forked from pitmonticone/LeanInVienna2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
S04_Conjunction_and_Iff.lean
157 lines (119 loc) · 3.78 KB
/
S04_Conjunction_and_Iff.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import LeanInVienna.Common
import Mathlib.Data.Real.Basic
import Mathlib.Data.Nat.Prime.Basic
namespace C03S04
example {x y : ℝ} (h₀ : x ≤ y) (h₁ : ¬y ≤ x) : x ≤ y ∧ x ≠ y := by
constructor
· assumption
intro h
apply h₁
rw [h]
example {x y : ℝ} (h₀ : x ≤ y) (h₁ : ¬y ≤ x) : x ≤ y ∧ x ≠ y :=
⟨h₀, fun h ↦ h₁ (by rw [h])⟩
example {x y : ℝ} (h₀ : x ≤ y) (h₁ : ¬y ≤ x) : x ≤ y ∧ x ≠ y :=
have h : x ≠ y := by
contrapose! h₁
rw [h₁]
⟨h₀, h⟩
example {x y : ℝ} (h : x ≤ y ∧ x ≠ y) : ¬y ≤ x := by
rcases h with ⟨h₀, h₁⟩
contrapose! h₁
exact le_antisymm h₀ h₁
example {x y : ℝ} : x ≤ y ∧ x ≠ y → ¬y ≤ x := by
rintro ⟨h₀, h₁⟩ h'
exact h₁ (le_antisymm h₀ h')
example {x y : ℝ} : x ≤ y ∧ x ≠ y → ¬y ≤ x :=
fun ⟨h₀, h₁⟩ h' ↦ h₁ (le_antisymm h₀ h')
example {x y : ℝ} (h : x ≤ y ∧ x ≠ y) : ¬y ≤ x := by
have ⟨h₀, h₁⟩ := h
contrapose! h₁
exact le_antisymm h₀ h₁
example {x y : ℝ} (h : x ≤ y ∧ x ≠ y) : ¬y ≤ x := by
cases h
case intro h₀ h₁ =>
contrapose! h₁
exact le_antisymm h₀ h₁
example {x y : ℝ} (h : x ≤ y ∧ x ≠ y) : ¬y ≤ x := by
cases h
next h₀ h₁ =>
contrapose! h₁
exact le_antisymm h₀ h₁
example {x y : ℝ} (h : x ≤ y ∧ x ≠ y) : ¬y ≤ x := by
match h with
| ⟨h₀, h₁⟩ =>
contrapose! h₁
exact le_antisymm h₀ h₁
example {x y : ℝ} (h : x ≤ y ∧ x ≠ y) : ¬y ≤ x := by
intro h'
apply h.right
exact le_antisymm h.left h'
example {x y : ℝ} (h : x ≤ y ∧ x ≠ y) : ¬y ≤ x :=
fun h' ↦ h.right (le_antisymm h.left h')
example {m n : ℕ} (h : m ∣ n ∧ m ≠ n) : m ∣ n ∧ ¬n ∣ m :=
sorry
example : ∃ x : ℝ, 2 < x ∧ x < 4 :=
⟨5 / 2, by norm_num, by norm_num⟩
example (x y : ℝ) : (∃ z : ℝ, x < z ∧ z < y) → x < y := by
rintro ⟨z, xltz, zlty⟩
exact lt_trans xltz zlty
example (x y : ℝ) : (∃ z : ℝ, x < z ∧ z < y) → x < y :=
fun ⟨_, xltz, zlty⟩ ↦ lt_trans xltz zlty
example : ∃ x : ℝ, 2 < x ∧ x < 4 := by
use 5 / 2
constructor <;> norm_num
example : ∃ m n : ℕ, 4 < m ∧ m < n ∧ n < 10 ∧ Nat.Prime m ∧ Nat.Prime n := by
use 5
use 7
norm_num
example {x y : ℝ} : x ≤ y ∧ x ≠ y → x ≤ y ∧ ¬y ≤ x := by
rintro ⟨h₀, h₁⟩
use h₀
exact fun h' ↦ h₁ (le_antisymm h₀ h')
example {x y : ℝ} (h : x ≤ y) : ¬y ≤ x ↔ x ≠ y := by
constructor
· contrapose!
rintro rfl
rfl
contrapose!
exact le_antisymm h
example {x y : ℝ} (h : x ≤ y) : ¬y ≤ x ↔ x ≠ y :=
⟨fun h₀ h₁ ↦ h₀ (by rw [h₁]), fun h₀ h₁ ↦ h₀ (le_antisymm h h₁)⟩
example {x y : ℝ} : x ≤ y ∧ ¬y ≤ x ↔ x ≤ y ∧ x ≠ y :=
sorry
theorem aux {x y : ℝ} (h : x ^ 2 + y ^ 2 = 0) : x = 0 :=
have h' : x ^ 2 = 0 := by sorry
pow_eq_zero h'
example (x y : ℝ) : x ^ 2 + y ^ 2 = 0 ↔ x = 0 ∧ y = 0 :=
sorry
section
example (x : ℝ) : |x + 3| < 5 → -8 < x ∧ x < 2 := by
rw [abs_lt]
intro h
constructor <;> linarith
example : 3 ∣ Nat.gcd 6 15 := by
rw [Nat.dvd_gcd_iff]
constructor <;> norm_num
end
theorem not_monotone_iff {f : ℝ → ℝ} : ¬Monotone f ↔ ∃ x y, x ≤ y ∧ f x > f y := by
rw [Monotone]
push_neg
rfl
example : ¬Monotone fun x : ℝ ↦ -x := by
sorry
section
variable {α : Type*} [PartialOrder α]
variable (a b : α)
example : a < b ↔ a ≤ b ∧ a ≠ b := by
rw [lt_iff_le_not_le]
sorry
end
section
variable {α : Type*} [Preorder α]
variable (a b c : α)
example : ¬a < a := by
rw [lt_iff_le_not_le]
sorry
example : a < b → b < c → a < c := by
simp only [lt_iff_le_not_le]
sorry
end