Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Why critic is updated each timestep? #82

Open
xihuai18 opened this issue Aug 11, 2020 · 0 comments
Open

Why critic is updated each timestep? #82

xihuai18 opened this issue Aug 11, 2020 · 0 comments

Comments

@xihuai18
Copy link

for t in reversed(range(rewards.size(1))):
mask_t = mask[:, t].expand(-1, self.n_agents)
if mask_t.sum() == 0:
continue
q_t = self.critic(batch, t)
q_vals[:, t] = q_t.view(bs, self.n_agents, self.n_actions)
q_taken = th.gather(q_t, dim=3, index=actions[:, t:t+1]).squeeze(3).squeeze(1)
targets_t = targets[:, t]
td_error = (q_taken - targets_t.detach())
# 0-out the targets that came from padded data
masked_td_error = td_error * mask_t
# Normal L2 loss, take mean over actual data
loss = (masked_td_error ** 2).sum() / mask_t.sum()
self.critic_optimiser.zero_grad()
loss.backward()
grad_norm = th.nn.utils.clip_grad_norm_(self.critic_params, self.args.grad_norm_clip)
self.critic_optimiser.step()
self.critic_training_steps += 1
running_log["critic_loss"].append(loss.item())
running_log["critic_grad_norm"].append(grad_norm)
mask_elems = mask_t.sum().item()
running_log["td_error_abs"].append((masked_td_error.abs().sum().item() / mask_elems))
running_log["q_taken_mean"].append((q_taken * mask_t).sum().item() / mask_elems)
running_log["target_mean"].append((targets_t * mask_t).sum().item() / mask_elems)
return q_vals, running_log

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant