-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathee568_flux_paths.html
453 lines (278 loc) · 9.48 KB
/
ee568_flux_paths.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
<<!DOCTYPE html>
<html>
<head>
<title>EE568-Selected Topics in Electrical Machines</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
@import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
@import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic);
body { font-family: 'Droid Serif'; }
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: normal;
}
.remark-code, .remark-inline-code { font-family: 'Ubuntu Mono'; }
</style>
</head>
<body>
<textarea id="source">
class: center, middle
# EE-568 Selected Topics in Electrical Machines
## Main Flux Paths
## Ozan Keysan
[keysan.me](http://keysan.me)
Office: C-113 <span class="meta">•</span> Tel: 210 7586
---
# Main Flux Paths & Machine Parameters
--
## Some definitions:
--
- ## Carter's Coefficient
- ## Effective Core length
---
# Carter's Coefficient
--
## Way to estimate the flux density by converting slotted rotor/stator to a perfect cylinder.
### Ref: Section 3.1.1 of the textbook (Pyrhonen)
---
# Carter's Coefficient
<img src="./images/flux_distribution.png" alt="Drawing" style="width: 600px;"/>
---
# Carter's Coefficient
--
- ### First assume the rotor is smooth to find \\(k\_{cs}\\):
### \\( \delta\_e = k\_{cs} \delta \\)
--
- ### Then assume the stator is smooth to find \\(k\_{cr}\\):
--
- ### Total Carter coefficient is the product of two
### \\( k\_{c} = k\_{cs} \times k\_{cr} \\):
### Effective airgap is slightly larger than the actual gap (\\(k_c \gtrapprox 1 \\) )
---
# Carter's Coefficient
## \\(k\_c = \dfrac{\tau\_u}{\tau\_u - K b\_1}\\)
## where:
## \\(K = \dfrac{b\_1 / \delta }{5 + b\_1 / \delta }\\)
---
## Example (3.1)
<img src="./images/ee564/carter_example.png" alt="Drawing" style="width: 800px;"/>
---
### Variations in flux density creates harmonics (and losses)
<img src="./images/ee564/flux_airgap.png" alt="Drawing" style="width: 800px;"/>
---
### These losses can be minimized by using magnetic wedge or special tooth shape
<img src="./images/ee564/magnetic_wedge.png" alt="Drawing" style="width: 800px;"/>
---
# Equivalent Core Length
<img src="./images/L_eq.png" alt="Drawing" style="width: 450px;"/>
### \\(l' \approx l + 2 \delta \\)
#### Section 3.2 of the textbook (Pyrhonen)
---
## Equivalent Core Length with Cooling
--
### Larger machines requires ducts for cooling
--
<img src="./images/L_eq_cooling.png" alt="Drawing" style="width: 750px;"/>
---
<img src="./images/L_eq_cooling.png" alt="Drawing" style="width: 750px;"/>
### Use the Carter's coefficient to calculate effective length
### \\(l' \approx l - n\_{v} b\_{ve} + 2 \delta \\)
### \\(b_{ve} \\) can be calculated Carter's coefficient again
### or just assume \\(b_{ve} \lessapprox b_v \\)
---
### Cooling ducts both at the stator and rotor
<img src="./images/ee564/rotor_stator_cooling.png" alt="Drawing" style="width: 750px;"/>
---
### Example
<img src="./images/ee564/ex_3_2.png" alt="Drawing" style="width: 750px;"/>
---
# Back Core Flux
---
# D-Q Axis
<img src="./images/dq_axis.png" alt="Drawing" style="width: 550px;"/>
---
# D-Q Axis
<img src="https://www.pantechsolutions.net/media/wysiwyg/article-images/synchronous-machine-and-the-main-principle-of-the-vector-control.jpg" alt="Drawing" style="width: 800px;"/>
---
# D-Q Axis
<img src="./images/ee564/dq_axis.png" alt="Drawing" style="width: 550px;"/>
---
# Back Core Flux
<img src="./images/ee564/back_core_flux.png" alt="Drawing" style="width: 500px;"/>
### \\(\hat{B}\_{back-core} = \dfrac{\hat{\Phi}\_{pole}}{2 A\_{back-core}} = \dfrac{\hat{\Phi}\_{pole}}{2 k\_{stacking} l' h\_{ys}}\\)
---
# Magnetizing Inductance
--
## What is inductance?
--
## Flux Linkage Per Current: (\\(L = \dfrac{\lambda}{I}\\))
---
# Magnetizing Inductance
### If B is sinusoidal
## \\(\hat{\Phi}\_{pole} = \int B dS\\)
--
\\(=\dfrac{2}{\pi}\hat{B}\tau\_{pole}l'\\)
--
### Flux Linkage
### \\( \lambda = N \Phi = k\_{w1} N\_s \hat{\Phi}\_{pole} \\)
--
\\(= k\_{w1} N\_s \dfrac{2}{\pi}\hat{B}\tau\_{pole}l' \\)
---
# Magnetizing Inductance
--
### \\(\hat{H}\_m \delta\_e = MMF = \dfrac{\hat{B}}{\mu_0} \delta\_e \\)
### \\(\delta\_e\\): Effective air-gap
--
### \\(MMF = \dfrac{4}{\pi} \dfrac{k\_{w1} N\_s}{2p} \sqrt{2} I\_{s,rms}\\)
--
### \\( \hat{B} = \dfrac{4}{\pi} \dfrac{k\_{w1} N\_s}{2p} \sqrt{2} I\_{s,rms} \dfrac{\mu_0}{\delta\_e}\\)
---
# Magnetizing Inductance
### \\(\lambda = \dfrac{2}{\pi} \dfrac{\mu\_0}{\delta\_e} \dfrac{4}{\pi} \dfrac{(k\_{w1} N\_s)²}{2p} \tau\_{p}l' \sqrt{2} I\_{s,rms} \\)
--
### \\(L = \dfrac{\lambda}{I}\\)
--
### \\(L\_{m (ph)} = \dfrac{2}{\pi} \mu\_0 \dfrac{1}{2p}\dfrac{4}{\pi} \dfrac{\tau\_p}{\delta\_{ef}} l' (k\_{ws}N\_s)^2\\)
---
# Magnetizing Inductance (Per-phase)
--
### \\(L\_{m (ph)} = \dfrac{2}{\pi} \mu\_0 \dfrac{1}{2p}\dfrac{4}{\pi} \dfrac{\tau\_p}{\delta\_{ef}} l' (k\_{ws}N\_s)^2\\)
### Writing pole pitch in terms of diameter
--
### \\(L\_{m (ph)} = \dfrac{2 \mu\_0 D}{\pi p^2 \delta\_{ef}} l' (k\_{ws}N\_s)^2 \\)
### Derivation in Pyrhonen Section 3.9
---
# Total Magnetizing Inductance
### \\(L\_m = \dfrac{3}{2} L\_{m (ph)} \\)
--
\\( = \dfrac{3}{2} \dfrac{2 \mu\_0 D}{\pi p^2 \delta\_{ef}} l' (k\_{ws}N\_s)^2 \\)
---
# Magnetizing Inductance
--
- ## Increases with number of turns
--
- ## Reduces with large airgap
--
- ## Reduces with the number of poles (power factor gets worse with higher number of poles)
---
# Magnetizing Inductance
--
- ## Reduces with increasing voltage:
--
Saturation
--
- ## Reduces with torque: Why?
---
# Flux Lines vs Torque
<img src="https://raw.githubusercontent.com/ozank/ozank.github.io/master/presentations/images/flux_vs_torque.png" alt="Drawing" style="width: 750px;"/>
---
# Magnetizing Inductance vs Torque
<img src="https://raw.githubusercontent.com/ozank/ozank.github.io/master/presentations/images/inductance_vs_torque.png" alt="Drawing" style="width: 750px;"/>
---
# Leakage Flux (Ch4)
--
## Flux that does not cross the airgap
--
## Flux crosses the airgap but does not link the winding
---
# Leakage Flux
## Flux that does not cross the airgap
--
- ### Pole Leakage Flux
--
- ### Slot Leakage Flux
--
- ### Tooth Tip Leakage Flux
--
- ### End Winding (Overhang) Leakage Flux
---
# Pole Leakage Flux
### In salient pole machines (i.e. synchronous machine)
<img src="./images/ee564/pole_leakage.png" alt="Drawing" style="width: 700px;"/>
---
# Pole Leakage Flux
### In PM machines (between adjacent magnets)
<img src="./images/ee564/pm_leakage_1.jpg" alt="Drawing" style="width: 700px;"/>
---
# Pole Leakage Flux
### In PM machines (between magnet and rotor core)
<img src="./images/ee564/pm_leakage_2.png" alt="Drawing" style="width: 600px;"/>
---
# Slot Leakage Flux & Tooth Tip Leakage Flux
<img src="./images/slot_leakage.png" alt="Drawing" style="width: 700px;"/>
---
# Slot Leakage Inductance
--
<img src="./images/ee564/slot_leakage_2.png" alt="Drawing" style="width: 500px;"/>
### H increases as you go higher in the slot, as there is more coils are enclosed in \\(\int H dl \\)
---
# Slot Leakage Inductance
--
<img src="./images/ee564/slot_leakage.png" alt="Drawing" style="width: 700px;"/>
---
# Slot Leakage Inductance
--
### for the bottom part (\\(L\_{u1}\\))
### \\(B(h) = \mu\_0 H (h) = \mu\_0 \dfrac{z\_Q I \dfrac{h}{h\_4}}{b\_4} \\)
--
### \\(L\_{u1} = \dfrac{l' b\_4}{\mu\_0 I^2} \int_0^{h\_4} B^2(h) dh\\)
---
# Slot Leakage Inductance
--
### repeat for the upper part (\\(L\_{u2}\\))
### \\(B(h) = \mu\_0 \dfrac{z\_Q I}{b\_1} \\) (Constant B)
---
# Slot Leakage Inductance
--
### Inductance for one slot:
### \\(W\_u = 1/2 L\_{u1} I^2 = 1/2 \mu_0 l' z\_Q^2 I^2 (\lambda_1 + \lambda_4)\\)
---
# Total Slot Leakage Inductance
--
<img src="./images/ee564/total_slot_leakage.png" alt="Drawing" style="width: 750px;"/>
---
# Total Slot Leakage Inductance
--
### \\(L\_u = \dfrac{Q}{am}\dfrac{1}{a} L\_{u1}\\)
--
### \\(L\_u = \mu\_0 l' \dfrac{Q}{m} (\dfrac{z\_Q}{a})^2 \lambda\_{u}\\)
--
### \\(N= \dfrac{Q}{2am} z\_Q\\)
--
### \\(L\_u = \mu\_0 l' \dfrac{4m}{Q} N^2 \lambda\_{u}\\)
---
# End Winding Leakage Flux
<img src="./images/end_winding_leakage.png" alt="Drawing" style="width: 600px;"/>
---
# End Winding Leakage Flux
<img src="./images/end_winding_leakage2.png" alt="Drawing" style="width: 600px;"/>
---
# Slot Shapes
<img src="./images/slot_leakage_shapes.png" alt="Drawing" style="width: 700px;"/>
---
# Tooth Tip Leakage Flux
--
<img src="./images/ee564/tooth_leakage.png" alt="Drawing" style="width: 650px;"/>
---
## You can download this presentation from: [keysan.me/ee564](http://keysan.me/ee564)
</textarea>
<script src="https://remarkjs.com/downloads/remark-latest.min.js" type="text/javascript"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS_HTML&delayStartupUntil=configured" type="text/javascript"></script>
<script type="text/javascript">
var slideshow = remark.create({countIncrementalSlides: false});
// Setup MathJax
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
MathJax.Hub.Queue(function() {
$(MathJax.Hub.getAllJax()).map(function(index, elem) {
return(elem.SourceElement());
}).parent().addClass('has-jax');
});
MathJax.Hub.Configured();
</script>
</body>
</html>