diff --git a/docs/DOCSMAIN.md b/docs/DOCSMAIN.md index 0961a34..1b6681a 100644 --- a/docs/DOCSMAIN.md +++ b/docs/DOCSMAIN.md @@ -33,3 +33,34 @@ outrank --help * A minimal showcase of performing feature ranking on a generic CSV is demonstrated with [this example](https://github.com/outbrain/outrank/tree/main/scripts/run_minimal.sh). * [More examples](https://github.com/outbrain/outrank/tree/main/examples) demonstrating OutRank's capabilities are also available. + + +# OutRank as a Python library +Once installed, _OutRank_ can be used as any other Python library. For example, generic feature ranking algorithms can be accessed as + +```python +from outrank.algorithms.feature_ranking.ranking_mi_numba import ( + mutual_info_estimator_numba, +) + +# Some synthetic minimal data (Numpy vectors) +a = np.array([1, 0, 0, 0, 1, 1, 1, 0], dtype=np.int32) + +lowest = np.array(np.random.permutation(a), dtype=np.int32) +medium = np.array([1, 1, 0, 0, 1, 1, 1, 1], dtype=np.int32) +high = np.array([1, 0, 0, 0, 1, 1, 1, 1], dtype=np.int32) + +lowest_score = mutual_info_estimator_numba( + a, lowest, np.float32(1.0), False, +) +medium_score = mutual_info_estimator_numba( + a, medium, np.float32(1.0), False, +) +high_score = mutual_info_estimator_numba( + a, high, np.float32(1.0), False, +) + +scores = [lowest_score, medium_score, high_score] +sorted_score_indices = np.argsort(scores) +assert np.sum(np.array([0, 1, 2]) - sorted_score_indices) == 0 +``` diff --git a/docs/outrank.html b/docs/outrank.html index c1c4414..461d09d 100644 --- a/docs/outrank.html +++ b/docs/outrank.html @@ -26,6 +26,7 @@

Contents

  • Welcome to OutRank's documentation!
  • Setup
  • Example use cases
  • +
  • OutRank as a Python library
  • @@ -96,6 +97,38 @@

    Example use cases

  • A minimal showcase of performing feature ranking on a generic CSV is demonstrated with this example.

  • More examples demonstrating OutRank's capabilities are also available.

  • + +

    OutRank as a Python library

    + +

    Once installed, _OutRank_ can be used as any other Python library. For example, generic feature ranking algorithms can be accessed as

    + +
    +
    from outrank.algorithms.feature_ranking.ranking_mi_numba import (
    +    mutual_info_estimator_numba,
    +)
    +
    +# Some synthetic minimal data (Numpy vectors)
    +a = np.array([1, 0, 0, 0, 1, 1, 1, 0], dtype=np.int32)
    +
    +lowest = np.array(np.random.permutation(a), dtype=np.int32)
    +medium = np.array([1, 1, 0, 0, 1, 1, 1, 1], dtype=np.int32)
    +high = np.array([1, 0, 0, 0, 1, 1, 1, 1], dtype=np.int32)
    +
    +lowest_score = mutual_info_estimator_numba(
    +    a, lowest, np.float32(1.0), False,
    +)
    +medium_score = mutual_info_estimator_numba(
    +    a, medium, np.float32(1.0), False,
    +)
    +high_score = mutual_info_estimator_numba(
    +    a, high, np.float32(1.0), False,
    +)
    +
    +scores = [lowest_score, medium_score, high_score]
    +sorted_score_indices = np.argsort(scores)
    +assert np.sum(np.array([0, 1, 2]) - sorted_score_indices) ==  0
    +
    +
    diff --git a/docs/outrank/algorithms/feature_ranking/ranking_mi_numba.html b/docs/outrank/algorithms/feature_ranking/ranking_mi_numba.html index af09096..08c2ab4 100644 --- a/docs/outrank/algorithms/feature_ranking/ranking_mi_numba.html +++ b/docs/outrank/algorithms/feature_ranking/ranking_mi_numba.html @@ -94,7 +94,7 @@

    29 30 31@njit( - 32 'float32(int32[:], int32[:], int32, float32, int32[:])', + 32 'float32(uint32[:], int32[:], int32, float32, uint32[:])', 33 cache=True, 34 fastmath=True, 35 error_model='numpy', @@ -147,114 +147,120 @@

    82 initial_prob = _f_value_counts / all_events 83 x_value_subspace = np.where(X == f_values[f_index]) 84 - 85 Y_classes = Y[x_value_subspace] - 86 Y_classes_spoofed = np.roll(Y, _f_value_counts)[x_value_subspace] + 85 Y_classes = Y[x_value_subspace].astype(np.uint32) + 86 subspace_size = x_value_subspace[0].size 87 - 88 nonzero_class_counts = np.zeros(len(class_values), dtype=np.int32) - 89 nonzero_class_counts_spoofed = np.zeros(len(class_values), dtype=np.int32) - 90 - 91 # Cache nonzero counts - 92 for index, c in enumerate(class_values): - 93 nonzero_class_counts[index] = np.count_nonzero(Y_classes == c) - 94 nonzero_class_counts_spoofed[index] = np.count_nonzero(Y_classes_spoofed == c) - 95 - 96 conditional_entropy += compute_conditional_entropy( - 97 Y_classes, class_values, _f_value_counts, initial_prob, nonzero_class_counts, - 98 ) - 99 -100 if cardinality_correction: -101 background_cond_entropy += compute_conditional_entropy( -102 Y_classes_spoofed, class_values, _f_value_counts, initial_prob, nonzero_class_counts_spoofed, -103 ) -104 -105 if not cardinality_correction: -106 return full_entropy - conditional_entropy -107 -108 else: -109 # note: full entropy falls out during derivation of final term -110 core_joint_entropy = -conditional_entropy + background_cond_entropy -111 return core_joint_entropy -112 + 88 # Right-shift to simulate noise + 89 Y_classes_spoofed = np.zeros(subspace_size, dtype=np.uint32) + 90 for enx, el in enumerate(x_value_subspace[0]): + 91 index = (el + _f_value_counts) % len(Y) + 92 Y_classes_spoofed[enx] = Y[index] + 93 + 94 nonzero_class_counts = np.zeros(len(class_values), dtype=np.uint32) + 95 nonzero_class_counts_spoofed = np.zeros(len(class_values), dtype=np.uint32) + 96 + 97 # Cache nonzero counts + 98 for index, c in enumerate(class_values): + 99 nonzero_class_counts[index] = np.count_nonzero(Y_classes == c) +100 nonzero_class_counts_spoofed[index] = np.count_nonzero(Y_classes_spoofed == c) +101 +102 conditional_entropy += compute_conditional_entropy( +103 Y_classes, class_values, _f_value_counts, initial_prob, nonzero_class_counts, +104 ) +105 +106 if cardinality_correction: +107 background_cond_entropy += compute_conditional_entropy( +108 Y_classes_spoofed, class_values, _f_value_counts, initial_prob, nonzero_class_counts_spoofed, +109 ) +110 +111 if not cardinality_correction: +112 return full_entropy - conditional_entropy 113 -114@njit( -115 'float32(int32[:], int32[:], float32, b1)', -116 cache=True, -117 fastmath=True, -118 error_model='numpy', -119 boundscheck=True, -120) -121def mutual_info_estimator_numba( -122 Y, X, approximation_factor=1, cardinality_correction=False, -123): -124 """Core estimator logic. Compute unique elements, subset if required""" -125 -126 all_events = len(X) -127 f_values, f_value_counts = numba_unique(X) -128 -129 # Diagonal entries -130 if np.sum(X - Y) == 0: -131 cardinality_correction = False -132 -133 if approximation_factor < 1: -134 subspace_size = int(approximation_factor * all_events) -135 if subspace_size != 0: -136 subspace = np.random.randint(0, all_events, size=subspace_size) -137 X = X[subspace] -138 Y = Y[subspace] -139 -140 joint_entropy_core = compute_entropies( -141 X, Y, all_events, f_values, f_value_counts, cardinality_correction, -142 ) -143 -144 return approximation_factor * joint_entropy_core +114 else: +115 # note: full entropy falls out during derivation of final term +116 core_joint_entropy = -conditional_entropy + background_cond_entropy +117 return core_joint_entropy +118 +119 +120@njit( +121 'float32(int32[:], int32[:], float32, b1)', +122 cache=True, +123 fastmath=True, +124 error_model='numpy', +125 boundscheck=True, +126) +127def mutual_info_estimator_numba( +128 Y, X, approximation_factor=1, cardinality_correction=False, +129): +130 """Core estimator logic. Compute unique elements, subset if required""" +131 +132 all_events = len(X) +133 f_values, f_value_counts = numba_unique(X) +134 +135 # Diagonal entries +136 if np.sum(X - Y) == 0: +137 cardinality_correction = False +138 +139 if approximation_factor < 1: +140 subspace_size = int(approximation_factor * all_events) +141 if subspace_size != 0: +142 subspace = np.random.randint(0, all_events, size=subspace_size) +143 X = X[subspace] +144 Y = Y[subspace] 145 -146 -147if __name__ == '__main__': -148 import pandas as pd -149 from sklearn.feature_selection import mutual_info_classif -150 -151 np.random.seed(123) -152 import time -153 -154 final_times = [] -155 for algo in ['MI-numba-randomized']: -156 for order in range(20, 21): -157 for j in range(1): -158 start = time.time() -159 a = np.random.randint(1000, size=2**order).astype(np.int32) -160 b = np.random.randint(1000, size=2**order).astype(np.int32) -161 if algo == 'MI': -162 final_score = mutual_info_classif( -163 a.reshape(-1, 1), b.reshape(-1), discrete_features=True, -164 ) -165 elif algo == 'MI-numba-randomized': -166 final_score = mutual_info_estimator_numba( -167 a, b, np.float32(1.0), True, -168 ) -169 elif algo == 'MI-numba': -170 final_score = mutual_info_estimator_numba( -171 a, b, np.float32(1.0), False, -172 ) -173 elif algo == 'MI-numba-randomized-ap': -174 final_score = mutual_info_estimator_numba( -175 a, b, np.float32(0.3), True, -176 ) -177 elif algo == 'MI-numba-ap': -178 final_score = mutual_info_estimator_numba( -179 a, b, np.float32(0.3), False, -180 ) -181 -182 end = time.time() -183 tdiff = end - start -184 instance = { -185 'time': tdiff, -186 'samples 2e': order, 'algorithm': algo, -187 } -188 final_times.append(instance) -189 print(instance) -190 dfx = pd.DataFrame(final_times) -191 dfx = dfx.sort_values(by=['samples 2e']) -192 print(dfx) +146 joint_entropy_core = compute_entropies( +147 X, Y, all_events, f_values, f_value_counts, cardinality_correction, +148 ) +149 +150 return approximation_factor * joint_entropy_core +151 +152 +153if __name__ == '__main__': +154 import pandas as pd +155 from sklearn.feature_selection import mutual_info_classif +156 +157 np.random.seed(123) +158 import time +159 +160 final_times = [] +161 for algo in ['MI-numba-randomized']: +162 for order in range(20, 21): +163 for j in range(1): +164 start = time.time() +165 a = np.random.randint(1000, size=2**order).astype(np.int32) +166 b = np.random.randint(1000, size=2**order).astype(np.int32) +167 if algo == 'MI': +168 final_score = mutual_info_classif( +169 a.reshape(-1, 1), b.reshape(-1), discrete_features=True, +170 ) +171 elif algo == 'MI-numba-randomized': +172 final_score = mutual_info_estimator_numba( +173 a, b, np.float32(1.0), True, +174 ) +175 elif algo == 'MI-numba': +176 final_score = mutual_info_estimator_numba( +177 a, b, np.float32(1.0), False, +178 ) +179 elif algo == 'MI-numba-randomized-ap': +180 final_score = mutual_info_estimator_numba( +181 a, b, np.float32(0.3), True, +182 ) +183 elif algo == 'MI-numba-ap': +184 final_score = mutual_info_estimator_numba( +185 a, b, np.float32(0.3), False, +186 ) +187 +188 end = time.time() +189 tdiff = end - start +190 instance = { +191 'time': tdiff, +192 'samples 2e': order, 'algorithm': algo, +193 } +194 final_times.append(instance) +195 print(instance) +196 dfx = pd.DataFrame(final_times) +197 dfx = dfx.sort_values(by=['samples 2e']) +198 print(dfx) @@ -300,7 +306,7 @@

    -
    @njit('float32(int32[:], int32[:], int32, float32, int32[:])', cache=True, fastmath=True, error_model='numpy', boundscheck=True)
    +
    @njit('float32(uint32[:], int32[:], int32, float32, uint32[:])', cache=True, fastmath=True, error_model='numpy', boundscheck=True)
    def compute_conditional_entropy( Y_classes, class_values, class_var_shape, initial_prob, nonzero_counts): @@ -310,7 +316,7 @@

    32@njit(
    -33    'float32(int32[:], int32[:], int32, float32, int32[:])',
    +33    'float32(uint32[:], int32[:], int32, float32, uint32[:])',
     34    cache=True,
     35    fastmath=True,
     36    error_model='numpy',
    @@ -379,33 +385,39 @@ 

    83 initial_prob = _f_value_counts / all_events 84 x_value_subspace = np.where(X == f_values[f_index]) 85 - 86 Y_classes = Y[x_value_subspace] - 87 Y_classes_spoofed = np.roll(Y, _f_value_counts)[x_value_subspace] + 86 Y_classes = Y[x_value_subspace].astype(np.uint32) + 87 subspace_size = x_value_subspace[0].size 88 - 89 nonzero_class_counts = np.zeros(len(class_values), dtype=np.int32) - 90 nonzero_class_counts_spoofed = np.zeros(len(class_values), dtype=np.int32) - 91 - 92 # Cache nonzero counts - 93 for index, c in enumerate(class_values): - 94 nonzero_class_counts[index] = np.count_nonzero(Y_classes == c) - 95 nonzero_class_counts_spoofed[index] = np.count_nonzero(Y_classes_spoofed == c) - 96 - 97 conditional_entropy += compute_conditional_entropy( - 98 Y_classes, class_values, _f_value_counts, initial_prob, nonzero_class_counts, - 99 ) -100 -101 if cardinality_correction: -102 background_cond_entropy += compute_conditional_entropy( -103 Y_classes_spoofed, class_values, _f_value_counts, initial_prob, nonzero_class_counts_spoofed, -104 ) -105 -106 if not cardinality_correction: -107 return full_entropy - conditional_entropy -108 -109 else: -110 # note: full entropy falls out during derivation of final term -111 core_joint_entropy = -conditional_entropy + background_cond_entropy -112 return core_joint_entropy + 89 # Right-shift to simulate noise + 90 Y_classes_spoofed = np.zeros(subspace_size, dtype=np.uint32) + 91 for enx, el in enumerate(x_value_subspace[0]): + 92 index = (el + _f_value_counts) % len(Y) + 93 Y_classes_spoofed[enx] = Y[index] + 94 + 95 nonzero_class_counts = np.zeros(len(class_values), dtype=np.uint32) + 96 nonzero_class_counts_spoofed = np.zeros(len(class_values), dtype=np.uint32) + 97 + 98 # Cache nonzero counts + 99 for index, c in enumerate(class_values): +100 nonzero_class_counts[index] = np.count_nonzero(Y_classes == c) +101 nonzero_class_counts_spoofed[index] = np.count_nonzero(Y_classes_spoofed == c) +102 +103 conditional_entropy += compute_conditional_entropy( +104 Y_classes, class_values, _f_value_counts, initial_prob, nonzero_class_counts, +105 ) +106 +107 if cardinality_correction: +108 background_cond_entropy += compute_conditional_entropy( +109 Y_classes_spoofed, class_values, _f_value_counts, initial_prob, nonzero_class_counts_spoofed, +110 ) +111 +112 if not cardinality_correction: +113 return full_entropy - conditional_entropy +114 +115 else: +116 # note: full entropy falls out during derivation of final term +117 core_joint_entropy = -conditional_entropy + background_cond_entropy +118 return core_joint_entropy

    @@ -426,37 +438,37 @@

    -
    115@njit(
    -116    'float32(int32[:], int32[:], float32, b1)',
    -117    cache=True,
    -118    fastmath=True,
    -119    error_model='numpy',
    -120    boundscheck=True,
    -121)
    -122def mutual_info_estimator_numba(
    -123    Y, X, approximation_factor=1, cardinality_correction=False,
    -124):
    -125    """Core estimator logic. Compute unique elements, subset if required"""
    -126
    -127    all_events = len(X)
    -128    f_values, f_value_counts = numba_unique(X)
    -129
    -130    # Diagonal entries
    -131    if np.sum(X - Y) == 0:
    -132        cardinality_correction = False
    -133
    -134    if approximation_factor < 1:
    -135        subspace_size = int(approximation_factor * all_events)
    -136        if subspace_size != 0:
    -137            subspace = np.random.randint(0, all_events, size=subspace_size)
    -138            X = X[subspace]
    -139            Y = Y[subspace]
    -140
    -141    joint_entropy_core = compute_entropies(
    -142        X, Y, all_events, f_values, f_value_counts, cardinality_correction,
    -143    )
    -144
    -145    return approximation_factor * joint_entropy_core
    +            
    121@njit(
    +122    'float32(int32[:], int32[:], float32, b1)',
    +123    cache=True,
    +124    fastmath=True,
    +125    error_model='numpy',
    +126    boundscheck=True,
    +127)
    +128def mutual_info_estimator_numba(
    +129    Y, X, approximation_factor=1, cardinality_correction=False,
    +130):
    +131    """Core estimator logic. Compute unique elements, subset if required"""
    +132
    +133    all_events = len(X)
    +134    f_values, f_value_counts = numba_unique(X)
    +135
    +136    # Diagonal entries
    +137    if np.sum(X - Y) == 0:
    +138        cardinality_correction = False
    +139
    +140    if approximation_factor < 1:
    +141        subspace_size = int(approximation_factor * all_events)
    +142        if subspace_size != 0:
    +143            subspace = np.random.randint(0, all_events, size=subspace_size)
    +144            X = X[subspace]
    +145            Y = Y[subspace]
    +146
    +147    joint_entropy_core = compute_entropies(
    +148        X, Y, all_events, f_values, f_value_counts, cardinality_correction,
    +149    )
    +150
    +151    return approximation_factor * joint_entropy_core
     
    diff --git a/docs/outrank/core_ranking.html b/docs/outrank/core_ranking.html index 35caebf..3daf898 100644 --- a/docs/outrank/core_ranking.html +++ b/docs/outrank/core_ranking.html @@ -51,6 +51,9 @@

    API Documentation

  • prior_combinations_sample
  • +
  • + get_combinations_from_columns +
  • mixed_rank_graph
  • @@ -165,694 +168,698 @@

    43IGNORED_VALUES = set() 44HYPERLL_ERROR_BOUND = 0.02 45 - 46def prior_combinations_sample(combinations: list[tuple[Any, ...]], args: Any) -> list[tuple[Any, ...]]: - 47 """Make sure only relevant subspace of combinations is selected based on prior counts""" - 48 - 49 if len(GLOBAL_PRIOR_COMB_COUNTS) == 0: - 50 for combination in combinations: - 51 GLOBAL_PRIOR_COMB_COUNTS[combination] += 1 - 52 tmp = combinations[:args.combination_number_upper_bound] - 53 else: - 54 tmp = list(x[0] for x in sorted(GLOBAL_PRIOR_COMB_COUNTS.items(), key=lambda x:x[1], reverse=False))[:args.combination_number_upper_bound] - 55 - 56 for combination in tmp: - 57 GLOBAL_PRIOR_COMB_COUNTS[combination] += 1 - 58 - 59 return tmp - 60 + 46 + 47def prior_combinations_sample(combinations: list[tuple[Any, ...]], args: Any) -> list[tuple[Any, ...]]: + 48 """Make sure only relevant subspace of combinations is selected based on prior counts""" + 49 + 50 if len(GLOBAL_PRIOR_COMB_COUNTS) == 0: + 51 for combination in combinations: + 52 GLOBAL_PRIOR_COMB_COUNTS[combination] += 1 + 53 tmp = combinations[:args.combination_number_upper_bound] + 54 else: + 55 tmp = list(x[0] for x in sorted(GLOBAL_PRIOR_COMB_COUNTS.items(), key=lambda x:x[1], reverse=False))[:args.combination_number_upper_bound] + 56 + 57 for combination in tmp: + 58 GLOBAL_PRIOR_COMB_COUNTS[combination] += 1 + 59 + 60 return tmp 61 - 62def mixed_rank_graph( - 63 input_dataframe: pd.DataFrame, args: Any, cpu_pool: Any, pbar: Any, - 64) -> BatchRankingSummary: - 65 """Compute the full mixed rank graph corresponding to all pairwise feature interactions based on the selected heuristic""" - 66 - 67 all_columns = input_dataframe.columns - 68 - 69 triplets = [] - 70 tmp_df = input_dataframe.copy().astype('category') - 71 out_time_struct = {} - 72 - 73 # Handle cont. types prior to interaction evaluation - 74 pbar.set_description('Encoding columns') - 75 start_enc_timer = timer() - 76 tmp_df = pd.DataFrame({k : tmp_df[k].cat.codes for k in all_columns}) - 77 - 78 end_enc_timer = timer() - 79 out_time_struct['encoding_columns'] = end_enc_timer - start_enc_timer - 80 - 81 # Helper method for parallel estimation - 82 combinations = list( - 83 itertools.combinations_with_replacement(all_columns, 2), - 84 ) - 85 - 86 if '3mr' in args.heuristic: - 87 rel_columns = [ - 88 column for column in all_columns if ' AND_REL ' in column + 62 + 63def get_combinations_from_columns(all_columns: pd.Index, args: Any) -> list[tuple[Any, ...]]: + 64 """Return feature-feature & feature-label combinations, depending on the heuristic and ranking scope""" + 65 + 66 if '3mr' in args.heuristic: + 67 rel_columns = [column for column in all_columns if ' AND_REL ' in column] + 68 non_rel_columns = sorted(set(all_columns) - set(rel_columns)) + 69 + 70 combinations = list( + 71 itertools.combinations_with_replacement(non_rel_columns, 2), + 72 ) + 73 combinations += [(column, args.label_column) for column in rel_columns] + 74 else: + 75 _combinations = itertools.combinations_with_replacement(all_columns, 2) + 76 + 77 # Some applications do not require the full feature-feature triangular matrix + 78 if args.target_ranking_only == 'True': + 79 combinations = [x for x in _combinations if args.label_column in x] + 80 else: + 81 combinations = list(_combinations) + 82 + 83 if args.target_ranking_only != 'True': + 84 # Diagonal elements (non-label) + 85 combinations += [ + 86 (individual_column, individual_column) + 87 for individual_column in all_columns + 88 if individual_column != args.label_column 89 ] - 90 non_rel_columns = list(set(all_columns) - set(rel_columns)) - 91 combinations = list( - 92 itertools.combinations_with_replacement(non_rel_columns, 2), - 93 ) - 94 combinations += [(column, args.label_column) for column in rel_columns] - 95 else: - 96 combinations = list( - 97 itertools.combinations_with_replacement(all_columns, 2), - 98 ) + 90 return combinations + 91 + 92 + 93def mixed_rank_graph( + 94 input_dataframe: pd.DataFrame, args: Any, cpu_pool: Any, pbar: Any, + 95) -> BatchRankingSummary: + 96 """Compute the full mixed rank graph corresponding to all pairwise feature interactions based on the selected heuristic""" + 97 + 98 all_columns = input_dataframe.columns 99 -100 # Diagonal elements -101 for individual_column in all_columns: -102 if individual_column != args.label_column: -103 combinations += [(individual_column, individual_column)] -104 -105 # Some applications do not require the full feature-feature triangular matrix -106 if (args.target_ranking_only == 'True') and ('3mr' not in args.heuristic): -107 combinations = [x for x in combinations if args.label_column in x] +100 triplets = [] +101 tmp_df = input_dataframe.copy().astype('category') +102 out_time_struct = {} +103 +104 # Handle cont. types prior to interaction evaluation +105 pbar.set_description('Encoding columns') +106 start_enc_timer = timer() +107 tmp_df = pd.DataFrame({k : tmp_df[k].cat.codes for k in all_columns}) 108 -109 combinations = prior_combinations_sample(combinations, args) -110 random.shuffle(combinations) +109 end_enc_timer = timer() +110 out_time_struct['encoding_columns'] = end_enc_timer - start_enc_timer 111 -112 if args.heuristic == 'Constant': -113 final_constant_imp = [] -114 for c1, c2 in combinations: -115 final_constant_imp.append((c1, c2, 0.0)) -116 -117 out_time_struct['feature_score_computation'] = end_enc_timer - \ -118 start_enc_timer -119 return BatchRankingSummary(final_constant_imp, out_time_struct) +112 combinations = get_combinations_from_columns(all_columns, args) +113 combinations = prior_combinations_sample(combinations, args) +114 random.shuffle(combinations) +115 +116 if args.heuristic == 'Constant': +117 final_constant_imp = [] +118 for c1, c2 in combinations: +119 final_constant_imp.append((c1, c2, 0.0)) 120 -121 # Map the scoring calls to the worker pool -122 pbar.set_description('Allocating thread pool') -123 -124 # starmap is an alternative that is slower unfortunately (but nicer) -125 def get_grounded_importances_estimate(combination: tuple[str]) -> Any: -126 return get_importances_estimate_pairwise(combination, args, tmp_df=tmp_df) +121 out_time_struct['feature_score_computation'] = end_enc_timer - \ +122 start_enc_timer +123 return BatchRankingSummary(final_constant_imp, out_time_struct) +124 +125 # Map the scoring calls to the worker pool +126 pbar.set_description('Allocating thread pool') 127 -128 start_enc_timer = timer() -129 with cpu_pool as p: -130 pbar.set_description(f'Computing (#ftr={len(combinations)})') -131 results = p.amap(get_grounded_importances_estimate, combinations) -132 while not results.ready(): -133 time.sleep(4) -134 triplets = results.get() -135 end_enc_timer = timer() -136 out_time_struct['feature_score_computation'] = end_enc_timer - \ -137 start_enc_timer -138 -139 # Gather the final triplets -140 pbar.set_description('Aggregation of ranking results') -141 final_triplets = [] -142 for triplet in triplets: -143 inv = (triplet[1], triplet[0], triplet[2]) -144 final_triplets.append(inv) -145 final_triplets.append(triplet) -146 triplets = final_triplets -147 -148 pbar.set_description('Proceeding to the next batch of data') -149 return BatchRankingSummary(triplets, out_time_struct) -150 +128 # starmap is an alternative that is slower unfortunately (but nicer) +129 def get_grounded_importances_estimate(combination: tuple[str]) -> Any: +130 return get_importances_estimate_pairwise(combination, args, tmp_df=tmp_df) +131 +132 start_enc_timer = timer() +133 with cpu_pool as p: +134 pbar.set_description(f'Computing (#ftr={len(combinations)})') +135 results = p.amap(get_grounded_importances_estimate, combinations) +136 while not results.ready(): +137 time.sleep(4) +138 triplets = results.get() +139 end_enc_timer = timer() +140 out_time_struct['feature_score_computation'] = end_enc_timer - \ +141 start_enc_timer +142 +143 # Gather the final triplets +144 pbar.set_description('Aggregation of ranking results') +145 final_triplets = [] +146 for triplet in triplets: +147 inv = (triplet[1], triplet[0], triplet[2]) +148 final_triplets.append(inv) +149 final_triplets.append(triplet) +150 triplets = final_triplets 151 -152def enrich_with_transformations( -153 input_dataframe: pd.DataFrame, num_col_types: set[str], logger: Any, args: Any, -154) -> pd.DataFrame: -155 """Construct a collection of new features based on pre-defined transformations/rules""" -156 -157 transformer = FeatureTransformerGeneric( -158 num_col_types, preset=args.transformers, -159 ) -160 transformed_df = transformer.construct_new_features(input_dataframe) -161 logger.info( -162 f'Constructed {len(transformer.constructed_feature_names)} new features ..', +152 pbar.set_description('Proceeding to the next batch of data') +153 return BatchRankingSummary(triplets, out_time_struct) +154 +155 +156def enrich_with_transformations( +157 input_dataframe: pd.DataFrame, num_col_types: set[str], logger: Any, args: Any, +158) -> pd.DataFrame: +159 """Construct a collection of new features based on pre-defined transformations/rules""" +160 +161 transformer = FeatureTransformerGeneric( +162 num_col_types, preset=args.transformers, 163 ) -164 -165 return transformed_df -166 -167 -168def compute_combined_features( -169 input_dataframe: pd.DataFrame, -170 logger: Any, -171 args: Any, -172 pbar: Any, -173 is_3mr: bool = False, -174) -> pd.DataFrame: -175 """Compute higher order features via xxhash-based trick.""" -176 -177 all_columns = [ -178 x for x in input_dataframe.columns if x != args.label_column -179 ] -180 join_string = ' AND_REL ' if is_3mr else ' AND ' -181 interaction_order = 2 if is_3mr else args.interaction_order -182 -183 full_combination_space = list( -184 itertools.combinations(all_columns, interaction_order), -185 ) +164 transformed_df = transformer.construct_new_features(input_dataframe) +165 logger.info( +166 f'Constructed {len(transformer.constructed_feature_names)} new features ..', +167 ) +168 +169 return transformed_df +170 +171 +172def compute_combined_features( +173 input_dataframe: pd.DataFrame, +174 logger: Any, +175 args: Any, +176 pbar: Any, +177 is_3mr: bool = False, +178) -> pd.DataFrame: +179 """Compute higher order features via xxhash-based trick.""" +180 +181 all_columns = [ +182 x for x in input_dataframe.columns if x != args.label_column +183 ] +184 join_string = ' AND_REL ' if is_3mr else ' AND ' +185 interaction_order = 2 if is_3mr else args.interaction_order 186 -187 if args.combination_number_upper_bound: -188 random.shuffle(full_combination_space) -189 full_combination_space = full_combination_space[ -190 : args.combination_number_upper_bound -191 ] -192 -193 com_counter = 0 -194 new_feature_hash = {} -195 for new_combination in full_combination_space: -196 pbar.set_description( -197 f'Created {com_counter}/{len(full_combination_space)}', -198 ) -199 combined_feature: list[str] = [str(0)] * input_dataframe.shape[0] -200 for feature in new_combination: -201 tmp_feature = input_dataframe[feature].tolist() -202 for enx, el in enumerate(tmp_feature): -203 combined_feature[enx] = str( -204 internal_hash( -205 str(combined_feature[enx]) + str(el), -206 ), -207 ) -208 ftr_name = join_string.join(str(x) for x in new_combination) -209 new_feature_hash[ftr_name] = combined_feature -210 com_counter += 1 -211 tmp_df = pd.DataFrame(new_feature_hash) -212 pbar.set_description('Concatenating into final frame ..') -213 input_dataframe = pd.concat([input_dataframe, tmp_df], axis=1) -214 del tmp_df -215 -216 return input_dataframe -217 -218 -219def compute_expanded_multivalue_features( -220 input_dataframe: pd.DataFrame, logger: Any, args: Any, pbar: Any, -221) -> pd.DataFrame: -222 """Compute one-hot encoded feature space based on each designated multivalue feature. E.g., feature with value "a,b,c" becomes three features, values of which are presence of a given value in a mutlivalue feature of choice.""" -223 -224 considered_multivalue_features = args.explode_multivalue_features.split( -225 ';', -226 ) -227 new_feature_hash = {} -228 missing_symbols = set(args.missing_value_symbols.split(',')) -229 -230 for multivalue_feature in considered_multivalue_features: -231 multivalue_feature_vector = input_dataframe[multivalue_feature].values.tolist( -232 ) -233 multivalue_feature_vector = [ -234 x.replace(',', '-') for x in multivalue_feature_vector -235 ] -236 multivalue_sets = [ -237 set(x.split('-')) -238 for x in multivalue_feature_vector +187 full_combination_space = list( +188 itertools.combinations(all_columns, interaction_order), +189 ) +190 +191 if args.combination_number_upper_bound: +192 random.shuffle(full_combination_space) +193 full_combination_space = full_combination_space[ +194 : args.combination_number_upper_bound +195 ] +196 +197 com_counter = 0 +198 new_feature_hash = {} +199 for new_combination in full_combination_space: +200 pbar.set_description( +201 f'Created {com_counter}/{len(full_combination_space)}', +202 ) +203 combined_feature: list[str] = [str(0)] * input_dataframe.shape[0] +204 for feature in new_combination: +205 tmp_feature = input_dataframe[feature].tolist() +206 for enx, el in enumerate(tmp_feature): +207 combined_feature[enx] = str( +208 internal_hash( +209 str(combined_feature[enx]) + str(el), +210 ), +211 ) +212 ftr_name = join_string.join(str(x) for x in new_combination) +213 new_feature_hash[ftr_name] = combined_feature +214 com_counter += 1 +215 tmp_df = pd.DataFrame(new_feature_hash) +216 pbar.set_description('Concatenating into final frame ..') +217 input_dataframe = pd.concat([input_dataframe, tmp_df], axis=1) +218 del tmp_df +219 +220 return input_dataframe +221 +222 +223def compute_expanded_multivalue_features( +224 input_dataframe: pd.DataFrame, logger: Any, args: Any, pbar: Any, +225) -> pd.DataFrame: +226 """Compute one-hot encoded feature space based on each designated multivalue feature. E.g., feature with value "a,b,c" becomes three features, values of which are presence of a given value in a mutlivalue feature of choice.""" +227 +228 considered_multivalue_features = args.explode_multivalue_features.split( +229 ';', +230 ) +231 new_feature_hash = {} +232 missing_symbols = set(args.missing_value_symbols.split(',')) +233 +234 for multivalue_feature in considered_multivalue_features: +235 multivalue_feature_vector = input_dataframe[multivalue_feature].values.tolist( +236 ) +237 multivalue_feature_vector = [ +238 x.replace(',', '-') for x in multivalue_feature_vector 239 ] -240 unique_values = set.union(*multivalue_sets) -241 -242 for missing_symbol in missing_symbols: -243 if missing_symbol in unique_values: -244 unique_values.remove(missing_symbol) +240 multivalue_sets = [ +241 set(x.split('-')) +242 for x in multivalue_feature_vector +243 ] +244 unique_values = set.union(*multivalue_sets) 245 -246 for unique_value in unique_values: -247 tmp_vec = [] -248 for enx, multivalue in enumerate(multivalue_sets): -249 if unique_value in multivalue: -250 tmp_vec.append('1') -251 else: -252 tmp_vec.append('') -253 -254 new_feature_hash[f'MULTIEX-{multivalue_feature}-{unique_value}'] = tmp_vec -255 -256 tmp_df = pd.DataFrame(new_feature_hash) -257 input_dataframe = pd.concat([input_dataframe, tmp_df], axis=1) -258 del tmp_df +246 for missing_symbol in missing_symbols: +247 if missing_symbol in unique_values: +248 unique_values.remove(missing_symbol) +249 +250 for unique_value in unique_values: +251 tmp_vec = [] +252 for enx, multivalue in enumerate(multivalue_sets): +253 if unique_value in multivalue: +254 tmp_vec.append('1') +255 else: +256 tmp_vec.append('') +257 +258 new_feature_hash[f'MULTIEX-{multivalue_feature}-{unique_value}'] = tmp_vec 259 -260 return input_dataframe -261 -262 -263def compute_subfeatures( -264 input_dataframe: pd.DataFrame, logger: Any, args: Any, pbar: Any, -265) -> pd.DataFrame: -266 """Compute derived features that are more fine-grained. Implements logic around two operators that govern feature construction. -267 ->: One sided construction - every value from left side is fine, separate ones from the right side feature will be considered. -268 <->: Two sided construction - two-sided values present. This means that each value from a is combined with each from b, forming |A|*|B| new features (one-hot encoded) -269 """ -270 -271 all_subfeature_pair_seeds = args.subfeature_mapping.split(';') -272 new_feature_hash = dict() -273 -274 for seed_pair in all_subfeature_pair_seeds: -275 if '<->' in seed_pair: -276 feature_first, feature_second = seed_pair.split('<->') +260 tmp_df = pd.DataFrame(new_feature_hash) +261 input_dataframe = pd.concat([input_dataframe, tmp_df], axis=1) +262 del tmp_df +263 +264 return input_dataframe +265 +266 +267def compute_subfeatures( +268 input_dataframe: pd.DataFrame, logger: Any, args: Any, pbar: Any, +269) -> pd.DataFrame: +270 """Compute derived features that are more fine-grained. Implements logic around two operators that govern feature construction. +271 ->: One sided construction - every value from left side is fine, separate ones from the right side feature will be considered. +272 <->: Two sided construction - two-sided values present. This means that each value from a is combined with each from b, forming |A|*|B| new features (one-hot encoded) +273 """ +274 +275 all_subfeature_pair_seeds = args.subfeature_mapping.split(';') +276 new_feature_hash = dict() 277 -278 elif '->' in seed_pair: -279 feature_first, feature_second = seed_pair.split('->') -280 -281 else: -282 raise NotImplementedError( -283 'Please specify valid subfeature operator (<-> or ->)', -284 ) -285 -286 subframe = input_dataframe[[feature_first, feature_second]] -287 unique_feature_second = subframe[feature_second].unique() -288 feature_first_vec = subframe[feature_first].tolist() -289 feature_second_vec = subframe[feature_second].tolist() -290 out_template_feature = [ -291 (a, b) for a, b in zip(feature_first_vec, feature_second_vec) -292 ] -293 -294 if '<->' in seed_pair: -295 unique_feature_first = subframe[feature_first].unique() -296 -297 mask_types = [] -298 for unique_target_feature_value in unique_feature_second: -299 for unique_seed_feature_value in unique_feature_first: -300 mask_types.append( -301 (unique_seed_feature_value, unique_target_feature_value), -302 ) -303 -304 for mask_type in mask_types: -305 new_feature = [] -306 for value_tuple in out_template_feature: -307 if ( -308 value_tuple[0] == mask_type[0] -309 and value_tuple[1] == mask_type[1] -310 ): -311 new_feature.append(str(1)) -312 else: -313 new_feature.append(str(0)) -314 feature_name = ( -315 f'SUBFEATURE|{feature_first}|{feature_second}-' -316 + mask_type[0] -317 + '&' -318 + mask_type[1] -319 ) -320 new_feature_hash[feature_name] = new_feature -321 -322 del new_feature -323 -324 elif '->' in seed_pair: -325 for unique_target_feature_value in unique_feature_second: -326 tmp_new_feature = [ -327 'AND'.join( -328 x, -329 ) if x[1] == unique_target_feature_value else '' -330 for x in out_template_feature -331 ] -332 feature_name_final = ( -333 'SUBFEATURE-' + feature_first + '&' + unique_target_feature_value -334 ) -335 new_feature_hash[feature_name_final] = tmp_new_feature -336 -337 tmp_df = pd.DataFrame(new_feature_hash) -338 input_dataframe = pd.concat([input_dataframe, tmp_df], axis=1) -339 -340 del tmp_df -341 return input_dataframe -342 +278 for seed_pair in all_subfeature_pair_seeds: +279 if '<->' in seed_pair: +280 feature_first, feature_second = seed_pair.split('<->') +281 +282 elif '->' in seed_pair: +283 feature_first, feature_second = seed_pair.split('->') +284 +285 else: +286 raise NotImplementedError( +287 'Please specify valid subfeature operator (<-> or ->)', +288 ) +289 +290 subframe = input_dataframe[[feature_first, feature_second]] +291 unique_feature_second = subframe[feature_second].unique() +292 feature_first_vec = subframe[feature_first].tolist() +293 feature_second_vec = subframe[feature_second].tolist() +294 out_template_feature = [ +295 (a, b) for a, b in zip(feature_first_vec, feature_second_vec) +296 ] +297 +298 if '<->' in seed_pair: +299 unique_feature_first = subframe[feature_first].unique() +300 +301 mask_types = [] +302 for unique_target_feature_value in unique_feature_second: +303 for unique_seed_feature_value in unique_feature_first: +304 mask_types.append( +305 (unique_seed_feature_value, unique_target_feature_value), +306 ) +307 +308 for mask_type in mask_types: +309 new_feature = [] +310 for value_tuple in out_template_feature: +311 if ( +312 value_tuple[0] == mask_type[0] +313 and value_tuple[1] == mask_type[1] +314 ): +315 new_feature.append(str(1)) +316 else: +317 new_feature.append(str(0)) +318 feature_name = ( +319 f'SUBFEATURE|{feature_first}|{feature_second}-' +320 + mask_type[0] +321 + '&' +322 + mask_type[1] +323 ) +324 new_feature_hash[feature_name] = new_feature +325 +326 del new_feature +327 +328 elif '->' in seed_pair: +329 for unique_target_feature_value in unique_feature_second: +330 tmp_new_feature = [ +331 'AND'.join( +332 x, +333 ) if x[1] == unique_target_feature_value else '' +334 for x in out_template_feature +335 ] +336 feature_name_final = ( +337 'SUBFEATURE-' + feature_first + '&' + unique_target_feature_value +338 ) +339 new_feature_hash[feature_name_final] = tmp_new_feature +340 +341 tmp_df = pd.DataFrame(new_feature_hash) +342 input_dataframe = pd.concat([input_dataframe, tmp_df], axis=1) 343 -344def include_noisy_features( -345 input_dataframe: pd.DataFrame, logger: Any, args: Any, -346) -> pd.DataFrame: -347 """Add randomized features that serve as a sanity check""" -348 -349 transformer = FeatureTransformerNoise() -350 transformed_df = transformer.construct_new_features( -351 input_dataframe, args.label_column, -352 ) -353 -354 return transformed_df -355 -356 -357def compute_coverage(input_dataframe: pd.DataFrame, args: Any) -> dict[str, set[str]]: -358 """Compute coverage of features, incrementally""" -359 output_storage_cov = defaultdict(set) -360 all_missing_symbols = set(args.missing_value_symbols.split(',')) -361 for column in input_dataframe: -362 all_missing = sum( -363 [ -364 input_dataframe[column].values.tolist().count(x) -365 for x in all_missing_symbols -366 ], -367 ) -368 -369 output_storage_cov[column] = ( -370 1 - (all_missing / input_dataframe.shape[0]) -371 ) * 100 +344 del tmp_df +345 return input_dataframe +346 +347 +348def include_noisy_features( +349 input_dataframe: pd.DataFrame, logger: Any, args: Any, +350) -> pd.DataFrame: +351 """Add randomized features that serve as a sanity check""" +352 +353 transformer = FeatureTransformerNoise() +354 transformed_df = transformer.construct_new_features( +355 input_dataframe, args.label_column, +356 ) +357 +358 return transformed_df +359 +360 +361def compute_coverage(input_dataframe: pd.DataFrame, args: Any) -> dict[str, set[str]]: +362 """Compute coverage of features, incrementally""" +363 output_storage_cov = defaultdict(set) +364 all_missing_symbols = set(args.missing_value_symbols.split(',')) +365 for column in input_dataframe: +366 all_missing = sum( +367 [ +368 input_dataframe[column].values.tolist().count(x) +369 for x in all_missing_symbols +370 ], +371 ) 372 -373 return output_storage_cov -374 -375 -376def compute_feature_memory_consumption(input_dataframe: pd.DataFrame, args: Any) -> dict[str, set[str]]: -377 """An approximation of how much feature take up""" -378 output_storage_features = defaultdict(set) -379 for col in input_dataframe.columns: -380 specific_column = [ -381 str(x).strip() for x in input_dataframe[col].astype(str).values.tolist() -382 ] -383 col_size = sum( -384 len(x.encode()) -385 for x in specific_column -386 ) / input_dataframe.shape[0] -387 output_storage_features[col] = col_size -388 return output_storage_features -389 -390 -391def compute_value_counts(input_dataframe: pd.DataFrame, args: Any): -392 """Update the count structure""" +373 output_storage_cov[column] = ( +374 1 - (all_missing / input_dataframe.shape[0]) +375 ) * 100 +376 +377 return output_storage_cov +378 +379 +380def compute_feature_memory_consumption(input_dataframe: pd.DataFrame, args: Any) -> dict[str, set[str]]: +381 """An approximation of how much feature take up""" +382 output_storage_features = defaultdict(set) +383 for col in input_dataframe.columns: +384 specific_column = [ +385 str(x).strip() for x in input_dataframe[col].astype(str).values.tolist() +386 ] +387 col_size = sum( +388 len(x.encode()) +389 for x in specific_column +390 ) / input_dataframe.shape[0] +391 output_storage_features[col] = col_size +392 return output_storage_features 393 -394 global GLOBAL_RARE_VALUE_STORAGE -395 global IGNORED_VALUES -396 -397 for column in input_dataframe.columns: -398 main_values = input_dataframe[column].values -399 for value in main_values: -400 if value not in IGNORED_VALUES: -401 GLOBAL_RARE_VALUE_STORAGE.update({(column, value): 1}) -402 -403 for key, val in GLOBAL_RARE_VALUE_STORAGE.items(): -404 if val > args.rare_value_count_upper_bound: -405 IGNORED_VALUES.add(key) +394 +395def compute_value_counts(input_dataframe: pd.DataFrame, args: Any): +396 """Update the count structure""" +397 +398 global GLOBAL_RARE_VALUE_STORAGE +399 global IGNORED_VALUES +400 +401 for column in input_dataframe.columns: +402 main_values = input_dataframe[column].values +403 for value in main_values: +404 if value not in IGNORED_VALUES: +405 GLOBAL_RARE_VALUE_STORAGE.update({(column, value): 1}) 406 -407 for to_remove_val in IGNORED_VALUES: -408 del GLOBAL_RARE_VALUE_STORAGE[to_remove_val] -409 +407 for key, val in GLOBAL_RARE_VALUE_STORAGE.items(): +408 if val > args.rare_value_count_upper_bound: +409 IGNORED_VALUES.add(key) 410 -411def compute_cardinalities(input_dataframe: pd.DataFrame, pbar: Any) -> None: -412 """Compute cardinalities of features, incrementally""" +411 for to_remove_val in IGNORED_VALUES: +412 del GLOBAL_RARE_VALUE_STORAGE[to_remove_val] 413 -414 global GLOBAL_CARDINALITY_STORAGE -415 output_storage_card = defaultdict(set) -416 for enx, column in enumerate(input_dataframe): -417 output_storage_card[column] = set(input_dataframe[column].unique()) -418 if column not in GLOBAL_CARDINALITY_STORAGE: -419 GLOBAL_CARDINALITY_STORAGE[column] = HyperLogLog( -420 HYPERLL_ERROR_BOUND, -421 ) -422 -423 for unique_value in set(input_dataframe[column].unique()): -424 if unique_value: -425 GLOBAL_CARDINALITY_STORAGE[column].add( -426 internal_hash(unique_value), -427 ) -428 pbar.set_description( -429 f'Computing cardinality (Hyperloglog update) {enx}/{input_dataframe.shape[1]}', -430 ) -431 -432 -433def compute_bounds_increment( -434 input_dataframe: pd.DataFrame, numeric_column_types: set[str], -435) -> dict[str, Any]: -436 all_features = input_dataframe.columns -437 numeric_column_types = set(numeric_column_types) -438 summary_object = {} -439 summary_storage: Any = {} -440 for feature in all_features: -441 if feature in numeric_column_types: -442 feature_vector = pd.to_numeric( -443 input_dataframe[feature], errors='coerce', -444 ) -445 minimum = np.min(feature_vector) -446 maximum = np.max(feature_vector) -447 mean = np.mean(feature_vector) -448 summary_storage = NumericFeatureSummary( -449 feature, minimum, maximum, mean, len( -450 np.unique(feature_vector), -451 ), -452 ) -453 summary_object[feature] = summary_storage -454 -455 else: -456 feature_vector = input_dataframe[feature].values -457 summary_storage = NominalFeatureSummary( -458 feature, len(np.unique(feature_vector)), -459 ) -460 summary_object[feature] = summary_storage -461 -462 return summary_object -463 -464 -465def compute_batch_ranking( -466 line_tmp_storage: list[list[Any]], -467 numeric_column_types: set[str], -468 args: Any, -469 cpu_pool: Any, -470 column_descriptions: list[str], -471 logger: Any, -472 pbar: Any, -473) -> tuple[BatchRankingSummary, dict[str, Any], dict[str, set[str]], dict[str, set[str]]]: -474 """Enrich the feature space and compute the batch importances""" -475 -476 input_dataframe = pd.DataFrame(line_tmp_storage) -477 input_dataframe.columns = column_descriptions -478 pbar.set_description('Control features') +414 +415def compute_cardinalities(input_dataframe: pd.DataFrame, pbar: Any) -> None: +416 """Compute cardinalities of features, incrementally""" +417 +418 global GLOBAL_CARDINALITY_STORAGE +419 output_storage_card = defaultdict(set) +420 for enx, column in enumerate(input_dataframe): +421 output_storage_card[column] = set(input_dataframe[column].unique()) +422 if column not in GLOBAL_CARDINALITY_STORAGE: +423 GLOBAL_CARDINALITY_STORAGE[column] = HyperLogLog( +424 HYPERLL_ERROR_BOUND, +425 ) +426 +427 for unique_value in set(input_dataframe[column].unique()): +428 if unique_value: +429 GLOBAL_CARDINALITY_STORAGE[column].add( +430 internal_hash(unique_value), +431 ) +432 pbar.set_description( +433 f'Computing cardinality (Hyperloglog update) {enx}/{input_dataframe.shape[1]}', +434 ) +435 +436 +437def compute_bounds_increment( +438 input_dataframe: pd.DataFrame, numeric_column_types: set[str], +439) -> dict[str, Any]: +440 all_features = input_dataframe.columns +441 numeric_column_types = set(numeric_column_types) +442 summary_object = {} +443 summary_storage: Any = {} +444 for feature in all_features: +445 if feature in numeric_column_types: +446 feature_vector = pd.to_numeric( +447 input_dataframe[feature], errors='coerce', +448 ) +449 minimum = np.min(feature_vector) +450 maximum = np.max(feature_vector) +451 mean = np.mean(feature_vector) +452 summary_storage = NumericFeatureSummary( +453 feature, minimum, maximum, mean, len( +454 np.unique(feature_vector), +455 ), +456 ) +457 summary_object[feature] = summary_storage +458 +459 else: +460 feature_vector = input_dataframe[feature].values +461 summary_storage = NominalFeatureSummary( +462 feature, len(np.unique(feature_vector)), +463 ) +464 summary_object[feature] = summary_storage +465 +466 return summary_object +467 +468 +469def compute_batch_ranking( +470 line_tmp_storage: list[list[Any]], +471 numeric_column_types: set[str], +472 args: Any, +473 cpu_pool: Any, +474 column_descriptions: list[str], +475 logger: Any, +476 pbar: Any, +477) -> tuple[BatchRankingSummary, dict[str, Any], dict[str, set[str]], dict[str, set[str]]]: +478 """Enrich the feature space and compute the batch importances""" 479 -480 if args.feature_set_focus: -481 if args.feature_set_focus == '_all_from_reference_JSON': -482 focus_set = extract_features_from_reference_JSON( -483 args.reference_model_JSON, -484 ) -485 -486 else: -487 focus_set = set(args.feature_set_focus.split(',')) -488 -489 focus_set.add(args.label_column) -490 focus_set = {x for x in focus_set if x in input_dataframe.columns} -491 input_dataframe = input_dataframe[list(focus_set)] +480 input_dataframe = pd.DataFrame(line_tmp_storage) +481 input_dataframe.columns = column_descriptions +482 pbar.set_description('Control features') +483 +484 if args.feature_set_focus: +485 if args.feature_set_focus == '_all_from_reference_JSON': +486 focus_set = extract_features_from_reference_JSON( +487 args.reference_model_JSON, +488 ) +489 +490 else: +491 focus_set = set(args.feature_set_focus.split(',')) 492 -493 if args.transformers != 'none': -494 pbar.set_description('Adding transformations') -495 input_dataframe = enrich_with_transformations( -496 input_dataframe, numeric_column_types, logger, args, -497 ) -498 -499 if args.explode_multivalue_features != 'False': -500 pbar.set_description('Constructing new features from multivalue ones') -501 input_dataframe = compute_expanded_multivalue_features( -502 input_dataframe, logger, args, pbar, -503 ) -504 -505 if args.subfeature_mapping != 'False': -506 pbar.set_description('Constructing new (sub)features') -507 input_dataframe = compute_subfeatures( -508 input_dataframe, logger, args, pbar, -509 ) -510 -511 if args.interaction_order > 1: -512 pbar.set_description('Constructing new features') -513 input_dataframe = compute_combined_features( -514 input_dataframe, logger, args, pbar, -515 ) -516 -517 # in case of 3mr we compute the score of combinations against the target -518 if '3mr' in args.heuristic: -519 pbar.set_description( -520 'Constructing features for computing relations in 3mr', -521 ) -522 input_dataframe = compute_combined_features( -523 input_dataframe, logger, args, pbar, True, -524 ) -525 -526 if args.include_noise_baseline_features == 'True' and args.heuristic != 'Constant': -527 pbar.set_description('Computing baseline features') -528 input_dataframe = include_noisy_features(input_dataframe, logger, args) +493 focus_set.add(args.label_column) +494 focus_set = {x for x in focus_set if x in input_dataframe.columns} +495 input_dataframe = input_dataframe[list(focus_set)] +496 +497 if args.transformers != 'none': +498 pbar.set_description('Adding transformations') +499 input_dataframe = enrich_with_transformations( +500 input_dataframe, numeric_column_types, logger, args, +501 ) +502 +503 if args.explode_multivalue_features != 'False': +504 pbar.set_description('Constructing new features from multivalue ones') +505 input_dataframe = compute_expanded_multivalue_features( +506 input_dataframe, logger, args, pbar, +507 ) +508 +509 if args.subfeature_mapping != 'False': +510 pbar.set_description('Constructing new (sub)features') +511 input_dataframe = compute_subfeatures( +512 input_dataframe, logger, args, pbar, +513 ) +514 +515 if args.interaction_order > 1: +516 pbar.set_description('Constructing new features') +517 input_dataframe = compute_combined_features( +518 input_dataframe, logger, args, pbar, +519 ) +520 +521 # in case of 3mr we compute the score of combinations against the target +522 if '3mr' in args.heuristic: +523 pbar.set_description( +524 'Constructing features for computing relations in 3mr', +525 ) +526 input_dataframe = compute_combined_features( +527 input_dataframe, logger, args, pbar, True, +528 ) 529 -530 # Compute incremental statistic useful for data inspection/transformer generation -531 pbar.set_description('Computing coverage') -532 coverage_storage = compute_coverage(input_dataframe, args) -533 feature_memory_consumption = compute_feature_memory_consumption( -534 input_dataframe, args, -535 ) -536 compute_cardinalities(input_dataframe, pbar) -537 -538 if args.task == 'identify_rare_values': -539 compute_value_counts(input_dataframe, args) -540 -541 bounds_storage = compute_bounds_increment( -542 input_dataframe, numeric_column_types, -543 ) +530 if args.include_noise_baseline_features == 'True' and args.heuristic != 'Constant': +531 pbar.set_description('Computing baseline features') +532 input_dataframe = include_noisy_features(input_dataframe, logger, args) +533 +534 # Compute incremental statistic useful for data inspection/transformer generation +535 pbar.set_description('Computing coverage') +536 coverage_storage = compute_coverage(input_dataframe, args) +537 feature_memory_consumption = compute_feature_memory_consumption( +538 input_dataframe, args, +539 ) +540 compute_cardinalities(input_dataframe, pbar) +541 +542 if args.task == 'identify_rare_values': +543 compute_value_counts(input_dataframe, args) 544 -545 pbar.set_description( -546 f'Computing ranks for {input_dataframe.shape[1]} features', +545 bounds_storage = compute_bounds_increment( +546 input_dataframe, numeric_column_types, 547 ) 548 -549 return ( -550 mixed_rank_graph(input_dataframe, args, cpu_pool, pbar), -551 bounds_storage, -552 coverage_storage, -553 feature_memory_consumption, -554 ) -555 -556 -557def get_num_of_instances(fname: str) -> int: -558 """Count the number of lines in a file, fast - useful for progress logging""" +549 pbar.set_description( +550 f'Computing ranks for {input_dataframe.shape[1]} features', +551 ) +552 +553 return ( +554 mixed_rank_graph(input_dataframe, args, cpu_pool, pbar), +555 bounds_storage, +556 coverage_storage, +557 feature_memory_consumption, +558 ) 559 -560 def _make_gen(reader): -561 while True: -562 b = reader(2**16) -563 if not b: -564 break -565 yield b -566 -567 with open(fname, 'rb') as f: -568 count = sum(buf.count(b'\n') for buf in _make_gen(f.raw.read)) -569 return count +560 +561def get_num_of_instances(fname: str) -> int: +562 """Count the number of lines in a file, fast - useful for progress logging""" +563 +564 def _make_gen(reader): +565 while True: +566 b = reader(2**16) +567 if not b: +568 break +569 yield b 570 -571 -572def get_grouped_df(importances_df_list: list[tuple[str, str, float]]) -> pd.DataFrame: -573 """A helper method that enables median-based aggregation after processing""" +571 with open(fname, 'rb') as f: +572 count = sum(buf.count(b'\n') for buf in _make_gen(f.raw.read)) +573 return count 574 -575 importances_df = pd.DataFrame(importances_df_list) -576 if len(importances_df) == 0: -577 return None -578 importances_df.columns = ['FeatureA', 'FeatureB', 'Score'] -579 grouped = importances_df.groupby( -580 ['FeatureA', 'FeatureB'], -581 ).median().reset_index() -582 return grouped -583 -584 -585def checkpoint_importances_df(importances_batch: list[tuple[str, str, float]]) -> None: -586 """A helper which stores intermediary state - useful for longer runs""" +575 +576def get_grouped_df(importances_df_list: list[tuple[str, str, float]]) -> pd.DataFrame: +577 """A helper method that enables median-based aggregation after processing""" +578 +579 importances_df = pd.DataFrame(importances_df_list) +580 if len(importances_df) == 0: +581 return None +582 importances_df.columns = ['FeatureA', 'FeatureB', 'Score'] +583 grouped = importances_df.groupby( +584 ['FeatureA', 'FeatureB'], +585 ).median().reset_index() +586 return grouped 587 -588 gdf = get_grouped_df(importances_batch) -589 if gdf is not None: -590 gdf.to_csv('ranking_checkpoint_tmp.tsv', sep='\t') +588 +589def checkpoint_importances_df(importances_batch: list[tuple[str, str, float]]) -> None: +590 """A helper which stores intermediary state - useful for longer runs""" 591 -592 -593def estimate_importances_minibatches( -594 input_file: str, -595 column_descriptions: list, -596 fw_col_mapping: dict[str, str], -597 numeric_column_types: set, -598 batch_size: int = 100000, -599 args: Any = None, -600 data_encoding: str = 'utf-8', -601 cpu_pool: Any = None, -602 delimiter: str = '\t', -603 feature_construction_mode: bool = False, -604 logger: Any = None, -605) -> tuple[list[dict[str, Any]], Any, dict[Any, Any], list[dict[str, Any]], list[dict[str, set[str]]], defaultdict[str, list[set[str]]], dict[str, Any]]: -606 """Interaction score estimator - suitable for example for csv-like input data types. -607 This type of data is normally a single large csv, meaning that minibatch processing needs to -608 happen during incremental handling of the file (that"s not the case for pre-separated ob data) -609 """ -610 -611 invalid_line_queue: Any = deque([], maxlen=2**5) -612 -613 invalid_lines = 0 -614 line_counter = 0 -615 -616 importances_df: list[Any] = [] -617 line_tmp_storage = [] -618 bounds_storage_batch = [] -619 memory_storage_batch = [] -620 step_timing_checkpoints = [] -621 -622 local_coverage_object = defaultdict(list) -623 local_pbar = tqdm.tqdm( -624 total=get_num_of_instances(input_file) - 1, position=0, -625 ) -626 -627 file_name, file_extension = os.path.splitext(input_file) -628 -629 if file_extension == '.gz': -630 file_stream = gzip.open(input_file, 'rt', encoding=data_encoding) -631 -632 else: -633 file_stream = open(input_file, encoding=data_encoding) -634 -635 file_stream.readline() -636 -637 local_pbar.set_description('Starting ranking computation') -638 for line in file_stream: -639 line_counter += 1 -640 local_pbar.update(1) -641 -642 if line_counter % args.subsampling != 0: -643 continue -644 -645 parsed_line = generic_line_parser( -646 line, delimiter, args, fw_col_mapping, column_descriptions, -647 ) +592 gdf = get_grouped_df(importances_batch) +593 if gdf is not None: +594 gdf.to_csv('ranking_checkpoint_tmp.tsv', sep='\t') +595 +596 +597def estimate_importances_minibatches( +598 input_file: str, +599 column_descriptions: list, +600 fw_col_mapping: dict[str, str], +601 numeric_column_types: set, +602 batch_size: int = 100000, +603 args: Any = None, +604 data_encoding: str = 'utf-8', +605 cpu_pool: Any = None, +606 delimiter: str = '\t', +607 feature_construction_mode: bool = False, +608 logger: Any = None, +609) -> tuple[list[dict[str, Any]], Any, dict[Any, Any], list[dict[str, Any]], list[dict[str, set[str]]], defaultdict[str, list[set[str]]], dict[str, Any]]: +610 """Interaction score estimator - suitable for example for csv-like input data types. +611 This type of data is normally a single large csv, meaning that minibatch processing needs to +612 happen during incremental handling of the file (that"s not the case for pre-separated ob data) +613 """ +614 +615 invalid_line_queue: Any = deque([], maxlen=2**5) +616 +617 invalid_lines = 0 +618 line_counter = 0 +619 +620 importances_df: list[Any] = [] +621 line_tmp_storage = [] +622 bounds_storage_batch = [] +623 memory_storage_batch = [] +624 step_timing_checkpoints = [] +625 +626 local_coverage_object = defaultdict(list) +627 local_pbar = tqdm.tqdm( +628 total=get_num_of_instances(input_file) - 1, position=0, +629 ) +630 +631 file_name, file_extension = os.path.splitext(input_file) +632 +633 if file_extension == '.gz': +634 file_stream = gzip.open(input_file, 'rt', encoding=data_encoding) +635 +636 else: +637 file_stream = open(input_file, encoding=data_encoding) +638 +639 file_stream.readline() +640 +641 local_pbar.set_description('Starting ranking computation') +642 for line in file_stream: +643 line_counter += 1 +644 local_pbar.update(1) +645 +646 if line_counter % args.subsampling != 0: +647 continue 648 -649 if len(parsed_line) == len(column_descriptions): -650 line_tmp_storage.append(parsed_line) -651 -652 else: -653 invalid_line_queue.appendleft(str(parsed_line)) -654 invalid_lines += 1 +649 parsed_line = generic_line_parser( +650 line, delimiter, args, fw_col_mapping, column_descriptions, +651 ) +652 +653 if len(parsed_line) == len(column_descriptions): +654 line_tmp_storage.append(parsed_line) 655 -656 # Batches need to be processed on-the-fly -657 if len(line_tmp_storage) >= args.minibatch_size: -658 -659 importances_batch, bounds_storage, coverage_storage, memory_storage = compute_batch_ranking( -660 line_tmp_storage, -661 numeric_column_types, -662 args, -663 cpu_pool, -664 column_descriptions, -665 logger, -666 local_pbar, -667 ) -668 -669 bounds_storage_batch.append(bounds_storage) -670 memory_storage_batch.append(memory_storage) -671 for k, v in coverage_storage.items(): -672 local_coverage_object[k].append(v) -673 -674 del coverage_storage -675 -676 line_tmp_storage = [] -677 step_timing_checkpoints.append(importances_batch.step_times) -678 importances_df += importances_batch.triplet_scores +656 else: +657 invalid_line_queue.appendleft(str(parsed_line)) +658 invalid_lines += 1 +659 +660 # Batches need to be processed on-the-fly +661 if len(line_tmp_storage) >= args.minibatch_size: +662 +663 importances_batch, bounds_storage, coverage_storage, memory_storage = compute_batch_ranking( +664 line_tmp_storage, +665 numeric_column_types, +666 args, +667 cpu_pool, +668 column_descriptions, +669 logger, +670 local_pbar, +671 ) +672 +673 bounds_storage_batch.append(bounds_storage) +674 memory_storage_batch.append(memory_storage) +675 for k, v in coverage_storage.items(): +676 local_coverage_object[k].append(v) +677 +678 del coverage_storage 679 -680 if args.heuristic != 'Constant': -681 local_pbar.set_description('Creating checkpoint') -682 checkpoint_importances_df(importances_df) +680 line_tmp_storage = [] +681 step_timing_checkpoints.append(importances_batch.step_times) +682 importances_df += importances_batch.triplet_scores 683 -684 file_stream.close() -685 -686 local_pbar.set_description('Parsing the remainder') -687 if invalid_lines > 0: -688 logger.info( -689 f"Detected {invalid_lines} invalid lines. If this number is very high, it's possible your header is off - re-check your data/attribute-feature mappings please!", -690 ) -691 -692 invalid_lines_log = '\n INVALID_LINE ====> '.join( -693 list(invalid_line_queue)[0:5], +684 if args.heuristic != 'Constant': +685 local_pbar.set_description('Creating checkpoint') +686 checkpoint_importances_df(importances_df) +687 +688 file_stream.close() +689 +690 local_pbar.set_description('Parsing the remainder') +691 if invalid_lines > 0: +692 logger.info( +693 f"Detected {invalid_lines} invalid lines. If this number is very high, it's possible your header is off - re-check your data/attribute-feature mappings please!", 694 ) -695 logger.info( -696 f'5 samples of invalid lines are printed below\n {invalid_lines_log}', -697 ) -698 -699 remaining_batch_size = len(line_tmp_storage) -700 -701 if remaining_batch_size > 2**10: -702 line_tmp_storage = line_tmp_storage[: args.minibatch_size] -703 importances_batch, bounds_storage, coverage_storage, _ = compute_batch_ranking( -704 line_tmp_storage, -705 numeric_column_types, -706 args, -707 cpu_pool, -708 column_descriptions, -709 logger, -710 local_pbar, -711 ) -712 -713 for k, v in coverage_storage.items(): -714 local_coverage_object[k].append(v) -715 -716 step_timing_checkpoints.append(importances_batch.step_times) -717 importances_df += importances_batch.triplet_scores -718 bounds_storage = dict() -719 bounds_storage_batch.append(bounds_storage) -720 checkpoint_importances_df(importances_df) -721 -722 local_pbar.set_description('Wrapping up') -723 local_pbar.close() -724 -725 return ( -726 step_timing_checkpoints, -727 get_grouped_df(importances_df), -728 GLOBAL_CARDINALITY_STORAGE, -729 bounds_storage_batch, -730 memory_storage_batch, -731 local_coverage_object, -732 GLOBAL_RARE_VALUE_STORAGE, -733 ) +695 +696 invalid_lines_log = '\n INVALID_LINE ====> '.join( +697 list(invalid_line_queue)[0:5], +698 ) +699 logger.info( +700 f'5 samples of invalid lines are printed below\n {invalid_lines_log}', +701 ) +702 +703 remaining_batch_size = len(line_tmp_storage) +704 +705 if remaining_batch_size > 2**10: +706 line_tmp_storage = line_tmp_storage[: args.minibatch_size] +707 importances_batch, bounds_storage, coverage_storage, _ = compute_batch_ranking( +708 line_tmp_storage, +709 numeric_column_types, +710 args, +711 cpu_pool, +712 column_descriptions, +713 logger, +714 local_pbar, +715 ) +716 +717 for k, v in coverage_storage.items(): +718 local_coverage_object[k].append(v) +719 +720 step_timing_checkpoints.append(importances_batch.step_times) +721 importances_df += importances_batch.triplet_scores +722 bounds_storage = dict() +723 bounds_storage_batch.append(bounds_storage) +724 checkpoint_importances_df(importances_df) +725 +726 local_pbar.set_description('Wrapping up') +727 local_pbar.close() +728 +729 return ( +730 step_timing_checkpoints, +731 get_grouped_df(importances_df), +732 GLOBAL_CARDINALITY_STORAGE, +733 bounds_storage_batch, +734 memory_storage_batch, +735 local_coverage_object, +736 GLOBAL_RARE_VALUE_STORAGE, +737 )

    @@ -940,20 +947,20 @@

    -
    47def prior_combinations_sample(combinations: list[tuple[Any, ...]], args: Any) -> list[tuple[Any, ...]]:
    -48    """Make sure only relevant subspace of combinations is selected based on prior counts"""
    -49
    -50    if len(GLOBAL_PRIOR_COMB_COUNTS) == 0:
    -51        for combination in combinations:
    -52            GLOBAL_PRIOR_COMB_COUNTS[combination] += 1
    -53        tmp = combinations[:args.combination_number_upper_bound]
    -54    else:
    -55        tmp = list(x[0] for x in sorted(GLOBAL_PRIOR_COMB_COUNTS.items(), key=lambda x:x[1], reverse=False))[:args.combination_number_upper_bound]
    -56
    -57    for combination in tmp:
    -58        GLOBAL_PRIOR_COMB_COUNTS[combination] += 1
    -59
    -60    return tmp
    +            
    48def prior_combinations_sample(combinations: list[tuple[Any, ...]], args: Any) -> list[tuple[Any, ...]]:
    +49    """Make sure only relevant subspace of combinations is selected based on prior counts"""
    +50
    +51    if len(GLOBAL_PRIOR_COMB_COUNTS) == 0:
    +52        for combination in combinations:
    +53            GLOBAL_PRIOR_COMB_COUNTS[combination] += 1
    +54        tmp = combinations[:args.combination_number_upper_bound]
    +55    else:
    +56        tmp = list(x[0] for x in sorted(GLOBAL_PRIOR_COMB_COUNTS.items(), key=lambda x:x[1], reverse=False))[:args.combination_number_upper_bound]
    +57
    +58    for combination in tmp:
    +59        GLOBAL_PRIOR_COMB_COUNTS[combination] += 1
    +60
    +61    return tmp
     
    @@ -961,6 +968,53 @@

    +

    +
    + +
    + + def + get_combinations_from_columns( all_columns: pandas.core.indexes.base.Index, args: Any) -> list[tuple[typing.Any, ...]]: + + + +
    + +
    64def get_combinations_from_columns(all_columns: pd.Index, args: Any) -> list[tuple[Any, ...]]:
    +65    """Return feature-feature & feature-label combinations, depending on the heuristic and ranking scope"""
    +66
    +67    if '3mr' in args.heuristic:
    +68        rel_columns = [column for column in all_columns if ' AND_REL ' in column]
    +69        non_rel_columns = sorted(set(all_columns) - set(rel_columns))
    +70
    +71        combinations = list(
    +72            itertools.combinations_with_replacement(non_rel_columns, 2),
    +73        )
    +74        combinations += [(column, args.label_column) for column in rel_columns]
    +75    else:
    +76        _combinations = itertools.combinations_with_replacement(all_columns, 2)
    +77
    +78        # Some applications do not require the full feature-feature triangular matrix
    +79        if args.target_ranking_only == 'True':
    +80            combinations = [x for x in _combinations if args.label_column in x]
    +81        else:
    +82            combinations = list(_combinations)
    +83
    +84    if args.target_ranking_only != 'True':
    +85        # Diagonal elements (non-label)
    +86        combinations += [
    +87            (individual_column, individual_column)
    +88            for individual_column in all_columns
    +89            if individual_column != args.label_column
    +90        ]
    +91    return combinations
    +
    + + +

    Return feature-feature & feature-label combinations, depending on the heuristic and ranking scope

    +
    + +
    @@ -973,94 +1027,67 @@

    -
     63def mixed_rank_graph(
    - 64    input_dataframe: pd.DataFrame, args: Any, cpu_pool: Any, pbar: Any,
    - 65) -> BatchRankingSummary:
    - 66    """Compute the full mixed rank graph corresponding to all pairwise feature interactions based on the selected heuristic"""
    - 67
    - 68    all_columns = input_dataframe.columns
    - 69
    - 70    triplets = []
    - 71    tmp_df = input_dataframe.copy().astype('category')
    - 72    out_time_struct = {}
    - 73
    - 74    # Handle cont. types prior to interaction evaluation
    - 75    pbar.set_description('Encoding columns')
    - 76    start_enc_timer = timer()
    - 77    tmp_df = pd.DataFrame({k : tmp_df[k].cat.codes for k in all_columns})
    - 78
    - 79    end_enc_timer = timer()
    - 80    out_time_struct['encoding_columns'] = end_enc_timer - start_enc_timer
    - 81
    - 82    # Helper method for parallel estimation
    - 83    combinations = list(
    - 84        itertools.combinations_with_replacement(all_columns, 2),
    - 85    )
    - 86
    - 87    if '3mr' in args.heuristic:
    - 88        rel_columns = [
    - 89            column for column in all_columns if ' AND_REL ' in column
    - 90        ]
    - 91        non_rel_columns = list(set(all_columns) - set(rel_columns))
    - 92        combinations = list(
    - 93            itertools.combinations_with_replacement(non_rel_columns, 2),
    - 94        )
    - 95        combinations += [(column, args.label_column) for column in rel_columns]
    - 96    else:
    - 97        combinations = list(
    - 98            itertools.combinations_with_replacement(all_columns, 2),
    - 99        )
    +            
     94def mixed_rank_graph(
    + 95    input_dataframe: pd.DataFrame, args: Any, cpu_pool: Any, pbar: Any,
    + 96) -> BatchRankingSummary:
    + 97    """Compute the full mixed rank graph corresponding to all pairwise feature interactions based on the selected heuristic"""
    + 98
    + 99    all_columns = input_dataframe.columns
     100
    -101    # Diagonal elements
    -102    for individual_column in all_columns:
    -103        if individual_column != args.label_column:
    -104            combinations += [(individual_column, individual_column)]
    -105
    -106    # Some applications do not require the full feature-feature triangular matrix
    -107    if (args.target_ranking_only == 'True') and ('3mr' not in args.heuristic):
    -108        combinations = [x for x in combinations if args.label_column in x]
    +101    triplets = []
    +102    tmp_df = input_dataframe.copy().astype('category')
    +103    out_time_struct = {}
    +104
    +105    # Handle cont. types prior to interaction evaluation
    +106    pbar.set_description('Encoding columns')
    +107    start_enc_timer = timer()
    +108    tmp_df = pd.DataFrame({k : tmp_df[k].cat.codes for k in all_columns})
     109
    -110    combinations = prior_combinations_sample(combinations, args)
    -111    random.shuffle(combinations)
    +110    end_enc_timer = timer()
    +111    out_time_struct['encoding_columns'] = end_enc_timer - start_enc_timer
     112
    -113    if args.heuristic == 'Constant':
    -114        final_constant_imp = []
    -115        for c1, c2 in combinations:
    -116            final_constant_imp.append((c1, c2, 0.0))
    -117
    -118        out_time_struct['feature_score_computation'] = end_enc_timer - \
    -119            start_enc_timer
    -120        return BatchRankingSummary(final_constant_imp, out_time_struct)
    +113    combinations = get_combinations_from_columns(all_columns, args)
    +114    combinations = prior_combinations_sample(combinations, args)
    +115    random.shuffle(combinations)
    +116
    +117    if args.heuristic == 'Constant':
    +118        final_constant_imp = []
    +119        for c1, c2 in combinations:
    +120            final_constant_imp.append((c1, c2, 0.0))
     121
    -122    # Map the scoring calls to the worker pool
    -123    pbar.set_description('Allocating thread pool')
    -124
    -125    # starmap is an alternative that is slower unfortunately (but nicer)
    -126    def get_grounded_importances_estimate(combination: tuple[str]) -> Any:
    -127        return get_importances_estimate_pairwise(combination, args, tmp_df=tmp_df)
    +122        out_time_struct['feature_score_computation'] = end_enc_timer - \
    +123            start_enc_timer
    +124        return BatchRankingSummary(final_constant_imp, out_time_struct)
    +125
    +126    # Map the scoring calls to the worker pool
    +127    pbar.set_description('Allocating thread pool')
     128
    -129    start_enc_timer = timer()
    -130    with cpu_pool as p:
    -131        pbar.set_description(f'Computing (#ftr={len(combinations)})')
    -132        results = p.amap(get_grounded_importances_estimate, combinations)
    -133        while not results.ready():
    -134            time.sleep(4)
    -135        triplets = results.get()
    -136    end_enc_timer = timer()
    -137    out_time_struct['feature_score_computation'] = end_enc_timer - \
    -138        start_enc_timer
    -139
    -140    # Gather the final triplets
    -141    pbar.set_description('Aggregation of ranking results')
    -142    final_triplets = []
    -143    for triplet in triplets:
    -144        inv = (triplet[1], triplet[0], triplet[2])
    -145        final_triplets.append(inv)
    -146        final_triplets.append(triplet)
    -147        triplets = final_triplets
    -148
    -149    pbar.set_description('Proceeding to the next batch of data')
    -150    return BatchRankingSummary(triplets, out_time_struct)
    +129    # starmap is an alternative that is slower unfortunately (but nicer)
    +130    def get_grounded_importances_estimate(combination: tuple[str]) -> Any:
    +131        return get_importances_estimate_pairwise(combination, args, tmp_df=tmp_df)
    +132
    +133    start_enc_timer = timer()
    +134    with cpu_pool as p:
    +135        pbar.set_description(f'Computing (#ftr={len(combinations)})')
    +136        results = p.amap(get_grounded_importances_estimate, combinations)
    +137        while not results.ready():
    +138            time.sleep(4)
    +139        triplets = results.get()
    +140    end_enc_timer = timer()
    +141    out_time_struct['feature_score_computation'] = end_enc_timer - \
    +142        start_enc_timer
    +143
    +144    # Gather the final triplets
    +145    pbar.set_description('Aggregation of ranking results')
    +146    final_triplets = []
    +147    for triplet in triplets:
    +148        inv = (triplet[1], triplet[0], triplet[2])
    +149        final_triplets.append(inv)
    +150        final_triplets.append(triplet)
    +151        triplets = final_triplets
    +152
    +153    pbar.set_description('Proceeding to the next batch of data')
    +154    return BatchRankingSummary(triplets, out_time_struct)
     
    @@ -1080,20 +1107,20 @@

    -
    153def enrich_with_transformations(
    -154    input_dataframe: pd.DataFrame, num_col_types: set[str], logger: Any, args: Any,
    -155) -> pd.DataFrame:
    -156    """Construct a collection of new features based on pre-defined transformations/rules"""
    -157
    -158    transformer = FeatureTransformerGeneric(
    -159        num_col_types, preset=args.transformers,
    -160    )
    -161    transformed_df = transformer.construct_new_features(input_dataframe)
    -162    logger.info(
    -163        f'Constructed {len(transformer.constructed_feature_names)} new features ..',
    +            
    157def enrich_with_transformations(
    +158    input_dataframe: pd.DataFrame, num_col_types: set[str], logger: Any, args: Any,
    +159) -> pd.DataFrame:
    +160    """Construct a collection of new features based on pre-defined transformations/rules"""
    +161
    +162    transformer = FeatureTransformerGeneric(
    +163        num_col_types, preset=args.transformers,
     164    )
    -165
    -166    return transformed_df
    +165    transformed_df = transformer.construct_new_features(input_dataframe)
    +166    logger.info(
    +167        f'Constructed {len(transformer.constructed_feature_names)} new features ..',
    +168    )
    +169
    +170    return transformed_df
     
    @@ -1113,55 +1140,55 @@

    -
    169def compute_combined_features(
    -170    input_dataframe: pd.DataFrame,
    -171    logger: Any,
    -172    args: Any,
    -173    pbar: Any,
    -174    is_3mr: bool = False,
    -175) -> pd.DataFrame:
    -176    """Compute higher order features via xxhash-based trick."""
    -177
    -178    all_columns = [
    -179        x for x in input_dataframe.columns if x != args.label_column
    -180    ]
    -181    join_string = ' AND_REL ' if is_3mr else ' AND '
    -182    interaction_order = 2 if is_3mr else args.interaction_order
    -183
    -184    full_combination_space = list(
    -185        itertools.combinations(all_columns, interaction_order),
    -186    )
    +            
    173def compute_combined_features(
    +174    input_dataframe: pd.DataFrame,
    +175    logger: Any,
    +176    args: Any,
    +177    pbar: Any,
    +178    is_3mr: bool = False,
    +179) -> pd.DataFrame:
    +180    """Compute higher order features via xxhash-based trick."""
    +181
    +182    all_columns = [
    +183        x for x in input_dataframe.columns if x != args.label_column
    +184    ]
    +185    join_string = ' AND_REL ' if is_3mr else ' AND '
    +186    interaction_order = 2 if is_3mr else args.interaction_order
     187
    -188    if args.combination_number_upper_bound:
    -189        random.shuffle(full_combination_space)
    -190        full_combination_space = full_combination_space[
    -191            : args.combination_number_upper_bound
    -192        ]
    -193
    -194    com_counter = 0
    -195    new_feature_hash = {}
    -196    for new_combination in full_combination_space:
    -197        pbar.set_description(
    -198            f'Created {com_counter}/{len(full_combination_space)}',
    -199        )
    -200        combined_feature: list[str] = [str(0)] * input_dataframe.shape[0]
    -201        for feature in new_combination:
    -202            tmp_feature = input_dataframe[feature].tolist()
    -203            for enx, el in enumerate(tmp_feature):
    -204                combined_feature[enx] = str(
    -205                    internal_hash(
    -206                        str(combined_feature[enx]) + str(el),
    -207                    ),
    -208                )
    -209        ftr_name = join_string.join(str(x) for x in new_combination)
    -210        new_feature_hash[ftr_name] = combined_feature
    -211        com_counter += 1
    -212    tmp_df = pd.DataFrame(new_feature_hash)
    -213    pbar.set_description('Concatenating into final frame ..')
    -214    input_dataframe = pd.concat([input_dataframe, tmp_df], axis=1)
    -215    del tmp_df
    -216
    -217    return input_dataframe
    +188    full_combination_space = list(
    +189        itertools.combinations(all_columns, interaction_order),
    +190    )
    +191
    +192    if args.combination_number_upper_bound:
    +193        random.shuffle(full_combination_space)
    +194        full_combination_space = full_combination_space[
    +195            : args.combination_number_upper_bound
    +196        ]
    +197
    +198    com_counter = 0
    +199    new_feature_hash = {}
    +200    for new_combination in full_combination_space:
    +201        pbar.set_description(
    +202            f'Created {com_counter}/{len(full_combination_space)}',
    +203        )
    +204        combined_feature: list[str] = [str(0)] * input_dataframe.shape[0]
    +205        for feature in new_combination:
    +206            tmp_feature = input_dataframe[feature].tolist()
    +207            for enx, el in enumerate(tmp_feature):
    +208                combined_feature[enx] = str(
    +209                    internal_hash(
    +210                        str(combined_feature[enx]) + str(el),
    +211                    ),
    +212                )
    +213        ftr_name = join_string.join(str(x) for x in new_combination)
    +214        new_feature_hash[ftr_name] = combined_feature
    +215        com_counter += 1
    +216    tmp_df = pd.DataFrame(new_feature_hash)
    +217    pbar.set_description('Concatenating into final frame ..')
    +218    input_dataframe = pd.concat([input_dataframe, tmp_df], axis=1)
    +219    del tmp_df
    +220
    +221    return input_dataframe
     
    @@ -1181,48 +1208,48 @@

    -
    220def compute_expanded_multivalue_features(
    -221    input_dataframe: pd.DataFrame, logger: Any, args: Any, pbar: Any,
    -222) -> pd.DataFrame:
    -223    """Compute one-hot encoded feature space based on each designated multivalue feature. E.g., feature with value "a,b,c" becomes three features, values of which are presence of a given value in a mutlivalue feature of choice."""
    -224
    -225    considered_multivalue_features = args.explode_multivalue_features.split(
    -226        ';',
    -227    )
    -228    new_feature_hash = {}
    -229    missing_symbols = set(args.missing_value_symbols.split(','))
    -230
    -231    for multivalue_feature in considered_multivalue_features:
    -232        multivalue_feature_vector = input_dataframe[multivalue_feature].values.tolist(
    -233        )
    -234        multivalue_feature_vector = [
    -235            x.replace(',', '-') for x in multivalue_feature_vector
    -236        ]
    -237        multivalue_sets = [
    -238            set(x.split('-'))
    -239            for x in multivalue_feature_vector
    +            
    224def compute_expanded_multivalue_features(
    +225    input_dataframe: pd.DataFrame, logger: Any, args: Any, pbar: Any,
    +226) -> pd.DataFrame:
    +227    """Compute one-hot encoded feature space based on each designated multivalue feature. E.g., feature with value "a,b,c" becomes three features, values of which are presence of a given value in a mutlivalue feature of choice."""
    +228
    +229    considered_multivalue_features = args.explode_multivalue_features.split(
    +230        ';',
    +231    )
    +232    new_feature_hash = {}
    +233    missing_symbols = set(args.missing_value_symbols.split(','))
    +234
    +235    for multivalue_feature in considered_multivalue_features:
    +236        multivalue_feature_vector = input_dataframe[multivalue_feature].values.tolist(
    +237        )
    +238        multivalue_feature_vector = [
    +239            x.replace(',', '-') for x in multivalue_feature_vector
     240        ]
    -241        unique_values = set.union(*multivalue_sets)
    -242
    -243        for missing_symbol in missing_symbols:
    -244            if missing_symbol in unique_values:
    -245                unique_values.remove(missing_symbol)
    +241        multivalue_sets = [
    +242            set(x.split('-'))
    +243            for x in multivalue_feature_vector
    +244        ]
    +245        unique_values = set.union(*multivalue_sets)
     246
    -247        for unique_value in unique_values:
    -248            tmp_vec = []
    -249            for enx, multivalue in enumerate(multivalue_sets):
    -250                if unique_value in multivalue:
    -251                    tmp_vec.append('1')
    -252                else:
    -253                    tmp_vec.append('')
    -254
    -255            new_feature_hash[f'MULTIEX-{multivalue_feature}-{unique_value}'] = tmp_vec
    -256
    -257    tmp_df = pd.DataFrame(new_feature_hash)
    -258    input_dataframe = pd.concat([input_dataframe, tmp_df], axis=1)
    -259    del tmp_df
    +247        for missing_symbol in missing_symbols:
    +248            if missing_symbol in unique_values:
    +249                unique_values.remove(missing_symbol)
    +250
    +251        for unique_value in unique_values:
    +252            tmp_vec = []
    +253            for enx, multivalue in enumerate(multivalue_sets):
    +254                if unique_value in multivalue:
    +255                    tmp_vec.append('1')
    +256                else:
    +257                    tmp_vec.append('')
    +258
    +259            new_feature_hash[f'MULTIEX-{multivalue_feature}-{unique_value}'] = tmp_vec
     260
    -261    return input_dataframe
    +261    tmp_df = pd.DataFrame(new_feature_hash)
    +262    input_dataframe = pd.concat([input_dataframe, tmp_df], axis=1)
    +263    del tmp_df
    +264
    +265    return input_dataframe
     
    @@ -1242,85 +1269,85 @@

    -
    264def compute_subfeatures(
    -265    input_dataframe: pd.DataFrame, logger: Any, args: Any, pbar: Any,
    -266) -> pd.DataFrame:
    -267    """Compute derived features that are more fine-grained. Implements logic around two operators that govern feature construction.
    -268    ->: One sided construction - every value from left side is fine, separate ones from the right side feature will be considered.
    -269    <->: Two sided construction - two-sided values present. This means that each value from a is combined with each from b, forming |A|*|B| new features (one-hot encoded)
    -270    """
    -271
    -272    all_subfeature_pair_seeds = args.subfeature_mapping.split(';')
    -273    new_feature_hash = dict()
    -274
    -275    for seed_pair in all_subfeature_pair_seeds:
    -276        if '<->' in seed_pair:
    -277            feature_first, feature_second = seed_pair.split('<->')
    +            
    268def compute_subfeatures(
    +269    input_dataframe: pd.DataFrame, logger: Any, args: Any, pbar: Any,
    +270) -> pd.DataFrame:
    +271    """Compute derived features that are more fine-grained. Implements logic around two operators that govern feature construction.
    +272    ->: One sided construction - every value from left side is fine, separate ones from the right side feature will be considered.
    +273    <->: Two sided construction - two-sided values present. This means that each value from a is combined with each from b, forming |A|*|B| new features (one-hot encoded)
    +274    """
    +275
    +276    all_subfeature_pair_seeds = args.subfeature_mapping.split(';')
    +277    new_feature_hash = dict()
     278
    -279        elif '->' in seed_pair:
    -280            feature_first, feature_second = seed_pair.split('->')
    -281
    -282        else:
    -283            raise NotImplementedError(
    -284                'Please specify valid subfeature operator (<-> or ->)',
    -285            )
    -286
    -287        subframe = input_dataframe[[feature_first, feature_second]]
    -288        unique_feature_second = subframe[feature_second].unique()
    -289        feature_first_vec = subframe[feature_first].tolist()
    -290        feature_second_vec = subframe[feature_second].tolist()
    -291        out_template_feature = [
    -292            (a, b) for a, b in zip(feature_first_vec, feature_second_vec)
    -293        ]
    -294
    -295        if '<->' in seed_pair:
    -296            unique_feature_first = subframe[feature_first].unique()
    -297
    -298            mask_types = []
    -299            for unique_target_feature_value in unique_feature_second:
    -300                for unique_seed_feature_value in unique_feature_first:
    -301                    mask_types.append(
    -302                        (unique_seed_feature_value, unique_target_feature_value),
    -303                    )
    -304
    -305            for mask_type in mask_types:
    -306                new_feature = []
    -307                for value_tuple in out_template_feature:
    -308                    if (
    -309                        value_tuple[0] == mask_type[0]
    -310                        and value_tuple[1] == mask_type[1]
    -311                    ):
    -312                        new_feature.append(str(1))
    -313                    else:
    -314                        new_feature.append(str(0))
    -315                feature_name = (
    -316                    f'SUBFEATURE|{feature_first}|{feature_second}-'
    -317                    + mask_type[0]
    -318                    + '&'
    -319                    + mask_type[1]
    -320                )
    -321                new_feature_hash[feature_name] = new_feature
    -322
    -323            del new_feature
    -324
    -325        elif '->' in seed_pair:
    -326            for unique_target_feature_value in unique_feature_second:
    -327                tmp_new_feature = [
    -328                    'AND'.join(
    -329                        x,
    -330                    ) if x[1] == unique_target_feature_value else ''
    -331                    for x in out_template_feature
    -332                ]
    -333                feature_name_final = (
    -334                    'SUBFEATURE-' + feature_first + '&' + unique_target_feature_value
    -335                )
    -336                new_feature_hash[feature_name_final] = tmp_new_feature
    -337
    -338    tmp_df = pd.DataFrame(new_feature_hash)
    -339    input_dataframe = pd.concat([input_dataframe, tmp_df], axis=1)
    -340
    -341    del tmp_df
    -342    return input_dataframe
    +279    for seed_pair in all_subfeature_pair_seeds:
    +280        if '<->' in seed_pair:
    +281            feature_first, feature_second = seed_pair.split('<->')
    +282
    +283        elif '->' in seed_pair:
    +284            feature_first, feature_second = seed_pair.split('->')
    +285
    +286        else:
    +287            raise NotImplementedError(
    +288                'Please specify valid subfeature operator (<-> or ->)',
    +289            )
    +290
    +291        subframe = input_dataframe[[feature_first, feature_second]]
    +292        unique_feature_second = subframe[feature_second].unique()
    +293        feature_first_vec = subframe[feature_first].tolist()
    +294        feature_second_vec = subframe[feature_second].tolist()
    +295        out_template_feature = [
    +296            (a, b) for a, b in zip(feature_first_vec, feature_second_vec)
    +297        ]
    +298
    +299        if '<->' in seed_pair:
    +300            unique_feature_first = subframe[feature_first].unique()
    +301
    +302            mask_types = []
    +303            for unique_target_feature_value in unique_feature_second:
    +304                for unique_seed_feature_value in unique_feature_first:
    +305                    mask_types.append(
    +306                        (unique_seed_feature_value, unique_target_feature_value),
    +307                    )
    +308
    +309            for mask_type in mask_types:
    +310                new_feature = []
    +311                for value_tuple in out_template_feature:
    +312                    if (
    +313                        value_tuple[0] == mask_type[0]
    +314                        and value_tuple[1] == mask_type[1]
    +315                    ):
    +316                        new_feature.append(str(1))
    +317                    else:
    +318                        new_feature.append(str(0))
    +319                feature_name = (
    +320                    f'SUBFEATURE|{feature_first}|{feature_second}-'
    +321                    + mask_type[0]
    +322                    + '&'
    +323                    + mask_type[1]
    +324                )
    +325                new_feature_hash[feature_name] = new_feature
    +326
    +327            del new_feature
    +328
    +329        elif '->' in seed_pair:
    +330            for unique_target_feature_value in unique_feature_second:
    +331                tmp_new_feature = [
    +332                    'AND'.join(
    +333                        x,
    +334                    ) if x[1] == unique_target_feature_value else ''
    +335                    for x in out_template_feature
    +336                ]
    +337                feature_name_final = (
    +338                    'SUBFEATURE-' + feature_first + '&' + unique_target_feature_value
    +339                )
    +340                new_feature_hash[feature_name_final] = tmp_new_feature
    +341
    +342    tmp_df = pd.DataFrame(new_feature_hash)
    +343    input_dataframe = pd.concat([input_dataframe, tmp_df], axis=1)
    +344
    +345    del tmp_df
    +346    return input_dataframe
     
    @@ -1342,17 +1369,17 @@

    -
    345def include_noisy_features(
    -346    input_dataframe: pd.DataFrame, logger: Any, args: Any,
    -347) -> pd.DataFrame:
    -348    """Add randomized features that serve as a sanity check"""
    -349
    -350    transformer = FeatureTransformerNoise()
    -351    transformed_df = transformer.construct_new_features(
    -352        input_dataframe, args.label_column,
    -353    )
    -354
    -355    return transformed_df
    +            
    349def include_noisy_features(
    +350    input_dataframe: pd.DataFrame, logger: Any, args: Any,
    +351) -> pd.DataFrame:
    +352    """Add randomized features that serve as a sanity check"""
    +353
    +354    transformer = FeatureTransformerNoise()
    +355    transformed_df = transformer.construct_new_features(
    +356        input_dataframe, args.label_column,
    +357    )
    +358
    +359    return transformed_df
     
    @@ -1372,23 +1399,23 @@

    -
    358def compute_coverage(input_dataframe: pd.DataFrame, args: Any) -> dict[str, set[str]]:
    -359    """Compute coverage of features, incrementally"""
    -360    output_storage_cov = defaultdict(set)
    -361    all_missing_symbols = set(args.missing_value_symbols.split(','))
    -362    for column in input_dataframe:
    -363        all_missing = sum(
    -364            [
    -365                input_dataframe[column].values.tolist().count(x)
    -366                for x in all_missing_symbols
    -367            ],
    -368        )
    -369
    -370        output_storage_cov[column] = (
    -371            1 - (all_missing / input_dataframe.shape[0])
    -372        ) * 100
    +            
    362def compute_coverage(input_dataframe: pd.DataFrame, args: Any) -> dict[str, set[str]]:
    +363    """Compute coverage of features, incrementally"""
    +364    output_storage_cov = defaultdict(set)
    +365    all_missing_symbols = set(args.missing_value_symbols.split(','))
    +366    for column in input_dataframe:
    +367        all_missing = sum(
    +368            [
    +369                input_dataframe[column].values.tolist().count(x)
    +370                for x in all_missing_symbols
    +371            ],
    +372        )
     373
    -374    return output_storage_cov
    +374        output_storage_cov[column] = (
    +375            1 - (all_missing / input_dataframe.shape[0])
    +376        ) * 100
    +377
    +378    return output_storage_cov
     
    @@ -1408,19 +1435,19 @@

    -
    377def compute_feature_memory_consumption(input_dataframe: pd.DataFrame, args: Any) -> dict[str, set[str]]:
    -378    """An approximation of how much feature take up"""
    -379    output_storage_features = defaultdict(set)
    -380    for col in input_dataframe.columns:
    -381        specific_column = [
    -382            str(x).strip() for x in input_dataframe[col].astype(str).values.tolist()
    -383        ]
    -384        col_size = sum(
    -385            len(x.encode())
    -386            for x in specific_column
    -387        ) / input_dataframe.shape[0]
    -388        output_storage_features[col] = col_size
    -389    return output_storage_features
    +            
    381def compute_feature_memory_consumption(input_dataframe: pd.DataFrame, args: Any) -> dict[str, set[str]]:
    +382    """An approximation of how much feature take up"""
    +383    output_storage_features = defaultdict(set)
    +384    for col in input_dataframe.columns:
    +385        specific_column = [
    +386            str(x).strip() for x in input_dataframe[col].astype(str).values.tolist()
    +387        ]
    +388        col_size = sum(
    +389            len(x.encode())
    +390            for x in specific_column
    +391        ) / input_dataframe.shape[0]
    +392        output_storage_features[col] = col_size
    +393    return output_storage_features
     
    @@ -1440,24 +1467,24 @@

    -
    392def compute_value_counts(input_dataframe: pd.DataFrame, args: Any):
    -393    """Update the count structure"""
    -394
    -395    global GLOBAL_RARE_VALUE_STORAGE
    -396    global IGNORED_VALUES
    -397
    -398    for column in input_dataframe.columns:
    -399        main_values = input_dataframe[column].values
    -400        for value in main_values:
    -401            if value not in IGNORED_VALUES:
    -402                GLOBAL_RARE_VALUE_STORAGE.update({(column, value): 1})
    -403
    -404    for key, val in GLOBAL_RARE_VALUE_STORAGE.items():
    -405        if val > args.rare_value_count_upper_bound:
    -406            IGNORED_VALUES.add(key)
    +            
    396def compute_value_counts(input_dataframe: pd.DataFrame, args: Any):
    +397    """Update the count structure"""
    +398
    +399    global GLOBAL_RARE_VALUE_STORAGE
    +400    global IGNORED_VALUES
    +401
    +402    for column in input_dataframe.columns:
    +403        main_values = input_dataframe[column].values
    +404        for value in main_values:
    +405            if value not in IGNORED_VALUES:
    +406                GLOBAL_RARE_VALUE_STORAGE.update({(column, value): 1})
     407
    -408    for to_remove_val in IGNORED_VALUES:
    -409        del GLOBAL_RARE_VALUE_STORAGE[to_remove_val]
    +408    for key, val in GLOBAL_RARE_VALUE_STORAGE.items():
    +409        if val > args.rare_value_count_upper_bound:
    +410            IGNORED_VALUES.add(key)
    +411
    +412    for to_remove_val in IGNORED_VALUES:
    +413        del GLOBAL_RARE_VALUE_STORAGE[to_remove_val]
     
    @@ -1477,26 +1504,26 @@

    -
    412def compute_cardinalities(input_dataframe: pd.DataFrame, pbar: Any) -> None:
    -413    """Compute cardinalities of features, incrementally"""
    -414
    -415    global GLOBAL_CARDINALITY_STORAGE
    -416    output_storage_card = defaultdict(set)
    -417    for enx, column in enumerate(input_dataframe):
    -418        output_storage_card[column] = set(input_dataframe[column].unique())
    -419        if column not in GLOBAL_CARDINALITY_STORAGE:
    -420            GLOBAL_CARDINALITY_STORAGE[column] = HyperLogLog(
    -421                HYPERLL_ERROR_BOUND,
    -422            )
    -423
    -424        for unique_value in set(input_dataframe[column].unique()):
    -425            if unique_value:
    -426                GLOBAL_CARDINALITY_STORAGE[column].add(
    -427                    internal_hash(unique_value),
    -428                )
    -429        pbar.set_description(
    -430            f'Computing cardinality (Hyperloglog update) {enx}/{input_dataframe.shape[1]}',
    -431        )
    +            
    416def compute_cardinalities(input_dataframe: pd.DataFrame, pbar: Any) -> None:
    +417    """Compute cardinalities of features, incrementally"""
    +418
    +419    global GLOBAL_CARDINALITY_STORAGE
    +420    output_storage_card = defaultdict(set)
    +421    for enx, column in enumerate(input_dataframe):
    +422        output_storage_card[column] = set(input_dataframe[column].unique())
    +423        if column not in GLOBAL_CARDINALITY_STORAGE:
    +424            GLOBAL_CARDINALITY_STORAGE[column] = HyperLogLog(
    +425                HYPERLL_ERROR_BOUND,
    +426            )
    +427
    +428        for unique_value in set(input_dataframe[column].unique()):
    +429            if unique_value:
    +430                GLOBAL_CARDINALITY_STORAGE[column].add(
    +431                    internal_hash(unique_value),
    +432                )
    +433        pbar.set_description(
    +434            f'Computing cardinality (Hyperloglog update) {enx}/{input_dataframe.shape[1]}',
    +435        )
     
    @@ -1516,36 +1543,36 @@

    -
    434def compute_bounds_increment(
    -435    input_dataframe: pd.DataFrame, numeric_column_types: set[str],
    -436) -> dict[str, Any]:
    -437    all_features = input_dataframe.columns
    -438    numeric_column_types = set(numeric_column_types)
    -439    summary_object = {}
    -440    summary_storage: Any = {}
    -441    for feature in all_features:
    -442        if feature in numeric_column_types:
    -443            feature_vector = pd.to_numeric(
    -444                input_dataframe[feature], errors='coerce',
    -445            )
    -446            minimum = np.min(feature_vector)
    -447            maximum = np.max(feature_vector)
    -448            mean = np.mean(feature_vector)
    -449            summary_storage = NumericFeatureSummary(
    -450                feature, minimum, maximum, mean, len(
    -451                    np.unique(feature_vector),
    -452                ),
    -453            )
    -454            summary_object[feature] = summary_storage
    -455
    -456        else:
    -457            feature_vector = input_dataframe[feature].values
    -458            summary_storage = NominalFeatureSummary(
    -459                feature, len(np.unique(feature_vector)),
    -460            )
    -461            summary_object[feature] = summary_storage
    -462
    -463    return summary_object
    +            
    438def compute_bounds_increment(
    +439    input_dataframe: pd.DataFrame, numeric_column_types: set[str],
    +440) -> dict[str, Any]:
    +441    all_features = input_dataframe.columns
    +442    numeric_column_types = set(numeric_column_types)
    +443    summary_object = {}
    +444    summary_storage: Any = {}
    +445    for feature in all_features:
    +446        if feature in numeric_column_types:
    +447            feature_vector = pd.to_numeric(
    +448                input_dataframe[feature], errors='coerce',
    +449            )
    +450            minimum = np.min(feature_vector)
    +451            maximum = np.max(feature_vector)
    +452            mean = np.mean(feature_vector)
    +453            summary_storage = NumericFeatureSummary(
    +454                feature, minimum, maximum, mean, len(
    +455                    np.unique(feature_vector),
    +456                ),
    +457            )
    +458            summary_object[feature] = summary_storage
    +459
    +460        else:
    +461            feature_vector = input_dataframe[feature].values
    +462            summary_storage = NominalFeatureSummary(
    +463                feature, len(np.unique(feature_vector)),
    +464            )
    +465            summary_object[feature] = summary_storage
    +466
    +467    return summary_object
     
    @@ -1563,96 +1590,96 @@

    -
    466def compute_batch_ranking(
    -467    line_tmp_storage: list[list[Any]],
    -468    numeric_column_types: set[str],
    -469    args: Any,
    -470    cpu_pool: Any,
    -471    column_descriptions: list[str],
    -472    logger: Any,
    -473    pbar: Any,
    -474) -> tuple[BatchRankingSummary, dict[str, Any], dict[str, set[str]], dict[str, set[str]]]:
    -475    """Enrich the feature space and compute the batch importances"""
    -476
    -477    input_dataframe = pd.DataFrame(line_tmp_storage)
    -478    input_dataframe.columns = column_descriptions
    -479    pbar.set_description('Control features')
    +            
    470def compute_batch_ranking(
    +471    line_tmp_storage: list[list[Any]],
    +472    numeric_column_types: set[str],
    +473    args: Any,
    +474    cpu_pool: Any,
    +475    column_descriptions: list[str],
    +476    logger: Any,
    +477    pbar: Any,
    +478) -> tuple[BatchRankingSummary, dict[str, Any], dict[str, set[str]], dict[str, set[str]]]:
    +479    """Enrich the feature space and compute the batch importances"""
     480
    -481    if args.feature_set_focus:
    -482        if args.feature_set_focus == '_all_from_reference_JSON':
    -483            focus_set = extract_features_from_reference_JSON(
    -484                args.reference_model_JSON,
    -485            )
    -486
    -487        else:
    -488            focus_set = set(args.feature_set_focus.split(','))
    -489
    -490        focus_set.add(args.label_column)
    -491        focus_set = {x for x in focus_set if x in input_dataframe.columns}
    -492        input_dataframe = input_dataframe[list(focus_set)]
    +481    input_dataframe = pd.DataFrame(line_tmp_storage)
    +482    input_dataframe.columns = column_descriptions
    +483    pbar.set_description('Control features')
    +484
    +485    if args.feature_set_focus:
    +486        if args.feature_set_focus == '_all_from_reference_JSON':
    +487            focus_set = extract_features_from_reference_JSON(
    +488                args.reference_model_JSON,
    +489            )
    +490
    +491        else:
    +492            focus_set = set(args.feature_set_focus.split(','))
     493
    -494    if args.transformers != 'none':
    -495        pbar.set_description('Adding transformations')
    -496        input_dataframe = enrich_with_transformations(
    -497            input_dataframe, numeric_column_types, logger, args,
    -498        )
    -499
    -500    if args.explode_multivalue_features != 'False':
    -501        pbar.set_description('Constructing new features from multivalue ones')
    -502        input_dataframe = compute_expanded_multivalue_features(
    -503            input_dataframe, logger, args, pbar,
    -504        )
    -505
    -506    if args.subfeature_mapping != 'False':
    -507        pbar.set_description('Constructing new (sub)features')
    -508        input_dataframe = compute_subfeatures(
    -509            input_dataframe, logger, args, pbar,
    -510        )
    -511
    -512    if args.interaction_order > 1:
    -513        pbar.set_description('Constructing new features')
    -514        input_dataframe = compute_combined_features(
    -515            input_dataframe, logger, args, pbar,
    -516        )
    -517
    -518    # in case of 3mr we compute the score of combinations against the target
    -519    if '3mr' in args.heuristic:
    -520        pbar.set_description(
    -521            'Constructing features for computing relations in 3mr',
    -522        )
    -523        input_dataframe = compute_combined_features(
    -524            input_dataframe, logger, args, pbar, True,
    -525        )
    -526
    -527    if args.include_noise_baseline_features == 'True' and args.heuristic != 'Constant':
    -528        pbar.set_description('Computing baseline features')
    -529        input_dataframe = include_noisy_features(input_dataframe, logger, args)
    +494        focus_set.add(args.label_column)
    +495        focus_set = {x for x in focus_set if x in input_dataframe.columns}
    +496        input_dataframe = input_dataframe[list(focus_set)]
    +497
    +498    if args.transformers != 'none':
    +499        pbar.set_description('Adding transformations')
    +500        input_dataframe = enrich_with_transformations(
    +501            input_dataframe, numeric_column_types, logger, args,
    +502        )
    +503
    +504    if args.explode_multivalue_features != 'False':
    +505        pbar.set_description('Constructing new features from multivalue ones')
    +506        input_dataframe = compute_expanded_multivalue_features(
    +507            input_dataframe, logger, args, pbar,
    +508        )
    +509
    +510    if args.subfeature_mapping != 'False':
    +511        pbar.set_description('Constructing new (sub)features')
    +512        input_dataframe = compute_subfeatures(
    +513            input_dataframe, logger, args, pbar,
    +514        )
    +515
    +516    if args.interaction_order > 1:
    +517        pbar.set_description('Constructing new features')
    +518        input_dataframe = compute_combined_features(
    +519            input_dataframe, logger, args, pbar,
    +520        )
    +521
    +522    # in case of 3mr we compute the score of combinations against the target
    +523    if '3mr' in args.heuristic:
    +524        pbar.set_description(
    +525            'Constructing features for computing relations in 3mr',
    +526        )
    +527        input_dataframe = compute_combined_features(
    +528            input_dataframe, logger, args, pbar, True,
    +529        )
     530
    -531    # Compute incremental statistic useful for data inspection/transformer generation
    -532    pbar.set_description('Computing coverage')
    -533    coverage_storage = compute_coverage(input_dataframe, args)
    -534    feature_memory_consumption = compute_feature_memory_consumption(
    -535        input_dataframe, args,
    -536    )
    -537    compute_cardinalities(input_dataframe, pbar)
    -538
    -539    if args.task == 'identify_rare_values':
    -540        compute_value_counts(input_dataframe, args)
    -541
    -542    bounds_storage = compute_bounds_increment(
    -543        input_dataframe, numeric_column_types,
    -544    )
    +531    if args.include_noise_baseline_features == 'True' and args.heuristic != 'Constant':
    +532        pbar.set_description('Computing baseline features')
    +533        input_dataframe = include_noisy_features(input_dataframe, logger, args)
    +534
    +535    # Compute incremental statistic useful for data inspection/transformer generation
    +536    pbar.set_description('Computing coverage')
    +537    coverage_storage = compute_coverage(input_dataframe, args)
    +538    feature_memory_consumption = compute_feature_memory_consumption(
    +539        input_dataframe, args,
    +540    )
    +541    compute_cardinalities(input_dataframe, pbar)
    +542
    +543    if args.task == 'identify_rare_values':
    +544        compute_value_counts(input_dataframe, args)
     545
    -546    pbar.set_description(
    -547        f'Computing ranks for {input_dataframe.shape[1]} features',
    +546    bounds_storage = compute_bounds_increment(
    +547        input_dataframe, numeric_column_types,
     548    )
     549
    -550    return (
    -551        mixed_rank_graph(input_dataframe, args, cpu_pool, pbar),
    -552        bounds_storage,
    -553        coverage_storage,
    -554        feature_memory_consumption,
    -555    )
    +550    pbar.set_description(
    +551        f'Computing ranks for {input_dataframe.shape[1]} features',
    +552    )
    +553
    +554    return (
    +555        mixed_rank_graph(input_dataframe, args, cpu_pool, pbar),
    +556        bounds_storage,
    +557        coverage_storage,
    +558        feature_memory_consumption,
    +559    )
     
    @@ -1672,19 +1699,19 @@

    -
    558def get_num_of_instances(fname: str) -> int:
    -559    """Count the number of lines in a file, fast - useful for progress logging"""
    -560
    -561    def _make_gen(reader):
    -562        while True:
    -563            b = reader(2**16)
    -564            if not b:
    -565                break
    -566            yield b
    -567
    -568    with open(fname, 'rb') as f:
    -569        count = sum(buf.count(b'\n') for buf in _make_gen(f.raw.read))
    -570    return count
    +            
    562def get_num_of_instances(fname: str) -> int:
    +563    """Count the number of lines in a file, fast - useful for progress logging"""
    +564
    +565    def _make_gen(reader):
    +566        while True:
    +567            b = reader(2**16)
    +568            if not b:
    +569                break
    +570            yield b
    +571
    +572    with open(fname, 'rb') as f:
    +573        count = sum(buf.count(b'\n') for buf in _make_gen(f.raw.read))
    +574    return count
     
    @@ -1704,17 +1731,17 @@

    -
    573def get_grouped_df(importances_df_list: list[tuple[str, str, float]]) -> pd.DataFrame:
    -574    """A helper method that enables median-based aggregation after processing"""
    -575
    -576    importances_df = pd.DataFrame(importances_df_list)
    -577    if len(importances_df) == 0:
    -578        return None
    -579    importances_df.columns = ['FeatureA', 'FeatureB', 'Score']
    -580    grouped = importances_df.groupby(
    -581        ['FeatureA', 'FeatureB'],
    -582    ).median().reset_index()
    -583    return grouped
    +            
    577def get_grouped_df(importances_df_list: list[tuple[str, str, float]]) -> pd.DataFrame:
    +578    """A helper method that enables median-based aggregation after processing"""
    +579
    +580    importances_df = pd.DataFrame(importances_df_list)
    +581    if len(importances_df) == 0:
    +582        return None
    +583    importances_df.columns = ['FeatureA', 'FeatureB', 'Score']
    +584    grouped = importances_df.groupby(
    +585        ['FeatureA', 'FeatureB'],
    +586    ).median().reset_index()
    +587    return grouped
     
    @@ -1734,12 +1761,12 @@

    -
    586def checkpoint_importances_df(importances_batch: list[tuple[str, str, float]]) -> None:
    -587    """A helper which stores intermediary state - useful for longer runs"""
    -588
    -589    gdf = get_grouped_df(importances_batch)
    -590    if gdf is not None:
    -591        gdf.to_csv('ranking_checkpoint_tmp.tsv', sep='\t')
    +            
    590def checkpoint_importances_df(importances_batch: list[tuple[str, str, float]]) -> None:
    +591    """A helper which stores intermediary state - useful for longer runs"""
    +592
    +593    gdf = get_grouped_df(importances_batch)
    +594    if gdf is not None:
    +595        gdf.to_csv('ranking_checkpoint_tmp.tsv', sep='\t')
     
    @@ -1759,147 +1786,147 @@

    -
    594def estimate_importances_minibatches(
    -595    input_file: str,
    -596    column_descriptions: list,
    -597    fw_col_mapping: dict[str, str],
    -598    numeric_column_types: set,
    -599    batch_size: int = 100000,
    -600    args: Any = None,
    -601    data_encoding: str = 'utf-8',
    -602    cpu_pool: Any = None,
    -603    delimiter: str = '\t',
    -604    feature_construction_mode: bool = False,
    -605    logger: Any = None,
    -606) -> tuple[list[dict[str, Any]], Any, dict[Any, Any], list[dict[str, Any]], list[dict[str, set[str]]], defaultdict[str, list[set[str]]], dict[str, Any]]:
    -607    """Interaction score estimator - suitable for example for csv-like input data types.
    -608    This type of data is normally a single large csv, meaning that minibatch processing needs to
    -609    happen during incremental handling of the file (that"s not the case for pre-separated ob data)
    -610    """
    -611
    -612    invalid_line_queue: Any = deque([], maxlen=2**5)
    -613
    -614    invalid_lines = 0
    -615    line_counter = 0
    -616
    -617    importances_df: list[Any] = []
    -618    line_tmp_storage = []
    -619    bounds_storage_batch = []
    -620    memory_storage_batch = []
    -621    step_timing_checkpoints = []
    -622
    -623    local_coverage_object = defaultdict(list)
    -624    local_pbar = tqdm.tqdm(
    -625        total=get_num_of_instances(input_file) - 1, position=0,
    -626    )
    -627
    -628    file_name, file_extension = os.path.splitext(input_file)
    -629
    -630    if file_extension == '.gz':
    -631        file_stream = gzip.open(input_file, 'rt', encoding=data_encoding)
    -632
    -633    else:
    -634        file_stream = open(input_file, encoding=data_encoding)
    -635
    -636    file_stream.readline()
    -637
    -638    local_pbar.set_description('Starting ranking computation')
    -639    for line in file_stream:
    -640        line_counter += 1
    -641        local_pbar.update(1)
    -642
    -643        if line_counter % args.subsampling != 0:
    -644            continue
    -645
    -646        parsed_line = generic_line_parser(
    -647            line, delimiter, args, fw_col_mapping, column_descriptions,
    -648        )
    +            
    598def estimate_importances_minibatches(
    +599    input_file: str,
    +600    column_descriptions: list,
    +601    fw_col_mapping: dict[str, str],
    +602    numeric_column_types: set,
    +603    batch_size: int = 100000,
    +604    args: Any = None,
    +605    data_encoding: str = 'utf-8',
    +606    cpu_pool: Any = None,
    +607    delimiter: str = '\t',
    +608    feature_construction_mode: bool = False,
    +609    logger: Any = None,
    +610) -> tuple[list[dict[str, Any]], Any, dict[Any, Any], list[dict[str, Any]], list[dict[str, set[str]]], defaultdict[str, list[set[str]]], dict[str, Any]]:
    +611    """Interaction score estimator - suitable for example for csv-like input data types.
    +612    This type of data is normally a single large csv, meaning that minibatch processing needs to
    +613    happen during incremental handling of the file (that"s not the case for pre-separated ob data)
    +614    """
    +615
    +616    invalid_line_queue: Any = deque([], maxlen=2**5)
    +617
    +618    invalid_lines = 0
    +619    line_counter = 0
    +620
    +621    importances_df: list[Any] = []
    +622    line_tmp_storage = []
    +623    bounds_storage_batch = []
    +624    memory_storage_batch = []
    +625    step_timing_checkpoints = []
    +626
    +627    local_coverage_object = defaultdict(list)
    +628    local_pbar = tqdm.tqdm(
    +629        total=get_num_of_instances(input_file) - 1, position=0,
    +630    )
    +631
    +632    file_name, file_extension = os.path.splitext(input_file)
    +633
    +634    if file_extension == '.gz':
    +635        file_stream = gzip.open(input_file, 'rt', encoding=data_encoding)
    +636
    +637    else:
    +638        file_stream = open(input_file, encoding=data_encoding)
    +639
    +640    file_stream.readline()
    +641
    +642    local_pbar.set_description('Starting ranking computation')
    +643    for line in file_stream:
    +644        line_counter += 1
    +645        local_pbar.update(1)
    +646
    +647        if line_counter % args.subsampling != 0:
    +648            continue
     649
    -650        if len(parsed_line) == len(column_descriptions):
    -651            line_tmp_storage.append(parsed_line)
    -652
    -653        else:
    -654            invalid_line_queue.appendleft(str(parsed_line))
    -655            invalid_lines += 1
    +650        parsed_line = generic_line_parser(
    +651            line, delimiter, args, fw_col_mapping, column_descriptions,
    +652        )
    +653
    +654        if len(parsed_line) == len(column_descriptions):
    +655            line_tmp_storage.append(parsed_line)
     656
    -657        # Batches need to be processed on-the-fly
    -658        if len(line_tmp_storage) >= args.minibatch_size:
    -659
    -660            importances_batch, bounds_storage, coverage_storage, memory_storage = compute_batch_ranking(
    -661                line_tmp_storage,
    -662                numeric_column_types,
    -663                args,
    -664                cpu_pool,
    -665                column_descriptions,
    -666                logger,
    -667                local_pbar,
    -668            )
    -669
    -670            bounds_storage_batch.append(bounds_storage)
    -671            memory_storage_batch.append(memory_storage)
    -672            for k, v in coverage_storage.items():
    -673                local_coverage_object[k].append(v)
    -674
    -675            del coverage_storage
    -676
    -677            line_tmp_storage = []
    -678            step_timing_checkpoints.append(importances_batch.step_times)
    -679            importances_df += importances_batch.triplet_scores
    +657        else:
    +658            invalid_line_queue.appendleft(str(parsed_line))
    +659            invalid_lines += 1
    +660
    +661        # Batches need to be processed on-the-fly
    +662        if len(line_tmp_storage) >= args.minibatch_size:
    +663
    +664            importances_batch, bounds_storage, coverage_storage, memory_storage = compute_batch_ranking(
    +665                line_tmp_storage,
    +666                numeric_column_types,
    +667                args,
    +668                cpu_pool,
    +669                column_descriptions,
    +670                logger,
    +671                local_pbar,
    +672            )
    +673
    +674            bounds_storage_batch.append(bounds_storage)
    +675            memory_storage_batch.append(memory_storage)
    +676            for k, v in coverage_storage.items():
    +677                local_coverage_object[k].append(v)
    +678
    +679            del coverage_storage
     680
    -681            if args.heuristic != 'Constant':
    -682                local_pbar.set_description('Creating checkpoint')
    -683                checkpoint_importances_df(importances_df)
    +681            line_tmp_storage = []
    +682            step_timing_checkpoints.append(importances_batch.step_times)
    +683            importances_df += importances_batch.triplet_scores
     684
    -685    file_stream.close()
    -686
    -687    local_pbar.set_description('Parsing the remainder')
    -688    if invalid_lines > 0:
    -689        logger.info(
    -690            f"Detected {invalid_lines} invalid lines. If this number is very high, it's possible your header is off - re-check your data/attribute-feature mappings please!",
    -691        )
    -692
    -693        invalid_lines_log = '\n INVALID_LINE ====> '.join(
    -694            list(invalid_line_queue)[0:5],
    +685            if args.heuristic != 'Constant':
    +686                local_pbar.set_description('Creating checkpoint')
    +687                checkpoint_importances_df(importances_df)
    +688
    +689    file_stream.close()
    +690
    +691    local_pbar.set_description('Parsing the remainder')
    +692    if invalid_lines > 0:
    +693        logger.info(
    +694            f"Detected {invalid_lines} invalid lines. If this number is very high, it's possible your header is off - re-check your data/attribute-feature mappings please!",
     695        )
    -696        logger.info(
    -697            f'5 samples of invalid lines are printed below\n {invalid_lines_log}',
    -698        )
    -699
    -700    remaining_batch_size = len(line_tmp_storage)
    -701
    -702    if remaining_batch_size > 2**10:
    -703        line_tmp_storage = line_tmp_storage[: args.minibatch_size]
    -704        importances_batch, bounds_storage, coverage_storage, _ = compute_batch_ranking(
    -705            line_tmp_storage,
    -706            numeric_column_types,
    -707            args,
    -708            cpu_pool,
    -709            column_descriptions,
    -710            logger,
    -711            local_pbar,
    -712        )
    -713
    -714        for k, v in coverage_storage.items():
    -715            local_coverage_object[k].append(v)
    -716
    -717        step_timing_checkpoints.append(importances_batch.step_times)
    -718        importances_df += importances_batch.triplet_scores
    -719        bounds_storage = dict()
    -720        bounds_storage_batch.append(bounds_storage)
    -721        checkpoint_importances_df(importances_df)
    -722
    -723    local_pbar.set_description('Wrapping up')
    -724    local_pbar.close()
    -725
    -726    return (
    -727        step_timing_checkpoints,
    -728        get_grouped_df(importances_df),
    -729        GLOBAL_CARDINALITY_STORAGE,
    -730        bounds_storage_batch,
    -731        memory_storage_batch,
    -732        local_coverage_object,
    -733        GLOBAL_RARE_VALUE_STORAGE,
    -734    )
    +696
    +697        invalid_lines_log = '\n INVALID_LINE ====> '.join(
    +698            list(invalid_line_queue)[0:5],
    +699        )
    +700        logger.info(
    +701            f'5 samples of invalid lines are printed below\n {invalid_lines_log}',
    +702        )
    +703
    +704    remaining_batch_size = len(line_tmp_storage)
    +705
    +706    if remaining_batch_size > 2**10:
    +707        line_tmp_storage = line_tmp_storage[: args.minibatch_size]
    +708        importances_batch, bounds_storage, coverage_storage, _ = compute_batch_ranking(
    +709            line_tmp_storage,
    +710            numeric_column_types,
    +711            args,
    +712            cpu_pool,
    +713            column_descriptions,
    +714            logger,
    +715            local_pbar,
    +716        )
    +717
    +718        for k, v in coverage_storage.items():
    +719            local_coverage_object[k].append(v)
    +720
    +721        step_timing_checkpoints.append(importances_batch.step_times)
    +722        importances_df += importances_batch.triplet_scores
    +723        bounds_storage = dict()
    +724        bounds_storage_batch.append(bounds_storage)
    +725        checkpoint_importances_df(importances_df)
    +726
    +727    local_pbar.set_description('Wrapping up')
    +728    local_pbar.close()
    +729
    +730    return (
    +731        step_timing_checkpoints,
    +732        get_grouped_df(importances_df),
    +733        GLOBAL_CARDINALITY_STORAGE,
    +734        bounds_storage_batch,
    +735        memory_storage_batch,
    +736        local_coverage_object,
    +737        GLOBAL_RARE_VALUE_STORAGE,
    +738    )
     
    diff --git a/docs/search.js b/docs/search.js index e292afb..64b09e8 100644 --- a/docs/search.js +++ b/docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oWelcome to OutRank's documentation!

    \n\n

    All functions/methods can be searched-for (search bar on the left).

    \n\n

    This tool enables fast screening of feature-feature interactions. Its purpose is to give the user fast insight into potential redundancies/anomalies in the data.\nIt is implemented to operate in _mini batches_, it traverses the raw data incrementally, refining the rankings as it goes along. The core operation, interaction ranking, outputs triplets which look as follows:

    \n\n
    featureA    featureB    0.512\nfeatureA    featureC    0.125\n
    \n\n

    Setup

    \n\n
    \n
    pip install outrank\n
    \n
    \n\n

    and test a minimal cycle with

    \n\n
    \n
    outrank --task selftest\n
    \n
    \n\n

    if this passes, you can be pretty certain OutRank will perform as intended. OutRank's primary use case is as a CLI tool, begin exploring with

    \n\n
    \n
    outrank --help\n
    \n
    \n\n

    Example use cases

    \n\n
      \n
    • A minimal showcase of performing feature ranking on a generic CSV is demonstrated with this example.

    • \n
    • More examples demonstrating OutRank's capabilities are also available.

    • \n
    \n"}, "outrank.algorithms": {"fullname": "outrank.algorithms", "modulename": "outrank.algorithms", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.feature_ranking": {"fullname": "outrank.algorithms.feature_ranking", "modulename": "outrank.algorithms.feature_ranking", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "numba_unique", "kind": "function", "doc": "

    Identify unique elements in an array, fast

    \n", "signature": "(a):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "compute_conditional_entropy", "kind": "function", "doc": "

    \n", "signature": "(\tY_classes,\tclass_values,\tclass_var_shape,\tinitial_prob,\tnonzero_counts):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "compute_entropies", "kind": "function", "doc": "

    Core entropy computation function

    \n", "signature": "(X, Y, all_events, f_values, f_value_counts, cardinality_correction):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "mutual_info_estimator_numba", "kind": "function", "doc": "

    Core estimator logic. Compute unique elements, subset if required

    \n", "signature": "(Y, X, approximation_factor=1, cardinality_correction=False):", "funcdef": "def"}, "outrank.algorithms.importance_estimator": {"fullname": "outrank.algorithms.importance_estimator", "modulename": "outrank.algorithms.importance_estimator", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.importance_estimator.logger": {"fullname": "outrank.algorithms.importance_estimator.logger", "modulename": "outrank.algorithms.importance_estimator", "qualname": "logger", "kind": "variable", "doc": "

    \n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.algorithms.importance_estimator.sklearn_MI": {"fullname": "outrank.algorithms.importance_estimator.sklearn_MI", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_MI", "kind": "function", "doc": "

    \n", "signature": "(vector_first: Any, vector_second: Any) -> float:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"fullname": "outrank.algorithms.importance_estimator.sklearn_surrogate", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_surrogate", "kind": "function", "doc": "

    \n", "signature": "(vector_first: Any, vector_second: Any, surrogate_model: str) -> float:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.numba_mi": {"fullname": "outrank.algorithms.importance_estimator.numba_mi", "modulename": "outrank.algorithms.importance_estimator", "qualname": "numba_mi", "kind": "function", "doc": "

    \n", "signature": "(vector_first, vector_second, heuristic):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"fullname": "outrank.algorithms.importance_estimator.sklearn_mi_adj", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_mi_adj", "kind": "function", "doc": "

    \n", "signature": "(vector_first, vector_second):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"fullname": "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise", "modulename": "outrank.algorithms.importance_estimator", "qualname": "get_importances_estimate_pairwise", "kind": "function", "doc": "

    A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel.

    \n", "signature": "(combination, args, tmp_df):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"fullname": "outrank.algorithms.importance_estimator.rank_features_3MR", "modulename": "outrank.algorithms.importance_estimator", "qualname": "rank_features_3MR", "kind": "function", "doc": "

    \n", "signature": "(\trelevance_dict: dict[str, float],\tredundancy_dict: dict[tuple[typing.Any, typing.Any], typing.Any],\trelational_dict: dict[tuple[typing.Any, typing.Any], typing.Any],\tstrategy: str = 'median',\talpha: float = 1,\tbeta: float = 1) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"fullname": "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic", "modulename": "outrank.algorithms.importance_estimator", "qualname": "get_importances_estimate_nonmyopic", "kind": "function", "doc": "

    \n", "signature": "(args: Any, tmp_df: pandas.core.frame.DataFrame):", "funcdef": "def"}, "outrank.algorithms.sketches": {"fullname": "outrank.algorithms.sketches", "modulename": "outrank.algorithms.sketches", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "kind": "module", "doc": "

    This module implements probabilistic data structure which is able to calculate the cardinality of large multisets in a single pass using little auxiliary memory

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache", "kind": "class", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.__init__", "kind": "function", "doc": "

    \n", "signature": "(error_rate=0.005)"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.p", "kind": "variable", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.m", "kind": "variable", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.warmup_set", "kind": "variable", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.warmup_size", "kind": "variable", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.width", "kind": "variable", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.hll_flag", "kind": "variable", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.add", "kind": "function", "doc": "

    \n", "signature": "(self, value):", "funcdef": "def"}, "outrank.algorithms.synthetic_data_generators": {"fullname": "outrank.algorithms.synthetic_data_generators", "modulename": "outrank.algorithms.synthetic_data_generators", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"fullname": "outrank.algorithms.synthetic_data_generators.generator_naive", "modulename": "outrank.algorithms.synthetic_data_generators.generator_naive", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"fullname": "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix", "modulename": "outrank.algorithms.synthetic_data_generators.generator_naive", "qualname": "generate_random_matrix", "kind": "function", "doc": "

    \n", "signature": "(num_features=100, size=20000):", "funcdef": "def"}, "outrank.core_ranking": {"fullname": "outrank.core_ranking", "modulename": "outrank.core_ranking", "kind": "module", "doc": "

    \n"}, "outrank.core_ranking.logger": {"fullname": "outrank.core_ranking.logger", "modulename": "outrank.core_ranking", "qualname": "logger", "kind": "variable", "doc": "

    \n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"fullname": "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_CARDINALITY_STORAGE", "kind": "variable", "doc": "

    \n", "annotation": ": dict[typing.Any, typing.Any]", "default_value": "{}"}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"fullname": "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_RARE_VALUE_STORAGE", "kind": "variable", "doc": "

    \n", "annotation": ": dict[str, typing.Any]", "default_value": "Counter()"}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"fullname": "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_PRIOR_COMB_COUNTS", "kind": "variable", "doc": "

    \n", "annotation": ": dict[typing.Any, int]", "default_value": "Counter()"}, "outrank.core_ranking.IGNORED_VALUES": {"fullname": "outrank.core_ranking.IGNORED_VALUES", "modulename": "outrank.core_ranking", "qualname": "IGNORED_VALUES", "kind": "variable", "doc": "

    \n", "default_value": "set()"}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"fullname": "outrank.core_ranking.HYPERLL_ERROR_BOUND", "modulename": "outrank.core_ranking", "qualname": "HYPERLL_ERROR_BOUND", "kind": "variable", "doc": "

    \n", "default_value": "0.02"}, "outrank.core_ranking.prior_combinations_sample": {"fullname": "outrank.core_ranking.prior_combinations_sample", "modulename": "outrank.core_ranking", "qualname": "prior_combinations_sample", "kind": "function", "doc": "

    Make sure only relevant subspace of combinations is selected based on prior counts

    \n", "signature": "(\tcombinations: list[tuple[typing.Any, ...]],\targs: Any) -> list[tuple[typing.Any, ...]]:", "funcdef": "def"}, "outrank.core_ranking.mixed_rank_graph": {"fullname": "outrank.core_ranking.mixed_rank_graph", "modulename": "outrank.core_ranking", "qualname": "mixed_rank_graph", "kind": "function", "doc": "

    Compute the full mixed rank graph corresponding to all pairwise feature interactions based on the selected heuristic

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any,\tcpu_pool: Any,\tpbar: Any) -> outrank.core_utils.BatchRankingSummary:", "funcdef": "def"}, "outrank.core_ranking.enrich_with_transformations": {"fullname": "outrank.core_ranking.enrich_with_transformations", "modulename": "outrank.core_ranking", "qualname": "enrich_with_transformations", "kind": "function", "doc": "

    Construct a collection of new features based on pre-defined transformations/rules

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tnum_col_types: set[str],\tlogger: Any,\targs: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_combined_features": {"fullname": "outrank.core_ranking.compute_combined_features", "modulename": "outrank.core_ranking", "qualname": "compute_combined_features", "kind": "function", "doc": "

    Compute higher order features via xxhash-based trick.

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any,\tis_3mr: bool = False) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_expanded_multivalue_features": {"fullname": "outrank.core_ranking.compute_expanded_multivalue_features", "modulename": "outrank.core_ranking", "qualname": "compute_expanded_multivalue_features", "kind": "function", "doc": "

    Compute one-hot encoded feature space based on each designated multivalue feature. E.g., feature with value \"a,b,c\" becomes three features, values of which are presence of a given value in a mutlivalue feature of choice.

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_subfeatures": {"fullname": "outrank.core_ranking.compute_subfeatures", "modulename": "outrank.core_ranking", "qualname": "compute_subfeatures", "kind": "function", "doc": "

    Compute derived features that are more fine-grained. Implements logic around two operators that govern feature construction.\n->: One sided construction - every value from left side is fine, separate ones from the right side feature will be considered.\n<->: Two sided construction - two-sided values present. This means that each value from a is combined with each from b, forming |A|*|B| new features (one-hot encoded)

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.include_noisy_features": {"fullname": "outrank.core_ranking.include_noisy_features", "modulename": "outrank.core_ranking", "qualname": "include_noisy_features", "kind": "function", "doc": "

    Add randomized features that serve as a sanity check

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_coverage": {"fullname": "outrank.core_ranking.compute_coverage", "modulename": "outrank.core_ranking", "qualname": "compute_coverage", "kind": "function", "doc": "

    Compute coverage of features, incrementally

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any) -> dict[str, set[str]]:", "funcdef": "def"}, "outrank.core_ranking.compute_feature_memory_consumption": {"fullname": "outrank.core_ranking.compute_feature_memory_consumption", "modulename": "outrank.core_ranking", "qualname": "compute_feature_memory_consumption", "kind": "function", "doc": "

    An approximation of how much feature take up

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any) -> dict[str, set[str]]:", "funcdef": "def"}, "outrank.core_ranking.compute_value_counts": {"fullname": "outrank.core_ranking.compute_value_counts", "modulename": "outrank.core_ranking", "qualname": "compute_value_counts", "kind": "function", "doc": "

    Update the count structure

    \n", "signature": "(input_dataframe: pandas.core.frame.DataFrame, args: Any):", "funcdef": "def"}, "outrank.core_ranking.compute_cardinalities": {"fullname": "outrank.core_ranking.compute_cardinalities", "modulename": "outrank.core_ranking", "qualname": "compute_cardinalities", "kind": "function", "doc": "

    Compute cardinalities of features, incrementally

    \n", "signature": "(input_dataframe: pandas.core.frame.DataFrame, pbar: Any) -> None:", "funcdef": "def"}, "outrank.core_ranking.compute_bounds_increment": {"fullname": "outrank.core_ranking.compute_bounds_increment", "modulename": "outrank.core_ranking", "qualname": "compute_bounds_increment", "kind": "function", "doc": "

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tnumeric_column_types: set[str]) -> dict[str, typing.Any]:", "funcdef": "def"}, "outrank.core_ranking.compute_batch_ranking": {"fullname": "outrank.core_ranking.compute_batch_ranking", "modulename": "outrank.core_ranking", "qualname": "compute_batch_ranking", "kind": "function", "doc": "

    Enrich the feature space and compute the batch importances

    \n", "signature": "(\tline_tmp_storage: list[list[typing.Any]],\tnumeric_column_types: set[str],\targs: Any,\tcpu_pool: Any,\tcolumn_descriptions: list[str],\tlogger: Any,\tpbar: Any) -> tuple[outrank.core_utils.BatchRankingSummary, dict[str, typing.Any], dict[str, set[str]], dict[str, set[str]]]:", "funcdef": "def"}, "outrank.core_ranking.get_num_of_instances": {"fullname": "outrank.core_ranking.get_num_of_instances", "modulename": "outrank.core_ranking", "qualname": "get_num_of_instances", "kind": "function", "doc": "

    Count the number of lines in a file, fast - useful for progress logging

    \n", "signature": "(fname: str) -> int:", "funcdef": "def"}, "outrank.core_ranking.get_grouped_df": {"fullname": "outrank.core_ranking.get_grouped_df", "modulename": "outrank.core_ranking", "qualname": "get_grouped_df", "kind": "function", "doc": "

    A helper method that enables median-based aggregation after processing

    \n", "signature": "(\timportances_df_list: list[tuple[str, str, float]]) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.checkpoint_importances_df": {"fullname": "outrank.core_ranking.checkpoint_importances_df", "modulename": "outrank.core_ranking", "qualname": "checkpoint_importances_df", "kind": "function", "doc": "

    A helper which stores intermediary state - useful for longer runs

    \n", "signature": "(importances_batch: list[tuple[str, str, float]]) -> None:", "funcdef": "def"}, "outrank.core_ranking.estimate_importances_minibatches": {"fullname": "outrank.core_ranking.estimate_importances_minibatches", "modulename": "outrank.core_ranking", "qualname": "estimate_importances_minibatches", "kind": "function", "doc": "

    Interaction score estimator - suitable for example for csv-like input data types.\nThis type of data is normally a single large csv, meaning that minibatch processing needs to\nhappen during incremental handling of the file (that\"s not the case for pre-separated ob data)

    \n", "signature": "(\tinput_file: str,\tcolumn_descriptions: list,\tfw_col_mapping: dict[str, str],\tnumeric_column_types: set,\tbatch_size: int = 100000,\targs: Any = None,\tdata_encoding: str = 'utf-8',\tcpu_pool: Any = None,\tdelimiter: str = '\\t',\tfeature_construction_mode: bool = False,\tlogger: Any = None) -> tuple[list[dict[str, typing.Any]], typing.Any, dict[typing.Any, typing.Any], list[dict[str, typing.Any]], list[dict[str, set[str]]], collections.defaultdict[str, list[set[str]]], dict[str, typing.Any]]:", "funcdef": "def"}, "outrank.core_selftest": {"fullname": "outrank.core_selftest", "modulename": "outrank.core_selftest", "kind": "module", "doc": "

    \n"}, "outrank.core_utils": {"fullname": "outrank.core_utils", "modulename": "outrank.core_utils", "kind": "module", "doc": "

    \n"}, "outrank.core_utils.pro_tips": {"fullname": "outrank.core_utils.pro_tips", "modulename": "outrank.core_utils", "qualname": "pro_tips", "kind": "variable", "doc": "

    \n", "default_value": "['OutRank can construct subfeatures; features based on subspaces. Example command argument is: --subfeature_mapping "feature_a->feature_b;feature_c<->feature_d;feature_c<->feature_e"', 'Heuristic MI-numba-randomized seems like the best of both worlds! (speed + performance).', 'Heuristic surrogate-lr performs cross-validation (internally), keep that in mind!', 'Consider running OutRank on a smaller data sample first, might be enough (--subsampling = a lot).', 'There are two types of combinations supported; unsupervised pairwise ranking (redundancies- --target_ranking_only=False), and supervised combinations - (--interaction_order > 1)', 'Visualization part also includes clustering - this might be very insightful!', 'By default OutRank includes feature cardinality and coverage in feature names (card; cov)', 'Intermediary checkpoints (tmp_checkpoint.tsv) might already give you insights during longer runs.', 'In theory, you can rank redundancies of combined features (--interaction_order AND --target_ranking_only=False).', 'Give it as many threads as physically possible (--num_threads).', 'You can speed up ranking by diminishing feature buffer size (--combination_number_upper_bound determines how many ranking computations per batch will be considered). This, and --subsampling are very powerful together.', 'Want to rank feature transformations, but not sure which ones to choose? --transformers=default should serve as a solid baseline (common DS transformations included).', 'Your target can be any feature! (explaining one feature with others)', 'OutRank uses HyperLogLog for cardinality estimation - this is also a potential usecase (understanding cardinalities across different data sets).', 'Each feature is named as featureName(cardinality, coverage in percents) in the final files.', 'You can generate candidate feature transformation ranges (fw) by using --task=feature_summary_transformers.']"}, "outrank.core_utils.write_json_dump_to_file": {"fullname": "outrank.core_utils.write_json_dump_to_file", "modulename": "outrank.core_utils", "qualname": "write_json_dump_to_file", "kind": "function", "doc": "

    \n", "signature": "(args: Any, config_name: str) -> None:", "funcdef": "def"}, "outrank.core_utils.internal_hash": {"fullname": "outrank.core_utils.internal_hash", "modulename": "outrank.core_utils", "qualname": "internal_hash", "kind": "function", "doc": "

    A generic internal hash used throughout ranking procedure - let's hardcode seed here for sure

    \n", "signature": "(input_obj: str) -> str:", "funcdef": "def"}, "outrank.core_utils.DatasetInformationStorage": {"fullname": "outrank.core_utils.DatasetInformationStorage", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage", "kind": "class", "doc": "

    A generic class for holding properties of a given type of dataset

    \n"}, "outrank.core_utils.DatasetInformationStorage.__init__": {"fullname": "outrank.core_utils.DatasetInformationStorage.__init__", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tdata_path: str,\tcolumn_names: list[str],\tcolumn_types: set[str],\tcol_delimiter: str | None,\tencoding: str,\tfw_map: dict[str, str] | None)"}, "outrank.core_utils.DatasetInformationStorage.data_path": {"fullname": "outrank.core_utils.DatasetInformationStorage.data_path", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.data_path", "kind": "variable", "doc": "

    \n", "annotation": ": str"}, "outrank.core_utils.DatasetInformationStorage.column_names": {"fullname": "outrank.core_utils.DatasetInformationStorage.column_names", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.column_names", "kind": "variable", "doc": "

    \n", "annotation": ": list[str]"}, "outrank.core_utils.DatasetInformationStorage.column_types": {"fullname": "outrank.core_utils.DatasetInformationStorage.column_types", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.column_types", "kind": "variable", "doc": "

    \n", "annotation": ": set[str]"}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"fullname": "outrank.core_utils.DatasetInformationStorage.col_delimiter", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.col_delimiter", "kind": "variable", "doc": "

    \n", "annotation": ": str | None"}, "outrank.core_utils.DatasetInformationStorage.encoding": {"fullname": "outrank.core_utils.DatasetInformationStorage.encoding", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.encoding", "kind": "variable", "doc": "

    \n", "annotation": ": str"}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"fullname": "outrank.core_utils.DatasetInformationStorage.fw_map", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.fw_map", "kind": "variable", "doc": "

    \n", "annotation": ": dict[str, str] | None"}, "outrank.core_utils.NumericFeatureSummary": {"fullname": "outrank.core_utils.NumericFeatureSummary", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary", "kind": "class", "doc": "

    A generic class storing numeric feature statistics

    \n"}, "outrank.core_utils.NumericFeatureSummary.__init__": {"fullname": "outrank.core_utils.NumericFeatureSummary.__init__", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tfeature_name: str,\tminimum: float,\tmaximum: float,\tmedian: float,\tnum_unique: int)"}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"fullname": "outrank.core_utils.NumericFeatureSummary.feature_name", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.feature_name", "kind": "variable", "doc": "

    \n", "annotation": ": str"}, "outrank.core_utils.NumericFeatureSummary.minimum": {"fullname": "outrank.core_utils.NumericFeatureSummary.minimum", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.minimum", "kind": "variable", "doc": "

    \n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.maximum": {"fullname": "outrank.core_utils.NumericFeatureSummary.maximum", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.maximum", "kind": "variable", "doc": "

    \n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.median": {"fullname": "outrank.core_utils.NumericFeatureSummary.median", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.median", "kind": "variable", "doc": "

    \n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"fullname": "outrank.core_utils.NumericFeatureSummary.num_unique", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.num_unique", "kind": "variable", "doc": "

    \n", "annotation": ": int"}, "outrank.core_utils.NominalFeatureSummary": {"fullname": "outrank.core_utils.NominalFeatureSummary", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary", "kind": "class", "doc": "

    A generic class storing numeric feature statistics

    \n"}, "outrank.core_utils.NominalFeatureSummary.__init__": {"fullname": "outrank.core_utils.NominalFeatureSummary.__init__", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.__init__", "kind": "function", "doc": "

    \n", "signature": "(feature_name: str, num_unique: int)"}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"fullname": "outrank.core_utils.NominalFeatureSummary.feature_name", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.feature_name", "kind": "variable", "doc": "

    \n", "annotation": ": str"}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"fullname": "outrank.core_utils.NominalFeatureSummary.num_unique", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.num_unique", "kind": "variable", "doc": "

    \n", "annotation": ": int"}, "outrank.core_utils.BatchRankingSummary": {"fullname": "outrank.core_utils.BatchRankingSummary", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary", "kind": "class", "doc": "

    A generic class representing batched ranking results

    \n"}, "outrank.core_utils.BatchRankingSummary.__init__": {"fullname": "outrank.core_utils.BatchRankingSummary.__init__", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.__init__", "kind": "function", "doc": "

    \n", "signature": "(\ttriplet_scores: list[tuple[str, str, float]],\tstep_times: dict[str, typing.Any])"}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"fullname": "outrank.core_utils.BatchRankingSummary.triplet_scores", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.triplet_scores", "kind": "variable", "doc": "

    \n", "annotation": ": list[tuple[str, str, float]]"}, "outrank.core_utils.BatchRankingSummary.step_times": {"fullname": "outrank.core_utils.BatchRankingSummary.step_times", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.step_times", "kind": "variable", "doc": "

    \n", "annotation": ": dict[str, typing.Any]"}, "outrank.core_utils.display_random_tip": {"fullname": "outrank.core_utils.display_random_tip", "modulename": "outrank.core_utils", "qualname": "display_random_tip", "kind": "function", "doc": "

    \n", "signature": "() -> None:", "funcdef": "def"}, "outrank.core_utils.get_dataset_info": {"fullname": "outrank.core_utils.get_dataset_info", "modulename": "outrank.core_utils", "qualname": "get_dataset_info", "kind": "function", "doc": "

    \n", "signature": "(args: Any):", "funcdef": "def"}, "outrank.core_utils.display_tool_name": {"fullname": "outrank.core_utils.display_tool_name", "modulename": "outrank.core_utils", "qualname": "display_tool_name", "kind": "function", "doc": "

    \n", "signature": "() -> None:", "funcdef": "def"}, "outrank.core_utils.parse_ob_line": {"fullname": "outrank.core_utils.parse_ob_line", "modulename": "outrank.core_utils", "qualname": "parse_ob_line", "kind": "function", "doc": "

    Outbrain line parsing - generic TSVs

    \n", "signature": "(line_string: str, delimiter: str = '\\t', args: Any = None) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_line_vw": {"fullname": "outrank.core_utils.parse_ob_line_vw", "modulename": "outrank.core_utils", "qualname": "parse_ob_line_vw", "kind": "function", "doc": "

    Parse a sparse vw line into a pandas df with pre-defined namespace

    \n", "signature": "(\tline_string: str,\tdelimiter: str,\targs: Any = None,\tfw_col_mapping=None,\ttable_header=None,\tinclude_namespace_info=False) -> list[str | None]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_csv_line": {"fullname": "outrank.core_utils.parse_ob_csv_line", "modulename": "outrank.core_utils", "qualname": "parse_ob_csv_line", "kind": "function", "doc": "

    Data can have commas within JSON field dumps

    \n", "signature": "(line_string: str, delimiter: str = ',', args: Any = None) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.generic_line_parser": {"fullname": "outrank.core_utils.generic_line_parser", "modulename": "outrank.core_utils", "qualname": "generic_line_parser", "kind": "function", "doc": "

    A generic method aimed to parse data from different sources.

    \n", "signature": "(\tline_string: str,\tdelimiter: str,\targs: Any = None,\tfw_col_mapping: Any = None,\ttable_header: Any = None) -> list[typing.Any]:", "funcdef": "def"}, "outrank.core_utils.read_reference_json": {"fullname": "outrank.core_utils.read_reference_json", "modulename": "outrank.core_utils", "qualname": "read_reference_json", "kind": "function", "doc": "

    A helper method for reading a JSON

    \n", "signature": "(json_path) -> dict[str, dict]:", "funcdef": "def"}, "outrank.core_utils.parse_namespace": {"fullname": "outrank.core_utils.parse_namespace", "modulename": "outrank.core_utils", "qualname": "parse_namespace", "kind": "function", "doc": "

    Parse the feature namespace for type awareness

    \n", "signature": "(namespace_path: str) -> tuple[set[str], dict[str, str]]:", "funcdef": "def"}, "outrank.core_utils.read_column_names": {"fullname": "outrank.core_utils.read_column_names", "modulename": "outrank.core_utils", "qualname": "read_column_names", "kind": "function", "doc": "

    Read the col. header

    \n", "signature": "(mapping_file: str) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_vw_feature_information": {"fullname": "outrank.core_utils.parse_ob_vw_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_vw_feature_information", "kind": "function", "doc": "

    A generic parser of ob-based data

    \n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_ob_raw_feature_information": {"fullname": "outrank.core_utils.parse_ob_raw_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_raw_feature_information", "kind": "function", "doc": "

    A generic parser of ob-based data

    \n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_ob_feature_information": {"fullname": "outrank.core_utils.parse_ob_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_feature_information", "kind": "function", "doc": "

    A generic parser of ob-based data

    \n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_csv_with_description_information": {"fullname": "outrank.core_utils.parse_csv_with_description_information", "modulename": "outrank.core_utils", "qualname": "parse_csv_with_description_information", "kind": "function", "doc": "

    \n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_csv_raw": {"fullname": "outrank.core_utils.parse_csv_raw", "modulename": "outrank.core_utils", "qualname": "parse_csv_raw", "kind": "function", "doc": "

    \n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.extract_features_from_reference_JSON": {"fullname": "outrank.core_utils.extract_features_from_reference_JSON", "modulename": "outrank.core_utils", "qualname": "extract_features_from_reference_JSON", "kind": "function", "doc": "

    Given a model's JSON, extract unique features

    \n", "signature": "(json_path: str) -> set[typing.Any]:", "funcdef": "def"}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"fullname": "outrank.core_utils.summarize_feature_bounds_for_transformers", "modulename": "outrank.core_utils", "qualname": "summarize_feature_bounds_for_transformers", "kind": "function", "doc": "

    summarization auxilliary method for generating JSON-based specs

    \n", "signature": "(\tbounds_object_storage: Any,\tfeature_types: list[str],\ttask_name: str,\tlabel_name: str,\tgranularity: int = 15,\toutput_summary_table_only: bool = False):", "funcdef": "def"}, "outrank.core_utils.summarize_rare_counts": {"fullname": "outrank.core_utils.summarize_rare_counts", "modulename": "outrank.core_utils", "qualname": "summarize_rare_counts", "kind": "function", "doc": "

    Write rare values

    \n", "signature": "(\tterm_counter: Any,\targs: Any,\tcardinality_object: Any,\tobject_info: outrank.core_utils.DatasetInformationStorage) -> None:", "funcdef": "def"}, "outrank.feature_transformations": {"fullname": "outrank.feature_transformations", "modulename": "outrank.feature_transformations", "kind": "module", "doc": "

    \n"}, "outrank.feature_transformations.feature_transformer_vault": {"fullname": "outrank.feature_transformations.feature_transformer_vault", "modulename": "outrank.feature_transformations.feature_transformer_vault", "kind": "module", "doc": "

    \n"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "kind": "module", "doc": "

    \n"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "qualname": "MINIMAL_TRANSFORMERS", "kind": "variable", "doc": "

    \n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)'}"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "qualname": "DEFAULT_TRANSFORMERS", "kind": "variable", "doc": "

    \n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)', '_tr_div(x,abs(x))*log(abs(x))': 'np.divide(X, np.abs(X)) * np.log(np.abs(X))', '_tr_log(x + sqrt(pow(x,2), 1)': 'np.log(X + np.sqrt(np.power(X, 2) + 1))', '_tr_log*sqrt': 'np.log(X + 1) * np.sqrt(X)', '_tr_log*100': 'np.round(np.log(X + 1) * 100, 0)', '_tr_nonzero': 'np.where(X != 0, 1, 0)', '_tr_round(div(x,max))': 'np.round(np.divide(X, np.max(X)), 0)'}"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "kind": "module", "doc": "

    \n"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "FW_TRANSFORMERS", "kind": "variable", "doc": "

    \n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)', '_tr_div(x,abs(x))*log(abs(x))': 'np.divide(X, np.abs(X)) * np.log(np.abs(X))', '_tr_log(x + sqrt(pow(x,2), 1)': 'np.log(X + np.sqrt(np.power(X, 2) + 1))', '_tr_log*sqrt': 'np.log(X + 1) * np.sqrt(X)', '_tr_log*100': 'np.round(np.log(X + 1) * 100, 0)', '_tr_nonzero': 'np.where(X != 0, 1, 0)', '_tr_round(div(x,max))': 'np.round(np.divide(X, np.max(X)), 0)', '_tr_fw_sqrt_res_1_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*1,0), 0))', '_tr_fw_log_res_1_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*1,0), 0))', '_tr_fw_log_res_1_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*1,0), 0))', '_tr_fw_log_res_1_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*1,0), 0))', '_tr_fw_log_res_1_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*1,0), 0))', '_tr_fw_log_res_1_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*1,0), 0))', '_tr_fw_log_res_1_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*1,0), 0))', '_tr_fw_log_res_1_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*1,0), 0))', '_tr_fw_log_res_1_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*1,0), 0))', '_tr_fw_sqrt_res_10_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*10,0), 0))', '_tr_fw_log_res_10_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*10,0), 0))', '_tr_fw_log_res_10_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*10,0), 0))', '_tr_fw_log_res_10_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*10,0), 0))', '_tr_fw_log_res_10_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*10,0), 0))', '_tr_fw_log_res_10_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*10,0), 0))', '_tr_fw_log_res_10_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*10,0), 0))', '_tr_fw_log_res_10_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*10,0), 0))', '_tr_fw_log_res_10_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*10,0), 0))', '_tr_fw_sqrt_res_50_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*50,0), 0))', '_tr_fw_log_res_50_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*50,0), 0))', '_tr_fw_log_res_50_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*50,0), 0))', '_tr_fw_log_res_50_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*50,0), 0))', '_tr_fw_log_res_50_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*50,0), 0))', '_tr_fw_log_res_50_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*50,0), 0))', '_tr_fw_log_res_50_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*50,0), 0))', '_tr_fw_log_res_50_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*50,0), 0))', '_tr_fw_log_res_50_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*50,0), 0))', '_tr_fw_sqrt_res_100_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*100,0), 0))', '_tr_fw_log_res_100_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*100,0), 0))', '_tr_fw_log_res_100_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*100,0), 0))', '_tr_fw_log_res_100_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*100,0), 0))', '_tr_fw_log_res_100_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*100,0), 0))', '_tr_fw_log_res_100_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*100,0), 0))', '_tr_fw_log_res_100_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*100,0), 0))', '_tr_fw_log_res_100_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*100,0), 0))', '_tr_fw_log_res_100_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*100,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*1,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*10,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*50,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*100,0), 0))'}"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "resolution_range", "kind": "variable", "doc": "

    \n", "default_value": "[1, 10, 50, 100]"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "greater_than_range", "kind": "variable", "doc": "

    \n", "default_value": "[1, 2, 4, 8, 16, 32, 64, 96]"}, "outrank.feature_transformations.ranking_transformers": {"fullname": "outrank.feature_transformations.ranking_transformers", "modulename": "outrank.feature_transformations.ranking_transformers", "kind": "module", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise", "kind": "class", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise.noise_preset", "kind": "variable", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise.construct_new_features", "kind": "function", "doc": "

    Generate a few standard noise distributions

    \n", "signature": "(self, dataframe: pandas.core.frame.DataFrame, label_column=None):", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric", "kind": "class", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.__init__", "kind": "function", "doc": "

    \n", "signature": "(numeric_column_names: set[str], preset: str = 'default')"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.numeric_column_names", "kind": "variable", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.constructed_feature_names", "kind": "variable", "doc": "

    \n", "annotation": ": set[str]"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.max_maj_support", "kind": "variable", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.nan_prop_support", "kind": "variable", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.get_vals", "kind": "function", "doc": "

    \n", "signature": "(self, tmp_df: pandas.core.frame.DataFrame, col_name: str) -> Any:", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.construct_baseline_features", "kind": "function", "doc": "

    \n", "signature": "(self, dataframe: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.construct_new_features", "kind": "function", "doc": "

    \n", "signature": "(self, dataframe: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.task_generators": {"fullname": "outrank.task_generators", "modulename": "outrank.task_generators", "kind": "module", "doc": "

    \n"}, "outrank.task_generators.logger": {"fullname": "outrank.task_generators.logger", "modulename": "outrank.task_generators", "qualname": "logger", "kind": "variable", "doc": "

    \n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.task_generators.outrank_task_generate_data_set": {"fullname": "outrank.task_generators.outrank_task_generate_data_set", "modulename": "outrank.task_generators", "qualname": "outrank_task_generate_data_set", "kind": "function", "doc": "

    Core method for generating data sets

    \n", "signature": "(args):", "funcdef": "def"}, "outrank.task_ranking": {"fullname": "outrank.task_ranking", "modulename": "outrank.task_ranking", "kind": "module", "doc": "

    \n"}, "outrank.task_ranking.outrank_task_conduct_ranking": {"fullname": "outrank.task_ranking.outrank_task_conduct_ranking", "modulename": "outrank.task_ranking", "qualname": "outrank_task_conduct_ranking", "kind": "function", "doc": "

    \n", "signature": "(args: Any):", "funcdef": "def"}, "outrank.task_selftest": {"fullname": "outrank.task_selftest", "modulename": "outrank.task_selftest", "kind": "module", "doc": "

    \n"}, "outrank.task_selftest.logger": {"fullname": "outrank.task_selftest.logger", "modulename": "outrank.task_selftest", "qualname": "logger", "kind": "variable", "doc": "

    \n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.task_selftest.conduct_self_test": {"fullname": "outrank.task_selftest.conduct_self_test", "modulename": "outrank.task_selftest", "qualname": "conduct_self_test", "kind": "function", "doc": "

    \n", "signature": "():", "funcdef": "def"}, "outrank.task_summary": {"fullname": "outrank.task_summary", "modulename": "outrank.task_summary", "kind": "module", "doc": "

    \n"}, "outrank.task_summary.outrank_task_result_summary": {"fullname": "outrank.task_summary.outrank_task_result_summary", "modulename": "outrank.task_summary", "qualname": "outrank_task_result_summary", "kind": "function", "doc": "

    \n", "signature": "(args):", "funcdef": "def"}, "outrank.task_visualization": {"fullname": "outrank.task_visualization", "modulename": "outrank.task_visualization", "kind": "module", "doc": "

    \n"}, "outrank.task_visualization.outrank_task_visualize_results": {"fullname": "outrank.task_visualization.outrank_task_visualize_results", "modulename": "outrank.task_visualization", "qualname": "outrank_task_visualize_results", "kind": "function", "doc": "

    \n", "signature": "(args):", "funcdef": "def"}, "outrank.visualizations": {"fullname": "outrank.visualizations", "modulename": "outrank.visualizations", "kind": "module", "doc": "

    \n"}, "outrank.visualizations.ranking_visualization": {"fullname": "outrank.visualizations.ranking_visualization", "modulename": "outrank.visualizations.ranking_visualization", "kind": "module", "doc": "

    \n"}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"fullname": "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_hierarchical_clusters", "kind": "function", "doc": "

    A method for visualization of hierarchical clusters w.r.t. different linkage functions

    \n", "signature": "(\ttriplet_dataframe: pandas.core.frame.DataFrame,\toutput_folder: str,\timage_format: str = 'png',\tmax_num_clusters: int = 100) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"fullname": "outrank.visualizations.ranking_visualization.visualize_heatmap", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_heatmap", "kind": "function", "doc": "

    \n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\timage_format: str) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"fullname": "outrank.visualizations.ranking_visualization.visualize_barplots", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_barplots", "kind": "function", "doc": "

    \n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\treference_json: str,\timage_format: str,\tlabel: str,\theuristic: str) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_all": {"fullname": "outrank.visualizations.ranking_visualization.visualize_all", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_all", "kind": "function", "doc": "

    A method for visualization of the obtained feature interaction maps.

    \n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\tlabel: str = '',\treference_json: str = '',\timage_format: str = 'png',\theuristic: str = 'MI') -> None:", "funcdef": "def"}}, "docInfo": {"outrank": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 234}, "outrank.algorithms": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 6}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 11}, "outrank.algorithms.importance_estimator": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.logger": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_MI": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.numba_mi": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 21}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 204, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.sketches": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 26}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 3}, "outrank.core_ranking": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.IGNORED_VALUES": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.prior_combinations_sample": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 75, "bases": 0, "doc": 15}, "outrank.core_ranking.mixed_rank_graph": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 81, "bases": 0, "doc": 19}, "outrank.core_ranking.enrich_with_transformations": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 92, "bases": 0, "doc": 13}, "outrank.core_ranking.compute_combined_features": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 103, "bases": 0, "doc": 11}, "outrank.core_ranking.compute_expanded_multivalue_features": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 41}, "outrank.core_ranking.compute_subfeatures": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 70}, "outrank.core_ranking.include_noisy_features": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 11}, "outrank.core_ranking.compute_coverage": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 7}, "outrank.core_ranking.compute_feature_memory_consumption": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 10}, "outrank.core_ranking.compute_value_counts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 6}, "outrank.core_ranking.compute_cardinalities": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 7}, "outrank.core_ranking.compute_bounds_increment": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 3}, "outrank.core_ranking.compute_batch_ranking": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 197, "bases": 0, "doc": 11}, "outrank.core_ranking.get_num_of_instances": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 15}, "outrank.core_ranking.get_grouped_df": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 12}, "outrank.core_ranking.checkpoint_importances_df": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 12}, "outrank.core_ranking.estimate_importances_minibatches": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 376, "bases": 0, "doc": 48}, "outrank.core_selftest": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.pro_tips": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 303, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.write_json_dump_to_file": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "outrank.core_utils.internal_hash": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 17}, "outrank.core_utils.DatasetInformationStorage": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 14}, "outrank.core_utils.DatasetInformationStorage.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.data_path": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.column_names": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.column_types": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.encoding": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.NumericFeatureSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.minimum": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.maximum": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.median": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.NominalFeatureSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.BatchRankingSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary.step_times": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.display_random_tip": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "outrank.core_utils.get_dataset_info": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.core_utils.display_tool_name": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "outrank.core_utils.parse_ob_line": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 7}, "outrank.core_utils.parse_ob_line_vw": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 15}, "outrank.core_utils.parse_ob_csv_line": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 10}, "outrank.core_utils.generic_line_parser": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 13}, "outrank.core_utils.read_reference_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 9}, "outrank.core_utils.parse_namespace": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 9}, "outrank.core_utils.read_column_names": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 6}, "outrank.core_utils.parse_ob_vw_feature_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_ob_raw_feature_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_ob_feature_information": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_csv_with_description_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.parse_csv_raw": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.extract_features_from_reference_JSON": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 10}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 10}, "outrank.core_utils.summarize_rare_counts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 5}, "outrank.feature_transformations": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 56, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 173, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 4589, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 4, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"qualname": 3, "fullname": 11, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 8}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"qualname": 4, "fullname": 9, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "outrank.task_generators": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_generators.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_generators.outrank_task_generate_data_set": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "outrank.task_ranking": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_ranking.outrank_task_conduct_ranking": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.task_selftest": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_selftest.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_selftest.conduct_self_test": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 3}, "outrank.task_summary": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_summary.outrank_task_result_summary": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "outrank.task_visualization": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_visualization.outrank_task_visualize_results": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "outrank.visualizations": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 91, "bases": 0, "doc": 15}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 93, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_all": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 135, "bases": 0, "doc": 13}}, "length": 141, "save": true}, "index": {"qualname": {"root": {"3": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 11}}}}, "b": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 1}, "x": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "j": {"docs": {"outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 9, "r": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}, "w": {"docs": {"outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 9}}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}, "b": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 4}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 2}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}}, "fullname": {"root": {"3": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms": {"tf": 1}, "outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_selftest": {"tf": 1}, "outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}, "outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}, "outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.4142135623730951}, "outrank.visualizations": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 141}}}}}}, "f": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}, "b": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms": {"tf": 1}, "outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 30}}}}}}}}, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "j": {"docs": {"outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 35, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 5}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 50}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}, "w": {"docs": {"outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}}, "df": 1, "i": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 8, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 1}, "x": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}}, "df": 6}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 10}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 45}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 11}}}}, "b": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 10}}}, "s": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_selftest": {"tf": 1}, "outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 70}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 10}}, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 9, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 11}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_selftest": {"tf": 1}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 6}}}, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 9, "r": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 9}}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 8}}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 7, "s": {"docs": {"outrank.visualizations": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 23}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 21}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}, "outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}, "outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.4142135623730951}}, "df": 12}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}}, "annotation": {"root": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 19, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1.4142135623730951}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 7}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 4}}}}}}}, "default_value": {"root": {"0": {"1": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "2": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 2}, "4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "8": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 22.715633383201094}}, "df": 3}, "1": {"0": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8.06225774829855}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 3}, "docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 2}, "6": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {"outrank.core_utils.pro_tips": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 10.198039027185569}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 6}, "2": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.830951894845301}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 3}, "3": {"2": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "5": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "6": {"4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "8": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "9": {"6": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.795831523312719}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 12.288205727444508}, "outrank.task_generators.logger": {"tf": 1.4142135623730951}, "outrank.task_selftest.logger": {"tf": 1.4142135623730951}}, "df": 12, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 3.1622776601683795}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.74734012447073}}, "df": 3, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.logger": {"tf": 1.4142135623730951}, "outrank.task_generators.logger": {"tf": 1.4142135623730951}, "outrank.task_selftest.logger": {"tf": 1.4142135623730951}}, "df": 4}}}, "*": {"1": {"0": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.6457513110645907}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.61895003862225}}, "df": 3}}}}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 16}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "x": {"2": {"7": {"docs": {"outrank.core_utils.pro_tips": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 4}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 6.324555320336759}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.49468024894146}}, "df": 4}, "docs": {}, "df": 0}, "docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.449489742783178}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.795831523312719}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.130067012440755}}, "df": 3, "+": {"1": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}}}}}}, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 3.872983346207417}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "w": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}}, "df": 2}}, "b": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 2.8284271247461903}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "x": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.449489742783178}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.58257569495584}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.08679276123039}}, "df": 3}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "s": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.445523142259598}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 3.1622776601683795}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.74734012447073}}, "df": 3, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 16.0312195418814}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"0": {"0": {"5": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}, "1": {"0": {"0": {"0": {"0": {"0": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "5": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}, "docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"0": {"0": {"0": {"0": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2}, "outrank.core_utils.parse_ob_line": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 2.8284271247461903}}, "df": 7}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}, "8": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 3.1622776601683795}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 5.5677643628300215}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 5.477225575051661}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 5.477225575051661}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 4.898979485566356}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 5.656854249492381}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 4.242640687119285}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 3.7416573867739413}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 4.242640687119285}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 12.806248474865697}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 5.830951894845301}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 3.4641016151377544}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 3.7416573867739413}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 4.69041575982343}, "outrank.core_ranking.prior_combinations_sample": {"tf": 8}, "outrank.core_ranking.mixed_rank_graph": {"tf": 8}, "outrank.core_ranking.enrich_with_transformations": {"tf": 8.54400374531753}, "outrank.core_ranking.compute_combined_features": {"tf": 9.1104335791443}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 8.246211251235321}, "outrank.core_ranking.compute_subfeatures": {"tf": 8.246211251235321}, "outrank.core_ranking.include_noisy_features": {"tf": 7.681145747868608}, "outrank.core_ranking.compute_coverage": {"tf": 7.14142842854285}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 7.14142842854285}, "outrank.core_ranking.compute_value_counts": {"tf": 5.830951894845301}, "outrank.core_ranking.compute_cardinalities": {"tf": 6}, "outrank.core_ranking.compute_bounds_increment": {"tf": 7.54983443527075}, "outrank.core_ranking.compute_batch_ranking": {"tf": 12.449899597988733}, "outrank.core_ranking.get_num_of_instances": {"tf": 4}, "outrank.core_ranking.get_grouped_df": {"tf": 6.855654600401044}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 5.830951894845301}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 17.204650534085253}, "outrank.core_utils.write_json_dump_to_file": {"tf": 4.898979485566356}, "outrank.core_utils.internal_hash": {"tf": 4}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 9.38083151964686}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 7}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 4.47213595499958}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 7.3484692283495345}, "outrank.core_utils.display_random_tip": {"tf": 3}, "outrank.core_utils.get_dataset_info": {"tf": 3.7416573867739413}, "outrank.core_utils.display_tool_name": {"tf": 3}, "outrank.core_utils.parse_ob_line": {"tf": 7.416198487095663}, "outrank.core_utils.parse_ob_line_vw": {"tf": 8.831760866327848}, "outrank.core_utils.parse_ob_csv_line": {"tf": 7.14142842854285}, "outrank.core_utils.generic_line_parser": {"tf": 8.94427190999916}, "outrank.core_utils.read_reference_json": {"tf": 4.69041575982343}, "outrank.core_utils.parse_namespace": {"tf": 6.082762530298219}, "outrank.core_utils.read_column_names": {"tf": 4.58257569495584}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_ob_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_csv_raw": {"tf": 4.47213595499958}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 5}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 8.774964387392123}, "outrank.core_utils.summarize_rare_counts": {"tf": 7.211102550927978}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 6.164414002968976}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 5.744562646538029}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 6.324555320336759}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 5.656854249492381}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 5.656854249492381}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 3.1622776601683795}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 3.7416573867739413}, "outrank.task_selftest.conduct_self_test": {"tf": 2.6457513110645907}, "outrank.task_summary.outrank_task_result_summary": {"tf": 3.1622776601683795}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 3.1622776601683795}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 8.366600265340756}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 6.855654600401044}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 8.602325267042627}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 10.295630140987}}, "df": 69, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.7320508075688772}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.7320508075688772}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 2.449489742783178}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 3}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 2}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}}, "df": 32}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 25}}}}, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 29}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 5}}, "t": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 10}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 2.6457513110645907}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 3.4641016151377544}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 2.6457513110645907}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.7320508075688772}, "outrank.core_utils.generic_line_parser": {"tf": 1.4142135623730951}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 2}, "outrank.core_utils.read_column_names": {"tf": 1.4142135623730951}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 2.23606797749979}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 2.23606797749979}}, "df": 32, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 13}}}, "t": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 6}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 9}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 6}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.4142135623730951}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 2}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1.7320508075688772}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 17}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 5, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "l": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 4}}}}}, "x": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 4}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 8}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.449489742783178}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.449489742783178}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 10}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 7, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_value_counts": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_cardinalities": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 6}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.23606797749979}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 13}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 7}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 8}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 8}}}, "f": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}}, "df": 2}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0}}, "doc": {"root": {"0": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"5": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"2": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"outrank": {"tf": 9.219544457292887}, "outrank.algorithms": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.logger": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1.7320508075688772}, "outrank.core_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.logger": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1.7320508075688772}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1.7320508075688772}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1.7320508075688772}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 2.23606797749979}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_value_counts": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_cardinalities": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_selftest": {"tf": 1.7320508075688772}, "outrank.core_utils": {"tf": 1.7320508075688772}, "outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1.7320508075688772}, "outrank.core_utils.internal_hash": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1.7320508075688772}, "outrank.core_utils.display_random_tip": {"tf": 1.7320508075688772}, "outrank.core_utils.get_dataset_info": {"tf": 1.7320508075688772}, "outrank.core_utils.display_tool_name": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.4142135623730951}, "outrank.core_utils.generic_line_parser": {"tf": 1.7320508075688772}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1.4142135623730951}, "outrank.core_utils.read_column_names": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_csv_raw": {"tf": 1.7320508075688772}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1.4142135623730951}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.4142135623730951}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.4142135623730951}, "outrank.feature_transformations": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1.7320508075688772}, "outrank.task_generators": {"tf": 1.7320508075688772}, "outrank.task_generators.logger": {"tf": 1.7320508075688772}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1.7320508075688772}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.7320508075688772}, "outrank.task_selftest": {"tf": 1.7320508075688772}, "outrank.task_selftest.logger": {"tf": 1.7320508075688772}, "outrank.task_selftest.conduct_self_test": {"tf": 1.7320508075688772}, "outrank.task_summary": {"tf": 1.7320508075688772}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.7320508075688772}, "outrank.task_visualization": {"tf": 1.7320508075688772}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.7320508075688772}, "outrank.visualizations": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1.7320508075688772}}, "df": 141, "w": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "o": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 2.449489742783178}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 11}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 2.6457513110645907}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 16}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1, "d": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 9, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.4142135623730951}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 26, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 3}, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 2, "d": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}, "|": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "b": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 13, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 2}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 10, "a": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}, "b": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "c": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 8}}}}}}, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 2}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 8, "d": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}}, "df": 2}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 3, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 10}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "t": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 6, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"outrank": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 3}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}}}}}}}}}, "f": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 3, "r": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"outrank": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1, "n": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 11}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 8}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}, "w": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 4}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"outrank": {"fullname": "outrank", "modulename": "outrank", "kind": "module", "doc": "

    Welcome to OutRank's documentation!

    \n\n

    All functions/methods can be searched-for (search bar on the left).

    \n\n

    This tool enables fast screening of feature-feature interactions. Its purpose is to give the user fast insight into potential redundancies/anomalies in the data.\nIt is implemented to operate in _mini batches_, it traverses the raw data incrementally, refining the rankings as it goes along. The core operation, interaction ranking, outputs triplets which look as follows:

    \n\n
    featureA    featureB    0.512\nfeatureA    featureC    0.125\n
    \n\n

    Setup

    \n\n
    \n
    pip install outrank\n
    \n
    \n\n

    and test a minimal cycle with

    \n\n
    \n
    outrank --task selftest\n
    \n
    \n\n

    if this passes, you can be pretty certain OutRank will perform as intended. OutRank's primary use case is as a CLI tool, begin exploring with

    \n\n
    \n
    outrank --help\n
    \n
    \n\n

    Example use cases

    \n\n
      \n
    • A minimal showcase of performing feature ranking on a generic CSV is demonstrated with this example.

    • \n
    • More examples demonstrating OutRank's capabilities are also available.

    • \n
    \n\n

    OutRank as a Python library

    \n\n

    Once installed, _OutRank_ can be used as any other Python library. For example, generic feature ranking algorithms can be accessed as

    \n\n
    \n
    from outrank.algorithms.feature_ranking.ranking_mi_numba import (\n    mutual_info_estimator_numba,\n)\n\n# Some synthetic minimal data (Numpy vectors)\na = np.array([1, 0, 0, 0, 1, 1, 1, 0], dtype=np.int32)\n\nlowest = np.array(np.random.permutation(a), dtype=np.int32)\nmedium = np.array([1, 1, 0, 0, 1, 1, 1, 1], dtype=np.int32)\nhigh = np.array([1, 0, 0, 0, 1, 1, 1, 1], dtype=np.int32)\n\nlowest_score = mutual_info_estimator_numba(\n    a, lowest, np.float32(1.0), False,\n)\nmedium_score = mutual_info_estimator_numba(\n    a, medium, np.float32(1.0), False,\n)\nhigh_score = mutual_info_estimator_numba(\n    a, high, np.float32(1.0), False,\n)\n\nscores = [lowest_score, medium_score, high_score]\nsorted_score_indices = np.argsort(scores)\nassert np.sum(np.array([0, 1, 2]) - sorted_score_indices) ==  0\n
    \n
    \n"}, "outrank.algorithms": {"fullname": "outrank.algorithms", "modulename": "outrank.algorithms", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.feature_ranking": {"fullname": "outrank.algorithms.feature_ranking", "modulename": "outrank.algorithms.feature_ranking", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "numba_unique", "kind": "function", "doc": "

    Identify unique elements in an array, fast

    \n", "signature": "(a):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "compute_conditional_entropy", "kind": "function", "doc": "

    \n", "signature": "(\tY_classes,\tclass_values,\tclass_var_shape,\tinitial_prob,\tnonzero_counts):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "compute_entropies", "kind": "function", "doc": "

    Core entropy computation function

    \n", "signature": "(X, Y, all_events, f_values, f_value_counts, cardinality_correction):", "funcdef": "def"}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"fullname": "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba", "modulename": "outrank.algorithms.feature_ranking.ranking_mi_numba", "qualname": "mutual_info_estimator_numba", "kind": "function", "doc": "

    Core estimator logic. Compute unique elements, subset if required

    \n", "signature": "(Y, X, approximation_factor=1, cardinality_correction=False):", "funcdef": "def"}, "outrank.algorithms.importance_estimator": {"fullname": "outrank.algorithms.importance_estimator", "modulename": "outrank.algorithms.importance_estimator", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.importance_estimator.logger": {"fullname": "outrank.algorithms.importance_estimator.logger", "modulename": "outrank.algorithms.importance_estimator", "qualname": "logger", "kind": "variable", "doc": "

    \n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.algorithms.importance_estimator.sklearn_MI": {"fullname": "outrank.algorithms.importance_estimator.sklearn_MI", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_MI", "kind": "function", "doc": "

    \n", "signature": "(vector_first: Any, vector_second: Any) -> float:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"fullname": "outrank.algorithms.importance_estimator.sklearn_surrogate", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_surrogate", "kind": "function", "doc": "

    \n", "signature": "(vector_first: Any, vector_second: Any, surrogate_model: str) -> float:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.numba_mi": {"fullname": "outrank.algorithms.importance_estimator.numba_mi", "modulename": "outrank.algorithms.importance_estimator", "qualname": "numba_mi", "kind": "function", "doc": "

    \n", "signature": "(vector_first, vector_second, heuristic):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"fullname": "outrank.algorithms.importance_estimator.sklearn_mi_adj", "modulename": "outrank.algorithms.importance_estimator", "qualname": "sklearn_mi_adj", "kind": "function", "doc": "

    \n", "signature": "(vector_first, vector_second):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"fullname": "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise", "modulename": "outrank.algorithms.importance_estimator", "qualname": "get_importances_estimate_pairwise", "kind": "function", "doc": "

    A method for parallel importances estimation. As interaction scoring is independent, individual scores can be computed in parallel.

    \n", "signature": "(combination, args, tmp_df):", "funcdef": "def"}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"fullname": "outrank.algorithms.importance_estimator.rank_features_3MR", "modulename": "outrank.algorithms.importance_estimator", "qualname": "rank_features_3MR", "kind": "function", "doc": "

    \n", "signature": "(\trelevance_dict: dict[str, float],\tredundancy_dict: dict[tuple[typing.Any, typing.Any], typing.Any],\trelational_dict: dict[tuple[typing.Any, typing.Any], typing.Any],\tstrategy: str = 'median',\talpha: float = 1,\tbeta: float = 1) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"fullname": "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic", "modulename": "outrank.algorithms.importance_estimator", "qualname": "get_importances_estimate_nonmyopic", "kind": "function", "doc": "

    \n", "signature": "(args: Any, tmp_df: pandas.core.frame.DataFrame):", "funcdef": "def"}, "outrank.algorithms.sketches": {"fullname": "outrank.algorithms.sketches", "modulename": "outrank.algorithms.sketches", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "kind": "module", "doc": "

    This module implements probabilistic data structure which is able to calculate the cardinality of large multisets in a single pass using little auxiliary memory

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache", "kind": "class", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.__init__", "kind": "function", "doc": "

    \n", "signature": "(error_rate=0.005)"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.p", "kind": "variable", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.m", "kind": "variable", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.warmup_set", "kind": "variable", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.warmup_size", "kind": "variable", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.width", "kind": "variable", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.hll_flag", "kind": "variable", "doc": "

    \n"}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"fullname": "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add", "modulename": "outrank.algorithms.sketches.counting_ultiloglog", "qualname": "HyperLogLogWCache.add", "kind": "function", "doc": "

    \n", "signature": "(self, value):", "funcdef": "def"}, "outrank.algorithms.synthetic_data_generators": {"fullname": "outrank.algorithms.synthetic_data_generators", "modulename": "outrank.algorithms.synthetic_data_generators", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"fullname": "outrank.algorithms.synthetic_data_generators.generator_naive", "modulename": "outrank.algorithms.synthetic_data_generators.generator_naive", "kind": "module", "doc": "

    \n"}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"fullname": "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix", "modulename": "outrank.algorithms.synthetic_data_generators.generator_naive", "qualname": "generate_random_matrix", "kind": "function", "doc": "

    \n", "signature": "(num_features=100, size=20000):", "funcdef": "def"}, "outrank.core_ranking": {"fullname": "outrank.core_ranking", "modulename": "outrank.core_ranking", "kind": "module", "doc": "

    \n"}, "outrank.core_ranking.logger": {"fullname": "outrank.core_ranking.logger", "modulename": "outrank.core_ranking", "qualname": "logger", "kind": "variable", "doc": "

    \n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"fullname": "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_CARDINALITY_STORAGE", "kind": "variable", "doc": "

    \n", "annotation": ": dict[typing.Any, typing.Any]", "default_value": "{}"}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"fullname": "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_RARE_VALUE_STORAGE", "kind": "variable", "doc": "

    \n", "annotation": ": dict[str, typing.Any]", "default_value": "Counter()"}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"fullname": "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS", "modulename": "outrank.core_ranking", "qualname": "GLOBAL_PRIOR_COMB_COUNTS", "kind": "variable", "doc": "

    \n", "annotation": ": dict[typing.Any, int]", "default_value": "Counter()"}, "outrank.core_ranking.IGNORED_VALUES": {"fullname": "outrank.core_ranking.IGNORED_VALUES", "modulename": "outrank.core_ranking", "qualname": "IGNORED_VALUES", "kind": "variable", "doc": "

    \n", "default_value": "set()"}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"fullname": "outrank.core_ranking.HYPERLL_ERROR_BOUND", "modulename": "outrank.core_ranking", "qualname": "HYPERLL_ERROR_BOUND", "kind": "variable", "doc": "

    \n", "default_value": "0.02"}, "outrank.core_ranking.prior_combinations_sample": {"fullname": "outrank.core_ranking.prior_combinations_sample", "modulename": "outrank.core_ranking", "qualname": "prior_combinations_sample", "kind": "function", "doc": "

    Make sure only relevant subspace of combinations is selected based on prior counts

    \n", "signature": "(\tcombinations: list[tuple[typing.Any, ...]],\targs: Any) -> list[tuple[typing.Any, ...]]:", "funcdef": "def"}, "outrank.core_ranking.get_combinations_from_columns": {"fullname": "outrank.core_ranking.get_combinations_from_columns", "modulename": "outrank.core_ranking", "qualname": "get_combinations_from_columns", "kind": "function", "doc": "

    Return feature-feature & feature-label combinations, depending on the heuristic and ranking scope

    \n", "signature": "(\tall_columns: pandas.core.indexes.base.Index,\targs: Any) -> list[tuple[typing.Any, ...]]:", "funcdef": "def"}, "outrank.core_ranking.mixed_rank_graph": {"fullname": "outrank.core_ranking.mixed_rank_graph", "modulename": "outrank.core_ranking", "qualname": "mixed_rank_graph", "kind": "function", "doc": "

    Compute the full mixed rank graph corresponding to all pairwise feature interactions based on the selected heuristic

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any,\tcpu_pool: Any,\tpbar: Any) -> outrank.core_utils.BatchRankingSummary:", "funcdef": "def"}, "outrank.core_ranking.enrich_with_transformations": {"fullname": "outrank.core_ranking.enrich_with_transformations", "modulename": "outrank.core_ranking", "qualname": "enrich_with_transformations", "kind": "function", "doc": "

    Construct a collection of new features based on pre-defined transformations/rules

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tnum_col_types: set[str],\tlogger: Any,\targs: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_combined_features": {"fullname": "outrank.core_ranking.compute_combined_features", "modulename": "outrank.core_ranking", "qualname": "compute_combined_features", "kind": "function", "doc": "

    Compute higher order features via xxhash-based trick.

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any,\tis_3mr: bool = False) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_expanded_multivalue_features": {"fullname": "outrank.core_ranking.compute_expanded_multivalue_features", "modulename": "outrank.core_ranking", "qualname": "compute_expanded_multivalue_features", "kind": "function", "doc": "

    Compute one-hot encoded feature space based on each designated multivalue feature. E.g., feature with value \"a,b,c\" becomes three features, values of which are presence of a given value in a mutlivalue feature of choice.

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_subfeatures": {"fullname": "outrank.core_ranking.compute_subfeatures", "modulename": "outrank.core_ranking", "qualname": "compute_subfeatures", "kind": "function", "doc": "

    Compute derived features that are more fine-grained. Implements logic around two operators that govern feature construction.\n->: One sided construction - every value from left side is fine, separate ones from the right side feature will be considered.\n<->: Two sided construction - two-sided values present. This means that each value from a is combined with each from b, forming |A|*|B| new features (one-hot encoded)

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any,\tpbar: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.include_noisy_features": {"fullname": "outrank.core_ranking.include_noisy_features", "modulename": "outrank.core_ranking", "qualname": "include_noisy_features", "kind": "function", "doc": "

    Add randomized features that serve as a sanity check

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tlogger: Any,\targs: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.compute_coverage": {"fullname": "outrank.core_ranking.compute_coverage", "modulename": "outrank.core_ranking", "qualname": "compute_coverage", "kind": "function", "doc": "

    Compute coverage of features, incrementally

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any) -> dict[str, set[str]]:", "funcdef": "def"}, "outrank.core_ranking.compute_feature_memory_consumption": {"fullname": "outrank.core_ranking.compute_feature_memory_consumption", "modulename": "outrank.core_ranking", "qualname": "compute_feature_memory_consumption", "kind": "function", "doc": "

    An approximation of how much feature take up

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\targs: Any) -> dict[str, set[str]]:", "funcdef": "def"}, "outrank.core_ranking.compute_value_counts": {"fullname": "outrank.core_ranking.compute_value_counts", "modulename": "outrank.core_ranking", "qualname": "compute_value_counts", "kind": "function", "doc": "

    Update the count structure

    \n", "signature": "(input_dataframe: pandas.core.frame.DataFrame, args: Any):", "funcdef": "def"}, "outrank.core_ranking.compute_cardinalities": {"fullname": "outrank.core_ranking.compute_cardinalities", "modulename": "outrank.core_ranking", "qualname": "compute_cardinalities", "kind": "function", "doc": "

    Compute cardinalities of features, incrementally

    \n", "signature": "(input_dataframe: pandas.core.frame.DataFrame, pbar: Any) -> None:", "funcdef": "def"}, "outrank.core_ranking.compute_bounds_increment": {"fullname": "outrank.core_ranking.compute_bounds_increment", "modulename": "outrank.core_ranking", "qualname": "compute_bounds_increment", "kind": "function", "doc": "

    \n", "signature": "(\tinput_dataframe: pandas.core.frame.DataFrame,\tnumeric_column_types: set[str]) -> dict[str, typing.Any]:", "funcdef": "def"}, "outrank.core_ranking.compute_batch_ranking": {"fullname": "outrank.core_ranking.compute_batch_ranking", "modulename": "outrank.core_ranking", "qualname": "compute_batch_ranking", "kind": "function", "doc": "

    Enrich the feature space and compute the batch importances

    \n", "signature": "(\tline_tmp_storage: list[list[typing.Any]],\tnumeric_column_types: set[str],\targs: Any,\tcpu_pool: Any,\tcolumn_descriptions: list[str],\tlogger: Any,\tpbar: Any) -> tuple[outrank.core_utils.BatchRankingSummary, dict[str, typing.Any], dict[str, set[str]], dict[str, set[str]]]:", "funcdef": "def"}, "outrank.core_ranking.get_num_of_instances": {"fullname": "outrank.core_ranking.get_num_of_instances", "modulename": "outrank.core_ranking", "qualname": "get_num_of_instances", "kind": "function", "doc": "

    Count the number of lines in a file, fast - useful for progress logging

    \n", "signature": "(fname: str) -> int:", "funcdef": "def"}, "outrank.core_ranking.get_grouped_df": {"fullname": "outrank.core_ranking.get_grouped_df", "modulename": "outrank.core_ranking", "qualname": "get_grouped_df", "kind": "function", "doc": "

    A helper method that enables median-based aggregation after processing

    \n", "signature": "(\timportances_df_list: list[tuple[str, str, float]]) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.core_ranking.checkpoint_importances_df": {"fullname": "outrank.core_ranking.checkpoint_importances_df", "modulename": "outrank.core_ranking", "qualname": "checkpoint_importances_df", "kind": "function", "doc": "

    A helper which stores intermediary state - useful for longer runs

    \n", "signature": "(importances_batch: list[tuple[str, str, float]]) -> None:", "funcdef": "def"}, "outrank.core_ranking.estimate_importances_minibatches": {"fullname": "outrank.core_ranking.estimate_importances_minibatches", "modulename": "outrank.core_ranking", "qualname": "estimate_importances_minibatches", "kind": "function", "doc": "

    Interaction score estimator - suitable for example for csv-like input data types.\nThis type of data is normally a single large csv, meaning that minibatch processing needs to\nhappen during incremental handling of the file (that\"s not the case for pre-separated ob data)

    \n", "signature": "(\tinput_file: str,\tcolumn_descriptions: list,\tfw_col_mapping: dict[str, str],\tnumeric_column_types: set,\tbatch_size: int = 100000,\targs: Any = None,\tdata_encoding: str = 'utf-8',\tcpu_pool: Any = None,\tdelimiter: str = '\\t',\tfeature_construction_mode: bool = False,\tlogger: Any = None) -> tuple[list[dict[str, typing.Any]], typing.Any, dict[typing.Any, typing.Any], list[dict[str, typing.Any]], list[dict[str, set[str]]], collections.defaultdict[str, list[set[str]]], dict[str, typing.Any]]:", "funcdef": "def"}, "outrank.core_selftest": {"fullname": "outrank.core_selftest", "modulename": "outrank.core_selftest", "kind": "module", "doc": "

    \n"}, "outrank.core_utils": {"fullname": "outrank.core_utils", "modulename": "outrank.core_utils", "kind": "module", "doc": "

    \n"}, "outrank.core_utils.pro_tips": {"fullname": "outrank.core_utils.pro_tips", "modulename": "outrank.core_utils", "qualname": "pro_tips", "kind": "variable", "doc": "

    \n", "default_value": "['OutRank can construct subfeatures; features based on subspaces. Example command argument is: --subfeature_mapping "feature_a->feature_b;feature_c<->feature_d;feature_c<->feature_e"', 'Heuristic MI-numba-randomized seems like the best of both worlds! (speed + performance).', 'Heuristic surrogate-lr performs cross-validation (internally), keep that in mind!', 'Consider running OutRank on a smaller data sample first, might be enough (--subsampling = a lot).', 'There are two types of combinations supported; unsupervised pairwise ranking (redundancies- --target_ranking_only=False), and supervised combinations - (--interaction_order > 1)', 'Visualization part also includes clustering - this might be very insightful!', 'By default OutRank includes feature cardinality and coverage in feature names (card; cov)', 'Intermediary checkpoints (tmp_checkpoint.tsv) might already give you insights during longer runs.', 'In theory, you can rank redundancies of combined features (--interaction_order AND --target_ranking_only=False).', 'Give it as many threads as physically possible (--num_threads).', 'You can speed up ranking by diminishing feature buffer size (--combination_number_upper_bound determines how many ranking computations per batch will be considered). This, and --subsampling are very powerful together.', 'Want to rank feature transformations, but not sure which ones to choose? --transformers=default should serve as a solid baseline (common DS transformations included).', 'Your target can be any feature! (explaining one feature with others)', 'OutRank uses HyperLogLog for cardinality estimation - this is also a potential usecase (understanding cardinalities across different data sets).', 'Each feature is named as featureName(cardinality, coverage in percents) in the final files.', 'You can generate candidate feature transformation ranges (fw) by using --task=feature_summary_transformers.']"}, "outrank.core_utils.write_json_dump_to_file": {"fullname": "outrank.core_utils.write_json_dump_to_file", "modulename": "outrank.core_utils", "qualname": "write_json_dump_to_file", "kind": "function", "doc": "

    \n", "signature": "(args: Any, config_name: str) -> None:", "funcdef": "def"}, "outrank.core_utils.internal_hash": {"fullname": "outrank.core_utils.internal_hash", "modulename": "outrank.core_utils", "qualname": "internal_hash", "kind": "function", "doc": "

    A generic internal hash used throughout ranking procedure - let's hardcode seed here for sure

    \n", "signature": "(input_obj: str) -> str:", "funcdef": "def"}, "outrank.core_utils.DatasetInformationStorage": {"fullname": "outrank.core_utils.DatasetInformationStorage", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage", "kind": "class", "doc": "

    A generic class for holding properties of a given type of dataset

    \n"}, "outrank.core_utils.DatasetInformationStorage.__init__": {"fullname": "outrank.core_utils.DatasetInformationStorage.__init__", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tdata_path: str,\tcolumn_names: list[str],\tcolumn_types: set[str],\tcol_delimiter: str | None,\tencoding: str,\tfw_map: dict[str, str] | None)"}, "outrank.core_utils.DatasetInformationStorage.data_path": {"fullname": "outrank.core_utils.DatasetInformationStorage.data_path", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.data_path", "kind": "variable", "doc": "

    \n", "annotation": ": str"}, "outrank.core_utils.DatasetInformationStorage.column_names": {"fullname": "outrank.core_utils.DatasetInformationStorage.column_names", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.column_names", "kind": "variable", "doc": "

    \n", "annotation": ": list[str]"}, "outrank.core_utils.DatasetInformationStorage.column_types": {"fullname": "outrank.core_utils.DatasetInformationStorage.column_types", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.column_types", "kind": "variable", "doc": "

    \n", "annotation": ": set[str]"}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"fullname": "outrank.core_utils.DatasetInformationStorage.col_delimiter", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.col_delimiter", "kind": "variable", "doc": "

    \n", "annotation": ": str | None"}, "outrank.core_utils.DatasetInformationStorage.encoding": {"fullname": "outrank.core_utils.DatasetInformationStorage.encoding", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.encoding", "kind": "variable", "doc": "

    \n", "annotation": ": str"}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"fullname": "outrank.core_utils.DatasetInformationStorage.fw_map", "modulename": "outrank.core_utils", "qualname": "DatasetInformationStorage.fw_map", "kind": "variable", "doc": "

    \n", "annotation": ": dict[str, str] | None"}, "outrank.core_utils.NumericFeatureSummary": {"fullname": "outrank.core_utils.NumericFeatureSummary", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary", "kind": "class", "doc": "

    A generic class storing numeric feature statistics

    \n"}, "outrank.core_utils.NumericFeatureSummary.__init__": {"fullname": "outrank.core_utils.NumericFeatureSummary.__init__", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tfeature_name: str,\tminimum: float,\tmaximum: float,\tmedian: float,\tnum_unique: int)"}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"fullname": "outrank.core_utils.NumericFeatureSummary.feature_name", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.feature_name", "kind": "variable", "doc": "

    \n", "annotation": ": str"}, "outrank.core_utils.NumericFeatureSummary.minimum": {"fullname": "outrank.core_utils.NumericFeatureSummary.minimum", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.minimum", "kind": "variable", "doc": "

    \n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.maximum": {"fullname": "outrank.core_utils.NumericFeatureSummary.maximum", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.maximum", "kind": "variable", "doc": "

    \n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.median": {"fullname": "outrank.core_utils.NumericFeatureSummary.median", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.median", "kind": "variable", "doc": "

    \n", "annotation": ": float"}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"fullname": "outrank.core_utils.NumericFeatureSummary.num_unique", "modulename": "outrank.core_utils", "qualname": "NumericFeatureSummary.num_unique", "kind": "variable", "doc": "

    \n", "annotation": ": int"}, "outrank.core_utils.NominalFeatureSummary": {"fullname": "outrank.core_utils.NominalFeatureSummary", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary", "kind": "class", "doc": "

    A generic class storing numeric feature statistics

    \n"}, "outrank.core_utils.NominalFeatureSummary.__init__": {"fullname": "outrank.core_utils.NominalFeatureSummary.__init__", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.__init__", "kind": "function", "doc": "

    \n", "signature": "(feature_name: str, num_unique: int)"}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"fullname": "outrank.core_utils.NominalFeatureSummary.feature_name", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.feature_name", "kind": "variable", "doc": "

    \n", "annotation": ": str"}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"fullname": "outrank.core_utils.NominalFeatureSummary.num_unique", "modulename": "outrank.core_utils", "qualname": "NominalFeatureSummary.num_unique", "kind": "variable", "doc": "

    \n", "annotation": ": int"}, "outrank.core_utils.BatchRankingSummary": {"fullname": "outrank.core_utils.BatchRankingSummary", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary", "kind": "class", "doc": "

    A generic class representing batched ranking results

    \n"}, "outrank.core_utils.BatchRankingSummary.__init__": {"fullname": "outrank.core_utils.BatchRankingSummary.__init__", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.__init__", "kind": "function", "doc": "

    \n", "signature": "(\ttriplet_scores: list[tuple[str, str, float]],\tstep_times: dict[str, typing.Any])"}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"fullname": "outrank.core_utils.BatchRankingSummary.triplet_scores", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.triplet_scores", "kind": "variable", "doc": "

    \n", "annotation": ": list[tuple[str, str, float]]"}, "outrank.core_utils.BatchRankingSummary.step_times": {"fullname": "outrank.core_utils.BatchRankingSummary.step_times", "modulename": "outrank.core_utils", "qualname": "BatchRankingSummary.step_times", "kind": "variable", "doc": "

    \n", "annotation": ": dict[str, typing.Any]"}, "outrank.core_utils.display_random_tip": {"fullname": "outrank.core_utils.display_random_tip", "modulename": "outrank.core_utils", "qualname": "display_random_tip", "kind": "function", "doc": "

    \n", "signature": "() -> None:", "funcdef": "def"}, "outrank.core_utils.get_dataset_info": {"fullname": "outrank.core_utils.get_dataset_info", "modulename": "outrank.core_utils", "qualname": "get_dataset_info", "kind": "function", "doc": "

    \n", "signature": "(args: Any):", "funcdef": "def"}, "outrank.core_utils.display_tool_name": {"fullname": "outrank.core_utils.display_tool_name", "modulename": "outrank.core_utils", "qualname": "display_tool_name", "kind": "function", "doc": "

    \n", "signature": "() -> None:", "funcdef": "def"}, "outrank.core_utils.parse_ob_line": {"fullname": "outrank.core_utils.parse_ob_line", "modulename": "outrank.core_utils", "qualname": "parse_ob_line", "kind": "function", "doc": "

    Outbrain line parsing - generic TSVs

    \n", "signature": "(line_string: str, delimiter: str = '\\t', args: Any = None) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_line_vw": {"fullname": "outrank.core_utils.parse_ob_line_vw", "modulename": "outrank.core_utils", "qualname": "parse_ob_line_vw", "kind": "function", "doc": "

    Parse a sparse vw line into a pandas df with pre-defined namespace

    \n", "signature": "(\tline_string: str,\tdelimiter: str,\targs: Any = None,\tfw_col_mapping=None,\ttable_header=None,\tinclude_namespace_info=False) -> list[str | None]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_csv_line": {"fullname": "outrank.core_utils.parse_ob_csv_line", "modulename": "outrank.core_utils", "qualname": "parse_ob_csv_line", "kind": "function", "doc": "

    Data can have commas within JSON field dumps

    \n", "signature": "(line_string: str, delimiter: str = ',', args: Any = None) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.generic_line_parser": {"fullname": "outrank.core_utils.generic_line_parser", "modulename": "outrank.core_utils", "qualname": "generic_line_parser", "kind": "function", "doc": "

    A generic method aimed to parse data from different sources.

    \n", "signature": "(\tline_string: str,\tdelimiter: str,\targs: Any = None,\tfw_col_mapping: Any = None,\ttable_header: Any = None) -> list[typing.Any]:", "funcdef": "def"}, "outrank.core_utils.read_reference_json": {"fullname": "outrank.core_utils.read_reference_json", "modulename": "outrank.core_utils", "qualname": "read_reference_json", "kind": "function", "doc": "

    A helper method for reading a JSON

    \n", "signature": "(json_path) -> dict[str, dict]:", "funcdef": "def"}, "outrank.core_utils.parse_namespace": {"fullname": "outrank.core_utils.parse_namespace", "modulename": "outrank.core_utils", "qualname": "parse_namespace", "kind": "function", "doc": "

    Parse the feature namespace for type awareness

    \n", "signature": "(namespace_path: str) -> tuple[set[str], dict[str, str]]:", "funcdef": "def"}, "outrank.core_utils.read_column_names": {"fullname": "outrank.core_utils.read_column_names", "modulename": "outrank.core_utils", "qualname": "read_column_names", "kind": "function", "doc": "

    Read the col. header

    \n", "signature": "(mapping_file: str) -> list[str]:", "funcdef": "def"}, "outrank.core_utils.parse_ob_vw_feature_information": {"fullname": "outrank.core_utils.parse_ob_vw_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_vw_feature_information", "kind": "function", "doc": "

    A generic parser of ob-based data

    \n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_ob_raw_feature_information": {"fullname": "outrank.core_utils.parse_ob_raw_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_raw_feature_information", "kind": "function", "doc": "

    A generic parser of ob-based data

    \n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_ob_feature_information": {"fullname": "outrank.core_utils.parse_ob_feature_information", "modulename": "outrank.core_utils", "qualname": "parse_ob_feature_information", "kind": "function", "doc": "

    A generic parser of ob-based data

    \n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_csv_with_description_information": {"fullname": "outrank.core_utils.parse_csv_with_description_information", "modulename": "outrank.core_utils", "qualname": "parse_csv_with_description_information", "kind": "function", "doc": "

    \n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.parse_csv_raw": {"fullname": "outrank.core_utils.parse_csv_raw", "modulename": "outrank.core_utils", "qualname": "parse_csv_raw", "kind": "function", "doc": "

    \n", "signature": "(data_path) -> outrank.core_utils.DatasetInformationStorage:", "funcdef": "def"}, "outrank.core_utils.extract_features_from_reference_JSON": {"fullname": "outrank.core_utils.extract_features_from_reference_JSON", "modulename": "outrank.core_utils", "qualname": "extract_features_from_reference_JSON", "kind": "function", "doc": "

    Given a model's JSON, extract unique features

    \n", "signature": "(json_path: str) -> set[typing.Any]:", "funcdef": "def"}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"fullname": "outrank.core_utils.summarize_feature_bounds_for_transformers", "modulename": "outrank.core_utils", "qualname": "summarize_feature_bounds_for_transformers", "kind": "function", "doc": "

    summarization auxilliary method for generating JSON-based specs

    \n", "signature": "(\tbounds_object_storage: Any,\tfeature_types: list[str],\ttask_name: str,\tlabel_name: str,\tgranularity: int = 15,\toutput_summary_table_only: bool = False):", "funcdef": "def"}, "outrank.core_utils.summarize_rare_counts": {"fullname": "outrank.core_utils.summarize_rare_counts", "modulename": "outrank.core_utils", "qualname": "summarize_rare_counts", "kind": "function", "doc": "

    Write rare values

    \n", "signature": "(\tterm_counter: Any,\targs: Any,\tcardinality_object: Any,\tobject_info: outrank.core_utils.DatasetInformationStorage) -> None:", "funcdef": "def"}, "outrank.feature_transformations": {"fullname": "outrank.feature_transformations", "modulename": "outrank.feature_transformations", "kind": "module", "doc": "

    \n"}, "outrank.feature_transformations.feature_transformer_vault": {"fullname": "outrank.feature_transformations.feature_transformer_vault", "modulename": "outrank.feature_transformations.feature_transformer_vault", "kind": "module", "doc": "

    \n"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "kind": "module", "doc": "

    \n"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "qualname": "MINIMAL_TRANSFORMERS", "kind": "variable", "doc": "

    \n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)'}"}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.default_transformers", "qualname": "DEFAULT_TRANSFORMERS", "kind": "variable", "doc": "

    \n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)', '_tr_div(x,abs(x))*log(abs(x))': 'np.divide(X, np.abs(X)) * np.log(np.abs(X))', '_tr_log(x + sqrt(pow(x,2), 1)': 'np.log(X + np.sqrt(np.power(X, 2) + 1))', '_tr_log*sqrt': 'np.log(X + 1) * np.sqrt(X)', '_tr_log*100': 'np.round(np.log(X + 1) * 100, 0)', '_tr_nonzero': 'np.where(X != 0, 1, 0)', '_tr_round(div(x,max))': 'np.round(np.divide(X, np.max(X)), 0)'}"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "kind": "module", "doc": "

    \n"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "FW_TRANSFORMERS", "kind": "variable", "doc": "

    \n", "default_value": "{'_tr_sqrt': 'np.sqrt(X)', '_tr_log(x+1)': 'np.log(X + 1)', '_tr_sqrt(abs(x))': 'np.sqrt(np.abs(X))', '_tr_log(abs(x)+1)': 'np.log(np.abs(X) + 1)', '_tr_div(x,abs(x))*log(abs(x))': 'np.divide(X, np.abs(X)) * np.log(np.abs(X))', '_tr_log(x + sqrt(pow(x,2), 1)': 'np.log(X + np.sqrt(np.power(X, 2) + 1))', '_tr_log*sqrt': 'np.log(X + 1) * np.sqrt(X)', '_tr_log*100': 'np.round(np.log(X + 1) * 100, 0)', '_tr_nonzero': 'np.where(X != 0, 1, 0)', '_tr_round(div(x,max))': 'np.round(np.divide(X, np.max(X)), 0)', '_tr_fw_sqrt_res_1_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*1,0), 0))', '_tr_fw_log_res_1_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*1,0), 0))', '_tr_fw_log_res_1_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*1,0), 0))', '_tr_fw_log_res_1_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*1,0), 0))', '_tr_fw_log_res_1_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*1,0), 0))', '_tr_fw_log_res_1_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*1,0), 0))', '_tr_fw_log_res_1_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*1,0), 0))', '_tr_fw_log_res_1_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*1,0), 0))', '_tr_fw_sqrt_res_1_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*1,0), 0))', '_tr_fw_log_res_1_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*1,0), 0))', '_tr_fw_sqrt_res_10_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*10,0), 0))', '_tr_fw_log_res_10_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*10,0), 0))', '_tr_fw_log_res_10_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*10,0), 0))', '_tr_fw_log_res_10_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*10,0), 0))', '_tr_fw_log_res_10_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*10,0), 0))', '_tr_fw_log_res_10_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*10,0), 0))', '_tr_fw_log_res_10_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*10,0), 0))', '_tr_fw_log_res_10_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*10,0), 0))', '_tr_fw_sqrt_res_10_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*10,0), 0))', '_tr_fw_log_res_10_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*10,0), 0))', '_tr_fw_sqrt_res_50_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*50,0), 0))', '_tr_fw_log_res_50_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*50,0), 0))', '_tr_fw_log_res_50_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*50,0), 0))', '_tr_fw_log_res_50_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*50,0), 0))', '_tr_fw_log_res_50_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*50,0), 0))', '_tr_fw_log_res_50_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*50,0), 0))', '_tr_fw_log_res_50_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*50,0), 0))', '_tr_fw_log_res_50_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*50,0), 0))', '_tr_fw_sqrt_res_50_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*50,0), 0))', '_tr_fw_log_res_50_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*50,0), 0))', '_tr_fw_sqrt_res_100_gt_1': 'np.where(X < 1, X, np.where(X>1 ,np.round(np.sqrt(X-1)*100,0), 0))', '_tr_fw_log_res_100_gt_1': 'np.where(X <1, X, np.where(X >1, np.round(np.log(X-1)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_2': 'np.where(X < 2, X, np.where(X>2 ,np.round(np.sqrt(X-2)*100,0), 0))', '_tr_fw_log_res_100_gt_2': 'np.where(X <2, X, np.where(X >2, np.round(np.log(X-2)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_4': 'np.where(X < 4, X, np.where(X>4 ,np.round(np.sqrt(X-4)*100,0), 0))', '_tr_fw_log_res_100_gt_4': 'np.where(X <4, X, np.where(X >4, np.round(np.log(X-4)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_8': 'np.where(X < 8, X, np.where(X>8 ,np.round(np.sqrt(X-8)*100,0), 0))', '_tr_fw_log_res_100_gt_8': 'np.where(X <8, X, np.where(X >8, np.round(np.log(X-8)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_16': 'np.where(X < 16, X, np.where(X>16 ,np.round(np.sqrt(X-16)*100,0), 0))', '_tr_fw_log_res_100_gt_16': 'np.where(X <16, X, np.where(X >16, np.round(np.log(X-16)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_32': 'np.where(X < 32, X, np.where(X>32 ,np.round(np.sqrt(X-32)*100,0), 0))', '_tr_fw_log_res_100_gt_32': 'np.where(X <32, X, np.where(X >32, np.round(np.log(X-32)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_64': 'np.where(X < 64, X, np.where(X>64 ,np.round(np.sqrt(X-64)*100,0), 0))', '_tr_fw_log_res_100_gt_64': 'np.where(X <64, X, np.where(X >64, np.round(np.log(X-64)*100,0), 0))', '_tr_fw_sqrt_res_100_gt_96': 'np.where(X < 96, X, np.where(X>96 ,np.round(np.sqrt(X-96)*100,0), 0))', '_tr_fw_log_res_100_gt_96': 'np.where(X <96, X, np.where(X >96, np.round(np.log(X-96)*100,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*1,0), 0))', '_tr_fw_prob_sqrt_res_1_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*1,0), 0))', '_tr_fw_prob_log_res_1_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*1,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*10,0), 0))', '_tr_fw_prob_sqrt_res_10_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*10,0), 0))', '_tr_fw_prob_log_res_10_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*10,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*50,0), 0))', '_tr_fw_prob_sqrt_res_50_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*50,0), 0))', '_tr_fw_prob_log_res_50_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*50,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.01': 'np.where(X < 0.01, X, np.where(X>0.01, np.round(np.sqrt(X-0.01)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.01': 'np.where(X <0.01,X, np.where(X>0.01, np.round(np.log(X-0.01)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.02': 'np.where(X < 0.02, X, np.where(X>0.02, np.round(np.sqrt(X-0.02)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.02': 'np.where(X <0.02,X, np.where(X>0.02, np.round(np.log(X-0.02)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.04': 'np.where(X < 0.04, X, np.where(X>0.04, np.round(np.sqrt(X-0.04)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.04': 'np.where(X <0.04,X, np.where(X>0.04, np.round(np.log(X-0.04)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.08': 'np.where(X < 0.08, X, np.where(X>0.08, np.round(np.sqrt(X-0.08)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.08': 'np.where(X <0.08,X, np.where(X>0.08, np.round(np.log(X-0.08)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.16': 'np.where(X < 0.16, X, np.where(X>0.16, np.round(np.sqrt(X-0.16)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.16': 'np.where(X <0.16,X, np.where(X>0.16, np.round(np.log(X-0.16)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.32': 'np.where(X < 0.32, X, np.where(X>0.32, np.round(np.sqrt(X-0.32)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.32': 'np.where(X <0.32,X, np.where(X>0.32, np.round(np.log(X-0.32)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.64': 'np.where(X < 0.64, X, np.where(X>0.64, np.round(np.sqrt(X-0.64)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.64': 'np.where(X <0.64,X, np.where(X>0.64, np.round(np.log(X-0.64)*100,0), 0))', '_tr_fw_prob_sqrt_res_100_gt_0.96': 'np.where(X < 0.96, X, np.where(X>0.96, np.round(np.sqrt(X-0.96)*100,0), 0))', '_tr_fw_prob_log_res_100_gt_0.96': 'np.where(X <0.96,X, np.where(X>0.96, np.round(np.log(X-0.96)*100,0), 0))'}"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "resolution_range", "kind": "variable", "doc": "

    \n", "default_value": "[1, 10, 50, 100]"}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"fullname": "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range", "modulename": "outrank.feature_transformations.feature_transformer_vault.fw_transformers", "qualname": "greater_than_range", "kind": "variable", "doc": "

    \n", "default_value": "[1, 2, 4, 8, 16, 32, 64, 96]"}, "outrank.feature_transformations.ranking_transformers": {"fullname": "outrank.feature_transformations.ranking_transformers", "modulename": "outrank.feature_transformations.ranking_transformers", "kind": "module", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise", "kind": "class", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise.noise_preset", "kind": "variable", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerNoise.construct_new_features", "kind": "function", "doc": "

    Generate a few standard noise distributions

    \n", "signature": "(self, dataframe: pandas.core.frame.DataFrame, label_column=None):", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric", "kind": "class", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.__init__", "kind": "function", "doc": "

    \n", "signature": "(numeric_column_names: set[str], preset: str = 'default')"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.numeric_column_names", "kind": "variable", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.constructed_feature_names", "kind": "variable", "doc": "

    \n", "annotation": ": set[str]"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.max_maj_support", "kind": "variable", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.nan_prop_support", "kind": "variable", "doc": "

    \n"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.get_vals", "kind": "function", "doc": "

    \n", "signature": "(self, tmp_df: pandas.core.frame.DataFrame, col_name: str) -> Any:", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.construct_baseline_features", "kind": "function", "doc": "

    \n", "signature": "(self, dataframe: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"fullname": "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features", "modulename": "outrank.feature_transformations.ranking_transformers", "qualname": "FeatureTransformerGeneric.construct_new_features", "kind": "function", "doc": "

    \n", "signature": "(self, dataframe: Any) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "outrank.task_generators": {"fullname": "outrank.task_generators", "modulename": "outrank.task_generators", "kind": "module", "doc": "

    \n"}, "outrank.task_generators.logger": {"fullname": "outrank.task_generators.logger", "modulename": "outrank.task_generators", "qualname": "logger", "kind": "variable", "doc": "

    \n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.task_generators.outrank_task_generate_data_set": {"fullname": "outrank.task_generators.outrank_task_generate_data_set", "modulename": "outrank.task_generators", "qualname": "outrank_task_generate_data_set", "kind": "function", "doc": "

    Core method for generating data sets

    \n", "signature": "(args):", "funcdef": "def"}, "outrank.task_ranking": {"fullname": "outrank.task_ranking", "modulename": "outrank.task_ranking", "kind": "module", "doc": "

    \n"}, "outrank.task_ranking.outrank_task_conduct_ranking": {"fullname": "outrank.task_ranking.outrank_task_conduct_ranking", "modulename": "outrank.task_ranking", "qualname": "outrank_task_conduct_ranking", "kind": "function", "doc": "

    \n", "signature": "(args: Any):", "funcdef": "def"}, "outrank.task_selftest": {"fullname": "outrank.task_selftest", "modulename": "outrank.task_selftest", "kind": "module", "doc": "

    \n"}, "outrank.task_selftest.logger": {"fullname": "outrank.task_selftest.logger", "modulename": "outrank.task_selftest", "qualname": "logger", "kind": "variable", "doc": "

    \n", "default_value": "<Logger syn-logger (DEBUG)>"}, "outrank.task_selftest.conduct_self_test": {"fullname": "outrank.task_selftest.conduct_self_test", "modulename": "outrank.task_selftest", "qualname": "conduct_self_test", "kind": "function", "doc": "

    \n", "signature": "():", "funcdef": "def"}, "outrank.task_summary": {"fullname": "outrank.task_summary", "modulename": "outrank.task_summary", "kind": "module", "doc": "

    \n"}, "outrank.task_summary.outrank_task_result_summary": {"fullname": "outrank.task_summary.outrank_task_result_summary", "modulename": "outrank.task_summary", "qualname": "outrank_task_result_summary", "kind": "function", "doc": "

    \n", "signature": "(args):", "funcdef": "def"}, "outrank.task_visualization": {"fullname": "outrank.task_visualization", "modulename": "outrank.task_visualization", "kind": "module", "doc": "

    \n"}, "outrank.task_visualization.outrank_task_visualize_results": {"fullname": "outrank.task_visualization.outrank_task_visualize_results", "modulename": "outrank.task_visualization", "qualname": "outrank_task_visualize_results", "kind": "function", "doc": "

    \n", "signature": "(args):", "funcdef": "def"}, "outrank.visualizations": {"fullname": "outrank.visualizations", "modulename": "outrank.visualizations", "kind": "module", "doc": "

    \n"}, "outrank.visualizations.ranking_visualization": {"fullname": "outrank.visualizations.ranking_visualization", "modulename": "outrank.visualizations.ranking_visualization", "kind": "module", "doc": "

    \n"}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"fullname": "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_hierarchical_clusters", "kind": "function", "doc": "

    A method for visualization of hierarchical clusters w.r.t. different linkage functions

    \n", "signature": "(\ttriplet_dataframe: pandas.core.frame.DataFrame,\toutput_folder: str,\timage_format: str = 'png',\tmax_num_clusters: int = 100) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"fullname": "outrank.visualizations.ranking_visualization.visualize_heatmap", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_heatmap", "kind": "function", "doc": "

    \n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\timage_format: str) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"fullname": "outrank.visualizations.ranking_visualization.visualize_barplots", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_barplots", "kind": "function", "doc": "

    \n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\treference_json: str,\timage_format: str,\tlabel: str,\theuristic: str) -> None:", "funcdef": "def"}, "outrank.visualizations.ranking_visualization.visualize_all": {"fullname": "outrank.visualizations.ranking_visualization.visualize_all", "modulename": "outrank.visualizations.ranking_visualization", "qualname": "visualize_all", "kind": "function", "doc": "

    A method for visualization of the obtained feature interaction maps.

    \n", "signature": "(\ttriplets: pandas.core.frame.DataFrame,\toutput_folder: str,\tlabel: str = '',\treference_json: str = '',\timage_format: str = 'png',\theuristic: str = 'MI') -> None:", "funcdef": "def"}}, "docInfo": {"outrank": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 896}, "outrank.algorithms": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 6}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 11}, "outrank.algorithms.importance_estimator": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.logger": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_MI": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.numba_mi": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 21}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 204, "bases": 0, "doc": 3}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "outrank.algorithms.sketches": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 26}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 3}, "outrank.core_ranking": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.IGNORED_VALUES": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_ranking.prior_combinations_sample": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 75, "bases": 0, "doc": 15}, "outrank.core_ranking.get_combinations_from_columns": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 74, "bases": 0, "doc": 16}, "outrank.core_ranking.mixed_rank_graph": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 81, "bases": 0, "doc": 19}, "outrank.core_ranking.enrich_with_transformations": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 92, "bases": 0, "doc": 13}, "outrank.core_ranking.compute_combined_features": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 103, "bases": 0, "doc": 11}, "outrank.core_ranking.compute_expanded_multivalue_features": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 41}, "outrank.core_ranking.compute_subfeatures": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 70}, "outrank.core_ranking.include_noisy_features": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 11}, "outrank.core_ranking.compute_coverage": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 7}, "outrank.core_ranking.compute_feature_memory_consumption": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 10}, "outrank.core_ranking.compute_value_counts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 6}, "outrank.core_ranking.compute_cardinalities": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 7}, "outrank.core_ranking.compute_bounds_increment": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 3}, "outrank.core_ranking.compute_batch_ranking": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 197, "bases": 0, "doc": 11}, "outrank.core_ranking.get_num_of_instances": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 15}, "outrank.core_ranking.get_grouped_df": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 12}, "outrank.core_ranking.checkpoint_importances_df": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 12}, "outrank.core_ranking.estimate_importances_minibatches": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 376, "bases": 0, "doc": 48}, "outrank.core_selftest": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.pro_tips": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 303, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.write_json_dump_to_file": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "outrank.core_utils.internal_hash": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 17}, "outrank.core_utils.DatasetInformationStorage": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 14}, "outrank.core_utils.DatasetInformationStorage.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.data_path": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.column_names": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.column_types": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.encoding": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.NumericFeatureSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.minimum": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.maximum": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.median": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.NominalFeatureSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "outrank.core_utils.BatchRankingSummary.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.BatchRankingSummary.step_times": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.core_utils.display_random_tip": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "outrank.core_utils.get_dataset_info": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.core_utils.display_tool_name": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "outrank.core_utils.parse_ob_line": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 7}, "outrank.core_utils.parse_ob_line_vw": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 15}, "outrank.core_utils.parse_ob_csv_line": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 10}, "outrank.core_utils.generic_line_parser": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 13}, "outrank.core_utils.read_reference_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 9}, "outrank.core_utils.parse_namespace": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 9}, "outrank.core_utils.read_column_names": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 6}, "outrank.core_utils.parse_ob_vw_feature_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_ob_raw_feature_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_ob_feature_information": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "outrank.core_utils.parse_csv_with_description_information": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.parse_csv_raw": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "outrank.core_utils.extract_features_from_reference_JSON": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 10}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 10}, "outrank.core_utils.summarize_rare_counts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 5}, "outrank.feature_transformations": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 56, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 173, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 4589, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 4, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"qualname": 3, "fullname": 11, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 8}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"qualname": 4, "fullname": 9, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 3}, "outrank.task_generators": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_generators.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_generators.outrank_task_generate_data_set": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "outrank.task_ranking": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_ranking.outrank_task_conduct_ranking": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "outrank.task_selftest": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_selftest.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_selftest.conduct_self_test": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 3}, "outrank.task_summary": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_summary.outrank_task_result_summary": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "outrank.task_visualization": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.task_visualization.outrank_task_visualize_results": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "outrank.visualizations": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 91, "bases": 0, "doc": 15}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 93, "bases": 0, "doc": 3}, "outrank.visualizations.ranking_visualization.visualize_all": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 135, "bases": 0, "doc": 13}}, "length": 142, "save": true}, "index": {"qualname": {"root": {"3": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 11}}}}, "b": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 1}, "x": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "j": {"docs": {"outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 9, "r": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}, "w": {"docs": {"outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 9}}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}, "b": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 4}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 2}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}}, "fullname": {"root": {"3": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms": {"tf": 1}, "outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_selftest": {"tf": 1}, "outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}, "outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}, "outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.4142135623730951}, "outrank.visualizations": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 142}}}}}}, "f": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}, "b": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms": {"tf": 1}, "outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 30}}}}}}}}, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "j": {"docs": {"outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 35, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 5}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.feature_ranking": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 51}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}, "w": {"docs": {"outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_summary.outrank_task_result_summary": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}}, "df": 1, "i": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 8, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 1}, "x": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}}, "df": 6}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 10}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 45}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 11}}}}, "b": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 10}}}, "s": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_selftest": {"tf": 1}, "outrank.core_utils": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 71}}, "l": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 10}}, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator": {"tf": 1}, "outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}}, "df": 9, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 11}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_selftest": {"tf": 1}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 6}}}, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 9, "r": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 2}}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 9}}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.synthetic_data_generators": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.get_dataset_info": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_csv_with_description_information": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 8}}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 7, "s": {"docs": {"outrank.visualizations": {"tf": 1}, "outrank.visualizations.ranking_visualization": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 6}}}}}}, "e": {"docs": {"outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.feature_transformations": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 23}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 8, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}, "outrank.feature_transformations.ranking_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 21}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.display_random_tip": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.display_tool_name": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.task_generators": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.4142135623730951}, "outrank.task_selftest": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}, "outrank.task_selftest.conduct_self_test": {"tf": 1}, "outrank.task_summary": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.4142135623730951}, "outrank.task_visualization": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.4142135623730951}}, "df": 12}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.task_selftest.conduct_self_test": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}}, "annotation": {"root": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 19, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1.4142135623730951}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 7}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1}}, "df": 4}}}}}}}, "default_value": {"root": {"0": {"1": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "2": {"docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 2}, "4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "8": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}}, "df": 1}, "docs": {"outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 22.715633383201094}}, "df": 3}, "1": {"0": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8.06225774829855}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 3}, "docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 2}, "6": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {"outrank.core_utils.pro_tips": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 10.198039027185569}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 6}, "2": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.830951894845301}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 3}, "3": {"2": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "5": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "6": {"4": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "8": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "9": {"6": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.795831523312719}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 12.288205727444508}, "outrank.task_generators.logger": {"tf": 1.4142135623730951}, "outrank.task_selftest.logger": {"tf": 1.4142135623730951}}, "df": 12, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 3.1622776601683795}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.74734012447073}}, "df": 3, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1.4142135623730951}, "outrank.core_ranking.logger": {"tf": 1.4142135623730951}, "outrank.task_generators.logger": {"tf": 1.4142135623730951}, "outrank.task_selftest.logger": {"tf": 1.4142135623730951}}, "df": 4}}}, "*": {"1": {"0": {"0": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.IGNORED_VALUES": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.6457513110645907}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.61895003862225}}, "df": 3}}}}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.logger": {"tf": 1}, "outrank.core_ranking.logger": {"tf": 1}, "outrank.core_utils.pro_tips": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 16}, "outrank.task_generators.logger": {"tf": 1}, "outrank.task_selftest.logger": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "x": {"2": {"7": {"docs": {"outrank.core_utils.pro_tips": {"tf": 5.656854249492381}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 4}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 6.324555320336759}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.49468024894146}}, "df": 4}, "docs": {}, "df": 0}, "docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.449489742783178}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.795831523312719}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.130067012440755}}, "df": 3, "+": {"1": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}}}}}}, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 3.872983346207417}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "w": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}}, "df": 2}}, "b": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 2.8284271247461903}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 2.8284271247461903}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}, "x": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.4142135623730951}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2.449489742783178}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 4.58257569495584}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 23.08679276123039}}, "df": 3}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2.23606797749979}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "s": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.313708498984761}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.445523142259598}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "o": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 2}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 3.1622776601683795}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 11.74734012447073}}, "df": 3, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 16.0312195418814}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 8}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1.4142135623730951}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "p": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"outrank.core_utils.pro_tips": {"tf": 2}}, "df": 1, "r": {"docs": {"outrank.core_utils.pro_tips": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"0": {"0": {"5": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}, "1": {"0": {"0": {"0": {"0": {"0": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "5": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}, "docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"0": {"0": {"0": {"0": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2}, "outrank.core_utils.parse_ob_line": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 2.8284271247461903}}, "df": 7}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}, "8": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 3.1622776601683795}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 5.5677643628300215}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 5.477225575051661}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 5.477225575051661}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 4.898979485566356}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 5.656854249492381}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 4.242640687119285}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 3.7416573867739413}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 4.242640687119285}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 12.806248474865697}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 5.830951894845301}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 3.4641016151377544}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 3.7416573867739413}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 4.69041575982343}, "outrank.core_ranking.prior_combinations_sample": {"tf": 8}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 7.810249675906654}, "outrank.core_ranking.mixed_rank_graph": {"tf": 8}, "outrank.core_ranking.enrich_with_transformations": {"tf": 8.54400374531753}, "outrank.core_ranking.compute_combined_features": {"tf": 9.1104335791443}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 8.246211251235321}, "outrank.core_ranking.compute_subfeatures": {"tf": 8.246211251235321}, "outrank.core_ranking.include_noisy_features": {"tf": 7.681145747868608}, "outrank.core_ranking.compute_coverage": {"tf": 7.14142842854285}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 7.14142842854285}, "outrank.core_ranking.compute_value_counts": {"tf": 5.830951894845301}, "outrank.core_ranking.compute_cardinalities": {"tf": 6}, "outrank.core_ranking.compute_bounds_increment": {"tf": 7.54983443527075}, "outrank.core_ranking.compute_batch_ranking": {"tf": 12.449899597988733}, "outrank.core_ranking.get_num_of_instances": {"tf": 4}, "outrank.core_ranking.get_grouped_df": {"tf": 6.855654600401044}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 5.830951894845301}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 17.204650534085253}, "outrank.core_utils.write_json_dump_to_file": {"tf": 4.898979485566356}, "outrank.core_utils.internal_hash": {"tf": 4}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 9.38083151964686}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 7}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 4.47213595499958}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 7.3484692283495345}, "outrank.core_utils.display_random_tip": {"tf": 3}, "outrank.core_utils.get_dataset_info": {"tf": 3.7416573867739413}, "outrank.core_utils.display_tool_name": {"tf": 3}, "outrank.core_utils.parse_ob_line": {"tf": 7.416198487095663}, "outrank.core_utils.parse_ob_line_vw": {"tf": 8.831760866327848}, "outrank.core_utils.parse_ob_csv_line": {"tf": 7.14142842854285}, "outrank.core_utils.generic_line_parser": {"tf": 8.94427190999916}, "outrank.core_utils.read_reference_json": {"tf": 4.69041575982343}, "outrank.core_utils.parse_namespace": {"tf": 6.082762530298219}, "outrank.core_utils.read_column_names": {"tf": 4.58257569495584}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_ob_feature_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 4.47213595499958}, "outrank.core_utils.parse_csv_raw": {"tf": 4.47213595499958}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 5}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 8.774964387392123}, "outrank.core_utils.summarize_rare_counts": {"tf": 7.211102550927978}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 6.164414002968976}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 5.744562646538029}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 6.324555320336759}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 5.656854249492381}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 5.656854249492381}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 3.1622776601683795}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 3.7416573867739413}, "outrank.task_selftest.conduct_self_test": {"tf": 2.6457513110645907}, "outrank.task_summary.outrank_task_result_summary": {"tf": 3.1622776601683795}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 3.1622776601683795}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 8.366600265340756}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 6.855654600401044}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 8.602325267042627}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 10.295630140987}}, "df": 70, "a": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1.4142135623730951}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.7320508075688772}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 2.449489742783178}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 3}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 2}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}}, "df": 33}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.get_dataset_info": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1}}, "df": 26}}}}, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 30}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 6, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 6, "s": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}}, "df": 5}}, "t": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 10}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_batch_ranking": {"tf": 2.6457513110645907}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 3.4641016151377544}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 2.6457513110645907}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.7320508075688772}, "outrank.core_utils.generic_line_parser": {"tf": 1.4142135623730951}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 2}, "outrank.core_utils.read_column_names": {"tf": 1.4142135623730951}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 2.23606797749979}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 2.23606797749979}}, "df": 32, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 13}}}, "t": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 6}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 23}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 9}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 6}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.4142135623730951}, "outrank.core_utils.display_random_tip": {"tf": 1}, "outrank.core_utils.display_tool_name": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 2}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1.7320508075688772}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 17}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.write_json_dump_to_file": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 5, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "l": {"docs": {"outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}}, "df": 4}}}}}, "x": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.importance_estimator.numba_mi": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 4}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.4142135623730951}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 9}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.449489742783178}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 9}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 2.449489742783178}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.449489742783178}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 10}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}}, "df": 7, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_value_counts": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_cardinalities": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 22}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 6}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 2.23606797749979}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 14}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 7}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 8}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 5}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1}, "outrank.core_utils.parse_csv_raw": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 8}}}, "f": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1}}, "df": 2}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0}}, "doc": {"root": {"0": {"docs": {"outrank": {"tf": 4}}, "df": 1}, "1": {"2": {"5": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"outrank": {"tf": 4.358898943540674}}, "df": 1}, "2": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "5": {"1": {"2": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"outrank": {"tf": 24.20743687382041}, "outrank.algorithms": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_conditional_entropy": {"tf": 1.7320508075688772}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.logger": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_MI": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_surrogate": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.numba_mi": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.sklearn_mi_adj": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.rank_features_3MR": {"tf": 1.7320508075688772}, "outrank.algorithms.importance_estimator.get_importances_estimate_nonmyopic": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.__init__": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.p": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.m": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_set": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.warmup_size": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.width": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.hll_flag": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog.HyperLogLogWCache.add": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators.generator_naive": {"tf": 1.7320508075688772}, "outrank.algorithms.synthetic_data_generators.generator_naive.generate_random_matrix": {"tf": 1.7320508075688772}, "outrank.core_ranking": {"tf": 1.7320508075688772}, "outrank.core_ranking.logger": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_CARDINALITY_STORAGE": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_RARE_VALUE_STORAGE": {"tf": 1.7320508075688772}, "outrank.core_ranking.GLOBAL_PRIOR_COMB_COUNTS": {"tf": 1.7320508075688772}, "outrank.core_ranking.IGNORED_VALUES": {"tf": 1.7320508075688772}, "outrank.core_ranking.HYPERLL_ERROR_BOUND": {"tf": 1.7320508075688772}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1.4142135623730951}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_combined_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 2.23606797749979}, "outrank.core_ranking.include_noisy_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_coverage": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_value_counts": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_cardinalities": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_bounds_increment": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_grouped_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_selftest": {"tf": 1.7320508075688772}, "outrank.core_utils": {"tf": 1.7320508075688772}, "outrank.core_utils.pro_tips": {"tf": 1.7320508075688772}, "outrank.core_utils.write_json_dump_to_file": {"tf": 1.7320508075688772}, "outrank.core_utils.internal_hash": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.data_path": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.column_names": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.column_types": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.col_delimiter": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.encoding": {"tf": 1.7320508075688772}, "outrank.core_utils.DatasetInformationStorage.fw_map": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.feature_name": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.minimum": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.maximum": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.median": {"tf": 1.7320508075688772}, "outrank.core_utils.NumericFeatureSummary.num_unique": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.NominalFeatureSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary.feature_name": {"tf": 1.7320508075688772}, "outrank.core_utils.NominalFeatureSummary.num_unique": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary": {"tf": 1.4142135623730951}, "outrank.core_utils.BatchRankingSummary.__init__": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.triplet_scores": {"tf": 1.7320508075688772}, "outrank.core_utils.BatchRankingSummary.step_times": {"tf": 1.7320508075688772}, "outrank.core_utils.display_random_tip": {"tf": 1.7320508075688772}, "outrank.core_utils.get_dataset_info": {"tf": 1.7320508075688772}, "outrank.core_utils.display_tool_name": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_line": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1.4142135623730951}, "outrank.core_utils.generic_line_parser": {"tf": 1.7320508075688772}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1.4142135623730951}, "outrank.core_utils.read_column_names": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_csv_with_description_information": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_csv_raw": {"tf": 1.7320508075688772}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1.4142135623730951}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1.4142135623730951}, "outrank.core_utils.summarize_rare_counts": {"tf": 1.4142135623730951}, "outrank.feature_transformations": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.MINIMAL_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.default_transformers.DEFAULT_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.FW_TRANSFORMERS": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.resolution_range": {"tf": 1.7320508075688772}, "outrank.feature_transformations.feature_transformer_vault.fw_transformers.greater_than_range": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.noise_preset": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1.4142135623730951}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.__init__": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.numeric_column_names": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.constructed_feature_names": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.max_maj_support": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.nan_prop_support": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.get_vals": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_baseline_features": {"tf": 1.7320508075688772}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerGeneric.construct_new_features": {"tf": 1.7320508075688772}, "outrank.task_generators": {"tf": 1.7320508075688772}, "outrank.task_generators.logger": {"tf": 1.7320508075688772}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1.4142135623730951}, "outrank.task_ranking": {"tf": 1.7320508075688772}, "outrank.task_ranking.outrank_task_conduct_ranking": {"tf": 1.7320508075688772}, "outrank.task_selftest": {"tf": 1.7320508075688772}, "outrank.task_selftest.logger": {"tf": 1.7320508075688772}, "outrank.task_selftest.conduct_self_test": {"tf": 1.7320508075688772}, "outrank.task_summary": {"tf": 1.7320508075688772}, "outrank.task_summary.outrank_task_result_summary": {"tf": 1.7320508075688772}, "outrank.task_visualization": {"tf": 1.7320508075688772}, "outrank.task_visualization.outrank_task_visualize_results": {"tf": 1.7320508075688772}, "outrank.visualizations": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1.4142135623730951}, "outrank.visualizations.ranking_visualization.visualize_heatmap": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_barplots": {"tf": 1.7320508075688772}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1.7320508075688772}}, "df": 142, "w": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "o": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 2.449489742783178}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1.4142135623730951}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.read_column_names": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 12}, "i": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 3, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 3.1622776601683795}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 6, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 16}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1, "d": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 2.8284271247461903}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 9, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 2}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {"outrank": {"tf": 3.1622776601683795}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.7320508075688772}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1.4142135623730951}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1.4142135623730951}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1.4142135623730951}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 26, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "s": {"docs": {"outrank": {"tf": 2.6457513110645907}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 2, "d": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 3}, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 2.23606797749979}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 1}}, "|": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "b": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.7320508075688772}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 13, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 2.23606797749979}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1.7320508075688772}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 2}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 11, "a": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}, "b": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "c": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "s": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.include_noisy_features": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 8}}}}}}, "w": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 2}, "outrank.core_utils.generic_line_parser": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"3": {"2": {"docs": {"outrank": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 8, "d": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_value_counts": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_coverage": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1.4142135623730951}}, "df": 2}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2, "e": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 3, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}, "outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_combined_features": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 10}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "t": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 2}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.compute_entropies": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.7320508075688772}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 6, "t": {"3": {"2": {"docs": {"outrank": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"outrank": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_coverage": {"tf": 1}, "outrank.core_ranking.compute_cardinalities": {"tf": 1}}, "df": 3}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {"outrank": {"tf": 2}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"outrank": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank": {"tf": 2}, "outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.prior_combinations_sample": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"outrank": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.compute_batch_ranking": {"tf": 1}}, "df": 2}}}}}}}}}}, "f": {"docs": {"outrank": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 2}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.parse_ob_line": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 3, "r": {"docs": {"outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}, "outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"outrank": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "g": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}}, "df": 1, "n": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank": {"tf": 1.4142135623730951}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.DatasetInformationStorage": {"tf": 1}, "outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}, "outrank.core_utils.parse_ob_line": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.parse_ob_vw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_raw_feature_information": {"tf": 1}, "outrank.core_utils.parse_ob_feature_information": {"tf": 1}}, "df": 11}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "d": {"docs": {"outrank": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.numba_unique": {"tf": 1}, "outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_value_counts": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.feature_ranking.ranking_mi_numba.mutual_info_estimator_numba": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.read_reference_json": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"outrank": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "k": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank": {"tf": 2.23606797749979}, "outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_utils.internal_hash": {"tf": 1}, "outrank.core_utils.BatchRankingSummary": {"tf": 1}}, "df": 4, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"outrank": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.include_noisy_features": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.checkpoint_importances_df": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {"outrank": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 1.7320508075688772}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank": {"tf": 2}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"outrank": {"tf": 2}}, "df": 1}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"outrank.algorithms.importance_estimator.get_importances_estimate_pairwise": {"tf": 1}, "outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_utils.generic_line_parser": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}, "outrank.task_generators.outrank_task_generate_data_set": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 8}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"outrank.algorithms.sketches.counting_ultiloglog": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.prior_combinations_sample": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"outrank": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_grouped_df": {"tf": 1}, "outrank.core_ranking.checkpoint_importances_df": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_ranking.get_combinations_from_columns": {"tf": 1}, "outrank.core_ranking.mixed_rank_graph": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_utils.read_column_names": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"outrank": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}, "w": {"docs": {"outrank.core_ranking.compute_feature_memory_consumption": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_utils.DatasetInformationStorage": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.internal_hash": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"outrank": {"tf": 2.23606797749979}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {"outrank.core_ranking.get_num_of_instances": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"outrank": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"outrank.core_utils.NumericFeatureSummary": {"tf": 1}, "outrank.core_utils.NominalFeatureSummary": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {"outrank": {"tf": 3.872983346207417}}, "df": 1}, "e": {"docs": {}, "df": 0, "w": {"docs": {"outrank.core_ranking.enrich_with_transformations": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"outrank.core_ranking.estimate_importances_minibatches": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"outrank.feature_transformations.ranking_transformers.FeatureTransformerNoise.construct_new_features": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}, "outrank.core_utils.parse_namespace": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"outrank": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.visualizations.ranking_visualization.visualize_hierarchical_clusters": {"tf": 1}, "outrank.visualizations.ranking_visualization.visualize_all": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1.4142135623730951}, "outrank.core_ranking.compute_subfeatures": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"outrank.core_ranking.compute_expanded_multivalue_features": {"tf": 1}, "outrank.core_ranking.compute_subfeatures": {"tf": 1}, "outrank.core_utils.summarize_rare_counts": {"tf": 1}}, "df": 3}}}}}, "w": {"docs": {"outrank.core_utils.parse_ob_line_vw": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"outrank.core_ranking.compute_combined_features": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"outrank.core_utils.parse_ob_csv_line": {"tf": 1}, "outrank.core_utils.read_reference_json": {"tf": 1}, "outrank.core_utils.extract_features_from_reference_JSON": {"tf": 1}, "outrank.core_utils.summarize_feature_bounds_for_transformers": {"tf": 1}}, "df": 4}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough. diff --git a/outrank/core_ranking.py b/outrank/core_ranking.py index c59293d..31cc17e 100644 --- a/outrank/core_ranking.py +++ b/outrank/core_ranking.py @@ -42,6 +42,7 @@ GLOBAL_PRIOR_COMB_COUNTS: dict[Any, int] = Counter() IGNORED_VALUES = set() HYPERLL_ERROR_BOUND = 0.02 +MAX_FEATURES_3MR = 10 ** 4 def prior_combinations_sample(combinations: list[tuple[Any, ...]], args: Any) -> list[tuple[Any, ...]]: @@ -64,6 +65,8 @@ def get_combinations_from_columns(all_columns: pd.Index, args: Any) -> list[tupl """Return feature-feature & feature-label combinations, depending on the heuristic and ranking scope""" if '3mr' in args.heuristic: + if args.combination_number_upper_bound > MAX_FEATURES_3MR: + args.combination_number_upper_bound = MAX_FEATURES_3MR rel_columns = [column for column in all_columns if ' AND_REL ' in column] non_rel_columns = sorted(set(all_columns) - set(rel_columns)) @@ -606,7 +609,7 @@ def estimate_importances_minibatches( delimiter: str = '\t', feature_construction_mode: bool = False, logger: Any = None, -) -> tuple[list[dict[str, Any]], Any, dict[Any, Any], list[dict[str, Any]], list[dict[str, set[str]]], defaultdict[str, list[set[str]]], dict[str, Any]]: +) -> tuple[list[dict[str, Any]], Any, dict[Any, Any], list[dict[str, Any]], list[dict[str, set[str]]], defaultdict[str, list[set[str]]], dict[str, Any], dict[str, Any]]: """Interaction score estimator - suitable for example for csv-like input data types. This type of data is normally a single large csv, meaning that minibatch processing needs to happen during incremental handling of the file (that"s not the case for pre-separated ob data) @@ -729,9 +732,10 @@ def estimate_importances_minibatches( return ( step_timing_checkpoints, get_grouped_df(importances_df), - GLOBAL_CARDINALITY_STORAGE, + GLOBAL_CARDINALITY_STORAGE.copy(), bounds_storage_batch, memory_storage_batch, local_coverage_object, - GLOBAL_RARE_VALUE_STORAGE, + GLOBAL_RARE_VALUE_STORAGE.copy(), + GLOBAL_PRIOR_COMB_COUNTS.copy(), ) diff --git a/outrank/task_ranking.py b/outrank/task_ranking.py index 0496ad8..1840bce 100644 --- a/outrank/task_ranking.py +++ b/outrank/task_ranking.py @@ -1,6 +1,7 @@ from __future__ import annotations import glob +import json import logging import os import signal @@ -100,6 +101,7 @@ def outrank_task_conduct_ranking(args: Any): memory_object_storage, coverage_object, RARE_VALUE_STORAGE, + GLOBAL_PRIOR_COMB_COUNTS, ) = estimate_importances_minibatches(**cmd_arguments) global_bounds_storage += bounds_object_storage @@ -276,6 +278,10 @@ def outrank_task_conduct_ranking(args: Any): os.path.join(args.output_folder, 'pairwise_ranks.tsv'), sep='\t', index=False, ) + with open(f'{args.output_folder}/combination_estimation_counts.json', 'w') as out_counts: + out_dict = {str(k): v for k, v in GLOBAL_PRIOR_COMB_COUNTS.items()} + out_counts.write(json.dumps(out_dict)) + # Write timings and config for replicability dfx = pd.DataFrame(all_timings) dfx.to_json(f'{args.output_folder}/timings.json') diff --git a/setup.py b/setup.py index fc6fb91..5d148e0 100644 --- a/setup.py +++ b/setup.py @@ -23,7 +23,7 @@ def _read_description(): packages = [x for x in setuptools.find_packages() if x != 'test'] setuptools.setup( name='outrank', - version='0.95.2', + version='0.95.3', description='OutRank: Feature ranking for massive sparse data sets.', long_description=_read_description(), long_description_content_type='text/markdown',