forked from Xilinx/brevitas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
59 lines (50 loc) · 2.63 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
import os
from setuptools import find_packages
from setuptools import setup
PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__))
REQUIREMENTS_DIR = os.path.join(PROJECT_ROOT, 'requirements')
def read(*path):
return open(os.path.join(*path), encoding='utf8').read()
def read_requirements(filename):
return read(REQUIREMENTS_DIR, filename).splitlines()
setup(
name="brevitas",
use_scm_version=True,
setup_requires=read_requirements('requirements-setup.txt'),
description="Quantization-aware training in PyTorch",
long_description=read(PROJECT_ROOT, 'README.md'),
long_description_content_type="text/markdown",
author="Alessandro Pappalardo",
author_email="[email protected]",
url="https://github.com/Xilinx/brevitas",
python_requires=">=3.8",
install_requires=read_requirements('requirements.txt'),
extras_require={
"notebook": read_requirements('requirements-notebook.txt'),
"dev": read_requirements('requirements-dev.txt'),
"docs": read_requirements('requirements-docs.txt'),
"export": read_requirements('requirements-export.txt'),
"hadamard": read_requirements('requirements-hadamard.txt'),
"test": read_requirements('requirements-test.txt'),
"tts": read_requirements('requirements-tts.txt'),
"stt": read_requirements('requirements-stt.txt'),
"llm": read_requirements('requirements-llm.txt'),
"vision": read_requirements('requirements-vision.txt'),
"finn_integration": read_requirements('requirements-finn-integration.txt'),
"ort_integration": read_requirements('requirements-ort-integration.txt')},
packages=find_packages('src'),
package_dir={'': 'src'},
zip_safe=False,
include_package_data=True,
entry_points={
'console_scripts': [
'brevitas_bnn_pynq_train = brevitas_examples.bnn_pynq.bnn_pynq_train:main',
'brevitas_qat_imagenet_val = brevitas_examples.imagenet_classification.qat.imagenet_val:main',
'brevitas_quartznet_val = brevitas_examples.speech_to_text.quartznet_val:main',
'brevitas_melgan_val = brevitas_examples.text_to_speech.melgan_val:main',
'brevitas_quartznet_preprocess = brevitas_examples.speech_to_text.get_librispeech_data:main',
'brevitas_melgan_preprocess = brevitas_examples.text_to_speech.preprocess_dataset:main',
'brevitas_ptq_imagenet_val = brevitas_examples.imagenet_classification.ptq.ptq_evaluate:main',
'brevitas_ptq_llm = brevitas_examples.llm.main:main'],})