-
Notifications
You must be signed in to change notification settings - Fork 228
/
noworker.nude.js
456 lines (375 loc) · 11.9 KB
/
noworker.nude.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/*
* Nude.js - Nudity detection with Javascript and HTMLCanvas
*
* Author: Patrick Wied ( http://www.patrick-wied.at )
* Version: 0.1 (2010-11-21)
* License: MIT License
*/
(function(){
Array.prototype.remove = function(index) {
var rest = this.slice(index + 1);
this.length = index;
return this.push.apply(this, rest);
};
var nude = (function(){
// private var definition
var canvas = null,
ctx = null,
skinRegions = [],
resultFn = null,
img = null,
// private functions
initCanvas = function(){
canvas = document.createElement("canvas");
// the canvas should not be visible
canvas.style.display = "none";
var b = document.getElementsByTagName("body")[0];
b.appendChild(canvas);
ctx = canvas.getContext("2d");
},
loadImageById = function(id){
// get the image
var img = document.getElementById(id);
// apply the width and height to the canvas element
canvas.width = img.width;
canvas.height = img.height;
// reset the result function
resultFn = null;
// draw the image into the canvas element
ctx.drawImage(img, 0, 0);
},
loadImageByElement = function(element){
// apply width and height to the canvas element
// make sure you set width and height at the element
canvas.width = element.width;
canvas.height = element.height;
// reset result function
resultFn = null;
// draw the image/video element into the canvas
ctx.drawImage(element, 0, 0);
},
scanImage = function(){
// get the image data
var image = ctx.getImageData(0, 0, canvas.width, canvas.height),
imageData = image.data,
skinMap = [],
detectedRegions = [],
mergeRegions = [],
width = canvas.width,
lastFrom = -1,
lastTo = -1;
var addMerge = function(from, to){
lastFrom = from;
lastTo = to;
var len = mergeRegions.length,
fromIndex = -1,
toIndex = -1;
while(len--){
var region = mergeRegions[len],
rlen = region.length;
while(rlen--){
if(region[rlen] == from){
fromIndex = len;
}
if(region[rlen] == to){
toIndex = len;
}
}
}
if(fromIndex != -1 && toIndex != -1 && fromIndex == toIndex){
return;
}
if(fromIndex == -1 && toIndex == -1){
mergeRegions.push([from, to]);
return;
}
if(fromIndex != -1 && toIndex == -1){
mergeRegions[fromIndex].push(to);
return;
}
if(fromIndex == -1 && toIndex != -1){
mergeRegions[toIndex].push(from);
return;
}
if(fromIndex != -1 && toIndex != -1 && fromIndex != toIndex){
mergeRegions[fromIndex] = mergeRegions[fromIndex].concat(mergeRegions[toIndex]);
mergeRegions.remove(toIndex);
return;
}
};
// iterate the image from the top left to the bottom right
var length = imageData.length,
width = canvas.width;
for(var i = 0, u = 1; i < length; i+=4, u++){
var r = imageData[i],
g = imageData[i+1],
b = imageData[i+2],
x = (u>width)?((u%width)-1):u,
y = (u>width)?(Math.ceil(u/width)-1):1;
if(classifySkin(r, g, b)){ //
skinMap.push({"id": u, "skin": true, "region": 0, "x": x, "y": y, "checked": false});
var region = -1,
checkIndexes = [u-2, (u-width)-2, u-width-1, (u-width)],
checker = false;
for(var o = 0; o < 4; o++){
var index = checkIndexes[o];
if(skinMap[index] && skinMap[index].skin){
if(skinMap[index].region!=region && region!=-1 && lastFrom!=region && lastTo!=skinMap[index].region){
addMerge(region, skinMap[index].region);
}
region = skinMap[index].region;
checker = true;
}
}
if(!checker){
skinMap[u-1].region = detectedRegions.length;
detectedRegions.push([skinMap[u-1]]);
continue;
}else{
if(region > -1){
if(!detectedRegions[region]){
detectedRegions[region] = [];
}
skinMap[u-1].region = region;
detectedRegions[region].push(skinMap[u-1]);
}
}
}else{
skinMap.push({"id": u, "skin": false, "region": 0, "x": x, "y": y, "checked": false});
}
}
merge(detectedRegions, mergeRegions);
analyseRegions();
},
// function for merging detected regions
merge = function(detectedRegions, mergeRegions){
var length = mergeRegions.length,
detRegions = [];
// merging detected regions
while(length--){
var region = mergeRegions[length],
rlen = region.length;
if(!detRegions[length])
detRegions[length] = [];
while(rlen--){
var index = region[rlen];
detRegions[length] = detRegions[length].concat(detectedRegions[index]);
detectedRegions[index] = [];
}
}
// push the rest of the regions to the detRegions array
// (regions without merging)
var l = detectedRegions.length;
while(l--){
if(detectedRegions[l].length > 0){
detRegions.push(detectedRegions[l]);
}
}
// clean up
clearRegions(detRegions);
},
// clean up function
// only pushes regions which are bigger than a specific amount to the final result
clearRegions = function(detectedRegions){
var length = detectedRegions.length;
for(var i=0; i < length; i++){
if(detectedRegions[i].length > 30){
skinRegions.push(detectedRegions[i]);
}
}
},
analyseRegions = function(){
// sort the detected regions by size
var length = skinRegions.length,
totalPixels = canvas.width * canvas.height,
totalSkin = 0;
// if there are less than 3 regions
if(length < 3){
resultHandler(false);
return;
}
// sort the skinRegions with bubble sort algorithm
(function(){
var sorted = false;
while(!sorted){
sorted = true;
for(var i = 0; i < length-1; i++){
if(skinRegions[i].length < skinRegions[i+1].length){
sorted = false;
var temp = skinRegions[i];
skinRegions[i] = skinRegions[i+1];
skinRegions[i+1] = temp;
}
}
}
})();
// count total skin pixels
while(length--){
totalSkin += skinRegions[length].length;
}
// check if there are more than 15% skin pixel in the image
if((totalSkin/totalPixels)*100 < 15){
// if the percentage lower than 15, it's not nude!
//console.log("it's not nude :) - total skin percent is "+((totalSkin/totalPixels)*100)+"% ");
resultHandler(false);
return;
}
// check if the largest skin region is less than 35% of the total skin count
// AND if the second largest region is less than 30% of the total skin count
// AND if the third largest region is less than 30% of the total skin count
if((skinRegions[0].length/totalSkin)*100 < 35
&& (skinRegions[1].length/totalSkin)*100 < 30
&& (skinRegions[2].length/totalSkin)*100 < 30){
// the image is not nude.
//console.log("it's not nude :) - less than 35%,30%,30% skin in the biggest areas :" + ((skinRegions[0].length/totalSkin)*100) + "%, " + ((skinRegions[1].length/totalSkin)*100)+"%, "+((skinRegions[2].length/totalSkin)*100)+"%");
resultHandler(false);
return;
}
// check if the number of skin pixels in the largest region is less than 45% of the total skin count
if((skinRegions[0].length/totalSkin)*100 < 45){
// it's not nude
//console.log("it's not nude :) - the biggest region contains less than 45%: "+((skinRegions[0].length/totalSkin)*100)+"%");
resultHandler(false);
return;
}
// TODO:
// build the bounding polygon by the regions edge values:
// Identify the leftmost, the uppermost, the rightmost, and the lowermost skin pixels of the three largest skin regions.
// Use these points as the corner points of a bounding polygon.
// TODO:
// check if the total skin count is less than 30% of the total number of pixels
// AND the number of skin pixels within the bounding polygon is less than 55% of the size of the polygon
// if this condition is true, it's not nude.
// TODO: include bounding polygon functionality
// if there are more than 60 skin regions and the average intensity within the polygon is less than 0.25
// the image is not nude
if(skinRegions.length > 60){
//console.log("it's not nude :) - more than 60 skin regions");
resultHandler(false);
return;
}
// otherwise it is nude
resultHandler(true);
},
// the result handler will be executed when the analysing process is done
// the result contains true (it is nude) or false (it is not nude)
// if the user passed an result function to the scan function, the result function will be executed
// otherwise the default resulthandling executes
resultHandler = function(result){
if(resultFn){
resultFn(result);
}else{
if(result)
console.log("the picture contains nudity");
}
},
// colorizeRegions function is for testdevelopment only
// the detected skinRegions will be painted in random colors (one color per region)
colorizeRegions = function(){
var length = skinRegions.length;
for(var i = 0; i < length; i++){
var region = skinRegions[i],
regionLength = region.length,
randR = Math.ceil(Math.random()*255),
randG = Math.ceil(Math.random()*255),
rangB = Math.ceil(Math.random()*255);
for(var o = 0; o < regionLength; o++){
var pixel = ctx.getImageData(region[o].x, region[o].y, 1,1),
pdata = pixel.data;
pdata[0] = randR;
pdata[1] = randG;
pdata[2] = rangB;
pixel.data = pdata;
ctx.putImageData(pixel, region[o].x, region[o].y);
}
}
},
classifySkin = function(r, g, b){
// A Survey on Pixel-Based Skin Color Detection Techniques
var rgbClassifier = ((r>95) && (g>40 && g <100) && (b>20) && ((Math.max(r,g,b) - Math.min(r,g,b)) > 15) && (Math.abs(r-g)>15) && (r > g) && (r > b)),
nurgb = toNormalizedRgb(r, g, b),
nr = nurgb[0],
ng = nurgb[1],
nb = nurgb[2],
normRgbClassifier = (((nr/ng)>1.185) && (((r*b)/(Math.pow(r+g+b,2))) > 0.107) && (((r*g)/(Math.pow(r+g+b,2))) > 0.112)),
//hsv = toHsv(r, g, b),
//h = hsv[0]*100,
//s = hsv[1],
//hsvClassifier = (h < 50 && h > 0 && s > 0.23 && s < 0.68);
hsv = toHsvTest(r, g, b),
h = hsv[0],
s = hsv[1],
hsvClassifier = (h > 0 && h < 35 && s > 0.23 && s < 0.68);
/*
* ycc doesnt work
ycc = toYcc(r, g, b),
y = ycc[0],
cb = ycc[1],
cr = ycc[2],
yccClassifier = ((y > 80) && (cb > 77 && cb < 127) && (cr > 133 && cr < 173));
*/
return (rgbClassifier || normRgbClassifier || hsvClassifier); //
},
toYcc = function(r, g, b){
r/=255,g/=255,b/=255;
var y = 0.299*r + 0.587*g + 0.114*b,
cr = r - y,
cb = b - y;
return [y, cr, cb];
},
toHsv = function(r, g, b){
return [
// hue
Math.acos((0.5*((r-g)+(r-b)))/(Math.sqrt((Math.pow((r-g),2)+((r-b)*(g-b)))))),
// saturation
1-(3*((Math.min(r,g,b))/(r+g+b))),
// value
(1/3)*(r+g+b)
];
},
toHsvTest = function(r, g, b){
var h = 0,
mx = Math.max(r, g, b),
mn = Math.min(r, g, b),
dif = mx - mn;
if(mx == r){
h = (g - b)/dif;
}else if(mx == g){
h = 2+((g - r)/dif)
}else{
h = 4+((r - g)/dif);
}
h = h*60;
if(h < 0){
h = h+360;
}
return [h, 1-(3*((Math.min(r,g,b))/(r+g+b))),(1/3)*(r+g+b)] ;
},
toNormalizedRgb = function(r, g, b){
var sum = r+g+b;
return [(r/sum), (g/sum), (b/sum)];
};
// public interface
return {
init: function(){
initCanvas();
},
load: function(param){
if(typeof(param) == "string"){
loadImageById(param);
}else{
loadImageByElement(param);
}
},
scan: function(fn){
if(arguments.length>0 && typeof(arguments[0]) == "function"){
resultFn = fn;
}
scanImage();
}
};
})();
// register nude at window object
window.nude = nude;
nude.init();
})();