-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_net.py
137 lines (105 loc) · 4.14 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from lib.config import cfg, args
from lib.networks import make_network
from lib.train import make_trainer, make_optimizer, make_lr_scheduler, \
make_recorder, set_lr_scheduler
from lib.datasets import make_data_loader
from lib.utils.net_utils import load_model, save_model, load_network
# from lib.evaluators import make_evaluator
import torch.multiprocessing
import torch
import torch.distributed as dist
import os
import numpy as np
import random
import sys
sys.path.append('./pytorch3d')
def fix_random_seeds(seed=31):
"""
Fix random seeds.
"""
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
### original
torch.backends.cudnn.deterministic = True #
torch.backends.cudnn.benchmark = False #
def train(cfg, network):
# network is wrapped with NeRFWrapper and sent to Trainer here.
trainer = make_trainer(cfg, network)
optimizer = make_optimizer(cfg, network)
scheduler = make_lr_scheduler(cfg, optimizer)
recorder = make_recorder(cfg)
begin_epoch = load_model(network,
optimizer,
scheduler,
recorder,
cfg.trained_model_dir,
resume=cfg.resume,
specified_resume=cfg.specified_resume)
set_lr_scheduler(cfg, scheduler) # set config values to scheduler parameters
train_loader = make_data_loader(cfg,
is_train=True,
is_distributed=cfg.distributed,
max_iter=cfg.ep_iter)
cfg.global_iter = begin_epoch * len(train_loader)
for epoch in range(begin_epoch, cfg.train.epoch):
recorder.epoch = epoch
# make sure the colorjitter is same across difference runnings.
train_loader.dataset.set_epoch(epoch)
# set epoch to get different random seed for each epoch.
if cfg.distributed:
train_loader.batch_sampler.sampler.set_epoch(epoch)
# train one epoch
trainer.train(epoch, train_loader, optimizer, recorder)
scheduler.step()
if (epoch + 1) % cfg.save_freq == 0 and cfg.local_rank == 0 and int(os.getenv('RANK', '0')) == 0:
save_model(network, optimizer, scheduler, recorder,
cfg.trained_model_dir, epoch)
if (epoch + 1) % cfg.save_latest_ep == 0 and cfg.local_rank == 0 and int(os.getenv('RANK', '0')) == 0:
save_model(network,
optimizer,
scheduler,
recorder,
cfg.trained_model_dir,
epoch,
last=True)
return network
def test(cfg, network):
trainer = make_trainer(cfg, network)
val_loader = make_data_loader(cfg, is_train=False)
evaluator = make_evaluator(cfg)
epoch = load_network(network,
cfg.trained_model_dir,
resume=cfg.resume,
epoch=cfg.test.epoch)
trainer.val(epoch, val_loader, evaluator)
def synchronize():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
def main():
if cfg.distributed:
cfg.local_rank = int(os.environ['RANK']) % torch.cuda.device_count()
torch.cuda.set_device(cfg.local_rank)
torch.distributed.init_process_group(backend="nccl",
init_method="env://")
synchronize()
fix_random_seeds(cfg.seed)
cfg.flag_train = True
network = make_network(cfg)
if args.test:
test(cfg, network)
else:
train(cfg, network)
if __name__ == "__main__":
main()