diff --git a/R/apes.R b/R/apes.R index ac0d52d..ef1b020 100644 --- a/R/apes.R +++ b/R/apes.R @@ -266,7 +266,7 @@ apes <- function( #' srr_stats #' @srrstats {G2.0} Implements assertions to ensure valid scaling relationships between population size and sample size. -#' @srrstatsTODO {G2.0a} The main function explains that the inputs are unidimensional or the function gives an error. +#' @srrstats {G2.0a} The main function explains that the inputs are unidimensional or the function gives an error. #' @srrstats {G5.2a} Issues clear warnings for invalid population adjustments or mismatched sizes. #' @noRd NULL diff --git a/R/capybara-package.R b/R/capybara-package.R index 2667dac..0511567 100644 --- a/R/capybara-package.R +++ b/R/capybara-package.R @@ -15,7 +15,13 @@ #' in this implementation compare to base R. #' @srrstats {G1.6} To keep dependencies minimal, we compare against base R in #' the tests. An alternative would be to compare against alpaca. -#' @srrstatsNA {G5.6a} No randomness in parameter estimation; deterministic methods used. +#' @noRd +NULL + +#' NA_standards +#' @srrstatsNA {G5.6b} No randomness is needed for the in fixed effects +#' estimation. With the model slopes, recovering the fixed effects is a +#' deterministic process. #' @srrstatsNA {RE7.0a} No cross-validation implemented in this package. #' @noRd NULL diff --git a/R/feglm_control.R b/R/feglm_control.R index 762e665..3fd06df 100644 --- a/R/feglm_control.R +++ b/R/feglm_control.R @@ -1,7 +1,7 @@ #' srr_stats #' @srrstats {G1.0} Implements controls for efficient and numerically stable fitting of generalized linear models with fixed effects. #' @srrstats {G2.0} Validates numeric input parameters to ensure they meet constraints (e.g., positive tolerance levels). -#' @srrstatsTODO {G2.0a} The main function explains that the tolerance must be unidimensional or the function gives an error. +#' @srrstats {G2.0a} The main function explains that the tolerance must be unidimensional or the function gives an error. #' @srrstats {G2.1a} Ensures the proper data types for arguments (e.g., logical for `trace`, integer for `iter_max`). #' @srrstats {G2.3a} Uses argument validation to ensure appropriate ranges for critical parameters (e.g., `iter_max` and `limit` >= 1). #' @srrstats {G2.14a} Provides informative error messages when tolerance levels or iteration counts are invalid.