-
Notifications
You must be signed in to change notification settings - Fork 78
/
NT.cpp
341 lines (313 loc) · 7.89 KB
/
NT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#include "NT.h"
//#define UDL
#ifdef UDL
//#define UBC
#include "deepsort/FeatureGetter/FeatureGetter.h"
#endif
#include "./deepsort/tracker.h"
#include "StrCommon.h"
#include "fdsst/fdssttracker.hpp"
#include "fdsst/fhog.h"
#include <boost/thread/mutex.hpp>
boost::shared_ptr<NearestNeighborDistanceMetric> NearestNeighborDistanceMetric::self_;
boost::shared_ptr<KF> KF::self_;
#define UHOG
void ExtractFeatureHog(const cv::Mat &in,
const std::vector<cv::Rect> &rcsin,
std::vector<FEATURE> &fts){
cv::Mat frame;
cvtColor(in, frame, cv::COLOR_RGB2GRAY);
for(int i = 0; i < rcsin.size(); i++){
Mat nnn = frame(rcsin[i]);
resize(nnn, nnn, Size(32, 32));
int len = 0;
float *hog = HOGXYZ(nnn, len);
if(hog==NULL || len!=128){
printf("hog(%d) is null or len(%d)!=128,exit!\n", hog==NULL, len);
exit(0);
}
FEATURE ft;
for(int j = 0; j < len; j++){
ft(j) = hog[j];
}
delete []hog;
fts.push_back(ft);
}
}
#ifdef UDL
void ExtractFeature(const cv::Mat &in,
const std::vector<cv::Rect> &rcsin,
std::vector<FEATURE> &fts) {
int maxw = 0;
int maxh = 0;
int count = rcsin.size();
#ifdef UBC
int BC = 1;
if(count < BC)count=BC;
#endif
std::vector<cv::Mat> faces;
cv::Rect lr;
for (int i = 0; i < count; i++) {
cv::Rect rc;
if(i < rcsin.size()){
rc = rcsin[i];
lr = rc;
}
else{
rc = lr;
}
faces.push_back(in(rc).clone());
int w = rc.width;
int h = rc.height;
if (w > maxw) {
maxw = w;
}
if (h > maxh) {
maxh = h;
}
}
maxw += 10;
maxh += 10;
cv::Mat frame(maxh, maxw*count, CV_8UC3);
std::vector<cv::Rect> rcs;
for (int i = 0; i < count; i++) {
cv::Mat &face = faces[i];
cv::Rect rc = cv::Rect(i*maxw + 5, 5, face.cols, face.rows);
rcs.push_back(rc);
cv::Mat tmp = frame(rc);
face.copyTo(tmp);
}
std::vector<FEATURE> newfts;
FeatureGetter::Instance()->Get(frame, rcs, newfts);
for(int i = 0; i < rcsin.size(); i++){
fts.push_back(newfts[i]);
}
}
#endif
NT::NT(){
tt_ = TTrackerP(new TTracker(0.7, 30, 1));
}
NT::~NT(){
}
bool NT::Init(){
#ifdef UDL
if(!FeatureGetter::Instance()->Init()){
return false;
}
#endif
if(0){// just a test
Mat frame = cv::imread("/home/xyz/code1/xyz/img1/000001.jpg");
Mat nnn;
cvtColor(frame, nnn, cv::COLOR_RGB2GRAY);
resize(nnn, nnn, Size(32, 32));
Mat a = fhog(nnn, 4, 9, 0.2f, false);
std::cout << "a:cols:" << a.cols << "a:rows:" << a.rows << "\njust a test, exit\n";
exit(0);
}
KF::Instance()->Init();
#ifdef UDL
#ifdef UBC
Mat frame = cv::imread("/home/xyz/code1/xyz/img1/000001.jpg");
std::vector<Detection> dets;
std::vector<FEATURE> fts;
std::vector<cv::Rect> rcs;
srand((unsigned)time(NULL));
int width = frame.cols;
int height = frame.rows;
//for(int i = 0; i < 30; i++){
int x = rand()%width;
int y = rand()%height;
int w = 100;
int h = 100;
//std::cout << x << "," << y << "," << w << "," << h << "\n";
if(x+w > width){
w = width - x;
}
if(y+h > height){
h = height - y;
}
cv::Rect rc(x, y, w, h);
rcs.push_back(rc);
//}
ExtractFeature(frame, rcs, fts);
#endif
#endif
NearestNeighborDistanceMetric::Instance()->Init(0.2, 100);
return true;
}
NewAndDelete NT::UpdateDS(const cv::Mat &frame, const std::vector<cv::Rect> &rcs, int num, const std::vector<int> &oriPos){
int64_t tm1 = gtm();
std::vector<Detection> dets;
std::vector<FEATURE> fts;
if(rcs.size() > 0){
#ifdef UHOG
ExtractFeatureHog(frame, rcs, fts);
#else
ExtractFeature(frame, rcs, fts);
#endif
}
int64_t tm2 = gtm();
for (int i = 0; i < rcs.size(); i++){
DSBOX box;
cv::Rect rc = rcs[i];
box(0) = rc.x;
box(1) = rc.y;
box(2) = rc.width;
box(3) = rc.height;
Detection det(box, 1, fts[i]);
//printf("oriPos.size():%d\n", oriPos.size());
if(i < (int)oriPos.size()-1){
det.oriPos_ = oriPos[i];
}
dets.push_back(det);
}
NewAndDelete nad = tt_->update(dets);
int64_t tm3 = gtm();
std::string tail = "";
if(tm3-tm1 > 30000){
tail = "****";
}
std::cout << num << "----rcs.size():" << rcs.size() << "[tm1:" << tm1 << ",tm2:" << tm2 << "("<< (tm2 - tm1) << ")"<< ",tm3:"
<< tm3 << "(" << (tm3-tm1) << ")]" << tail.c_str() << "\n";
return nad;
}
struct RRS{
void Push(const cv::Rect &rc){
boost::mutex::scoped_lock lock(mutex_);
rcs_.push_back(rc);
}
void Get(std::vector<cv::Rect> &rcs){
rcs = rcs_;
}
private:
std::vector<cv::Rect> rcs_;
boost::mutex mutex_;
};
struct FFS{
public:
void Push(int id, const FDSSTTrackerP &ff){
boost::mutex::scoped_lock lock(mutex_);
ffs_.push_back(std::make_pair(id, ff));
}
void Get(std::vector<std::pair<int, FDSSTTrackerP> > &ffs){
ffs = ffs_;
}
private:
std::vector<std::pair<int, FDSSTTrackerP > > ffs_;
boost::mutex mutex_;
};
// for framebuffer
void NT::UpdateFDSST(const Mat &frame, std::vector<cv::Rect> &rcs){
std::map<int, FDSSTTrackerP>::iterator it;
std::vector<int> lostIds;
RRS rrs;
std::vector<FDSSTTrackerP> ffs;
for(it = fdssts_.begin(); it != fdssts_.end(); ++it){
FDSSTTrackerP fdsst = it->second;
ffs.push_back(fdsst);
}
#pragma omp parallel for
for(int i = 0; i < ffs.size(); i++){
cv::Rect rc = ffs[i]->update(frame);
rrs.Push(rc);
}
//
std::vector<cv::Rect> rrcs;
rrs.Get(rrcs);
for(int i = 0; i < rrcs.size(); i++){
cv::Rect rc = rrcs[i];
int ww = frame.cols;
int hh = frame.rows;
int min = 8;
if(rc.x<0 || rc.y<0 ||
(rc.x+rc.width)>ww ||
(rc.y+rc.height)>hh ||
rc.width<=min || rc.height<=min){
lostIds.push_back(it->first);
continue;
}
rcs.push_back(ToOriRect(rc));
}
// remove
for(int id:lostIds){
fdssts_.erase(id);
}
}
std::map<int, DSResult> NT::UpdateAndGet(const cv::Mat &frame,
const std::vector<cv::Rect> &rcsin,
int num,
std::vector<cv::Rect> &outRcs,
const std::vector<int> &oriPos){
std::vector<cv::Rect> rcs = rcsin;
//{
Mat ffMat;
cvtColor(frame, ffMat, cv::COLOR_RGB2GRAY);
resize(ffMat, ffMat, Size(ffMat.cols*scale_, ffMat.rows*scale_));
std::cout << "NT::UpdateAndGet1\n";
//}
if(!rcsin.empty()){
fdssts_.clear();
}
else{
UpdateFDSST(ffMat, rcs);
}
std::cout << "NT::UpdateAndGet1.5\n";
outRcs = rcs;
NewAndDelete nad = UpdateDS(frame, rcs, num, oriPos);
std::map<int, DSResult> map;
std::vector<KalmanTracker> &kalmanTrackers =
tt_->kalmanTrackers_;
std::cout << "NT::UpdateAndGet2\n";
std::vector<std::pair<int, cv::Rect> > idrcs;
for (const auto& track : kalmanTrackers){
int id = (int)track->track_id;
printf("trackid:%d, is_confirmed:%d, time_since_update:%d\n", id, track->is_confirmed(), track->time_since_update_);
//if (!track->is_confirmed() || track->time_since_update_ > 0) {
// continue;
//}
if(track->time_since_update_ > 0){
continue;
}
DSBOX box = track->to_tlwh();
cv::Rect rc;
rc.x = box(0);
rc.y = box(1);
rc.width = box(2);
rc.height = box(3);
int oriPos= track->oriPos_;
DSResult tr;
tr.rc_ = rc;
tr.oriPos_ = oriPos;
if(!rcsin.empty()){
idrcs.push_back(std::make_pair(id, rc));
printf("id:%d, rc:(%d, %d, %d, %d), oriPos:%d, rcsin.size():%d, rcs.size():%d\n",
id, rc.x, rc.y, rc.width, rc.height,
oriPos, rcsin.size(), rcs.size());
}
if (!track->is_confirmed() || track->time_since_update_ > 0) {
continue;
}
map.insert(std::make_pair(id, tr));
}
std::cout << "NT::UpdateAndGet3\n";
FFS ffs;
#pragma omp parallel for
for(int i = 0; i < idrcs.size(); i++){
std::pair<int, cv::Rect> pa = idrcs[i];
int id = pa.first;
cv::Rect rc = pa.second;
printf("id:%d, rc:(%d, %d, %d, %d)\n",
id, rc.x, rc.y, rc.width, rc.height);
FDSSTTrackerP fdsst(new FDSSTTracker());
fdsst->init(ToScaleRect(rc), ffMat);
ffs.Push(id, fdsst);
}
std::cout << "NT::UpdateAndGet4\n";
std::vector<std::pair<int, FDSSTTrackerP> > pps;
ffs.Get(pps);
for(int i = 0; i < pps.size(); i++){
std::pair<int, FDSSTTrackerP> pa = pps[i];
fdssts_.insert(pa);
}
return map;
}