-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcg.sml
785 lines (738 loc) · 26.5 KB
/
cg.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
(* cg.sml
*
* Code generation (instruction selection) for the PowerPC.
*
* A "compilation" is used to keep track of data- and function stubs
* for external linkage across multiple methods. (There cannot be
* more than one stub of any kind for a given external name per
* compilation unit.)
*
* Copyright (c) 2005 by Matthias Blume ([email protected])
*)
structure PPCCodeGen :> sig
(* A "compilation" is used to keep track of data- and function stubs
* for external linkage across multiple methods. (There cannot be
* more than one stub of any kind for a given external name per
* compilation unit.) It also remembers if GC might be called
* so that the corresponding GC stub can be generated. *)
type compilation
val new : unit -> compilation
val codegen : Frame.frame * compilation * TraceTree.entrytrace ->
Asm.instr list
val getstubs : compilation ->
{ datastubs: string list,
funstubs: string list,
needgc: bool }
end = struct
structure T = TraceTree
structure TO = TreeOps
structure A = Asm
structure L = Label
structure M = L.Map
fun bug m = ErrorMsg.impossible ("PPCCodeGen: " ^ m)
type temp = LVar.lvar
type compilation = { datastubs : string list M.map ref,
funstubs : string list M.map ref,
needgc : bool ref }
fun new () : compilation = { datastubs = ref M.empty,
funstubs = ref M.empty,
needgc = ref false }
(* We frequently need fresh temps... *)
fun newtmp () = LVar.new "tmp"
fun getstubs { datastubs, funstubs, needgc } =
{ datastubs = M.foldr (op @) [] (!datastubs),
funstubs = M.foldr (op @) [] (!funstubs),
needgc = !needgc }
fun codegen (frame, { datastubs, funstubs, needgc }, entry) = let
(* here we accumulate the list of instructions (in reverse order) *)
val ilist = ref []
(* "emit" one instruction *)
fun emit x = ilist := x :: !ilist
(* generate stub for data linkage (non-lazy) *)
fun gendatastub (l, n, n') =
if M.inDomain (!datastubs, l) then ()
else
datastubs := M.insert
(!datastubs, l,
[".non_lazy_symbol_pointer\n",
n', ":\n",
"\t.indirect_symbol ", n, "\n",
"\t.long\t0\n"])
(* generate stubs for function linkage (lazy) *)
fun genfunstub (l, n, n_stub, n_lptr) =
if M.inDomain (!funstubs, l) then ()
else
(funstubs := M.insert
(!funstubs, l,
["\t.align 2\n",
n_stub, ":\n",
"\t.indirect_symbol ", n, "\n",
"\tlis r11,ha16(", n_lptr, ")\n",
"\tlwzu r12,lo16(", n_lptr, ")(r11)\n",
"\tmtctr r12\n",
"\tbctr\n"]);
datastubs := M.insert
(!datastubs, l,
[".lazy_symbol_pointer\n",
n_lptr, ":\n",
"\t.indirect_symbol ", n, "\n",
"\t.long dyld_stub_binding_helper\n"]))
(* generate GC stub if necessary *)
fun gengcstub () =
if !needgc then ()
else
let val n_gc = L.escname Frame.gclab
val n_gc_stub = concat ["L", n_gc, "$stub"]
val n_gc_lptr = concat ["L", n_gc, "$lazy_ptr"]
in needgc := true;
genfunstub (Frame.gclab, n_gc, n_gc_stub, n_gc_lptr)
end
(* for convenience: emit a "move register" instruction *)
fun emitMove (dst, src) =
emit (A.MOVE { asm = "mr `d0,`s0", dst = dst, src = src })
(* convert int to corresponding string
* (we need to pay attention to the syntax of signed numbers,
* SML syntax is different from that used by the assembler!) *)
fun i2s i =
if i < 0 then "-" ^ LiteralData.toString (~i)
else LiteralData.toString i
(* convert integer literal to corresponding string *)
fun int2s i =
if i < 0 then "-" ^ Int.toString (~i) else Int.toString i
(* issue instruction(s) to load an immediate value into a temporary *)
fun const i =
let val t =
if i mod 2 = 0 then LVar.new "const"
else Frame.untagscratch
in if i < 0x8000 andalso i >= ~0x8000 then
emit (A.OPER { asm = "li `d0," ^ i2s i,
dst = [t], src = [], jmp = A.NOJUMP })
else
let val w = Word32.fromLargeInt (LiteralData.toLarge i)
val h = Word32.>> (w, 0w16)
val l = Word32.andb (w, 0wxffff)
in emit (A.OPER { asm = "lis `d0,0x" ^ Word32.toString h,
src = [], dst = [t], jmp = A.NOJUMP });
if l <> 0w0 then
emit (A.OPER { asm = "ori `d0,`s0,0x" ^
Word32.toString l,
src = [t], dst = [t],
jmp = A.NOJUMP })
else ()
end;
t
end
(* emit instruction for typical binary operation *)
fun binInst0 (oc, e1, e2, t) =
emit (A.OPER { asm = oc ^ " `d0,`s0,`s1",
dst = [t], src = [e1, e2], jmp = A.NOJUMP })
fun binInst (oc, e1, e2) =
let val t = newtmp () in binInst0 (oc, e1, e2, t); t end
(* binary op that produces untagged int *)
fun binInstU (oc, e1, e2) = binInst0 (oc, e1, e2, Frame.untagscratch)
(* generic code for issuing instruction that involves a constant *)
fun gConInst0 (low, high) (oc, altoc, e, i, t) =
if i >= low andalso i < high then
emit (A.OPER { asm = concat [oc, " `d0,`s0,", i2s i],
dst = [t], src = [e], jmp = A.NOJUMP })
else
emit (A.OPER { asm = altoc ^ " `d0,`s0,`s1",
dst = [t], src = [e, const i],
jmp = A.NOJUMP })
(* typical binary ops involving 16-bit signed immediates *)
val conInst0 = gConInst0 (~0x8000, 0x8000)
(* shift ops where range is [0,32) *)
val conSInst0 = gConInst0 (0, 32)
fun conInst (oc, altoc, e, i) =
let val t = newtmp () in conInst0 (oc, altoc, e, i, t); t end
fun conSInst (oc, altoc, e, i) =
let val t = newtmp () in conSInst0 (oc, altoc, e, i, t); t end
fun conSInstU (oc, altoc, e, i) =
conSInst0 (oc, altoc, e, i, Frame.untagscratch)
(* binary ops involving 16-bit unsigned immediates *)
fun conLInst (oc, altoc, e, i) =
let val w = Word32.fromLargeInt (LiteralData.toLarge i)
val t = newtmp ()
in
if w >= 0wx10000 then
emit (A.OPER { asm = altoc ^ " `d0,`s0,`s1",
dst = [t], src = [e, const i],
jmp = A.NOJUMP })
else
emit (A.OPER { asm = concat [oc, " `d0,`s0,0x",
Word32.toString w],
dst = [t], src = [e], jmp = A.NOJUMP });
t
end
fun unboxInt t =
(emit (A.OPER { asm = "srawi `d0,`s0,1",
src = [t], dst = [Frame.untagscratch],
jmp = A.NOJUMP });
Frame.untagscratch)
fun boxInt () =
let val t = newtmp ()
in emit (A.OPER { asm = "slwi `d0,`s0,1",
src = [Frame.untagscratch], dst = [t],
jmp = A.NOJUMP });
t
end
(* representation of the result of "munchIndex" *)
datatype memindex =
(* optional base register + displacement *)
BaseDisp of temp option * LiteralData.integer
(* indexed access (addr = sum of two temps) *)
| Indexed of temp * temp
(* maximal munch on expression trees: *)
fun munchExp (T.FETCH (T.TEMP t)) = t
| munchExp (T.FETCH T.ALLOCPTR) = Frame.allocptr
| munchExp (T.FETCH T.STACKPTR) =
let val t = newtmp () in emitMove (t, Frame.sp); t end
| munchExp (T.FETCH (T.MEM (T.NAME l))) =
(* contents at address given by label *)
let val t = newtmp ()
val tmp = newtmp ()
val n = L.escname l
in if L.isExternal l then
(* external label *)
let val n' = concat ["L", n, "$non_lazy_ptr"]
val tmp2 = newtmp ()
in emit (A.OPER { asm = concat ["lis `d0,ha16(", n', ")"],
dst = [tmp], src = [],
jmp = A.NOJUMP });
emit (A.OPER { asm = concat ["lwz `d0,lo16(", n',
")(`s0)"],
dst = [tmp2], src = [tmp],
jmp = A.NOJUMP });
emit (A.OPER { asm = "lwz `d0,0(`s0)",
src = [tmp2], dst = [t],
jmp = A.NOJUMP });
gendatastub (l, n, n')
end
else
(* local label *)
(emit (A.OPER { asm = concat ["lis `d0,ha16(", n, ")"],
src = [], dst = [tmp], jmp = A.NOJUMP });
emit (A.OPER { asm = concat ["lwz `d0,lo16(", n,
")(`s0)"],
src = [tmp], dst = [t],
jmp = A.NOJUMP }));
t
end
| munchExp (T.FETCH (T.MEM e)) =
(* contents at address given by arbitrary expression *)
let val t = newtmp ()
fun off i = i2s (i-1)
in case munchIndex e of
BaseDisp (SOME base, disp) =>
emit (A.OPER { asm =
concat ["lwz `d0,", off disp, "(`s0)"],
src = [base], dst = [t],
jmp = A.NOJUMP })
| BaseDisp (NONE, disp) =>
emit (A.OPER { asm =
concat ["lwz `d0,", off disp, "(0)"],
src = [], dst = [t],
jmp = A.NOJUMP })
| Indexed (t1, t2) =>
let val t' = newtmp ()
in emit (A.OPER { asm = "add `d0,`s0,`s1",
src = [t1, t2], dst = [t'],
jmp = A.NOJUMP });
emit (A.OPER { asm = "lwz `d0,-1(`s0)",
src = [t'], dst = [t],
jmp = A.NOJUMP })
end;
t
end
| munchExp (T.NAME l) =
(* address of a label *)
let val tmp = newtmp ()
val t = newtmp ()
val n = L.escname l
in
if L.isExternal l then
(* external label *)
let val n' = concat ["L", n, "$non_lazy_ptr"]
in
emit (A.OPER { asm = concat ["lis `d0,ha16(", n', ")"],
dst = [tmp], src = [],
jmp = A.NOJUMP });
emit (A.OPER { asm = concat ["lwz `d0,lo16(", n',
")(`s0)"],
dst = [t], src = [tmp],
jmp = A.NOJUMP });
gendatastub (l, n, n')
end
else
(emit (A.OPER { asm = concat ["lis `d0,ha16(", n, ")"],
src = [], dst = [tmp], jmp = A.NOJUMP });
emit (A.OPER { asm = concat ["la `d0,lo16(", n,
")(`s0)"],
dst = [t], src = [tmp], jmp = A.NOJUMP }));
t
end
| munchExp (T.CONST i) = const i (* value of a constant *)
| munchExp (T.BINOP (TO.PLUS, T.CONST i, e) |
T.BINOP (TO.PLUS, e, T.CONST i)) =
conInst ("addi", "add", munchExp e, i)
| munchExp (T.BINOP (TO.PLUS, e1, e2)) =
binInst ("add", munchExp e1, munchExp e2)
| munchExp (T.BINOP (TO.MINUS, T.CONST i, e)) =
conInst ("subfic", "subf", munchExp e, i)
| munchExp (T.BINOP (TO.MINUS, e, T.CONST i)) =
conInst ("addi", "add", munchExp e, ~i)
| munchExp (T.BINOP (TO.MINUS, e1, e2)) =
binInst { 1 = "subf", 3 = munchExp e1, 2 = munchExp e2 }
| munchExp (T.BINOP (TO.MUL, e, T.CONST i) |
T.BINOP (TO.MUL, T.CONST i, e)) =
conInst ("mulli", "mullw", munchExp e, i div 2)
| munchExp (T.BINOP (TO.MUL, e1, e2)) =
binInst ("mullw", munchExp e1, unboxInt (munchExp e2))
| munchExp (T.BINOP (TO.DIV, e1, e2)) =
(* don't worry about constant operands for now;
* also: what should we do about division by zero?
* Notice that this implements round-to-0 semantics! *)
(binInstU ("divw", munchExp e1, munchExp e2);
boxInt ())
| munchExp (T.BINOP (TO.MOD, e1, e2)) =
(* Again, using round-to-0 semantics... *)
let val a = munchExp e1
val b = munchExp e2
val q = binInst ("divw", a, b)
val (p, r) = (newtmp (), newtmp ())
in emit (A.OPER { asm = "mullw `d0,`s0,`s1",
src = [b, q], dst = [p], jmp = A.NOJUMP });
emit (A.OPER { asm = "subf `d0,`s0,`s1",
src = [p, a], dst = [r], jmp = A.NOJUMP });
r
end
| munchExp (T.BINOP (TO.AND, T.CONST i, e) |
T.BINOP (TO.AND, e, T.CONST i)) =
conLInst ("andi", "and", munchExp e, i)
| munchExp (T.BINOP (TO.AND, e1, e2)) =
binInst ("and", munchExp e1, munchExp e2)
| munchExp (T.BINOP (TO.OR, T.CONST i, e) |
T.BINOP (TO.OR, e, T.CONST i)) =
conLInst ("ori", "or", munchExp e, i)
| munchExp (T.BINOP (TO.OR, e1, e2)) =
binInst ("or", munchExp e1, munchExp e2)
| munchExp (T.BINOP (TO.LSHIFT, e, T.CONST i)) =
conSInst ("slwi", "slw", munchExp e, i div 2)
| munchExp (T.BINOP (TO.LSHIFT, e1, e2)) =
binInst ("slw", munchExp e1, unboxInt (munchExp e2))
| munchExp (T.BINOP (TO.RSHIFT, e, T.CONST i)) =
(* need to clear the lsb... *)
(conSInstU ("srwi", "srw", munchExp e, i div 2 + 1);
boxInt ())
| munchExp (T.BINOP (TO.RSHIFT, e1, e2)) =
(binInstU ("srw", munchExp e1, unboxInt (munchExp e2));
(* clumsy! *)
ignore (unboxInt Frame.untagscratch);
boxInt ())
| munchExp (T.BINOP (TO.ARSHIFT, e, T.CONST i)) =
(conSInstU ("srawi", "sraw", munchExp e, i div 2 + 1);
boxInt ())
| munchExp (T.BINOP (TO.ARSHIFT, e1, e2)) =
(* clumsy! *)
(binInst ("sraw", munchExp e1, unboxInt (munchExp e2));
ignore (unboxInt Frame.untagscratch);
boxInt ())
| munchExp (T.BINOP (TO.XOR, e, T.CONST i) |
T.BINOP (TO.XOR, T.CONST i, e)) =
conLInst ("xori", "xor", munchExp e, i)
| munchExp (T.BINOP (TO.XOR, e1, e2)) =
binInst ("xor", munchExp e1, munchExp e2)
(* munchIndex munches an expression representing a memory address;
* its result is to indicate which form of load/store instruction
* is to be used (lwz vs. lwzx, stw vs. stwx) and what the
* operands should be *)
and munchIndex e =
let fun addConst (e, i) =
if i >= ~0x8000 andalso i < 0x8000 then
BaseDisp (SOME (munchExp e), i)
else Indexed (munchExp e, const i)
in case e of
(T.BINOP (TO.PLUS, e, T.CONST i) |
T.BINOP (TO.PLUS, T.CONST i, e)) =>
addConst (e, i)
| T.BINOP (TO.MINUS, e, T.CONST i) =>
addConst (e, ~i)
| T.BINOP (TO.PLUS, e1, e2) =>
Indexed (munchExp e1, munchExp e2)
| T.CONST i =>
if i >= ~0x8000 andalso i < 0x8000 then BaseDisp (NONE, i)
else BaseDisp (SOME (const i), 0)
| e => BaseDisp (SOME (munchExp e), 0)
end
(* emit a function epiloge; an epiloge is needed at every
* return and at every tail call *)
fun emitEpilogue () =
let val ssn = Frame.frameSzName frame
in emit (A.OPER { asm = "lwz `d0,(" ^ ssn ^ "+8)(`s0)",
src = [Frame.sp],
dst = [Frame.r0],
jmp = A.NOJUMP });
emit A.REGRESTORE;
emit (A.OPER { asm = "addi `d0,`s0," ^ ssn,
src = [Frame.sp],
dst = [Frame.sp],
jmp = A.NOJUMP });
emit (A.OPER { asm = "mtlr `s0",
src = [Frame.r0],
dst = [],
jmp = A.NOJUMP })
end
(* walk over the trace and munch it: *)
fun munchTrace (T.LABEL lt) = munchLabTrace lt
| munchTrace (T.JUMP (l, ns)) =
(emit (A.OPER { asm = "b `j0",
src = [], dst = [], jmp = A.JUMP [l] });
munchNewStart ns)
| munchTrace (T.TCALL (e, el, ns)) =
(call (NONE, e, el, true);
munchNewStart ns)
| munchTrace (T.RETURN (el, ns)) =
let val tl = map munchExp el
fun movethem (_, [], l) = l
| movethem ([], _, _) =
bug "too many return values provided"
| movethem (d :: ds, s :: ss, l) =
(emitMove (d, s); movethem (ds, ss, d :: l))
val usedresults = movethem (Frame.results, tl, [])
in emitEpilogue ();
emit (A.OPER { asm = "blr",
src = Frame.sp :: Frame.allocptr ::
Frame.limitptr :: Frame.calleesaves @
usedresults,
dst = [],
jmp = A.RETURN });
munchNewStart ns
end
| munchTrace (T.CJUMP (rop, e1, e2, l, lt as (l', _))) =
let fun operators TO.EQ = ("cmpw", "beq")
| operators TO.NE = ("cmpw", "bne")
| operators TO.LT = ("cmpw", "blt")
| operators TO.GT = ("cmpw", "bgt")
| operators TO.LE = ("cmpw", "ble")
| operators TO.GE = ("cmpw", "bge")
| operators TO.ULT = ("cmplw", "blt")
| operators TO.UGT = ("cmplw", "bgt")
| operators TO.ULE = ("cmplw", "ble")
| operators TO.UGE = ("cmplw", "bge")
fun generic_cmp () = let
val s1 = munchExp e1
val s2 = munchExp e2
val (cop, bop) = operators rop
in emit (A.OPER { asm = cop ^ " `s0,`s1",
src = [s1, s2], dst = [], jmp = A.NOJUMP });
emit (A.OPER { asm = bop ^ " `j0",
src = [], dst = [],
jmp = A.JUMP [l, l'] })
end
fun cmpi (rop, e, i) =
if i < ~0xfffff orelse i >= 0xffff then
generic_cmp ()
else
let val s = munchExp e
val (cop, bop) = operators rop
in emit (A.OPER { asm = concat [cop, "i `s0,", i2s i],
src = [s], dst = [],
jmp = A.NOJUMP });
emit (A.OPER { asm = bop ^ " `j0",
src = [], dst = [],
jmp = A.JUMP [l, l'] })
end
in case (e1, e2) of
(T.CONST i, e) => cmpi (TO.commute rop, e, i)
| (e, T.CONST i) => cmpi (rop, e, i)
| _ => generic_cmp ();
munchLabTrace lt
end
| munchTrace (T.CALL (lel, f, el, t)) =
(movel (lel, fn dl => call (SOME dl, f, el, false));
munchTrace t)
| munchTrace (T.MOVE (le, e, t)) =
(move (le, fn d => emitMove (d, munchExp e));
munchTrace t)
| munchTrace (T.DOCALL (f, el, t)) =
(call (NONE, f, el, false);
munchTrace t)
| munchTrace (T.DOEXP (e, t)) =
(ignore (munchExp e);
munchTrace t)
| munchTrace (T.GCTEST (e, t)) =
(* GC test:
* - load amount into argument register 1 (r3)
* - compare sum of r3 and alloc ptr with limit ptr
* - if sum is greater, call the GC stub
*)
let val tmp = newtmp ()
in gengcstub ();
emitMove (Frame.arg1, munchExp e);
emit (A.OPER { asm = "add `d0,`s0,`s1",
dst = [tmp], src = [Frame.arg1, Frame.allocptr],
jmp = A.NOJUMP });
emit (A.OPER { asm = "cmplw `s0,`s1", dst = [], jmp = A.NOJUMP,
src = [tmp, Frame.limitptr] });
emit (A.OPER { asm = "bgel " ^ Frame.gcstublabname,
src = [Frame.arg1, Frame.allocptr,
Frame.limitptr, Frame.sp],
(* these are the registers the GC stub
* is permitted to clobber: *)
dst = Frame.allocptr :: Frame.limitptr ::
Frame.callersaves,
jmp = A.NOJUMP });
munchTrace t
end
| munchTrace (T.ALLOCWRITE (e, t)) =
let val x = munchExp e
in emit (A.OPER { asm = "stwu `s0,4(`s1)", jmp = A.NOJUMP,
src = [x, Frame.allocptr],
dst = [Frame.allocptr] });
munchTrace t
end
| munchTrace (T.ALLOCCOPY (frombase, length, t)) =
let val (fv, lv, tmp) = (newtmp (), newtmp (), newtmp ())
val (startlab, exitlab) = (L.new NONE, L.new NONE)
in emitMove (fv, munchExp frombase);
emitMove (lv, munchExp length);
(* adjust fv to be aligned and pointing one word
* before the actual region *)
emit (A.OPER { asm = "addi `d0,`s0,-5",
src = [fv], dst = [fv], jmp = A.NOJUMP });
(* convert length to wordlength (from bytelength),
* test for 0 *)
emit (A.OPER { asm = "srwi. `d0,`s0,2",
src = [lv], dst = [lv], jmp = A.NOJUMP });
(* load the count register with word length *)
emit (A.OPER { asm = "mtctr `s0", dst = [], jmp = A.NOJUMP,
src = [lv] });
(* jump around loop if zero *)
emit (A.OPER { asm = "beq `j0", src = [], dst = [],
jmp = A.JUMP [exitlab, startlab ] });
(* here is the start of the loop *)
emit (A.LABEL startlab);
(* load word and increment pointer *)
emit (A.OPER { asm = "lwzu `d0,4(`s0)", jmp = A.NOJUMP,
src = [fv], dst = [tmp, fv] });
(* store word and increment alloc ptr *)
emit (A.OPER { asm = "stwu `s0,4(`s1)", jmp = A.NOJUMP,
src = [tmp, Frame.allocptr],
dst = [Frame.allocptr] });
(* count down and branch if not yet zero *)
emit (A.OPER { asm = "bdnz `j0", src = [], dst = [],
jmp = A.JUMP [startlab, exitlab] });
(* here is the exit of the loop *)
emit (A.LABEL exitlab);
(* continue *)
munchTrace t
end
and movel ([], thunk) = thunk []
| movel (h :: t, thunk) =
move (h, fn d => movel (t, fn dl => thunk (d :: dl)))
(* The move function takes the destination lexp (the LHS) and
* a thunk for the RHS which expects a temp to write its result to.
* If the real LHS is a memory location, then a store instruction
* must be generated. *)
and move (T.TEMP t, thunk) = thunk t
| move (T.ALLOCPTR, thunk) = thunk Frame.allocptr
| move (T.STACKPTR, thunk) =
(* TODO: make sure there are no live data on the stack
* at this point! *)
(thunk Frame.sp;
emit A.NOSTACK) (* indicate that the old stack is
* no longer with us here *)
| move (T.MEM e, thunk) =
let val t = newtmp ()
fun off i = i2s (i-1)
in case munchIndex e before thunk t of
BaseDisp (SOME base, disp) =>
emit (A.OPER { asm =
concat ["stw `s0,", off disp, "(`s1)"],
src = [t, base], dst = [],
jmp = A.NOJUMP })
| BaseDisp (NONE, disp) =>
emit (A.OPER { asm =
concat ["stw `s0,", off disp, "(0)"],
src = [t], dst = [], jmp = A.NOJUMP })
| Indexed (t1, t2) =>
let val t' = newtmp ()
in emit (A.OPER { asm = "add `d0,`s0,`s1",
src = [t1, t2], dst = [t'],
jmp = A.NOJUMP });
emit (A.OPER { asm = "stw `s0,-1(`s1)",
src = [t', t], dst = [],
jmp = A.NOJUMP })
end
end
(* Generate code for call of functino given by f with arguments
* given by el. Move result to the optional destination dopt.
* If "istcall" is true, then this is a tail-call. *)
and call (dlopt, f, el, istcall) =
let val tcall_disabled = ref false
fun prepareArgs () =
let fun moveToArg ([], _, rargs, k) =
(Frame.recordArgAreaTop (frame, k);
rev rargs)
| moveToArg (t :: ts, r :: rs, rargs, k) =
(emitMove (r, t);
moveToArg (ts, rs, r :: rargs, k + 4))
| moveToArg (t :: ts, [], rargs, k) =
(* more than 8 arguments;
* move argument to stack location.
* (If istcall, then we must give
* up on this being a real tail call!) *)
(tcall_disabled := true;
emit (A.OPER { asm = concat ["stw `s0,",
int2s k,
"(`s1)"],
src = [t, Frame.sp],
dst = [], jmp = A.NOJUMP });
moveToArg (ts, [], rargs, k + 4))
in moveToArg (map munchExp el,
Frame.args, [], Frame.argAreaBottom)
end
(* Deal with the istcall flag; generate direct and indirect
* branch instruction opcodes, the jump info, sources,
* and destinations: *)
fun do_tc () =
if istcall andalso not (!tcall_disabled) then
(emitEpilogue ();
("b", "bctr", A.RETURN,
Frame.sp :: Frame.allocptr :: Frame.limitptr ::
Frame.calleesaves,
[]))
else ("bl", "bctrl", A.NOJUMP,
[],
Frame.callersaves)
in case f of
T.NAME l =>
(* direct call of named function *)
let val n = L.escname l
val args = prepareArgs ()
val (opcode, _, ji, extra_src, dst) = do_tc ()
in if L.isExternal l then
(* invocation of external function goes through
* linkage stub *)
let val n_stub = concat ["L", n, "$stub"]
val n_lptr = concat ["L", n, "$lazy_ptr"]
in emit (A.OPER { asm = opcode ^ " " ^ n_stub,
src = args @ extra_src,
dst = dst,
jmp = ji });
genfunstub (l, n, n_stub, n_lptr)
end
else
(* local function call *)
emit (A.OPER { asm = opcode ^ " " ^ n,
src = args @ extra_src,
dst = dst,
jmp = ji })
end
| f =>
(* indirect function call; invocation goes through
* count register; function pointer must also be
* in r12 (= Frame.indirfunptr) *)
let val ft = munchExp f
val args = prepareArgs ()
val _ = emitMove (Frame.indirfunptr, ft);
val (_, opcode, ji, extra_src, dst) = do_tc ()
in emit (A.OPER { asm = "mtctr `s0",
dst = [], src = [Frame.indirfunptr],
jmp = A.NOJUMP });
emit (A.OPER { asm = opcode,
src = Frame.indirfunptr ::
args @ extra_src,
dst = dst,
jmp = ji })
end;
case dlopt of
SOME tl =>
let fun movethem ([], _) = ()
| movethem (_, []) = bug "too many results"
| movethem (t :: ts, r :: rs) =
(emitMove (t, r); movethem (ts, rs))
in movethem (tl, Frame.results)
end
| NONE =>
if istcall andalso !tcall_disabled then
(* this was supposed to be a tail call,
* but because of too many arguments we
* had to do an ordinary call. Now the results
* are were they are supposed to be, so we just
* have to issue a return *)
(emitEpilogue ();
emit (A.OPER { asm = "blr",
src = Frame.sp :: Frame.allocptr ::
Frame.limitptr ::
Frame.calleesaves @
Frame.results,
dst = [],
jmp = A.RETURN }))
else ()
end
(* process a labeled trace *)
and munchLabTrace (l, t) = (emit (A.LABEL l); munchTrace t)
(* process a "new start" *)
and munchNewStart T.END = ()
| munchNewStart (T.JTARGET lt) = munchLabTrace lt
| munchNewStart (T.ENTRY e) = munchEntry e
(* process a function entry point *)
and munchEntry (vl, (l, t), false) =
let (* the size of the stack frame is still unknown, so
* we use a symbolic name to refer to it: *)
val ssn = Frame.frameSzName frame
(* move arguments into the temps in vl: *)
fun moveFromArg ([], _, _) = ()
| moveFromArg (v :: vl, r :: rs, k) =
(emitMove (v, r);
moveFromArg (vl, rs, k + 4))
| moveFromArg (v :: vl, [], k) =
(* more than 8 arguments: get values from stack;
* (the stack frame has already been extended at
* this point) *)
(emit (A.OPER { asm = concat ["lwz `d0,",
int2s k,
"+", ssn,
"(`s0)"],
src = [Frame.sp], dst = [v],
jmp = A.NOJUMP });
moveFromArg (vl, [], k + 4))
in emit (A.LABEL l);
(* get return address from link register into r0 *)
emit (A.OPER { asm = "mflr `d0",
src = [], dst = [Frame.r0], jmp = A.NOJUMP });
(* store return address into stack frame *)
emit (A.OPER { asm = "stw `s0,8(`s1)",
src = [Frame.r0, Frame.sp],
dst = [], jmp = A.NOJUMP });
(* extend stack frame and establish dynamic link *)
emit (A.OPER { asm = "stwu `d0,-" ^ ssn ^ "(`s0)",
src = [Frame.sp], dst = [Frame.sp],
jmp = A.NOJUMP });
(* save callee-save registers if necessary *)
emit A.REGSAVE;
(* move arguments into their temps *)
moveFromArg (vl, Frame.args, Frame.argAreaBottom);
(* process rest of the code *)
munchTrace t
end
| munchEntry (vl, (l, t), true) = (* exception handler entry point *)
let fun moveFromArg ([], _, _) = ()
| moveFromArg (v :: vl, r :: rs, k) =
(emitMove (v, r);
moveFromArg (vl, rs, k + 4))
| moveFromArg (v :: vl, [], k) =
(emit (A.OPER { asm = concat ["lwz `d0,",
int2s k, "(`s0)"],
src = [Frame.sp], dst = [v],
jmp = A.NOJUMP });
moveFromArg (vl, [], k + 4))
in emit (A.LABEL l);
moveFromArg (vl, Frame.args, Frame.argAreaBottom);
munchTrace t
end
in munchEntry entry;
rev (!ilist)
end
end