@@ -8156,7 +8156,6 @@ def asof(self, where, subset=None):
81568156    # ---------------------------------------------------------------------- 
81578157    # Action Methods 
81588158
8159-     @doc (klass = _shared_doc_kwargs ["klass" ]) 
81608159    def  isna (self ) ->  Self :
81618160        """ 
81628161        Detect missing values. 
@@ -8169,15 +8168,18 @@ def isna(self) -> Self:
81698168
81708169        Returns 
81718170        ------- 
8172-         {klass}  
8173-             Mask of bool values for each element in {klass} that  
8174-             indicates whether an element is an NA value. 
8171+         Series/DataFrame  
8172+             Mask of bool values for each element in Series/DataFrame  
8173+             that  indicates whether an element is an NA value. 
81758174
81768175        See Also 
81778176        -------- 
8178-         {klass}.isnull : Alias of isna. 
8179-         {klass}.notna : Boolean inverse of isna. 
8180-         {klass}.dropna : Omit axes labels with missing values. 
8177+         Series.isnull : Alias of isna. 
8178+         DataFrame.isnull : Alias of isna. 
8179+         Series.notna : Boolean inverse of isna. 
8180+         DataFrame.notna : Boolean inverse of isna. 
8181+         Series.dropna : Omit axes labels with missing values. 
8182+         DataFrame.dropna : Omit axes labels with missing values. 
81818183        isna : Top-level isna. 
81828184
81838185        Examples 
@@ -8225,11 +8227,77 @@ def isna(self) -> Self:
82258227        """ 
82268228        return  isna (self ).__finalize__ (self , method = "isna" )
82278229
8228-     @doc (isna , klass = _shared_doc_kwargs ["klass" ]) 
82298230    def  isnull (self ) ->  Self :
8231+         """ 
8232+         Detect missing values. 
8233+ 
8234+         Return a boolean same-sized object indicating if the values are NA. 
8235+         NA values, such as None or :attr:`numpy.NaN`, gets mapped to True 
8236+         values. 
8237+         Everything else gets mapped to False values. Characters such as empty 
8238+         strings ``''`` or :attr:`numpy.inf` are not considered NA values. 
8239+ 
8240+         Returns 
8241+         ------- 
8242+         Series/DataFrame 
8243+             Mask of bool values for each element in Series/DataFrame 
8244+             that indicates whether an element is an NA value. 
8245+ 
8246+         See Also 
8247+         -------- 
8248+         Series.isna : Alias of isnull. 
8249+         DataFrame.isna : Alias of isnull. 
8250+         Series.notna : Boolean inverse of isnull. 
8251+         DataFrame.notna : Boolean inverse of isnull. 
8252+         Series.dropna : Omit axes labels with missing values. 
8253+         DataFrame.dropna : Omit axes labels with missing values. 
8254+         isna : Top-level isna. 
8255+ 
8256+         Examples 
8257+         -------- 
8258+         Show which entries in a DataFrame are NA. 
8259+ 
8260+         >>> df = pd.DataFrame( 
8261+         ...     dict( 
8262+         ...         age=[5, 6, np.nan], 
8263+         ...         born=[ 
8264+         ...             pd.NaT, 
8265+         ...             pd.Timestamp("1939-05-27"), 
8266+         ...             pd.Timestamp("1940-04-25"), 
8267+         ...         ], 
8268+         ...         name=["Alfred", "Batman", ""], 
8269+         ...         toy=[None, "Batmobile", "Joker"], 
8270+         ...     ) 
8271+         ... ) 
8272+         >>> df 
8273+            age       born    name        toy 
8274+         0  5.0        NaT  Alfred        NaN 
8275+         1  6.0 1939-05-27  Batman  Batmobile 
8276+         2  NaN 1940-04-25              Joker 
8277+ 
8278+         >>> df.isna() 
8279+              age   born   name    toy 
8280+         0  False   True  False   True 
8281+         1  False  False  False  False 
8282+         2   True  False  False  False 
8283+ 
8284+         Show which entries in a Series are NA. 
8285+ 
8286+         >>> ser = pd.Series([5, 6, np.nan]) 
8287+         >>> ser 
8288+         0    5.0 
8289+         1    6.0 
8290+         2    NaN 
8291+         dtype: float64 
8292+ 
8293+         >>> ser.isna() 
8294+         0    False 
8295+         1    False 
8296+         2     True 
8297+         dtype: bool 
8298+         """ 
82308299        return  isna (self ).__finalize__ (self , method = "isnull" )
82318300
8232-     @doc (klass = _shared_doc_kwargs ["klass" ]) 
82338301    def  notna (self ) ->  Self :
82348302        """ 
82358303        Detect existing (non-missing) values. 
@@ -8242,15 +8310,18 @@ def notna(self) -> Self:
82428310
82438311        Returns 
82448312        ------- 
8245-         {klass}  
8246-             Mask of bool values for each element in {klass} that  
8247-             indicates whether an element is not an NA value. 
8313+         Series/DataFrame  
8314+             Mask of bool values for each element in Series/DataFrame  
8315+             that  indicates whether an element is not an NA value. 
82488316
82498317        See Also 
82508318        -------- 
8251-         {klass}.notnull : Alias of notna. 
8252-         {klass}.isna : Boolean inverse of notna. 
8253-         {klass}.dropna : Omit axes labels with missing values. 
8319+         Series.notnull : Alias of notna. 
8320+         DataFrame.notnull : Alias of notna. 
8321+         Series.isna : Boolean inverse of notna. 
8322+         DataFrame.isna : Boolean inverse of notna. 
8323+         Series.dropna : Omit axes labels with missing values. 
8324+         DataFrame.dropna : Omit axes labels with missing values. 
82548325        notna : Top-level notna. 
82558326
82568327        Examples 
0 commit comments