-
Notifications
You must be signed in to change notification settings - Fork 75
/
utils.py
350 lines (254 loc) · 14.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 22 17:28:28 2019
@author: Owen and Tarmily
"""
from torch.nn import functional as F
import torch.nn as nn
import numpy as np
import torch.nn as nn
import torch
from torchvision import models
from collections import namedtuple
import time
import asyncio
def numpy2tensor(np_array, gpu_id):
if len(np_array.shape) == 2:
tensor = torch.from_numpy(np_array).unsqueeze(0).float().to(gpu_id)
else:
tensor = torch.from_numpy(np_array).unsqueeze(0).transpose(1,3).transpose(2,3).float().to(gpu_id)
return tensor
def make_canvas_mask(x_start, y_start, target_img, mask):
canvas_mask = np.zeros((target_img.shape[0], target_img.shape[1]))
canvas_mask[int(x_start-mask.shape[0]*0.5):int(x_start+mask.shape[0]*0.5), int(y_start-mask.shape[1]*0.5):int(y_start+mask.shape[1]*0.5)] = mask
return canvas_mask
def laplacian_filter_tensor(img_tensor, gpu_id):
laplacian_filter = np.array([[0, -1, 0],[-1, 4, -1],[0, -1, 0]])
laplacian_conv = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
laplacian_conv.weight = nn.Parameter(torch.from_numpy(laplacian_filter).float().unsqueeze(0).unsqueeze(0).to(gpu_id))
for param in laplacian_conv.parameters():
param.requires_grad = False
red_img_tensor = img_tensor[:,0,:,:].unsqueeze(1)
green_img_tensor = img_tensor[:,1,:,:].unsqueeze(1)
blue_img_tensor = img_tensor[:,2,:,:].unsqueeze(1)
red_gradient_tensor = laplacian_conv(red_img_tensor).squeeze(1)
green_gradient_tensor = laplacian_conv(green_img_tensor).squeeze(1)
blue_gradient_tensor = laplacian_conv(blue_img_tensor).squeeze(1)
return red_gradient_tensor, green_gradient_tensor, blue_gradient_tensor
def compute_gt_gradient(x_start, y_start, source_img, target_img, mask, gpu_id):
# compute source image gradient
source_img_tensor = torch.from_numpy(source_img).unsqueeze(0).transpose(1,3).transpose(2,3).float().to(gpu_id)
red_source_gradient_tensor, green_source_gradient_tensor, blue_source_gradient_tenosr = laplacian_filter_tensor(source_img_tensor, gpu_id)
red_source_gradient = red_source_gradient_tensor.cpu().data.numpy()[0]
green_source_gradient = green_source_gradient_tensor.cpu().data.numpy()[0]
blue_source_gradient = blue_source_gradient_tenosr.cpu().data.numpy()[0]
# compute target image gradient
target_img_tensor = torch.from_numpy(target_img).unsqueeze(0).transpose(1,3).transpose(2,3).float().to(gpu_id)
red_target_gradient_tensor, green_target_gradient_tensor, blue_target_gradient_tenosr = laplacian_filter_tensor(target_img_tensor, gpu_id)
red_target_gradient = red_target_gradient_tensor.cpu().data.numpy()[0]
green_target_gradient = green_target_gradient_tensor.cpu().data.numpy()[0]
blue_target_gradient = blue_target_gradient_tenosr.cpu().data.numpy()[0]
# mask and canvas mask
canvas_mask = np.zeros((target_img.shape[0], target_img.shape[1]))
canvas_mask[int(x_start-source_img.shape[0]*0.5):int(x_start+source_img.shape[0]*0.5), int(y_start-source_img.shape[1]*0.5):int(y_start+source_img.shape[1]*0.5)] = mask
# foreground gradient
red_source_gradient = red_source_gradient * mask
green_source_gradient = green_source_gradient * mask
blue_source_gradient = blue_source_gradient * mask
red_foreground_gradient = np.zeros((canvas_mask.shape))
red_foreground_gradient[int(x_start-source_img.shape[0]*0.5):int(x_start+source_img.shape[0]*0.5), int(y_start-source_img.shape[1]*0.5):int(y_start+source_img.shape[1]*0.5)] = red_source_gradient
green_foreground_gradient = np.zeros((canvas_mask.shape))
green_foreground_gradient[int(x_start-source_img.shape[0]*0.5):int(x_start+source_img.shape[0]*0.5), int(y_start-source_img.shape[1]*0.5):int(y_start+source_img.shape[1]*0.5)] = green_source_gradient
blue_foreground_gradient = np.zeros((canvas_mask.shape))
blue_foreground_gradient[int(x_start-source_img.shape[0]*0.5):int(x_start+source_img.shape[0]*0.5), int(y_start-source_img.shape[1]*0.5):int(y_start+source_img.shape[1]*0.5)] = blue_source_gradient
# background gradient
red_background_gradient = red_target_gradient * (canvas_mask - 1) * (-1)
green_background_gradient = green_target_gradient * (canvas_mask - 1) * (-1)
blue_background_gradient = blue_target_gradient * (canvas_mask - 1) * (-1)
# add up foreground and background gradient
gt_red_gradient = red_foreground_gradient + red_background_gradient
gt_green_gradient = green_foreground_gradient + green_background_gradient
gt_blue_gradient = blue_foreground_gradient + blue_background_gradient
# np.save('red_foreground_gradient.npy', red_foreground_gradient)
# np.save('green_foreground_gradient.npy', green_foreground_gradient)
# np.save('blue_foreground_gradient.npy', blue_foreground_gradient)
# np.save('red_background_gradient.npy', red_background_gradient)
# np.save('green_background_gradient.npy', green_background_gradient)
# np.save('blue_background_gradient.npy', blue_background_gradient)
# pdb.set_trace()
gt_red_gradient = numpy2tensor(gt_red_gradient, gpu_id)
gt_green_gradient = numpy2tensor(gt_green_gradient, gpu_id)
gt_blue_gradient = numpy2tensor(gt_blue_gradient, gpu_id)
gt_gradient = [gt_red_gradient, gt_green_gradient, gt_blue_gradient]
return gt_gradient
class Vgg16(torch.nn.Module):
def __init__(self, requires_grad=False):
super(Vgg16, self).__init__()
vgg_pretrained_features = models.vgg16(pretrained=True).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
for x in range(4):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 16):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(16, 23):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu1_2 = h
h = self.slice2(h)
h_relu2_2 = h
h = self.slice3(h)
h_relu3_3 = h
h = self.slice4(h)
h_relu4_3 = h
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3'])
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3)
return out
def gram_matrix(y):
(b, ch, h, w) = y.size()
features = y.view(b, ch, w * h)
features_t = features.transpose(1, 2)
gram = features.bmm(features_t) / (ch * h * w)
return gram
def normalize_batch(batch):
# normalize using imagenet mean and std
mean = batch.new_tensor([0.485, 0.456, 0.406]).view(-1, 1, 1)
std = batch.new_tensor([0.229, 0.224, 0.225]).view(-1, 1, 1)
batch = batch.div_(255.0)
return (batch - mean) / std
class MeanShift(nn.Conv2d):
def __init__(self, gpu_id):
super(MeanShift, self).__init__(3, 3, kernel_size=1)
rgb_range=1
rgb_mean=(0.4488, 0.4371, 0.4040)
rgb_std=(1.0, 1.0, 1.0)
sign=-1
std = torch.Tensor(rgb_std).to(gpu_id)
self.weight.data = torch.eye(3).view(3, 3, 1, 1).to(gpu_id) / std.view(3, 1, 1, 1)
self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean).to(gpu_id) / std
for p in self.parameters():
p.requires_grad = False
def get_matched_features_numpy(blended_features, target_features):
matched_features = blended_features.new_full(size=blended_features.size(), fill_value=0, requires_grad=False)
cpu_blended_features = blended_features.cpu().detach().numpy()
cpu_target_features = target_features.cpu().detach().numpy()
for filter in range(0, blended_features.size(1)):
matched_filter = torch.from_numpy(hist_match_numpy(cpu_blended_features[0, filter, :, :],
cpu_target_features[0, filter, :, :])).to(blended_features.device)
matched_features[0, filter, :, :] = matched_filter
return matched_features
def get_matched_features_pytorch(blended_features, target_features):
matched_features = blended_features.new_full(size=blended_features.size(), fill_value=0, requires_grad=False).to(blended_features.device)
for filter in range(0, blended_features.size(1)):
matched_filter = hist_match_pytorch(blended_features[0, filter, :, :], target_features[0, filter, :, :])
matched_features[0, filter, :, :] = matched_filter
return matched_features
def hist_match_pytorch(source, template):
oldshape = source.size()
source = source.view(-1)
template = template.view(-1)
max_val = max(source.max().item(), template.max().item())
min_val = min(source.min().item(), template.min().item())
num_bins = 400
hist_step = (max_val - min_val) / num_bins
if hist_step == 0:
return source.reshape(oldshape)
hist_bin_centers = torch.arange(start=min_val, end=max_val, step=hist_step).to(source.device)
hist_bin_centers = hist_bin_centers + hist_step / 2.0
source_hist = torch.histc(input=source, min=min_val, max=max_val, bins=num_bins)
template_hist = torch.histc(input=template, min=min_val, max=max_val, bins=num_bins)
source_quantiles = torch.cumsum(input=source_hist, dim=0)
source_quantiles = source_quantiles / source_quantiles[-1]
template_quantiles = torch.cumsum(input=template_hist, dim=0)
template_quantiles = template_quantiles / template_quantiles[-1]
nearest_indices = torch.argmin(torch.abs(template_quantiles.repeat(len(source_quantiles), 1) - source_quantiles.view(-1, 1).repeat(1, len(template_quantiles))), dim=1)
source_bin_index = torch.clamp(input=torch.round(source / hist_step), min=0, max=num_bins - 1).long()
mapped_indices = torch.gather(input=nearest_indices, dim=0, index=source_bin_index)
matched_source = torch.gather(input=hist_bin_centers, dim=0, index=mapped_indices)
return matched_source.reshape(oldshape)
async def hist_match_pytorch_async(source, template, index, storage):
oldshape = source.size()
source = source.view(-1)
template = template.view(-1)
max_val = max(source.max().item(), template.max().item())
min_val = min(source.min().item(), template.min().item())
num_bins = 400
hist_step = (max_val - min_val) / num_bins
if hist_step == 0:
storage[0, index, :, :] = source.reshape(oldshape)
return
hist_bin_centers = torch.arange(start=min_val, end=max_val, step=hist_step).to(source.device)
hist_bin_centers = hist_bin_centers + hist_step / 2.0
source_hist = torch.histc(input=source, min=min_val, max=max_val, bins=num_bins)
template_hist = torch.histc(input=template, min=min_val, max=max_val, bins=num_bins)
source_quantiles = torch.cumsum(input=source_hist, dim=0)
source_quantiles = source_quantiles / source_quantiles[-1]
template_quantiles = torch.cumsum(input=template_hist, dim=0)
template_quantiles = template_quantiles / template_quantiles[-1]
nearest_indices = torch.argmin(torch.abs(template_quantiles.repeat(len(source_quantiles), 1) - source_quantiles.view(-1, 1).repeat(1, len(template_quantiles))), dim=1)
source_bin_index = torch.clamp(input=torch.round(source / hist_step), min=0, max=num_bins - 1).long()
mapped_indices = torch.gather(input=nearest_indices, dim=0, index=source_bin_index)
matched_source = torch.gather(input=hist_bin_centers, dim=0, index=mapped_indices)
storage[0, index, :, :] = matched_source.reshape(oldshape)
async def loop_features_pytorch(source, target, storage):
size = source.shape
tasks = []
for i in range(0, size[1]):
task = asyncio.ensure_future(hist_match_pytorch_async(source[0, i], target[0, i], i, storage))
tasks.append(task)
await asyncio.gather(*tasks)
def get_matched_features_pytorch_async(source, target, matched):
asyncio.set_event_loop(asyncio.new_event_loop())
loop = asyncio.get_event_loop()
future = asyncio.ensure_future(loop_features_pytorch(source, target, matched))
loop.run_until_complete(future)
loop.close()
def hist_match_numpy(source, template):
oldshape = source.shape
source = source.ravel()
template = template.ravel()
max_val = max(source.max(), template.max())
min_val = min(source.min(), template.min())
num_bins = 400
hist_step = (max_val - min_val) / num_bins
if hist_step == 0:
return source.reshape(oldshape)
source_hist, source_bin_edges = np.histogram(a=source, bins=num_bins, range=(min_val, max_val))
template_hist, template_bin_edges = np.histogram(a=template, bins=num_bins, range=(min_val, max_val))
hist_bin_centers = source_bin_edges[:-1] + hist_step / 2.0
source_quantiles = np.cumsum(source_hist).astype(np.float32)
source_quantiles /= source_quantiles[-1]
template_quantiles = np.cumsum(template_hist).astype(np.float32)
template_quantiles /= template_quantiles[-1]
index_function = np.vectorize(pyfunc=lambda x: np.argmin(np.abs(template_quantiles - x)))
nearest_indices = index_function(source_quantiles)
source_data_bin_index = np.clip(a=np.round(source / hist_step), a_min=0, a_max=num_bins-1).astype(np.int32)
mapped_indices = np.take(nearest_indices, source_data_bin_index)
matched_source = np.take(hist_bin_centers, mapped_indices)
return matched_source.reshape(oldshape)
def main():
size = (64, 512, 512)
source = np.random.randint(low=0, high=500000, size=size).astype(np.float32)
target = np.random.randint(low=0, high=500000, size=size).astype(np.float32)
source_tensor = torch.Tensor(source).to(0)
target_tensor = torch.Tensor(target).to(0)
matched_numpy = np.zeros(shape=size)
matched_pytorch = torch.zeros(size=size, device=0)
numpy_time = time.process_time()
for i in range(0, size[0]):
matched_numpy[i, :, :] = hist_match_numpy(source[i], target[i])
numpy_time = time.process_time() - numpy_time
pytorch_time = time.process_time()
for i in range(0, size[0]):
matched_pytorch[i, :, :] = hist_match_pytorch(source_tensor[i], target_tensor[i])
pytorch_time = time.process_time() - pytorch_time
if __name__ == "__main__":
main()