}, "outrank.core_ranking.compute_feature_memory_consumption": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 10}, "outrank.core_ranking.compute_value_counts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 6}, "outrank.core_ranking.compute_cardinalities": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 7}, "outrank.core_ranking.compute_bounds_increment": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 3}, "outrank.core_ranking.compute_batch_ranking": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 197, "bases": 0, "doc": 11}, "outrank.core_ranking.get_num_of_instances": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 15}, "outrank.core_ranking.get_grouped_df": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 12}, "outrank.core_ranking.checkpoint_importances_df": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 12}, "outrank.core_ranking.estimate_importances_minibatches": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 376, "bases": 0, "doc": 48}, "outrank.core_selftest": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.pro_tips": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 303, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.write_json_dump_to_file": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "outrank.core_utils.internal_hash": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 17}, "outrank.core_utils.DatasetInformationStorage": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 14}, "outrank.core_utils.DatasetInformationStorage.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.data_path": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.column_names": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.column_types": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.encoding": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.NumericFeatureSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.minimum": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.maximum": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.median": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.NominalFeatureSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.BatchRankingSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary.step_times": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.display_random_tip": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "outrank.core_utils.get_dataset_info": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.core_utils.display_tool_name": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "outrank.core_utils.parse_ob_line": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 7}, "outrank.core_utils.parse_ob_line_vw": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 15}, "outrank.core_utils.parse_ob_csv_line": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 10}, "outrank.core_utils.generic_line_parser": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 13}, "outrank.core_utils.read_reference_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 9}, "outrank.core_utils.parse_namespace": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 9}, "outrank.core_utils.read_column_names": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 6}, "outrank.core_utils.parse_ob_vw_feature_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_ob_raw_feature_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_ob_feature_information": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_csv_with_description_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.parse_csv_raw": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.extract_features_from_reference_JSON": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 10}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 10}, "outrank.core_utils.summarize_rare_counts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 5}, "outrank.feature_transformations": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 56, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 173, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 4589, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 4, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"qualname": 3, "fullname": 11, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 8}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"qualname": 4, "fullname": 9, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "outrank.task_generators": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_generators.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_generators.outrank_task_generate_data_set": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "outrank.task_ranking": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_ranking.outrank_task_conduct_ranking": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.task_selftest": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_selftest.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_selftest.conduct_self_test": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 3}, "outrank.task_summary": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_summary.outrank_task_result_summary": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "outrank.task_visualization": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_visualization.outrank_task_visualize_results": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "outrank.visualizations": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 91, "bases": 0, "doc": 15}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 93, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_all": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 135, "bases": 0, "doc": 13}}, "length": 141, "save": true}, "index": {"qualname": {"root": {"3": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 11}}}}, "b": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 1}, "x": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "j": {"docs": {"outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 9, "r": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}, "w": {"docs": {"outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 9}}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}, "b": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 4}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 2}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}}, "fullname": {"root": {"3": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms": {"tf": 1}, "outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_selftest": {"tf": 1}, "outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}, "outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}, "outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.4142135623730951}, "outrank.visualizations": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 141}}}}}}, "f": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}, "b": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms": {"tf": 1}, "outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 30}}}}}}}}, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "j": {"docs": {"outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 35, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 5}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 50}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}, "w": {"docs": {"outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}}, "df": 1, "i": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 8, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 1}, "x": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}}, "df": 6}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 10}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 45}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 11}}}}, "b": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 10}}}, "s": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_selftest": {"tf": 1}, "outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 70}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 10}}, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 9, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 11}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_selftest": {"tf": 1}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 6}}}, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 9, "r": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 9}}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 8}}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 7, "s": {"docs": {"outrank.visualizations": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 23}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 21}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}, "outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}, "outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.4142135623730951}}, "df": 12}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}}, "annotation": {"root": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 19, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1.4142135623730951}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 7}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 4}}}}}}}, "default_value": {"root": {"0": {"1": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "2": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 2}, "4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "8": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 22.715633383201094}}, "df": 3}, "1": {"0": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8.06225774829855}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 3}, "docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 2}, "6": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {"outrank.core_utils.pro_tips": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 10.198039027185569}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 6}, "2": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.830951894845301}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 3}, "3": {"2": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "5": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "6": {"4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "8": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "9": {"6": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.795831523312719}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 12.288205727444508}, "outrank.task_generators.logger": {"tf": 1.4142135623730951}, "outrank.task_selftest.logger": {"tf": 1.4142135623730951}}, "df": 12, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 3.1622776601683795}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.74734012447073}}, "df": 3, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.logger": {"tf": 1.4142135623730951}, "outrank.task_generators.logger": {"tf": 1.4142135623730951}, "outrank.task_selftest.logger": {"tf": 1.4142135623730951}}, "df": 4}}}, "*": {"1": {"0": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.6457513110645907}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.61895003862225}}, "df": 3}}}}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 16}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "x": {"2": {"7": {"docs": {"outrank.core_utils.pro_tips": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 4}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 6.324555320336759}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.49468024894146}}, "df": 4}, "docs": {}, "df": 0}, "docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.449489742783178}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.795831523312719}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.130067012440755}}, "df": 3, "+": {"1": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}}}}}}, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 3.872983346207417}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "w": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}}, "df": 2}}, "b": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 2.8284271247461903}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "x": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.449489742783178}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.58257569495584}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.08679276123039}}, "df": 3}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "s": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.445523142259598}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 3.1622776601683795}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.74734012447073}}, "df": 3, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 16.0312195418814}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"0": {"0": {"5": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}, "1": {"0": {"0": {"0": {"0": {"0": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "5": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}, "docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"0": {"0": {"0": {"0": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2}, "outrank.core_utils.parse_ob_line": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 2.8284271247461903}}, "df": 7}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}, "8": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 3.1622776601683795}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 5.5677643628300215}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 5.477225575051661}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 5.477225575051661}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 4.898979485566356}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 5.656854249492381}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 4.242640687119285}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 3.7416573867739413}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 4.242640687119285}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 12.806248474865697}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 5.830951894845301}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 3.4641016151377544}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 3.7416573867739413}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 4.69041575982343}, "outrank.core_ranking.prior_combinations_sample": {"tf": 8}, "outrank.core_ranking.mixed_rank_graph": {"tf": 8}, "outrank.core_ranking.enrich_with_transformations": {"tf": 8.54400374531753}, "outrank.core_ranking.compute_combined_features": {"tf": 9.1104335791443}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 8.246211251235321}, "outrank.core_ranking.compute_subfeatures": {"tf": 8.246211251235321}, "outrank.core_ranking.include_noisy_features": {"tf": 7.681145747868608}, "outrank.core_ranking.compute_coverage": {"tf": 7.14142842854285}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 7.14142842854285}, "outrank.core_ranking.compute_value_counts": {"tf": 5.830951894845301}, "outrank.core_ranking.compute_cardinalities": {"tf": 6}, "outrank.core_ranking.compute_bounds_increment": {"tf": 7.54983443527075}, "outrank.core_ranking.compute_batch_ranking": {"tf": 12.449899597988733}, "outrank.core_ranking.get_num_of_instances": {"tf": 4}, "outrank.core_ranking.get_grouped_df": {"tf": 6.855654600401044}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 5.830951894845301}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 17.204650534085253}, "outrank.core_utils.write_json_dump_to_file": {"tf": 4.898979485566356}, "outrank.core_utils.internal_hash": {"tf": 4}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 9.38083151964686}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 7}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 4.47213595499958}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 7.3484692283495345}, "outrank.core_utils.display_random_tip": {"tf": 3}, "outrank.core_utils.get_dataset_info": {"tf": 3.7416573867739413}, "outrank.core_utils.display_tool_name": {"tf": 3}, "outrank.core_utils.parse_ob_line": {"tf": 7.416198487095663}, "outrank.core_utils.parse_ob_line_vw": {"tf": 8.831760866327848}, "outrank.core_utils.parse_ob_csv_line": {"tf": 7.14142842854285}, "outrank.core_utils.generic_line_parser": {"tf": 8.94427190999916}, "outrank.core_utils.read_reference_json": {"tf": 4.69041575982343}, "outrank.core_utils.parse_namespace": {"tf": 6.082762530298219}, "outrank.core_utils.read_column_names": {"tf": 4.58257569495584}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_ob_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_csv_raw": {"tf": 4.47213595499958}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 5}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 8.774964387392123}, "outrank.core_utils.summarize_rare_counts": {"tf": 7.211102550927978}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 6.164414002968976}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 5.744562646538029}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 6.324555320336759}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 5.656854249492381}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 5.656854249492381}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 3.1622776601683795}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 3.7416573867739413}, "outrank.task_selftest.conduct_self_test": {"tf": 2.6457513110645907}, "outrank.task_summary.outrank_task_result_summary": {"tf": 3.1622776601683795}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 3.1622776601683795}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 8.366600265340756}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 6.855654600401044}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 8.602325267042627}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 10.295630140987}}, "df": 69, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.7320508075688772}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.7320508075688772}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 2.449489742783178}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 3}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 2}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}}, "df": 32}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 25}}}}, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 29}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 5}}, "t": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 10}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 2.6457513110645907}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 3.4641016151377544}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 2.6457513110645907}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.7320508075688772}, "outrank.core_utils.generic_line_parser": {"tf": 1.4142135623730951}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 2}, "outrank.core_utils.read_column_names": {"tf": 1.4142135623730951}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 2.23606797749979}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 2.23606797749979}}, "df": 32, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 13}}}, "t": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 6}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 9}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 6}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.4142135623730951}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 2}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1.7320508075688772}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 17}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 5, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "l": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 4}}}}}, "x": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 4}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 8}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.449489742783178}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.449489742783178}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 10}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 7, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_value_counts": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_cardinalities": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 6}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.23606797749979}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 13}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 7}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 8}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 8}}}, "f": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}}, "df": 2}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0}}, "doc": {"root": {"0": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"5": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"2": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"outrank": {"tf": 9.219544457292887}, "outrank.algorithms": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.logger": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1.7320508075688772}, "outrank.core_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.logger": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1.7320508075688772}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1.7320508075688772}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1.7320508075688772}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 2.23606797749979}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_value_counts": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_cardinalities": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_selftest": {"tf": 1.7320508075688772}, "outrank.core_utils": {"tf": 1.7320508075688772}, "outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1.7320508075688772}, "outrank.core_utils.internal_hash": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1.7320508075688772}, "outrank.core_utils.display_random_tip": {"tf": 1.7320508075688772}, "outrank.core_utils.get_dataset_info": {"tf": 1.7320508075688772}, "outrank.core_utils.display_tool_name": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.4142135623730951}, "outrank.core_utils.generic_line_parser": {"tf": 1.7320508075688772}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1.4142135623730951}, "outrank.core_utils.read_column_names": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_csv_raw": {"tf": 1.7320508075688772}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1.4142135623730951}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.4142135623730951}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.4142135623730951}, "outrank.feature_transformations": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1.7320508075688772}, "outrank.task_generators": {"tf": 1.7320508075688772}, "outrank.task_generators.logger": {"tf": 1.7320508075688772}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1.7320508075688772}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.7320508075688772}, "outrank.task_selftest": {"tf": 1.7320508075688772}, "outrank.task_selftest.logger": {"tf": 1.7320508075688772}, "outrank.task_selftest.conduct_self_test": {"tf": 1.7320508075688772}, "outrank.task_summary": {"tf": 1.7320508075688772}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.7320508075688772}, "outrank.task_visualization": {"tf": 1.7320508075688772}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.7320508075688772}, "outrank.visualizations": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1.7320508075688772}}, "df": 141, "w": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "o": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 2.449489742783178}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 11}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 2.6457513110645907}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 16}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1, "d": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 9, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.4142135623730951}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 26, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 3}, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 2, "d": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}, "|": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "b": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 13, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 2}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 10, "a": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}, "b": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "c": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 8}}}}}}, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 2}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 8, "d": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}}, "df": 2}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 3, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 10}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "t": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 6, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"outrank": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 3}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}}}}}}}}}, "f": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 3, "r": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"outrank": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1, "n": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 11}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 8}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}, "w": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 4}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough. diff --git a/setup.py b/setup.py index 8e8ebc2..1cf5d74 100644 --- a/setup.py +++ b/setup.py @@ -23,7 +23,7 @@ def _read_description(): packages = [x for x in setuptools.find_packages() if x != 'test'] setuptools.setup( name='outrank', - version='0.95', + version='0.95.1', description='OutRank: Feature ranking for massive sparse data sets.', long_description=_read_description(), long_description_content_type='text/markdown',