-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathee568_mech_slot_design.html
559 lines (362 loc) · 13.6 KB
/
ee568_mech_slot_design.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
<<!DOCTYPE html>
<html>
<head>
<title>EE568-Selected Topics in Electrical Machines</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
@import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
@import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic);
body { font-family: 'Droid Serif'; }
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: normal;
}
.remark-code, .remark-inline-code { font-family: 'Ubuntu Mono'; }
</style>
</head>
<body>
<textarea id="source">
class: center, middle
# EE-568 Selected Topics in Electrical Machines
## Airgap & Mechanical Constraints
## Ozan Keysan
[keysan.me](http://keysan.me)
Office: C-113 <span class="meta">•</span> Tel: 210 7586
---
# Suitable Airgap
--
### There is not a definite answer
--
### \\(\delta = 0.2 + 0.01 P^{0.4} \\)mm when p=1
### P: power
--
### \\(\delta = 0.18 + 0.006 P^{0.4} \\)mm when p > 1
--
### Smallest airgap is 0.2 mm
---
# Suitable Airgap
### For heavy duty motors the gap may be increased by 60 %.
--
### For converter driven motors airgap can be increased by 60 % to reduce rotor surface losses.
--
### For high speed machines increase airgap (eqn. 6.25 of the textbook)
--
### For very large diameter machines airgap is approximate to D/1000.
---
##Ex:
## What should be the suitable airgap if the motor in the previous example (30 kW) is a heavy-duty motor?
--
### \\( \delta= 1.6 \; 0.8 \; 0.006 (30k)^{0.4}=0.88 \approx 0.9mm \\)
---
# Mechanical Constraints
## Tip Speed
### What is the rotational speed of a machine with 0.5m diameter rotor, to reach the tip speed reach to the speed of sound (1 Mach)?
--
### Max allowable tip speed: 75m/s for high-strength non-magnetic alloy sleeves, and 100 m/s for carbon-fiber sleeves
Reading: Section 6.1 of textbook
---
# Mechanical Loadability
--
### Rotor material should withstand centrifugal forces (especially at high speeds).
--
## Centrifugal Stress:
## \\(\sigma\_{mech} = C' \rho r\_r^2 \Omega^2 \\)
### \\(\Omega\\): Mechanical speed in rad/s
### \\(\rho\\): Density of the material
---
## Centrifugal Stress:
## \\(\sigma\_{mech} = C' \rho r\_r^2 \Omega^2 \\)
--
#### \\(C'= 1\\) for a thin cylinder
--
#### \\(C'= (3+v)/8\\) for a smooth homogenous cylinder
--
#### \\(C'= (3+v)/4\\) for a cylinder with a small bore
--
### \\( v \\): Poisson's ratio
--
### [Poisson's ratio](https://www.youtube.com/watch?v=hBnzrBhnzVo), [deflection of a golf ball](https://www.youtube.com/watch?v=aMqM13EUSKw), [deflection of a face, 2:15](https://www.youtube.com/watch?v=On1CsbTwlDs)
--
### Poisson Ratios of metals: Aluminium=0.34, Steel=0.29, Copper=0.34
---
# Ex. 6.3:
### Calculate the maximum diameter for a smooth steel sylinder having a small bore. The speed is 15.000 rpm. Yield strength is 300 MPa. The density of the material is 7860 kg/m³.
---
# Other Mechanical Constraints
### Bending Modes
<img src="https://qph.fs.quoracdn.net/main-qimg-9c0fb36366b6b11967494f294b47c246" alt="Drawing" style="width:450px;"/>
---
# Dynamics of Mechanical Systems: Resonance
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/7/72/Resonant_frequency_amplitude.svg/524px-Resonant_frequency_amplitude.svg.png" alt="Drawing" style="width:300px;"/>
### [Transfer function and mathematical modelling](https://www.slideshare.net/vishalgohel12195/transfer-function-and-mathematical-modeling)
--
### [Tacoma Bridge](https://www.youtube.com/watch?v=lXyG68_caV4)
### [Forced vibration-1](https://www.youtube.com/watch?v=OaXSmPgl1os), [Resonant Freq.](https://www.youtube.com/watch?v=LV_UuzEznHs)
### [Torsional Resonance](https://www.youtube.com/watch?v=JLY-yQOpL20)
---
# Resonant Modes
### [Cantilever Vibration](https://www.youtube.com/watch?v=lKT3wBIUFhA)
### [Resonant Modes](https://www.youtube.com/watch?v=uWoiMMLIvco)
### [Modal Shapes](https://www.youtube.com/watch?v=kvG7OrjBirI)
### [Modal Shapes](https://www.youtube.com/watch?v=d3U_m-4XOtg)
---
# Critical Speeds
### The rotational speed should be below the critical speed (preferably with a safety factor)
--
### Usually the limiting factor for very high-speed machines:
--
<img src="./images/ee564/critical_speed.png" alt="Drawing" style="width: 800px;"/>
---
# Ex 6.5
### Calculate the max. length with a safety factor k=1.5 for a smooth solid rotor when the rotor diameter is 0.15 m and the rotor speed is 20.000 rpm.
---
# Review: Aspect Ratio
--
## \\(\chi = \dfrac{L'}{D}\\)
---
# Typical Aspect Ratios
--
## Asynchronous Machines:
## \\(\chi \approx \dfrac{\pi}{2p} \sqrt[3]{p}\\\)
--
## Synchronous Machines:
## \\(\chi \approx \dfrac{\pi}{4p} \sqrt{p}\\\)
--
---
# Define \\(D_i\\) and \\(L\\)
--
## Usually \\(0.5 < D_i/L < 2.5\\)
--
## Small diameter for high-speed or servo-type motors, why?
--
### Small inertia,
--
### Low tip speed!
--
### Bending Modes
---
---
# How to define Outer Diameter \\(D_o\\)?
--
<img src="./images/varying_number_of_poles.png" alt="Drawing" style="width: 800px;"/>
---
# How to define \\(D_o\\)?
--
<style type="text/css">
.tg {border-collapse:collapse;border-spacing:0;border-color:#bbb;margin:0px auto;}
.tg td{font-family:Arial, sans-serif;font-size:32px;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;border-color:#bbb;color:#594F4F;background-color:#E0FFEB;}
.tg th{font-family:Arial, sans-serif;font-size:32px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;border-color:#bbb;color:#493F3F;background-color:#9DE0AD;}
</style>
<table class="tg">
<tr>
<th class="tg-031e">N Poles</th>
<th class="tg-031e">2</th>
<th class="tg-031e">4</th>
<th class="tg-031e">6</th>
<th class="tg-031e">8</th>
<th class="tg-031e">10</th>
<th class="tg-szh5">12</th>
</tr>
<tr>
<td class="tg-031e">Do/Di</td>
<td class="tg-031e">2 <br></td>
<td class="tg-031e">1.88</td>
<td class="tg-031e">1.78</td>
<td class="tg-031e">1.66</td>
<td class="tg-031e">1.54</td>
<td class="tg-031e">1.43</td>
</tr>
</table>
Source: T.Miller - Electric Machine Design Course, Lecture-5, Slide4
---
## How to choose height of the slots?
--
### Slot Ratio (d): Ratio of the inner stator slot diameter to outer stator slot diameter
--
<img src="./images/ee564/slot_ratio.png" alt="Drawing" style="width: 800px;"/>
#### Reading Assignment: [The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors](https://link.springer.com/book/10.1007%2F978-3-319-32202-5)
---
## How to choose height of the slots?
### For the same outer diameter:
--
### As the slot ratio increases (i.e. higher slots):
--
- ### Electric loading increases (more copper can be fit)
--
- ### Diameter for the rotor gets smaller (less surface area & less torque)
---
## How to choose height of the slots?
### For the same outer diameter:
### As the slot ratio decreases (i.e. shorter slots):
--
- ### Electric loading decreases (less area for copper)
--
- ### Diameter (&rotor volume) gets larger
## There should be an optimum point!
---
## How to choose height of the slots?
### Assume parallel (rectangular) slots: copper area is proportional to slot height:
--
### \\( I \propto (1-d) \\)
--
### Electrical Loading is current per circumference
--
### \\(K_s \propto (1-d)/d \\)
--
### Torque can be expressed as:
### \\( T \propto \sigma . Vol_R\\)
--
\\(\propto [(1-d)/d].d² \propto (1-d).d \\)
---
## How to choose height of the slots?
### Assume parallel (rectangular) slots: copper area is proportional to slot height:
### Torque can be expressed as:
### \\( T \propto \sigma . Vol_R\\)
--
\\(\propto [(1-d)/d].d² \propto (1-d).d \\)
## Optimum point=?
--
## d=0.5
---
## How to choose height of the slots?
### But parallel teeth are more common: Slots gets wider with diameter
### \\( I \propto (1-d²) \\)
--
### Electrical Loading is current per circumference
--
### \\(K_s \propto (1-d²)/d \\)
### Torque can be expressed as:
### \\( T \propto \sigma . Vol_R \; \propto [(1-d²)/d].d² \propto (1-d²).d \\)
### Optimum point= \\(d= 1/\sqrt{3} = 0.58\\)
---
## How to choose height of the slots?
<img src="./images/ee564/d_optimum.png" alt="Drawing" style="width: 600px;"/>
---
# Stator Slot Types:
--
<img src="./images/ee564/slot_types.png" alt="Drawing" style="width: 800px;"/>
--
### Most Common Types:
- ### Open Slots: Constant width, easy repair and assembly
--
- ### Semi-closed Slots: Difficult to assembly but better magnetic characteristics
--
- ### Tapered Slots: Varying width (constant tooth width)
---
# Stator Slot Types:
### There are several other options. Depending on operating conditions, manufacturing constraints etc.
<img src="./images/ee564/slot_10.png" alt="Drawing" style="width: 240px;"/>
<img src="./images/ee564/slot_14.png" alt="Drawing" style="width: 240px;"/>
<img src="./images/ee564/slot_12.png" alt="Drawing" style="width: 240px;"/>
---
# Stator Slot Types:
### There are several other options. Depending on operating conditions, manufacturing constraints etc.
<img src="./images/ee564/slot_15.png" alt="Drawing" style="width: 240px;"/>
<img src="./images/ee564/slot_17.png" alt="Drawing" style="width: 240px;"/>
<img src="./images/ee564/slot_18.png" alt="Drawing" style="width: 240px;"/>
---
# Stator Slot Types:
### There are several other options. Depending on operating conditions, manufacturing constraints etc.
<img src="./images/ee564/slot_27.png" alt="Drawing" style="width: 240px;"/>
<img src="./images/ee564/slot_29.png" alt="Drawing" style="width: 240px;"/>
<img src="./images/ee564/slot_13.png" alt="Drawing" style="width: 200px;"/>
---
# Production of Electric Machines
### [TES Generators and Motors](https://www.youtube.com/watch?v=5Mu42TzHy8M)
### [Induction Motors: Overhauling a Motor](https://www.youtube.com/watch?v=yPvYd03cKJU)
### [Rewinding a Large Motor](https://www.youtube.com/watch?v=_65mXQ-GNVM)
### [Automatic Coil Insertion](https://www.youtube.com/watch?v=Kih3hyl8CUg)
### [E-propulsion System](https://www.youtube.com/watch?v=d5cEIGDg2Co)
### [BMW i-8](https://www.youtube.com/watch?v=oESBbRu32-E)
---
## Case Study: Ferrite vs. NdFeB
--
### Base Design
- ### Di=100mm
- ### L =100mm
- ### Slot Ratio=0.7
- ### Airgap = 1.5mm
- ### Magnet (NdFeB)= 4mm, Brem=1.1T
#### Reading Assignment: [The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors](https://link.springer.com/book/10.1007%2F978-3-319-32202-5)
---
## Case Study: Ferrite vs. NdFeB
### Base Design
- ### Current Density = 6.7 A/mm2
- ### Electrical Loading = 30kA/m
- ### Shear Stress = 18 kPa
- ### Output Torque = 28 Nm
- ### Magnet (NdFeB)= 4mm, Brem=1.1T
#### Reading Assignment: [The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors](https://link.springer.com/book/10.1007%2F978-3-319-32202-5)
---
### Base Design with NdFeB
<img src="./images/ee564/ndfeb_design.png" alt="Drawing" style="width: 400px;"/>
---
### Magnets replaced with Ferrite (Brem=0.4 T)
<img src="./images/ee564/ferrite_1.png" alt="Drawing" style="width: 400px;"/>
---
### Double Ferrite Thickness (4mm -> 8mm)
<img src="./images/ee564/ferrite_2.png" alt="Drawing" style="width: 400px;"/>
---
### Reduce teeth width until saturation
<img src="./images/ee564/ferrite_3.png" alt="Drawing" style="width: 400px;"/>
### Electric loading is 157% of the base design
---
### Reduce back-core (yoke) until saturation
### Total volume reduces to 83%.
<img src="./images/ee564/ferrite_4.png" alt="Drawing" style="width: 400px;"/>
---
### Comparison of Electrical and Magnetic Loadings
<img src="./images/ee564/ndfeb_ferrite_compare.png" alt="Drawing" style="width: 600px;"/>
---
# Selection of number of stator slots
--
## Advantages of Low number of slots:
- ### Reduced manufacturing cost
- ### Less space lost due to insulation and slot opening
--
## Disadvantages of low number of slots
- ### Increased leakage inductance
- ### Reduced breakdown torque
- ### Larger MMF harmonics
---
# Selection of number of stator slots
## Advantages of High number of slots:
- ### Reduced tooth pulsation
- ### Higher overload capacity
- ### Better Cooling
--
## Disadvantages of high number of slots
- ### Increased magnetizing current
- ### Poor Cooling
- ### Difficult manufacturing
---
# Number of Slots vs Winding Factor
<img src="./images/fundamental_winding_factors_for_different_slot_numbers.png" alt="Drawing" style="width: 850px;"/>
---
# Further Reading
# Selection of Phases - Poles
## T.Miller Electric Machine Design Course, Lecture 10-12
### [Ref](https://www.youtube.com/watch?v=uoJfVMynV44&list=PLR3pRvvCj_Y_jcg_Ia6ARvzefov05c7vf&index=11)
---
## You can download this presentation from: [keysan.me/ee568](http://keysan.me/ee568)
</textarea>
<script src="https://remarkjs.com/downloads/remark-latest.min.js" type="text/javascript"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS_HTML&delayStartupUntil=configured" type="text/javascript"></script>
<script type="text/javascript">
var slideshow = remark.create({countIncrementalSlides: false});
// Setup MathJax
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
MathJax.Hub.Queue(function() {
$(MathJax.Hub.getAllJax()).map(function(index, elem) {
return(elem.SourceElement());
}).parent().addClass('has-jax');
});
MathJax.Hub.Configured();
</script>
</body>
</html>