forked from pitmonticone/LeanInVienna2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathS01_Implication_and_the_Universal_Quantifier.lean
180 lines (123 loc) · 4.06 KB
/
S01_Implication_and_the_Universal_Quantifier.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import LeanInVienna.Common
import Mathlib.Data.Real.Basic
namespace C03S01
#check ∀ x : ℝ, 0 ≤ x → |x| = x
#check ∀ x y ε : ℝ, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε
theorem my_lemma : ∀ x y ε : ℝ, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε :=
sorry
section
variable (a b δ : ℝ)
variable (h₀ : 0 < δ) (h₁ : δ ≤ 1)
variable (ha : |a| < δ) (hb : |b| < δ)
#check my_lemma a b δ
#check my_lemma a b δ h₀ h₁
#check my_lemma a b δ h₀ h₁ ha hb
end
theorem my_lemma2 : ∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε :=
sorry
section
variable (a b δ : ℝ)
variable (h₀ : 0 < δ) (h₁ : δ ≤ 1)
variable (ha : |a| < δ) (hb : |b| < δ)
#check my_lemma2 h₀ h₁ ha hb
end
theorem my_lemma3 :
∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε := by
intro x y ε epos ele1 xlt ylt
sorry
theorem my_lemma4 :
∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε := by
intro x y ε epos ele1 xlt ylt
calc
|x * y| = |x| * |y| := sorry
_ ≤ |x| * ε := sorry
_ < 1 * ε := sorry
_ = ε := sorry
def FnUb (f : ℝ → ℝ) (a : ℝ) : Prop :=
∀ x, f x ≤ a
def FnLb (f : ℝ → ℝ) (a : ℝ) : Prop :=
∀ x, a ≤ f x
section
variable (f g : ℝ → ℝ) (a b : ℝ)
example (hfa : FnUb f a) (hgb : FnUb g b) : FnUb (fun x ↦ f x + g x) (a + b) := by
intro x
dsimp
apply add_le_add
apply hfa
apply hgb
example (hfa : FnLb f a) (hgb : FnLb g b) : FnLb (fun x ↦ f x + g x) (a + b) :=
sorry
example (nnf : FnLb f 0) (nng : FnLb g 0) : FnLb (fun x ↦ f x * g x) 0 :=
sorry
example (hfa : FnUb f a) (hgb : FnUb g b) (nng : FnLb g 0) (nna : 0 ≤ a) :
FnUb (fun x ↦ f x * g x) (a * b) :=
sorry
end
section
variable {α : Type*} {R : Type*} [OrderedCancelAddCommMonoid R]
#check add_le_add
def FnUb' (f : α → R) (a : R) : Prop :=
∀ x, f x ≤ a
theorem fnUb_add {f g : α → R} {a b : R} (hfa : FnUb' f a) (hgb : FnUb' g b) :
FnUb' (fun x ↦ f x + g x) (a + b) := fun x ↦ add_le_add (hfa x) (hgb x)
end
example (f : ℝ → ℝ) (h : Monotone f) : ∀ {a b}, a ≤ b → f a ≤ f b :=
@h
section
variable (f g : ℝ → ℝ)
example (mf : Monotone f) (mg : Monotone g) : Monotone fun x ↦ f x + g x := by
intro a b aleb
apply add_le_add
apply mf aleb
apply mg aleb
example (mf : Monotone f) (mg : Monotone g) : Monotone fun x ↦ f x + g x :=
fun _ _ aleb ↦ add_le_add (mf aleb) (mg aleb)
example {c : ℝ} (mf : Monotone f) (nnc : 0 ≤ c) : Monotone fun x ↦ c * f x :=
sorry
example (mf : Monotone f) (mg : Monotone g) : Monotone fun x ↦ f (g x) :=
sorry
def FnEven (f : ℝ → ℝ) : Prop :=
∀ x, f x = f (-x)
def FnOdd (f : ℝ → ℝ) : Prop :=
∀ x, f x = -f (-x)
example (ef : FnEven f) (eg : FnEven g) : FnEven fun x ↦ f x + g x := by
intro x
calc
(fun x ↦ f x + g x) x = f x + g x := rfl
_ = f (-x) + g (-x) := by rw [ef, eg]
example (of : FnOdd f) (og : FnOdd g) : FnEven fun x ↦ f x * g x := by
sorry
example (ef : FnEven f) (og : FnOdd g) : FnOdd fun x ↦ f x * g x := by
sorry
example (ef : FnEven f) (og : FnOdd g) : FnEven fun x ↦ f (g x) := by
sorry
end
section
variable {α : Type*} (r s t : Set α)
example : s ⊆ s := by
intro x xs
exact xs
theorem Subset.refl : s ⊆ s := fun x xs ↦ xs
theorem Subset.trans : r ⊆ s → s ⊆ t → r ⊆ t := by
sorry
end
section
variable {α : Type*} [PartialOrder α]
variable (s : Set α) (a b : α)
def SetUb (s : Set α) (a : α) :=
∀ x, x ∈ s → x ≤ a
example (h : SetUb s a) (h' : a ≤ b) : SetUb s b :=
sorry
end
section
open Function
example (c : ℝ) : Injective fun x ↦ x + c := by
intro x₁ x₂ h'
exact (add_left_inj c).mp h'
example {c : ℝ} (h : c ≠ 0) : Injective fun x ↦ c * x := by
sorry
variable {α : Type*} {β : Type*} {γ : Type*}
variable {g : β → γ} {f : α → β}
example (injg : Injective g) (injf : Injective f) : Injective fun x ↦ g (f x) := by
sorry
end