-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathextract_conv_features.py
125 lines (99 loc) · 4.26 KB
/
extract_conv_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import tensorflow as tf
from scipy import misc
from os import listdir
from os.path import isfile, join
import data_loader
import utils
import argparse
import numpy as np
import pickle
import h5py
import time
from Models import vgg16, resnet
import json
import shutil
import os
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--split', type=str, default='train',
help='train/val/test')
parser.add_argument('--batch_size', type=int, default=64,
help='Batch Size')
parser.add_argument('--feature_layer', type=str, default="block4",
help='CONV FEATURE LAYER, fc7, pool5 or block4')
parser.add_argument('--model', type=str, default="resnet",
help='CONV FEATURE LAYER')
args = parser.parse_args()
if args.split == "train":
with open('Data/annotations/captions_train2014.json') as f:
images = json.loads(f.read())['images']
else:
with open('Data/annotations/captions_val2014.json') as f:
images = json.loads(f.read())['images']
image_ids = {image['id'] : 1 for image in images}
image_id_list = [img_id for img_id in image_ids]
print "Total Images", len(image_id_list)
try:
shutil.rmtree('Data/conv_features_{}_{}'.format(args.split, args.model))
except:
pass
os.makedirs('Data/conv_features_{}_{}'.format(args.split, args.model))
if args.model=="vgg":
cnn_model = vgg16.create_vgg_model(448, only_conv = args.feature_layer != 'fc7')
else:
cnn_model = resnet.create_resnet_model(448)
image_id_file_name = "Data/conv_features_{}_{}/image_id_list_{}.h5".format(args.split, args.model, args.feature_layer)
h5f_image_id_list = h5py.File( image_id_file_name, 'w')
h5f_image_id_list.create_dataset('image_id_list', data=image_id_list)
h5f_image_id_list.close()
conv_file_name = "Data/conv_features_{}_{}/conv_features_{}.h5".format(args.split, args.model, args.feature_layer)
hdf5_conv_file = h5py.File( conv_file_name, 'w')
if args.feature_layer == "fc7":
conv_features = None
feature_shape = (len(image_id_list), 4096)
img_dim = 224
else:
if args.model=="vgg":
conv_features = None
feature_shape = (len(image_id_list), 14, 14, 512)
img_dim = 448
else:
conv_features = None
feature_shape = (len(image_id_list), 14*14*2048)
img_dim = 448
print "it's done!!!"
hdf5_data = hdf5_conv_file.create_dataset('conv_features', feature_shape,
dtype='f')
sess = cnn_model['session']
images = cnn_model['images_placeholder']
image_feature_layer = cnn_model[args.feature_layer]
idx = 0
while idx < len(image_id_list):
start = time.clock()
image_batch = np.ndarray( (args.batch_size, img_dim, img_dim, 3 ) )
count = 0
for i in range(0, args.batch_size):
if idx >= len(image_id_list):
break
image_file = join('Data', '%s2014/COCO_%s2014_%.12d.jpg'%(args.split, args.split, image_id_list[idx]) )
if args.model == 'resnet':
image_array = sess.run(cnn_model['processed_image'], feed_dict = {
cnn_model['pre_image'] : utils.load_image_array(image_file, img_dim = None)
})
else:
image_array = utils.load_image_array(image_file, img_dim = img_dim)
image_batch[i,:,:,:] = image_array
idx += 1
count += 1
feed_dict = { images : image_batch[0:count,:,:,:] }
conv_features_batch = sess.run(image_feature_layer, feed_dict = feed_dict)
conv_features_batch = np.reshape(conv_features_batch, ( conv_features_batch.shape[0], -1 ))
hdf5_data[(idx - count):idx] = conv_features_batch[0:count]
end = time.clock()
print "Time for batch of photos", end - start
print "Hours Remaining" , ((len(image_id_list) - idx) * 1.0)*(end - start)/60.0/60.0/args.batch_size
print "Images Processed", idx
hdf5_conv_file.close()
print "Done!"
if __name__ == '__main__':
main()