-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
413 lines (344 loc) · 17.6 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#########################################################################
##
## Data loader source code for TuSimple dataset
##
#########################################################################
import os
import math
import numpy as np
import cv2
import json
import random
from copy import deepcopy
from parameters import Parameters
#########################################################################
## some iamge transform utils
#########################################################################
def Translate_Points(point,translation):
point = point + translation
return point
def Rotate_Points(origin, point, angle):
ox, oy = origin
px, py = point
qx = ox + math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy)
qy = oy + math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy)
return qx, qy
#########################################################################
## Data loader class
#########################################################################
class Generator(object):
################################################################################
## initialize (load data set from url)
################################################################################
def __init__(self):
self.p = Parameters()
# load training set from datasets.
self.train_data = []
with open(self.p.train_root_url+'/data/train_converted.json') as f:
while True:
line = f.readline()
if not line:
break
jsonString = json.loads(line)
self.train_data.append(jsonString)
random.shuffle(self.train_data)
self.size_train = len(self.train_data)
# load test set
self.test_data = []
#with open(self.p.test_root_url+"test_label.json") as f:
with open(self.p.test_root_url+'/data/test_converted.json') as f:
while True:
line = f.readline()
if not line:
break
jsonString = json.loads(line)
self.test_data.append(jsonString)
self.size_test = len(self.test_data)
print("total train_datatset:",self.size_train)
print("total test_datatset:",self.size_test)
#################################################################################################################
## Generate data as much as batchsize and augment data (filp, translation, rotation, gaussian noise, scaling)
#################################################################################################################
def Generate(self, sampling_list = None):
cuts = [(b, min(b + self.p.batch_size, self.size_train)) for b in range(0, self.size_train, self.p.batch_size)]
for start, end in cuts:
# resize original image to 512*256
self.inputs, self.target_lanes, self.target_h, self.test_image, self.data_list = self.Resize_data(start, end, sampling_list)
self.actual_batchsize = self.inputs.shape[0]
self.Flip()
self.Translation()
self.Rotate()
self.Gaussian()
self.Change_intensity()
self.Shadow()
yield self.inputs/255.0, self.target_lanes, self.target_h, self.test_image/255.0, self.data_list # generate normalized image
#################################################################################################################
## Generate test data
#################################################################################################################
def Generate_Test(self):
cuts = [(b, min(b + self.p.batch_size, self.size_test)) for b in range(0, self.size_test, self.p.batch_size)]
for start, end in cuts:
test_image, path, ratio_w, ratio_h, target_h, gt = self.Resize_data_test(start, end)
yield test_image/255.0, target_h, ratio_w, ratio_h, path, gt
#################################################################################################################
## resize original image to 512*256 and matching correspond points
#################################################################################################################
def Resize_data_test(self, start, end):
inputs = []
path = []
target_h = []
gt = []
for i in range(start, end):
data = self.test_data[i]
temp_image = cv2.imread(self.p.test_root_url+data['raw_file'])
##========================================
# crop
crop_image, crop_start_h, crop_end_h, ratio_w, ratio_h = self.crop_img(temp_image)
temp_image = cv2.resize(crop_image, (self.p.x_size,self.p.y_size))
inputs.append( np.rollaxis(temp_image, axis=2, start=0) )
path.append(i)
new_lanes= []
for idx, j in enumerate(data['lanes']):
new_j, new_h = self.change_label(j, data['h_samples'], crop_start_h, crop_end_h)
new_lanes.append(new_j)
gt.append(np.array(new_lanes) )
target_h.append(np.array(new_h))
##========================================
# gt.append(np.array(data['lanes']) )
# target_h.append(np.array(data['h_samples']) )
return np.array(inputs), path, ratio_w, ratio_h, target_h, gt
def Resize_data(self, start, end, sampling_list):
inputs = []
target_lanes = []
target_h = []
data_list = []
# choose data from each number of lanes
for i in range(start, end):
choose = random.random()
if sampling_list == None:
data = random.sample(self.train_data, 1)[0]
data_list.append(data)
elif len(sampling_list) < 10:
data = random.sample(self.train_data, 1)[0]
data_list.append(data)
else:
choose = random.random()
if choose > 0.2:#0.25:
data = random.sample(self.train_data, 1)[0]
data_list.append(data)
else:
data = random.sample(sampling_list, 1)[0]
data_list.append(data)
train_file = self.p.train_root_url + data['raw_file']
if os.path.exists(train_file):
temp_image = cv2.imdecode(np.fromfile(train_file,dtype=np.uint8),cv2.IMREAD_COLOR)# grayscale if img is gray.
crop_image, crop_start_h, crop_end_h, ratio_w, ratio_h = self.crop_img(temp_image)
temp_image = cv2.resize(crop_image, (self.p.x_size,self.p.y_size))
inputs.append( np.rollaxis(temp_image, axis=2, start=0) )
temp_lanes = []
temp_h = []
for idx, j in enumerate(data['lanes']):
j, h = self.change_label(j, data['h_samples'], crop_start_h, crop_end_h)
# visualize
crop_image = self.draw_gt(crop_image, j, h, idx)
l = np.array(j)
h = np.array(data['h_samples'])
l, h = self.make_dense_x(l, h)
temp_h.append( h*ratio_h )
temp_lanes.append( l*ratio_w )
target_lanes.append(np.array(temp_lanes))
target_h.append(np.array(temp_h))
cv2.imwrite('vis_input.png',crop_image)
#test set image
test_index = random.randrange(0, self.size_test-1)
# test_image = cv2.imread(self.p.test_root_url+self.test_data[test_index]['raw_file'])
test_image = cv2.imdecode(np.fromfile(self.p.test_root_url+self.test_data[test_index]["raw_file"], dtype=np.uint8), cv2.IMREAD_COLOR)
# crop
test_image, _, _, _, _ = self.crop_img(test_image)
test_image = cv2.resize(test_image, (self.p.x_size,self.p.y_size))
return np.array(inputs), target_lanes, target_h, np.rollaxis(test_image, axis=2, start=0), data_list
def crop_img(self, temp_image):
crop_start_h = temp_image.shape[0]//4
crop_end_h = temp_image.shape[0]
crop_image = temp_image[crop_start_h:crop_end_h,:,:]
ratio_w = self.p.x_size*1.0/crop_image.shape[1]
ratio_h = self.p.y_size*1.0/crop_image.shape[0]
return crop_image, crop_start_h, crop_end_h, ratio_w, ratio_h
def change_label(self, x_list, h_samples, top_y, bottom_y):
new_x_list = []
new_h = []
for pt in zip(x_list, h_samples):
if pt[1] >= top_y and pt[1] <= bottom_y:
new_x_list.append(pt[0])
new_h.append(pt[1] - top_y)
return new_x_list, new_h
def draw_gt(self, image, x_list, y_list, idx):
for pts in zip(x_list, y_list):
if pts[0] >=0:
image = cv2.circle(image, (int(pts[0]), int(pts[1])), 3, self.p.color[idx], -1) # 5
return image
def make_dense_x(self, l, h):
out_x = []
out_y = []
p_x = -1
p_y = -1
for x, y in zip(l, h):
if x > 0:
if p_x < 0:
p_x = x
p_y = y
else:
out_x.append(x)
out_y.append(y)
for dense_x in range(min(p_x, x), max(p_x, x), 10):
out_x.append(dense_x)
if p_x<x:
out_y.append( p_y + abs(p_x - dense_x) * abs(p_y-y)/float(abs(p_x - x)) )
else:
out_y.append( p_y + abs(p_x - dense_x) * abs(p_y-y)/float(abs(p_x - x)) )
p_x = x
p_y = y
return np.array(out_x), np.array(out_y)
#################################################################################################################
## Generate random unique indices according to ratio
#################################################################################################################
def Random_indices(self, ratio):
size = int(self.actual_batchsize * ratio)
return np.random.choice(self.actual_batchsize, size, replace=False)
#################################################################################################################
## Add Gaussian noise
#################################################################################################################
def Gaussian(self):
indices = self.Random_indices(self.p.noise_ratio)
img = np.zeros((self.p.y_size,self.p.x_size,3), np.uint8)
m = (0,0,0)
s = (20,20,20)
for i in indices:
test_image = deepcopy(self.inputs[i])
test_image = np.rollaxis(test_image, axis=2, start=0)
test_image = np.rollaxis(test_image, axis=2, start=0)
cv2.randn(img,m,s)
test_image = test_image + img
test_image = np.rollaxis(test_image, axis=2, start=0)
self.inputs[i] = test_image
#################################################################################################################
## Change intensity
#################################################################################################################
def Change_intensity(self):
indices = self.Random_indices(self.p.intensity_ratio)
for i in indices:
test_image = deepcopy(self.inputs[i])
test_image = np.rollaxis(test_image, axis=2, start=0)
test_image = np.rollaxis(test_image, axis=2, start=0)
hsv = cv2.cvtColor(test_image, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
value = int(random.uniform(-60.0, 60.0))
if value > 0:
lim = 255 - value
v[v > lim] = 255
v[v <= lim] += value
else:
lim = -1*value
v[v < lim] = 0
v[v >= lim] -= lim
final_hsv = cv2.merge((h, s, v))
test_image = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR)
test_image = np.rollaxis(test_image, axis=2, start=0)
self.inputs[i] = test_image
#################################################################################################################
## Generate random shadow in random region
#################################################################################################################
def Shadow(self, min_alpha=0.5, max_alpha = 0.75):
indices = self.Random_indices(self.p.shadow_ratio)
for i in indices:
test_image = deepcopy(self.inputs[i])
test_image = np.rollaxis(test_image, axis=2, start=0)
test_image = np.rollaxis(test_image, axis=2, start=0)
top_x, bottom_x = np.random.randint(0, 512, 2)
coin = 0
rows, cols, _ = test_image.shape
shadow_img = test_image.copy()
if coin == 0:
rand = np.random.randint(2)
vertices = np.array([[(50, 65), (45, 0), (145, 0), (150, 65)]], dtype=np.int32)
if rand == 0:
vertices = np.array([[top_x, 0], [0, 0], [0, rows], [bottom_x, rows]], dtype=np.int32)
elif rand == 1:
vertices = np.array([[top_x, 0], [cols, 0], [cols, rows], [bottom_x, rows]], dtype=np.int32)
mask = test_image.copy()
channel_count = test_image.shape[2] # i.e. 3 or 4 depending on your image
ignore_mask_color = (0,) * channel_count
cv2.fillPoly(mask, [vertices], ignore_mask_color)
rand_alpha = np.random.uniform(min_alpha, max_alpha)
cv2.addWeighted(mask, rand_alpha, test_image, 1 - rand_alpha, 0., shadow_img)
shadow_img = np.rollaxis(shadow_img, axis=2, start=0)
self.inputs[i] = shadow_img
#################################################################################################################
## Flip
#################################################################################################################
def Flip(self):
indices = self.Random_indices(self.p.flip_ratio)
for i in indices:
temp_image = deepcopy(self.inputs[i])
temp_image = np.rollaxis(temp_image, axis=2, start=0)
temp_image = np.rollaxis(temp_image, axis=2, start=0)
temp_image = cv2.flip(temp_image, 1)
temp_image = np.rollaxis(temp_image, axis=2, start=0)
self.inputs[i] = temp_image
x = self.target_lanes[i]
for j in range(len(x)):
x[j][x[j]>0] = self.p.x_size - x[j][x[j]>0]
x[j][x[j]<0] = -2
x[j][x[j]>=self.p.x_size] = -2
self.target_lanes[i] = x
#################################################################################################################
## Translation
#################################################################################################################
def Translation(self):
indices = self.Random_indices(self.p.translation_ratio)
for i in indices:
temp_image = deepcopy(self.inputs[i])
temp_image = np.rollaxis(temp_image, axis=2, start=0)
temp_image = np.rollaxis(temp_image, axis=2, start=0)
tx = np.random.randint(-50, 50)
ty = np.random.randint(-30, 30)
temp_image = cv2.warpAffine(temp_image, np.float32([[1,0,tx],[0,1,ty]]), (self.p.x_size, self.p.y_size))
temp_image = np.rollaxis(temp_image, axis=2, start=0)
self.inputs[i] = temp_image
x = self.target_lanes[i]
for j in range(len(x)):
x[j][x[j]>0] = x[j][x[j]>0] + tx
x[j][x[j]<0] = -2
x[j][x[j]>=self.p.x_size] = -2
y = self.target_h[i]
for j in range(len(y)):
y[j][y[j]>0] = y[j][y[j]>0] + ty
x[j][y[j]<0] = -2
x[j][y[j]>=self.p.y_size] = -2
self.target_lanes[i] = x
self.target_h[i] = y
#################################################################################################################
## Rotate
#################################################################################################################
def Rotate(self):
indices = self.Random_indices(self.p.rotate_ratio)
for i in indices:
temp_image = deepcopy(self.inputs[i])
temp_image = np.rollaxis(temp_image, axis=2, start=0)
temp_image = np.rollaxis(temp_image, axis=2, start=0)
angle = np.random.randint(-10, 10)
M = cv2.getRotationMatrix2D((self.p.x_size//2,self.p.y_size//2),angle,1)
temp_image = cv2.warpAffine(temp_image, M, (self.p.x_size, self.p.y_size))
temp_image = np.rollaxis(temp_image, axis=2, start=0)
self.inputs[i] = temp_image
x = self.target_lanes[i]
y = self.target_h[i]
for j in range(len(x)):
index_mask = deepcopy(x[j]>0)
x[j][index_mask], y[j][index_mask] = Rotate_Points((self.p.x_size//2,self.p.y_size//2),(x[j][index_mask], y[j][index_mask]),(-angle * 2 * np.pi)/360)
x[j][x[j]<0] = -2
x[j][x[j]>=self.p.x_size] = -2
x[j][y[j]<0] = -2
x[j][y[j]>=self.p.y_size] = -2
self.target_lanes[i] = x
self.target_h[i] = y